blob: 690ece5e5d52b47ffd7660b4acc793639dc32954 [file] [log] [blame] [edit]
// Copyright 2018 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "shill/device_info.h"
#include <arpa/inet.h>
#include <fcntl.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_link.h>
#include <linux/if_tun.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/sockios.h>
#include <linux/version.h>
#include <net/if_arp.h>
#include <netinet/ether.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <unistd.h>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <base/check.h>
#include <base/check_op.h>
#include <base/containers/contains.h>
#include <base/containers/span.h>
#include <base/files/file_enumerator.h>
#include <base/files/file_util.h>
#include <base/files/scoped_file.h>
#include <base/functional/bind.h>
#include <base/logging.h>
#include <base/notreached.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/string_split.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <base/time/time.h>
#include <brillo/userdb_utils.h>
#include <chromeos/constants/vm_tools.h>
#include <chromeos/patchpanel/dbus/client.h>
#include <net-base/byte_utils.h>
#include <net-base/mac_address.h>
#include <net-base/netlink_manager.h>
#include <re2/re2.h>
#include "shill/cellular/modem_info.h"
#include "shill/device.h"
#include "shill/ethernet/ethernet.h"
#include "shill/ethernet/virtio_ethernet.h"
#include "shill/logging.h"
#include "shill/manager.h"
#include "shill/metrics.h"
#include "shill/network/network.h"
#include "shill/power_manager.h"
#include "shill/vpn/vpn_provider.h"
#include "shill/wifi/nl80211_message.h"
#include "shill/wifi/wake_on_wifi.h"
#include "shill/wifi/wifi.h"
namespace shill {
namespace Logging {
static auto kModuleLogScope = ScopeLogger::kDevice;
} // namespace Logging
namespace {
// Device name prefix for modem pseudo devices used in testing.
constexpr char kModemPseudoDeviceNamePrefix[] = "pseudomodem";
// Device name prefix for virtual ethernet devices used in testing.
constexpr char kEthernetPseudoDeviceNamePrefix[] = "pseudoethernet";
// Root of the kernel sysfs directory holding network device info.
constexpr char kDeviceInfoRoot[] = "/sys/class/net";
// Name of the "cdc_ether" driver. This driver is not included in the
// kModemDrivers list because we need to do additional checking.
constexpr char kDriverCdcEther[] = "cdc_ether";
// Name of the "cdc_ncm" driver. This driver is not included in the
// kModemDrivers list because we need to do additional checking.
constexpr char kDriverCdcNcm[] = "cdc_ncm";
// Name of the virtio network driver.
constexpr char kDriverVirtioNet[] = "virtio_net";
// Sysfs path to a device uevent file.
constexpr char kInterfaceUevent[] = "uevent";
// Content of a device uevent file that indicates it is a bridge device.
constexpr char kInterfaceUeventBridgeSignature[] = "DEVTYPE=bridge\n";
// Content of a device uevent file that indicates it is a WiFi device.
constexpr char kInterfaceUeventWifiSignature[] = "DEVTYPE=wlan\n";
// Content of a device uevent file that indicates it is a VLAN device.
constexpr char kInterfaceUeventVlanSignature[] = "DEVTYPE=vlan\n";
// Sysfs path to a device via its interface name.
constexpr char kInterfaceDevice[] = "device";
// Sysfs path to the driver of a device via its interface name.
constexpr char kInterfaceDriver[] = "device/driver";
// Sysfs path to the driver of an FM350 device via its interface name. This is
// a temporary fix until the mtkt7xx driver exposes the driver symlink at the
// same "device/driver" endpoint as expected (b/225373673)
constexpr char kInterfaceDriverMtkt7xx[] = "device/device/driver";
// Sysfs path prefix to the lower device of a virtual VLAN device. E.g. for a
// multiplexed "mbimmux1.1" device the lower device reference may be a link
// named "lower_wwan0" pointing to the sysfs path of the "wwan0" device.
constexpr char kInterfaceLowerPrefix[] = "lower_";
// Sysfs path to the vendor ID file via its interface name.
constexpr char kInterfaceVendorId[] = "device/vendor";
// Sysfs path to the device ID file via its interface name.
constexpr char kInterfaceDeviceId[] = "device/device";
// Sysfs path to the subsystem ID file via its interface name.
constexpr char kInterfaceSubsystemId[] = "device/subsystem_device";
// Sysfs path to the device uevent file that contains the characteristics of
// integrated WiFi adapters.
constexpr char kInterfaceIntegratedId[] = "device/uevent";
// Sysfs path to the file that is used to determine the owner of the interface.
constexpr char kInterfaceOwner[] = "owner";
// Sysfs path to the file that is used to determine if this is tun device.
constexpr char kInterfaceTunFlags[] = "tun_flags";
// Sysfs path to the file that is used to determine if a wifi device is
// operating in monitor mode.
constexpr char kInterfaceType[] = "type";
// Device name prefixes for virtual devices that should be ignored.
// TODO(chromium:899004): Using network device name is a bit fragile. Find
// other signals to identify these network devices.
const char* const kIgnoredDeviceNamePrefixes[] = {
// TODO(garrick): Workaround for (chromium:917923): 'arc_' is the prefix
// used for all ARC++ multinet bridge interface. These should be ignored
// for now.
"arc_",
"veth",
};
// As of Linux v5.4, these "kinds" are not part of a UAPI header definition, so
// we open-code them here, with some reference to where and when we found them
// in the Linux kernel tree (version numbers are just a snapshot in time, not
// necessarily when they were first supported). These strings are also usually
// annotated in the kernel source tree via MODULE_ALIAS_RTNL_LINK() macros.
const char* const kIgnoredDeviceKinds[] = {
"ifb", // v5.4, drivers/net/ifb.c:289
};
// v5.4, drivers/net/veth.c:1393
constexpr char kKindVeth[] = "veth";
// v5.4, drivers/net/ethernet/qualcomm/rmnet/rmnet_config.c:369
constexpr char kKindRmnet[] = "rmnet";
// v5.10, drivers/net/wireguard/device.c:254, |device_type.name| is set to
// KBUILD_MODNAME, which is "wireguard".
constexpr char kKindWireGuard[] = "wireguard";
// v4.19+, net/xfrm/xfrm_interface.c
constexpr char kKindXfrm[] = "xfrm";
// Modem drivers that we support.
const char* const kModemDrivers[] = {
// For modems which expose MBIM to userspace (Fibocom L850-GL, NL668-AM,
// FM101, etc.)
"cdc_mbim",
// For modems which expose QMI to userspace. This may not be usable if
// USE=qmi is not set.
