blob: e80477e09f7d603edf3f5fb23fe553b1c38f8d97 [file] [log] [blame]
/* Copyright 2021 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* SHA256 implementation using x86 SHA extension.
* Mainly from https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-x86.c,
* Written and place in public domain by Jeffrey Walton
* Based on code from Intel, and by Sean Gulley for
* the miTLS project.
*/
#include "2common.h"
#include "2sha.h"
#include "2sha_private.h"
#include "2api.h"
static struct vb2_sha256_context sha_ctx;
typedef int vb2_m128i __attribute__ ((vector_size(16)));
static inline vb2_m128i vb2_loadu_si128(vb2_m128i *ptr)
{
vb2_m128i result;
asm volatile ("movups %1, %0" : "=x"(result) : "m"(*ptr));
return result;
}
static inline void vb2_storeu_si128(vb2_m128i *to, vb2_m128i from)
{
asm volatile ("movups %1, %0" : "=m"(*to) : "x"(from));
}
static inline vb2_m128i vb2_add_epi32(vb2_m128i a, vb2_m128i b)
{
return a + b;
}
static inline vb2_m128i vb2_shuffle_epi8(vb2_m128i value, vb2_m128i mask)
{
asm ("pshufb %1, %0" : "+x"(value) : "xm"(mask));
return value;
}
static inline vb2_m128i vb2_shuffle_epi32(vb2_m128i value, int mask)
{
vb2_m128i result;
asm ("pshufd %2, %1, %0" : "=x"(result) : "xm"(value), "i" (mask));
return result;
}
static inline vb2_m128i vb2_alignr_epi8(vb2_m128i a, vb2_m128i b, int imm8)
{
asm ("palignr %2, %1, %0" : "+x"(a) : "xm"(b), "i"(imm8));
return a;
}
static inline vb2_m128i vb2_sha256msg1_epu32(vb2_m128i a, vb2_m128i b)
{
asm ("sha256msg1 %1, %0" : "+x"(a) : "xm"(b));
return a;
}
static inline vb2_m128i vb2_sha256msg2_epu32(vb2_m128i a, vb2_m128i b)
{
asm ("sha256msg2 %1, %0" : "+x"(a) : "xm"(b));
return a;
}
static inline vb2_m128i vb2_sha256rnds2_epu32(vb2_m128i a, vb2_m128i b,
vb2_m128i k)
{
asm ("sha256rnds2 %1, %0" : "+x"(a) : "xm"(b), "Yz"(k));
return a;
}
#define SHA256_X86_PUT_STATE1(j, i) \
{ \
msgtmp[j] = vb2_loadu_si128((vb2_m128i *) \
(message + (i << 6) + (j * 16))); \
msgtmp[j] = vb2_shuffle_epi8(msgtmp[j], shuf_mask); \
msg = vb2_add_epi32(msgtmp[j], \
vb2_loadu_si128((vb2_m128i *)&vb2_sha256_k[j * 4])); \
state1 = vb2_sha256rnds2_epu32(state1, state0, msg); \
}
#define SHA256_X86_PUT_STATE0() \
{ \
msg = vb2_shuffle_epi32(msg, 0x0E); \
state0 = vb2_sha256rnds2_epu32(state0, state1, msg); \
}
#define SHA256_X86_LOOP(j) \
{ \
int k = j & 3; \
int prev_k = (k + 3) & 3; \
int next_k = (k + 1) & 3; \
msg = vb2_add_epi32(msgtmp[k], \
vb2_loadu_si128((vb2_m128i *)&vb2_sha256_k[j * 4])); \
state1 = vb2_sha256rnds2_epu32(state1, state0, msg); \
tmp = vb2_alignr_epi8(msgtmp[k], msgtmp[prev_k], 4); \
msgtmp[next_k] = vb2_add_epi32(msgtmp[next_k], tmp); \
msgtmp[next_k] = vb2_sha256msg2_epu32(msgtmp[next_k], \
msgtmp[k]); \
SHA256_X86_PUT_STATE0(); \
msgtmp[prev_k] = vb2_sha256msg1_epu32(msgtmp[prev_k], \
msgtmp[k]); \
}
static void vb2_sha256_transform_x86ext(const uint8_t *message,
unsigned int block_nb)
{
vb2_m128i state0, state1, msg, abef_save, cdgh_save;
vb2_m128i msgtmp[4];
vb2_m128i tmp;
int i;
const vb2_m128i shuf_mask = {0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f};
state0 = vb2_loadu_si128((vb2_m128i *)&sha_ctx.h[0]);
state1 = vb2_loadu_si128((vb2_m128i *)&sha_ctx.h[4]);
for (i = 0; i < (int) block_nb; i++) {
abef_save = state0;
cdgh_save = state1;
SHA256_X86_PUT_STATE1(0, i);
SHA256_X86_PUT_STATE0();
SHA256_X86_PUT_STATE1(1, i);
SHA256_X86_PUT_STATE0();
msgtmp[0] = vb2_sha256msg1_epu32(msgtmp[0], msgtmp[1]);
SHA256_X86_PUT_STATE1(2, i);
