blob: 8b98def516a8c300e4e18d8b4ce8b14e83f341b6 [file] [log] [blame]
#-------------------------------------------------------------------------------
# elftools: elf/segments.py
#
# ELF segments
#
# Eli Bendersky (eliben@gmail.com)
# This code is in the public domain
#-------------------------------------------------------------------------------
from ..construct import CString
from ..common.utils import roundup, struct_parse
from ..common.py3compat import bytes2str
from .constants import SH_FLAGS
class Segment(object):
def __init__(self, header, stream):
self.header = header
self.stream = stream
def data(self):
""" The segment data from the file.
"""
self.stream.seek(self['p_offset'])
return self.stream.read(self['p_filesz'])
def __getitem__(self, name):
""" Implement dict-like access to header entries
"""
return self.header[name]
def section_in_segment(self, section):
""" Is the given section contained in this segment?
Note: this tries to reproduce the intricate rules of the
ELF_SECTION_IN_SEGMENT_STRICT macro of the header
elf/include/internal.h in the source of binutils.
"""
# Only the 'strict' checks from ELF_SECTION_IN_SEGMENT_1 are included
segtype = self['p_type']
sectype = section['sh_type']
secflags = section['sh_flags']
# Only PT_LOAD, PT_GNU_RELR0 and PT_TLS segments can contain SHF_TLS
# sections
if ( secflags & SH_FLAGS.SHF_TLS and
segtype in ('PT_TLS', 'PT_GNU_RELR0', 'PT_LOAD')):
return False
# PT_TLS segment contains only SHF_TLS sections, PT_PHDR no sections
# at all
elif ( (secflags & SH_FLAGS.SHF_TLS) != 0 and
segtype not in ('PT_TLS', 'PT_PHDR')):
return False
# In ELF_SECTION_IN_SEGMENT_STRICT the flag check_vma is on, so if
# this is an alloc section, check whether its VMA is in bounds.
if secflags & SH_FLAGS.SHF_ALLOC:
secaddr = section['sh_addr']
vaddr = self['p_vaddr']
# This checks that the section is wholly contained in the segment.
# The third condition is the 'strict' one - an empty section will
# not match at the very end of the segment (unless the segment is
# also zero size, which is handled by the second condition).
if not (secaddr >= vaddr and
secaddr - vaddr + section['sh_size'] <= self['p_memsz'] and
secaddr - vaddr <= self['p_memsz'] - 1):
return False
# If we've come this far and it's a NOBITS section, it's in the segment
if sectype == 'SHT_NOBITS':
return True
secoffset = section['sh_offset']
poffset = self['p_offset']
# Same logic as with secaddr vs. vaddr checks above, just on offsets in
# the file
return (secoffset >= poffset and
secoffset - poffset + section['sh_size'] <= self['p_filesz'] and
secoffset - poffset <= self['p_filesz'] - 1)
class InterpSegment(Segment):
""" INTERP segment. Knows how to obtain the path to the interpreter used
for this ELF file.
"""
def __init__(self, header, stream):
super(InterpSegment, self).__init__(header, stream)
def get_interp_name(self):
""" Obtain the interpreter path used for this ELF file.
"""
path_offset = self['p_offset']
return struct_parse(
CString(''),
self.stream,
stream_pos=path_offset)
class NoteSegment(Segment):
""" NOTE segment. Knows how to parse notes.
"""
def __init__(self, header, stream, elffile):
super(NoteSegment, self).__init__(header, stream)
self._elfstructs = elffile.structs
def iter_notes(self):
""" Iterates the list of notes in the segment.
"""
offset = self['p_offset']
end = self['p_offset'] + self['p_filesz']
while offset < end:
note = struct_parse(
self._elfstructs.Elf_Nhdr,
self.stream,
stream_pos=offset)
note['n_offset'] = offset
offset += self._elfstructs.Elf_Nhdr.sizeof()
self.stream.seek(offset)
# n_namesz is 4-byte aligned.
disk_namesz = roundup(note['n_namesz'], 2)
note['n_name'] = bytes2str(
CString('').parse(self.stream.read(disk_namesz)))
offset += disk_namesz
desc_data = bytes2str(self.stream.read(note['n_descsz']))
if note['n_type'] == 'NT_GNU_ABI_TAG':
note['n_desc'] = struct_parse(self._elfstructs.Elf_Nhdr_abi,
self.stream,
offset)
elif note['n_type'] == 'NT_GNU_BUILD_ID':
note['n_desc'] = ''.join('%.2x' % ord(b) for b in desc_data)
else:
note['n_desc'] = desc_data
offset += roundup(note['n_descsz'], 2)
note['n_size'] = offset - note['n_offset']
yield note