"qmi_wwan",
// For Mediatek-based PCIe modems (Fibocom FM350, etc.)
"mtk_t7xx",
// For Qualcomm SoCs (trogdor)
"ipa",
};
// Path to the tun device.
constexpr char kTunDeviceName[] = "/dev/net/tun";
// Time to wait before registering devices which need extra time to detect.
constexpr base::TimeDelta kDelayedDeviceCreation = base::Seconds(5);
// Time interval for polling for link statistics.
constexpr base::TimeDelta kRequestLinkStatisticsInterval = base::Seconds(20);
// IFLA_XFRM_LINK and IFLA_XFRM_IF_ID are defined in
// /usr/include/linux/if_link.h on 4.19+ kernels.
constexpr int kIflaXfrmLink = 1;
constexpr int kIflaXfrmIfId = 2;
// Non-functional Device subclass used for non-operable or blocked devices
class DeviceStub : public Device {
public:
DeviceStub(Manager* manager,
const std::string& link_name,
std::optional<net_base::MacAddress> mac_address,
int interface_index,
Technology technology)
: Device(manager, link_name, mac_address, interface_index, technology) {}
DeviceStub(const DeviceStub&) = delete;
DeviceStub& operator=(const DeviceStub&) = delete;
void Start(EnabledStateChangedCallback callback) override {
std::move(callback).Run(Error(Error::kNotSupported));
}
void Stop(EnabledStateChangedCallback callback) override {
std::move(callback).Run(Error(Error::kNotSupported));
}
void Initialize() override {}
};
} // namespace
DeviceInfo::DeviceInfo(Manager* manager)
: manager_(manager),
device_info_root_(kDeviceInfoRoot),
rtnl_handler_(net_base::RTNLHandler::GetInstance()),
netlink_manager_(net_base::NetlinkManager::GetInstance()) {
if (manager) {
// |manager| may be null in tests.
dispatcher_ = manager->dispatcher();
metrics_ = manager->metrics();
}
}
DeviceInfo::~DeviceInfo() = default;
void DeviceInfo::BlockDevice(const std::string& device_name) {
blocked_list_.insert(device_name);
// Remove the current device info if it exist, since it will be out-dated.
DeregisterDevice(GetIndex(device_name));
// Request link info update to allow device info to be recreated.
if (manager_->running()) {
rtnl_handler_->RequestDump(net_base::RTNLHandler::kRequestLink);
}
}
void DeviceInfo::AllowDevice(const std::string& device_name) {
blocked_list_.erase(device_name);
// Remove the current device info if it exist, since it will be out-dated.
DeregisterDevice(GetIndex(device_name));
// Request link info update to allow device info to be recreated.
if (manager_->running()) {
rtnl_handler_->RequestDump(net_base::RTNLHandler::kRequestLink);
}
}
bool DeviceInfo::IsDeviceBlocked(const std::string& device_name) {
return base::Contains(blocked_list_, device_name);
}
void DeviceInfo::Start() {
link_listener_ = std::make_unique<net_base::RTNLListener>(
net_base::RTNLHandler::kRequestLink,
base::BindRepeating(&DeviceInfo::LinkMsgHandler, base::Unretained(this)));
rtnl_handler_->RequestDump(net_base::RTNLHandler::kRequestLink);
request_link_statistics_callback_.Reset(base::BindOnce(
&DeviceInfo::RequestLinkStatistics, weak_factory_.GetWeakPtr()));
dispatcher_->PostDelayedTask(FROM_HERE,
request_link_statistics_callback_.callback(),
kRequestLinkStatisticsInterval);
}
void DeviceInfo::Stop() {
link_listener_.reset();
infos_.clear();
request_link_statistics_callback_.Cancel();
delayed_devices_callback_.Cancel();
delayed_devices_.clear();
}
std::vector<std::string> DeviceInfo::GetUninitializedTechnologies() const {
std::set<std::string> unique_technologies;
std::set<Technology> initialized_technologies;
for (const auto& info : infos_) {
Technology technology = info.second.technology;
if (info.second.device) {
// If there is more than one device for a technology and at least
// one of them has been initialized, make sure that it doesn't get
// listed as uninitialized.
initialized_technologies.insert(technology);
unique_technologies.erase(TechnologyName(technology));
continue;
}
if (IsPrimaryConnectivityTechnology(technology) &&
!base::Contains(initialized_technologies, technology)) {
unique_technologies.insert(TechnologyName(technology));
}
}
return std::vector<std::string>(unique_technologies.begin(),
unique_technologies.end());
}
void DeviceInfo::RegisterDevice(const DeviceRefPtr& device) {
SLOG(1) << __func__ << "(" << device->link_name() << ", "
<< device->interface_index() << ")";
device->Initialize();
delayed_devices_.erase(device->interface_index());
CHECK(!GetDevice(device->interface_index()).get());
infos_[device->interface_index()].device = device;
if (infos_[device->interface_index()].technology == Technology::kUnknown) {
LOG(INFO) << ": set tech at register "
<< TechnologyName(device->technology());
infos_[device->interface_index()].technology = device->technology();
}
if (metrics_->IsDeviceRegistered(device->interface_index(),
device->technology())) {
metrics_->NotifyDeviceInitialized(device->interface_index());
} else {
metrics_->RegisterDevice(device->interface_index(), device->technology());
}
if (IsPrimaryConnectivityTechnology(device->technology())) {
manager_->RegisterDevice(device);
}
}
base::FilePath DeviceInfo::GetDeviceInfoPath(
const std::string& iface_name, const std::string& path_name) const {
return device_info_root_.Append(iface_name).Append(path_name);
}
bool DeviceInfo::GetDeviceInfoContents(const std::string& iface_name,
const std::string& path_name,
std::string* contents_out) const {
return base::ReadFileToString(GetDeviceInfoPath(iface_name, path_name),
contents_out);
}
bool DeviceInfo::GetDeviceInfoSymbolicLink(const std::string& iface_name,
const std::string& path_name,
base::FilePath* path_out) const {
return base::ReadSymbolicLink(GetDeviceInfoPath(iface_name, path_name),
path_out);
}
bool DeviceInfo::GetLowerDeviceInfoPath(const std::string& iface_name,
base::FilePath* path_out) const {
const auto type = static_cast<base::FileEnumerator::FileType>(
base::FileEnumerator::FILES | base::FileEnumerator::SHOW_SYM_LINKS);
base::FileEnumerator dir_enum(GetDeviceInfoPath(iface_name, ""), false, type);
for (auto curr_dir = dir_enum.Next(); !curr_dir.empty();
curr_dir = dir_enum.Next()) {
if (base::StartsWith(curr_dir.BaseName().value(), kInterfaceLowerPrefix)) {
return base::ReadSymbolicLink(curr_dir, path_out);
}
}
return false;
}
int DeviceInfo::GetDeviceArpType(const std::string& iface_name) const {
std::string type_string;
int arp_type;
if (!GetDeviceInfoContents(iface_name, kInterfaceType, &type_string) ||
!base::TrimString(type_string, "\n", &type_string) ||
!base::StringToInt(type_string, &arp_type)) {
return ARPHRD_VOID;
}
return arp_type;
}
Technology DeviceInfo::GetDeviceTechnology(
const std::string& iface_name,
const std::optional<std::string>& kind) const {
int arp_type = GetDeviceArpType(iface_name);
if (kind.has_value()) {
SLOG(2) << iface_name << ": device is kind '" << kind.value() << "'";
}
if (IsGuestDevice(iface_name)) {
SLOG(2) << iface_name << ": device is a guest device";
return Technology::kGuestInterface;
}
if (kind.has_value()) {
// Ignore certain KINDs of devices.