SHA256_X86_PUT_STATE0();
msgtmp[1] = vb2_sha256msg1_epu32(msgtmp[1], msgtmp[2]);
SHA256_X86_PUT_STATE1(3, i);
tmp = vb2_alignr_epi8(msgtmp[3], msgtmp[2], 4);
msgtmp[0] = vb2_add_epi32(msgtmp[0], tmp);
msgtmp[0] = vb2_sha256msg2_epu32(msgtmp[0], msgtmp[3]);
SHA256_X86_PUT_STATE0();
msgtmp[2] = vb2_sha256msg1_epu32(msgtmp[2], msgtmp[3]);
SHA256_X86_LOOP(4);
SHA256_X86_LOOP(5);
SHA256_X86_LOOP(6);
SHA256_X86_LOOP(7);
SHA256_X86_LOOP(8);
SHA256_X86_LOOP(9);
SHA256_X86_LOOP(10);
SHA256_X86_LOOP(11);
SHA256_X86_LOOP(12);
SHA256_X86_LOOP(13);
SHA256_X86_LOOP(14);
msg = vb2_add_epi32(msgtmp[3],
vb2_loadu_si128((vb2_m128i *)&vb2_sha256_k[15 * 4]));
state1 = vb2_sha256rnds2_epu32(state1, state0, msg);
SHA256_X86_PUT_STATE0();
state0 = vb2_add_epi32(state0, abef_save);
state1 = vb2_add_epi32(state1, cdgh_save);
}
vb2_storeu_si128((vb2_m128i *)&sha_ctx.h[0], state0);
vb2_storeu_si128((vb2_m128i *)&sha_ctx.h[4], state1);
}
vb2_error_t vb2ex_hwcrypto_digest_init(enum vb2_hash_algorithm hash_alg,
uint32_t data_size)
{
if (hash_alg != VB2_HASH_SHA256)
return VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED;
sha_ctx.h[0] = vb2_sha256_h0[5];
sha_ctx.h[1] = vb2_sha256_h0[4];
sha_ctx.h[2] = vb2_sha256_h0[1];
sha_ctx.h[3] = vb2_sha256_h0[0];
sha_ctx.h[4] = vb2_sha256_h0[7];
sha_ctx.h[5] = vb2_sha256_h0[6];
sha_ctx.h[6] = vb2_sha256_h0[3];
sha_ctx.h[7] = vb2_sha256_h0[2];
sha_ctx.size = 0;
sha_ctx.total_size = 0;
memset(sha_ctx.block, 0, sizeof(sha_ctx.block));
return VB2_SUCCESS;
}
vb2_error_t vb2ex_hwcrypto_digest_extend(const uint8_t *buf, uint32_t size)
{
unsigned int remaining_blocks;
unsigned int new_size, rem_size, tmp_size;
const uint8_t *shifted_data;
tmp_size = VB2_SHA256_BLOCK_SIZE - sha_ctx.size;
rem_size = size < tmp_size ? size : tmp_size;
memcpy(&sha_ctx.block[sha_ctx.size], buf, rem_size);
if (sha_ctx.size + size < VB2_SHA256_BLOCK_SIZE) {
sha_ctx.size += size;
return VB2_SUCCESS;
}
new_size = size - rem_size;
remaining_blocks = new_size / VB2_SHA256_BLOCK_SIZE;
shifted_data = buf + rem_size;
vb2_sha256_transform_x86ext(sha_ctx.block, 1);
vb2_sha256_transform_x86ext(shifted_data, remaining_blocks);
rem_size = new_size % VB2_SHA256_BLOCK_SIZE;
memcpy(sha_ctx.block, &shifted_data[remaining_blocks * VB2_SHA256_BLOCK_SIZE],
rem_size);
sha_ctx.size = rem_size;
sha_ctx.total_size += (remaining_blocks + 1) * VB2_SHA256_BLOCK_SIZE;
return VB2_SUCCESS;
}
vb2_error_t vb2ex_hwcrypto_digest_finalize(uint8_t *digest,
uint32_t digest_size)
{
unsigned int block_nb;
unsigned int pm_size;
unsigned int size_b;
unsigned int block_rem_size = sha_ctx.size % VB2_SHA256_BLOCK_SIZE;
if (digest_size != VB2_SHA256_DIGEST_SIZE) {
VB2_DEBUG("ERROR: Digest size does not match expected length.\n");
return VB2_ERROR_SHA_FINALIZE_DIGEST_SIZE;
}
block_nb = (1 + ((VB2_SHA256_BLOCK_SIZE - SHA256_MIN_PAD_LEN)
< block_rem_size));
size_b = (sha_ctx.total_size + sha_ctx.size) * 8;
pm_size = block_nb * VB2_SHA256_BLOCK_SIZE;
memset(sha_ctx.block + sha_ctx.size, 0, pm_size - sha_ctx.size);
sha_ctx.block[sha_ctx.size] = SHA256_PAD_BEGIN;
UNPACK32(size_b, sha_ctx.block + pm_size - 4);
vb2_sha256_transform_x86ext(sha_ctx.block, block_nb);
UNPACK32(sha_ctx.h[3], &digest[ 0]);
UNPACK32(sha_ctx.h[2], &digest[ 4]);
UNPACK32(sha_ctx.h[7], &digest[ 8]);
UNPACK32(sha_ctx.h[6], &digest[12]);
UNPACK32(sha_ctx.h[1], &digest[16]);
UNPACK32(sha_ctx.h[0], &digest[20]);
UNPACK32(sha_ctx.h[5], &digest[24]);
UNPACK32(sha_ctx.h[4], &digest[28]);
return VB2_SUCCESS;
}