for (const char* ignoreKind : kIgnoredDeviceKinds) {
if (ignoreKind == kind.value()) {
SLOG(2) << __func__ << ": device " << iface_name << " ignored, kind \""
<< ignoreKind << "\"";
return Technology::kUnknown;
}
}
}
// Special case for devices which should be ignored.
for (const char* prefix : kIgnoredDeviceNamePrefixes) {
if (iface_name.find(prefix) == 0) {
SLOG(2) << __func__ << ": device " << iface_name << " should be ignored";
return Technology::kUnknown;
}
}
if (kind.has_value() && kind.value() == kKindWireGuard) {
SLOG(2) << __func__ << ": device " << iface_name
<< " is a wireguard device. Treat it as a tunnel.";
return Technology::kTunnel;
}
if (kind.has_value() && kind.value() == kKindXfrm) {
SLOG(2) << __func__ << ": device " << iface_name
<< " is a xfrm device. Treat it as a tunnel.";
return Technology::kTunnel;
}
// Special case for pseudo modem veth pairs which are used for testing.
if (iface_name.find(kModemPseudoDeviceNamePrefix) == 0) {
SLOG(2) << __func__ << ": device " << iface_name
<< " is a pseudo modem for testing";
return Technology::kCellular;
}
// Special case for pseudo ethernet devices which are used for testing.
if (iface_name.find(kEthernetPseudoDeviceNamePrefix) == 0) {
SLOG(2) << __func__ << ": device " << iface_name
<< " is a virtual ethernet device for testing";
return Technology::kEthernet;
}
// No point delaying veth devices just because they don't have a device
// symlink. Treat it as Ethernet directly.
if (kind.has_value() && kind.value() == kKindVeth) {
SLOG(2) << __func__ << ": device " << iface_name << " is kind veth";
return Technology::kEthernet;
}
// 'rmnet' is Qualcomm's data-path cellular netdevice.
if (kind.has_value() && kind.value() == kKindRmnet) {
SLOG(2) << __func__ << ": device " << iface_name << " is kind rmnet";
return Technology::kCellular;
}
if (arp_type == ARPHRD_IEEE80211_RADIOTAP) {
SLOG(2) << __func__ << ": wifi device " << iface_name
<< " is in monitor mode";
return Technology::kWiFiMonitor;
}
std::string contents;
if (!GetDeviceInfoContents(iface_name, kInterfaceUevent, &contents)) {
LOG(INFO) << __func__ << ": device " << iface_name << " has no uevent file";
return Technology::kUnknown;
}
// If the "uevent" file contains the string "DEVTYPE=wlan\n" at the
// start of the file or after a newline, we can safely assume this
// is a wifi device.
if (contents.find(kInterfaceUeventWifiSignature) != std::string::npos) {
SLOG(2) << __func__ << ": device " << iface_name
<< " has wifi signature in uevent file";
return Technology::kWiFi;
}
// Similarly, if the uevent file contains "DEVTYPE=bridge\n" then we can
// safely assume this is a bridge device and can be treated as ethernet.
if (contents.find(kInterfaceUeventBridgeSignature) != std::string::npos) {
SLOG(2) << __func__ << ": device " << iface_name
<< " has bridge signature in uevent file";
return Technology::kEthernet;
}
// VLANs are virtual interfaces that have a lower real network interface;
// the technology of the VLAN will be the technology of the lower device.
if (contents.find(kInterfaceUeventVlanSignature) != std::string::npos) {
SLOG(2) << __func__ << ": device " << iface_name
<< " has vlan signature in uevent file";
base::FilePath lower_device_path;
if (GetLowerDeviceInfoPath(iface_name, &lower_device_path)) {
std::string lower_device_name(lower_device_path.BaseName().value());
SLOG(2) << __func__ << ": device " << iface_name
<< " has same technology as lower device " << lower_device_name;
return GetDeviceTechnology(lower_device_name, std::nullopt);
}
}
base::FilePath driver_path;
if (!GetDeviceInfoSymbolicLink(iface_name, kInterfaceDriver, &driver_path) &&
!GetDeviceInfoSymbolicLink(iface_name, kInterfaceDriverMtkt7xx,
&driver_path)) {
SLOG(2) << __func__ << ": device " << iface_name
<< " has no device symlink";
if (arp_type == ARPHRD_LOOPBACK) {
SLOG(2) << __func__ << ": device " << iface_name
<< " is a loopback device";
return Technology::kLoopback;
}
if (arp_type == ARPHRD_PPP) {
SLOG(2) << __func__ << ": device " << iface_name << " is a ppp device";
return Technology::kPPP;
}
// Devices like Qualcomm's IPA (IP Accelerator) should not be managed by
// Shill.
if (arp_type == ARPHRD_RAWIP) {
SLOG(2) << __func__ << ": device " << iface_name << " is a raw IP device";
return Technology::kUnknown;
}
std::string tun_flags_str;
int tun_flags = 0;
if (GetDeviceInfoContents(iface_name, kInterfaceTunFlags, &tun_flags_str) &&
base::TrimString(tun_flags_str, "\n", &tun_flags_str) &&
base::HexStringToInt(tun_flags_str, &tun_flags) &&
(tun_flags & IFF_TUN)) {
SLOG(2) << __func__ << ": device " << iface_name << " is tun device";
return Technology::kTunnel;
}
// We don't know what sort of device it is.
return Technology::kNoDeviceSymlink;
}
std::string driver_name(driver_path.BaseName().value());
// See if driver for this interface is in a list of known modem driver names.
for (auto modem_driver : kModemDrivers) {
if (driver_name == modem_driver) {
SLOG(2) << __func__ << ": device " << iface_name
<< " is matched with modem driver " << driver_name;
return Technology::kCellular;
}
}
// For cdc_ether / cdc_ncm devices, make sure it's a modem because this driver
// can be used for other ethernet devices.
if (driver_name == kDriverCdcEther || driver_name == kDriverCdcNcm) {
if (IsCdcEthernetModemDevice(iface_name)) {
LOG(INFO) << __func__ << ": device " << iface_name << " is a "
<< driver_name << " modem device";
return Technology::kCellular;
}
SLOG(2) << __func__ << ": device " << iface_name << " is a " << driver_name
<< " device";
return Technology::kCDCEthernet;
}
// Special case for the virtio driver, used when run under KVM. See also
// the comment in VirtioEthernet::Start.
if (driver_name == kDriverVirtioNet) {
SLOG(2) << __func__ << ": device " << iface_name << " is virtio ethernet";
return Technology::kVirtioEthernet;
}
SLOG(2) << __func__ << ": device " << iface_name << ", with driver "
<< driver_name << ", is defaulted to type ethernet";
return Technology::kEthernet;
}
bool DeviceInfo::IsCdcEthernetModemDevice(const std::string& iface_name) const {
// A cdc_ether / cdc_ncm device is a modem device if it also exposes tty
// interfaces. To determine this, we look for the existence of the tty
// interface in the USB device sysfs tree.
//
// A typical sysfs dir hierarchy for a cdc_ether / cdc_ncm modem USB device is
// as follows:
//
// /sys/devices/pci0000:00/0000:00:1d.7/usb1/1-2
// 1-2:1.0
// tty
// ttyACM0
// 1-2:1.1
// net
// usb0
// 1-2:1.2
// tty
// ttyACM1
// ...
//
// /sys/class/net/usb0/device symlinks to
// /sys/devices/pci0000:00/0000:00:1d.7/usb1/1-2/1-2:1.1
//
// Note that some modem devices have the tty directory one level deeper
// (eg. E362), so the device tree for the tty interface is:
// /sys/devices/pci0000:00/0000:00:1d.7/usb/1-2/1-2:1.0/ttyUSB0/tty/ttyUSB0
base::FilePath device_file = GetDeviceInfoPath(iface_name, kInterfaceDevice);
base::FilePath device_path;
if (!base::ReadSymbolicLink(device_file, &device_path)) {
SLOG(2) << __func__ << ": device " << iface_name
<< " has no device symlink";
return false;
}
if (!device_path.IsAbsolute()) {
device_path =
base::MakeAbsoluteFilePath(device_file.DirName().Append(device_path));
}
// Look for tty interface by enumerating all directories under the parent
// USB device and see if there's a subdirectory "tty" inside. In other
// words, using the example dir hierarchy above, find
// /sys/devices/pci0000:00/0000:00:1d.7/usb1/1-2/.../tty.
// If this exists, then this is a modem device.
return HasSubdir(device_path.DirName(), base::FilePath("tty"));
}
// static
bool DeviceInfo::HasSubdir(const base::FilePath& base_dir,
const base::FilePath& subdir) {
const auto type = static_cast<base::FileEnumerator::FileType>(
base::FileEnumerator::DIRECTORIES | base::FileEnumerator::SHOW_SYM_LINKS);
base::FileEnumerator dir_enum(base_dir, true, type);
for (auto curr_dir = dir_enum.Next(); !curr_dir.empty();
curr_dir = dir_enum.Next()) {
if (curr_dir.BaseName() == subdir)
return true;
}
return false;
}
DeviceRefPtr DeviceInfo::CreateDevice(
const std::string& link_name,
std::optional<net_base::MacAddress> mac_address,
int interface_index,
Technology technology) {
SLOG(1) << __func__ << ": " << link_name << " MAC Address: "
<< (mac_address.has_value() ? mac_address->ToString() : "(null)")
<< " Index: " << interface_index;
DeviceRefPtr device;
delayed_devices_.erase(interface_index);
infos_[interface_index].technology = technology;
switch (technology) {
case Technology::kCellular:
// Cellular devices are managed by ModemInfo.
SLOG(2) << "Cellular link " << link_name << " at index "
<< interface_index << " -- notifying ModemInfo.";
// The MAC address provided by RTNL is not reliable for Gobi 2K modems.
// Clear it here, and it will be fetched from the kernel in
// GetMacAddress().
infos_[interface_index].mac_address = std::nullopt;
manager_->modem_info()->OnDeviceInfoAvailable(link_name);
break;
case Technology::kEthernet:
device = new Ethernet(manager_, link_name, mac_address, interface_index);
break;
case Technology::kVirtioEthernet:
device =
new VirtioEthernet(manager_, link_name, mac_address, interface_index);
break;
case Technology::kWiFi:
// Defer creating this device until we get information about the
// type of WiFi interface.
GetWiFiInterfaceInfo(interface_index);
break;
case Technology::kArcBridge:
// Shill doesn't touch the IP configuration for the ARC bridge.
break;
case Technology::kPPP:
case Technology::kTunnel:
// Tunnel and PPP devices are managed by the VPN code (PPP for
// l2tpipsec). Notify the corresponding VPNService of the interface's
// presence through the pre-registered callback.
// Since CreateDevice is only called once in the lifetime of an
// interface index, this notification will only occur the first
// time the device is seen.
if (pending_links_.find(link_name) != pending_links_.end()) {
SLOG(2) << "Tunnel / PPP link " << link_name << " at index "
<< interface_index << " -- triggering callback.";
std::move(pending_links_[link_name]).Run(link_name, interface_index);
pending_links_.erase(link_name);
}
// Shill doesn't touch the tunnel interface not claimed anywhere in shill.
break;
case Technology::kLoopback:
// Loopback devices are largely ignored, but we should make sure the
// link is enabled.
SLOG(2) << "Bringing up loopback device " << link_name << " at index "
<< interface_index;
rtnl_handler_->SetInterfaceFlags(interface_index, IFF_UP, IFF_UP);
return nullptr;
case Technology::kCDCEthernet:
// CDCEthernet devices are of indeterminate type when they are
// initially created. Some time later, tty devices may or may
// not appear under the same USB device root, which will identify
// it as a modem. Alternatively, ModemManager may discover the
// device and create and register a Cellular device. In either
// case, we should delay creating a Device until we can make a
// better determination of what type this Device should be.
case Technology::kNoDeviceSymlink: // FALLTHROUGH
// The same is true for devices that do not report a device
// symlink. It has been observed that tunnel devices may not
// immediately contain a tun_flags component in their
// /sys/class/net entry.
LOG(INFO) << "Delaying creation of device for " << link_name
<< " at index " << interface_index;
DelayDeviceCreation(interface_index);
return nullptr;
case Technology::kGuestInterface:
return nullptr;
default:
// We will not manage this device in shill. Do not create a device
// object or do anything to change its state. We create a stub object
// which is useful for testing.
return new DeviceStub(manager_, link_name, mac_address, interface_index,
technology);
}
manager_->UpdateUninitializedTechnologies();
return device;
}
// static
bool DeviceInfo::GetLinkNameFromMessage(const net_base::RTNLMessage& msg,
std::string* link_name) {
if (!msg.HasAttribute(IFLA_IFNAME))
return false;
*link_name = msg.GetStringAttribute(IFLA_IFNAME);
return true;
}
bool DeviceInfo::IsRenamedBlockedDevice(const net_base::RTNLMessage& msg) {
int interface_index = msg.interface_index();
const Info* info = GetInfo(interface_index);
if (!info)
return false;
if (!info->device || info->device->technology() != Technology::kBlocked)
return false;
std::string interface_name;
if (!GetLinkNameFromMessage(msg, &interface_name))
return false;
if (interface_name == info->name)
return false;
LOG(INFO) << __func__ << ": interface index " << interface_index
<< " renamed from " << info->name << " to " << interface_name;
return true;
}
void DeviceInfo::AddLinkMsgHandler(const net_base::RTNLMessage& msg) {
SLOG(2) << __func__ << " index: " << msg.interface_index();
DCHECK(msg.type() == net_base::RTNLMessage::kTypeLink &&
msg.mode() == net_base::RTNLMessage::kModeAdd);
int dev_index = msg.interface_index();
Technology technology = Technology::kUnknown;
unsigned int flags = msg.link_status().flags;
unsigned int change = msg.link_status().change;
if (IsRenamedBlockedDevice(msg)) {
// Treat renamed blocked devices as new devices.
DeregisterDevice(dev_index);
}
bool new_device = !infos_[dev_index].received_add_link;
SLOG(2) << __func__
<< base::StringPrintf(
"(index=%d, flags=0x%x, change=0x%x), new_device=%d",
dev_index, flags, change, new_device);
infos_[dev_index].received_add_link = true;
infos_[dev_index].flags = flags;
RetrieveLinkStatistics(dev_index, msg);
DeviceRefPtr device = GetDevice(dev_index);
if (new_device) {
CHECK(!device);
std::string link_name;
if (!GetLinkNameFromMessage(msg, &link_name) || link_name.empty()) {
LOG(ERROR) << "Add Link message does not contain a link name!";
return;
}
SLOG(2) << "add link index " << dev_index << " name " << link_name;
infos_[dev_index].name = link_name;
indices_[link_name] = dev_index;
if (link_name == VPNProvider::kArcBridgeIfName) {
technology = Technology::kArcBridge;
} else if (IsDeviceBlocked(link_name)) {
technology = Technology::kBlocked;
} else {
technology = GetDeviceTechnology(link_name, msg.link_status().kind);
}
const auto mac_address =
net_base::MacAddress::CreateFromBytes(msg.GetAttribute(IFLA_ADDRESS));
if (mac_address) {
infos_[dev_index].mac_address = *mac_address;
SLOG(2) << "link index " << dev_index << " address "
<< mac_address->ToString();
} else if (technology == Technology::kWiFi ||
technology == Technology::kEthernet) {
LOG(ERROR) << "Add link message does not have IFLA_ADDRESS, link: "
<< link_name << ", Technology: " << technology;
return;
}
if (msg.HasAttribute(IFLA_PERM_ADDRESS)) {
infos_[dev_index].perm_address = net_base::MacAddress::CreateFromBytes(
msg.GetAttribute(IFLA_PERM_ADDRESS));
}
metrics_->RegisterDevice(dev_index, technology);
device = CreateDevice(link_name, mac_address, dev_index, technology);
if (device) {
RegisterDevice(device);
}
}
if (device) {
device->LinkEvent(flags, change);
}
}
void DeviceInfo::DelLinkMsgHandler(const net_base::RTNLMessage& msg) {
SLOG(2) << __func__ << "(index=" << msg.interface_index() << ")";
DCHECK(msg.type() == net_base::RTNLMessage::kTypeLink &&
msg.mode() == net_base::RTNLMessage::kModeDelete);
SLOG(2) << __func__
<< base::StringPrintf("(index=%d, flags=0x%x, change=0x%x)",
msg.interface_index(), msg.link_status().flags,
msg.link_status().change);
std::string link_name;
if (!GetLinkNameFromMessage(msg, &link_name)) {
LOG(ERROR) << "Del Link message does not contain a link name!";
return;
}
DeregisterDevice(msg.interface_index());
}
DeviceRefPtr DeviceInfo::GetDevice(int interface_index) const {
const Info* info = GetInfo(interface_index);
return info ? info->device : nullptr;
}
int DeviceInfo::GetIndex(const std::string& interface_name) const {
std::map<std::string, int>::const_iterator it = indices_.find(interface_name);
return it == indices_.end() ? -1 : it->second;
}
std::optional<net_base::MacAddress> DeviceInfo::GetMacAddress(
int interface_index) const {
const Info* info = GetInfo(interface_index);
if (!info) {
return std::nullopt;
}
// |mac_address| from RTNL is not used for some devices, in which case it will
// be empty here.
if (info->mac_address) {
return info->mac_address;
}
// Ask the kernel for the MAC address.
return GetMacAddressFromKernel(interface_index);
}
std::optional<net_base::MacAddress> DeviceInfo::GetMacAddressFromKernel(
int interface_index) const {
const Info* info = GetInfo(interface_index);
if (!info) {
return std::nullopt;
}
std::unique_ptr<net_base::Socket> socket =
socket_factory_->Create(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0);
if (!socket) {
PLOG(ERROR) << __func__ << ": Unable to open socket";
return std::nullopt;
}
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_ifindex = interface_index;
strcpy(ifr.ifr_ifrn.ifrn_name, info->name.c_str()); // NOLINT(runtime/printf)
if (!socket->Ioctl(SIOCGIFHWADDR, &ifr)) {
PLOG(ERROR) << __func__ << ": Unable to read MAC address";
return std::nullopt;
}
return net_base::MacAddress::CreateFromBytes(
{ifr.ifr_hwaddr.sa_data, net_base::MacAddress::kAddressLength});
}
std::optional<net_base::MacAddress> DeviceInfo::GetPermAddress(
int interface_index) {
auto iter = infos_.find(interface_index);
if (iter == infos_.end()) {
return std::nullopt;
}
Info& info = iter->second;
if (!info.perm_address) {
// TODO(b/298960315): Clean up this fallback, it should not be needed.
LOG(WARNING) << "Perm MAC requested for device w/o it in info: "
<< info.name;
// Ask the kernel for the hardware MAC address.
info.perm_address = GetPermAddressFromKernel(interface_index);
}
return info.perm_address;
}
std::optional<net_base::MacAddress> DeviceInfo::GetPermAddressFromKernel(
int interface_index) const {
const Info* info = GetInfo(interface_index);
if (!info) {
return std::nullopt;
}
std::unique_ptr<net_base::Socket> socket =
socket_factory_->Create(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0);
if (!socket) {
PLOG(ERROR) << __func__ << ": Unable to open socket";
return std::nullopt;
}
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, info->name.c_str(), sizeof(ifr.ifr_name));
constexpr int kPermAddrBufferSize =
sizeof(struct ethtool_perm_addr) + MAX_ADDR_LEN;
char perm_addr_buffer[kPermAddrBufferSize];
memset(perm_addr_buffer, 0, kPermAddrBufferSize);
struct ethtool_perm_addr* perm_addr = static_cast<struct ethtool_perm_addr*>(
static_cast<void*>(perm_addr_buffer));
perm_addr->cmd = ETHTOOL_GPERMADDR;
perm_addr->size = MAX_ADDR_LEN;
ifr.ifr_data = perm_addr;
if (!socket->Ioctl(SIOCETHTOOL, &ifr)) {
PLOG(ERROR) << __func__ << ": Unable to read permanent MAC address";
return std::nullopt;
}
auto mac =
net_base::MacAddress::CreateFromBytes({perm_addr->data, perm_addr->size});
if (!mac) {
PLOG(ERROR) << "Invalid MAC address length: " << perm_addr->size;
} else if (mac->IsZero()) {
PLOG(WARNING) << "Kernel returned zero MAC address";
return std::nullopt;
}
return mac;
}
bool DeviceInfo::GetIntegratedWiFiHardwareIds(const std::string& iface_name,
int* vendor_id,
int* product_id,
int* subsystem_id) const {
std::string content;
if (!GetDeviceInfoContents(iface_name, kInterfaceIntegratedId, &content)) {
LOG(WARNING) << iface_name << " no uevent file found";
return false;
}
const auto lines = base::SplitString(content, "\n", base::TRIM_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
static constexpr LazyRE2 qcom_adapter_matcher = {
"OF_COMPATIBLE_(\\d+)=qcom,wcn(\\d+)-wifi"};
for (const auto& line : lines) {
int i;
int wcn_id;
if (RE2::FullMatch(line, *qcom_adapter_matcher, &i, &wcn_id)) {
*vendor_id = Metrics::kWiFiIntegratedAdapterVendorId;
*product_id = wcn_id;
*subsystem_id = 0;
return true;
}
}
return false;
}
bool DeviceInfo::GetWiFiHardwareIds(int interface_index,
int* vendor_id,
int* product_id,
int* subsystem_id) const {
const Info* info = GetInfo(interface_index);
if (!info) {
LOG(ERROR) << "No DeviceInfo for interface index " << interface_index;
return false;
}
if (info->technology != Technology::kWiFi) {
LOG(ERROR) << info->name << " adapter reports for technology "
<< info->technology << " not supported.";
return false;
}
SLOG(2) << info->name << " detecting adapter information";
if (!base::PathIsReadable(
GetDeviceInfoPath(info->name, kInterfaceVendorId))) {
// No "vendor" file, check if the adapter is an integrated chipset.
if (GetIntegratedWiFiHardwareIds(info->name, vendor_id, product_id,
subsystem_id)) {
return true;
}
LOG(WARNING) << info->name << " no vendor ID found";
return false;
}
bool ret = true;
std::string content;
int content_int;
if (!GetDeviceInfoContents(info->name, kInterfaceVendorId, &content) ||
!base::TrimString(content, "\n", &content) ||
!base::HexStringToInt(content, &content_int)) {
ret = false;
} else {
*vendor_id = content_int;
}
if (!GetDeviceInfoContents(info->name, kInterfaceDeviceId, &content) ||
!base::TrimString(content, "\n", &content) ||
!base::HexStringToInt(content, &content_int)) {
ret = false;
} else {
*product_id = content_int;
}
// Devices with SDIO WiFi chipsets may not have a |subsystem_device| file.
// Use 0 in that case.
if (!base::PathIsReadable(
GetDeviceInfoPath(info->name, kInterfaceSubsystemId))) {
*subsystem_id = 0;
return ret;
}
if (!GetDeviceInfoContents(info->name, kInterfaceSubsystemId, &content) ||
!base::TrimString(content, "\n", &content) ||
!base::HexStringToInt(content, &content_int)) {
ret = false;
} else {
*subsystem_id = content_int;
}
return ret;
}
bool DeviceInfo::GetFlags(int interface_index, unsigned int* flags) const {
const Info* info = GetInfo(interface_index);
if (!info) {
return false;
}
*flags = info->flags;
return true;
}
bool DeviceInfo::GetByteCounts(int interface_index,
uint64_t* rx_bytes,
uint64_t* tx_bytes) const {
const Info* info = GetInfo(interface_index);
if (!info) {
return false;
}
*rx_bytes = info->rx_bytes;
*tx_bytes = info->tx_bytes;
return true;
}
void DeviceInfo::AddVirtualInterfaceReadyCallback(
const std::string& interface_name, LinkReadyCallback callback) {
if (pending_links_.erase(interface_name) > 0) {
PLOG(WARNING) << "Callback for RTNL link ready event of " << interface_name
<< " already existed, overwritten";
}
pending_links_.emplace(interface_name, std::move(callback));
}
bool DeviceInfo::CreateTunnelInterface(LinkReadyCallback callback) {
int fd = HANDLE_EINTR(open(kTunDeviceName, O_RDWR | O_CLOEXEC));
if (fd < 0) {
PLOG(ERROR) << "failed to open " << kTunDeviceName;
return false;
}
base::ScopedFD scoped_fd(fd);
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TUN | IFF_NO_PI;
if (HANDLE_EINTR(ioctl(fd, TUNSETIFF, &ifr))) {
PLOG(ERROR) << "failed to create tunnel interface";
return false;
}
if (HANDLE_EINTR(ioctl(fd, TUNSETPERSIST, 1))) {
PLOG(ERROR) << "failed to set tunnel interface to be persistent";
return false;
}
if (callback) {
std::string ifname(ifr.ifr_name);
AddVirtualInterfaceReadyCallback(ifname, std::move(callback));
}
return true;
}
int DeviceInfo::OpenTunnelInterface(const std::string& interface_name) const {
int fd = HANDLE_EINTR(open(kTunDeviceName, O_RDWR | O_CLOEXEC));
if (fd < 0) {
PLOG(ERROR) << "failed to open " << kTunDeviceName;
return -1;
}
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, interface_name.c_str(), sizeof(ifr.ifr_name));
ifr.ifr_flags = IFF_TUN | IFF_NO_PI;
if (HANDLE_EINTR(ioctl(fd, TUNSETIFF, &ifr))) {
PLOG(ERROR) << "failed to set tunnel interface name";
return -1;
}
return fd;
}
bool DeviceInfo::CreateWireGuardInterface(const std::string& interface_name,
LinkReadyCallback link_ready_callback,
base::OnceClosure failure_callback) {
if (!rtnl_handler_->AddInterface(
interface_name, kKindWireGuard, {},
base::BindOnce(&DeviceInfo::OnCreateInterfaceResponse,
weak_factory_.GetWeakPtr(), interface_name,
std::move(failure_callback)))) {
return false;
}
AddVirtualInterfaceReadyCallback(interface_name,
std::move(link_ready_callback));
return true;
}
bool DeviceInfo::CreateXFRMInterface(const std::string& interface_name,
int underlying_if_index,
int xfrm_if_id,
LinkReadyCallback link_ready_callback,
base::OnceClosure failure_callback) {
net_base::RTNLAttrMap attrs;
attrs[kIflaXfrmLink] =
net_base::byte_utils::ToBytes<uint32_t>(underlying_if_index);
attrs[kIflaXfrmIfId] = net_base::byte_utils::ToBytes<uint32_t>(xfrm_if_id);
const auto link_info_data = net_base::RTNLMessage::PackAttrs(attrs);
if (!rtnl_handler_->AddInterface(
interface_name, kKindXfrm, link_info_data,
base::BindOnce(&DeviceInfo::OnCreateInterfaceResponse,
weak_factory_.GetWeakPtr(), interface_name,
std::move(failure_callback)))) {
return false;
}
AddVirtualInterfaceReadyCallback(interface_name,
std::move(link_ready_callback));
return true;
}
VirtualDevice* DeviceInfo::CreatePPPDevice(Manager* manager,
const std::string& ifname,
int ifindex) {
return new VirtualDevice(manager, ifname, ifindex, Technology::kPPP);
}
void DeviceInfo::OnCreateInterfaceResponse(const std::string& interface_name,
base::OnceClosure failure_callback,
int32_t error) {
if (error == 0) {
// |error| == 0 means ACK. Needs to do nothing here. We expect getting the
// new interface message latter.
return;
}
LOG(ERROR) << "Failed to create interface " << interface_name
<< ", error code=" << error;
if (pending_links_.erase(interface_name) != 1) {
LOG(WARNING)
<< "Failed to remove link ready callback from |pending_links_| for "
<< interface_name;
}
std::move(failure_callback).Run();
}
bool DeviceInfo::DeleteInterface(int interface_index) const {
return rtnl_handler_->RemoveInterface(interface_index);
}
const DeviceInfo::Info* DeviceInfo::GetInfo(int interface_index) const {
std::map<int, Info>::const_iterator iter = infos_.find(interface_index);
if (iter == infos_.end()) {
return nullptr;
}
return &iter->second;
}
void DeviceInfo::DeregisterDevice(int interface_index) {
auto iter = infos_.find(interface_index);
if (iter == infos_.end()) {
LOG(WARNING) << __func__ << ": Unknown device index: " << interface_index;
return;
}
LOG(INFO) << __func__ << " index: " << interface_index;
// Deregister the device if not deregistered yet.
if (iter->second.device.get()) {
manager_->DeregisterDevice(iter->second.device);
metrics_->DeregisterDevice(interface_index);
}
indices_.erase(iter->second.name);
infos_.erase(iter);
delayed_devices_.erase(interface_index);
}
void DeviceInfo::LinkMsgHandler(const net_base::RTNLMessage& msg) {
DCHECK(msg.type() == net_base::RTNLMessage::kTypeLink);
if (msg.mode() == net_base::RTNLMessage::kModeAdd) {
AddLinkMsgHandler(msg);
} else if (msg.mode() == net_base::RTNLMessage::kModeDelete) {
DelLinkMsgHandler(msg);
} else {
NOTREACHED();
}
}
void DeviceInfo::DelayDeviceCreation(int interface_index) {
delayed_devices_.insert(interface_index);
delayed_devices_callback_.Reset(base::BindOnce(
&DeviceInfo::DelayedDeviceCreationTask, weak_factory_.GetWeakPtr()));
dispatcher_->PostDelayedTask(FROM_HERE, delayed_devices_callback_.callback(),
kDelayedDeviceCreation);
}
// Re-evaluate the technology type for each delayed device.
void DeviceInfo::DelayedDeviceCreationTask() {
while (!delayed_devices_.empty()) {
const auto it = delayed_devices_.begin();
int dev_index = *it;
delayed_devices_.erase(it);
DCHECK(base::Contains(infos_, dev_index));
DCHECK(!GetDevice(dev_index));
const std::string& link_name = infos_[dev_index].name;
Technology technology = GetDeviceTechnology(link_name, std::nullopt);
if (technology == Technology::kCDCEthernet) {
LOG(INFO) << "In " << __func__ << ": device " << link_name
<< " is now assumed to be regular Ethernet.";
technology = Technology::kEthernet;
} else if (technology == Technology::kNoDeviceSymlink) {
// Act the same as if there was a driver symlink, but we did not
// recognize the driver name.
SLOG(2) << __func__ << ": device " << link_name
<< ", without driver name is defaulted to type ethernet";
technology = Technology::kEthernet;
} else if (technology != Technology::kCellular &&
technology != Technology::kTunnel &&
technology != Technology::kGuestInterface) {
LOG(WARNING) << "In " << __func__ << ": device " << link_name
<< " is unexpected technology " << technology;
}
const std::optional<net_base::MacAddress> mac_address =
infos_[dev_index].mac_address;
int arp_type = GetDeviceArpType(link_name);
// NB: ARHRD_RAWIP was introduced in kernel 4.14.
if (technology != Technology::kTunnel &&
technology != Technology::kUnknown && arp_type != ARPHRD_RAWIP) {
DCHECK(mac_address.has_value());
}
DeviceRefPtr device =
CreateDevice(link_name, mac_address, dev_index, technology);
if (device) {
RegisterDevice(device);
}
}
}
void DeviceInfo::RetrieveLinkStatistics(int interface_index,
const net_base::RTNLMessage& msg) {
if (!msg.HasAttribute(IFLA_STATS64)) {
return;
}
const auto stats_bytes = msg.GetAttribute(IFLA_STATS64);
if (stats_bytes.size() < sizeof(struct rtnl_link_stats64)) {
LOG(WARNING) << "Link statistics size is too small: " << stats_bytes.size()
<< " < " << sizeof(struct rtnl_link_stats64);
return;
}
const auto stats = *net_base::byte_utils::FromBytes<struct rtnl_link_stats64>(
base::span<const uint8_t>(stats_bytes)
.subspan(0, sizeof(struct rtnl_link_stats64)));
SLOG(2) << "Link statistics for interface index " << interface_index << ": "
<< "receive: " << stats.rx_bytes << "; "
<< "transmit: " << stats.tx_bytes << ".";
infos_[interface_index].rx_bytes = stats.rx_bytes;
infos_[interface_index].tx_bytes = stats.tx_bytes;
DeviceRefPtr device = GetDevice(interface_index);
if (device && device->technology() == Technology::kWiFi) {
(reinterpret_cast<WiFi*>(device.get()))
->OnReceivedRtnlLinkStatistics(stats);
}
}
void DeviceInfo::RequestLinkStatistics() {
rtnl_handler_->RequestDump(net_base::RTNLHandler::kRequestLink);
request_link_statistics_callback_.Reset(base::BindOnce(
&DeviceInfo::RequestLinkStatistics, weak_factory_.GetWeakPtr()));
dispatcher_->PostDelayedTask(FROM_HERE,
request_link_statistics_callback_.callback(),
kRequestLinkStatisticsInterval);
}
void DeviceInfo::GetWiFiInterfaceInfo(int interface_index) {
GetInterfaceMessage msg;
if (!msg.attributes()->SetU32AttributeValue(NL80211_ATTR_IFINDEX,
interface_index)) {
LOG(ERROR) << "Unable to set interface index attribute for "
"GetInterface message. Interface type cannot be "
"determined!";
return;
}
msg.Send(
netlink_manager_,
base::BindRepeating(&DeviceInfo::OnWiFiInterfaceInfoReceived,
weak_factory_.GetWeakPtr()),
base::BindRepeating(&net_base::NetlinkManager::OnAckDoNothing),
base::BindRepeating(&net_base::NetlinkManager::OnNetlinkMessageError));
}
void DeviceInfo::OnWiFiInterfaceInfoReceived(const Nl80211Message& msg) {
if (msg.command() != NL80211_CMD_NEW_INTERFACE) {
LOG(ERROR) << "Message is not a new interface response";
return;
}
uint32_t interface_index;
if (!msg.const_attributes()->GetU32AttributeValue(NL80211_ATTR_IFINDEX,
&interface_index)) {
LOG(ERROR) << "Message contains no interface index";
return;
}
uint32_t interface_type;
if (!msg.const_attributes()->GetU32AttributeValue(NL80211_ATTR_IFTYPE,
&interface_type)) {
LOG(ERROR) << "Message contains no interface type";
return;
}
uint32_t phy_index;
if (!msg.const_attributes()->GetU32AttributeValue(NL80211_ATTR_WIPHY,
&phy_index)) {
LOG(ERROR) << "Message contains no phy index";
return;
}
const Info* info = GetInfo(interface_index);
if (!info) {
LOG(ERROR) << "Could not find device info for interface index "
<< interface_index;
return;
}
if (info->device) {
LOG(ERROR) << "Device already created for interface index "
<< interface_index;
return;
}
if (interface_type != NL80211_IFTYPE_STATION) {
LOG(INFO) << "Ignoring WiFi device " << info->name << " at interface index "
<< interface_index << " since it is not in station mode.";
return;
}
LOG(INFO) << "Creating WiFi device for station mode interface " << info->name
<< " at interface index " << interface_index;
#if !defined(DISABLE_WAKE_ON_WIFI)
auto wake_on_wifi = std::make_unique<WakeOnWiFi>(
netlink_manager_, dispatcher_, metrics_,
base::BindRepeating(&DeviceInfo::RecordDarkResumeWakeReason,
weak_factory_.GetWeakPtr()));
#else
auto wake_on_wifi = std::unique_ptr<WakeOnWiFi>(nullptr);
#endif // DISABLE_WAKE_ON_WIFI
DeviceRefPtr device =
new WiFi(manager_, info->name, info->mac_address, interface_index,
phy_index, std::move(wake_on_wifi));
RegisterDevice(device);
}
void DeviceInfo::RecordDarkResumeWakeReason(const std::string& wake_reason) {
manager_->power_manager()->RecordDarkResumeWakeReason(wake_reason);
}
// Verifies if a device is guest by checking if the owner of the device
// identified by |interface_name| has the same UID as the user that runs the
// Crostini VMs.
bool DeviceInfo::IsGuestDevice(const std::string& interface_name) const {
std::string owner;
if (!GetDeviceInfoContents(interface_name, kInterfaceOwner, &owner)) {
return false;
}
uint32_t owner_id;
base::TrimWhitespaceASCII(owner, base::TRIM_ALL, &owner);
if (!base::StringToUint(owner, &owner_id)) {
return false;
}
uid_t crosvm_user_uid;
if (!GetUserId(vm_tools::kCrosVmUser, &crosvm_user_uid)) {
LOG(WARNING) << "unable to get uid for " << vm_tools::kCrosVmUser;
return false;
}
return owner_id == crosvm_user_uid;
}
void DeviceInfo::OnPatchpanelClientReady() {
manager_->patchpanel_client()->RegisterNeighborReachabilityEventHandler(
base::BindRepeating(&DeviceInfo::OnNeighborReachabilityEvent,
weak_factory_.GetWeakPtr()));
}
void DeviceInfo::OnNeighborReachabilityEvent(
const patchpanel::Client::NeighborReachabilityEvent& event) {
SLOG(2) << __func__ << ": " << event;
auto device = GetDevice(event.ifindex);
if (!device) {
LOG(ERROR) << __func__ << " " << event << ": device not found";
return;
}
// Neighbor reachability events never expected in Cellular, so the primary
// network will always exist.
CHECK(device->GetPrimaryNetwork());
device->GetPrimaryNetwork()->OnNeighborReachabilityEvent(event);
}
bool DeviceInfo::GetUserId(const std::string& user_name, uid_t* uid) const {
return brillo::userdb::GetUserInfo(user_name, uid, nullptr);
}
DeviceInfo::Info::Info()
: flags(0),
rx_bytes(0),
tx_bytes(0),
received_add_link(false),
technology(Technology::kUnknown) {}
} // namespace shill