| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * |
| * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. |
| * |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/fs.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| |
| #include "debug.h" |
| #include "ntfs.h" |
| #include "ntfs_fs.h" |
| |
| /* |
| * LOG FILE structs |
| */ |
| |
| // clang-format off |
| |
| #define MaxLogFileSize 0x100000000ull |
| #define DefaultLogPageSize 4096 |
| #define MinLogRecordPages 0x30 |
| |
| struct RESTART_HDR { |
| struct NTFS_RECORD_HEADER rhdr; // 'RSTR' |
| __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. |
| __le32 page_size; // 0x14: Log page size used for this log file. |
| __le16 ra_off; // 0x18: |
| __le16 minor_ver; // 0x1A: |
| __le16 major_ver; // 0x1C: |
| __le16 fixups[]; |
| }; |
| |
| #define LFS_NO_CLIENT 0xffff |
| #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) |
| |
| struct CLIENT_REC { |
| __le64 oldest_lsn; |
| __le64 restart_lsn; // 0x08: |
| __le16 prev_client; // 0x10: |
| __le16 next_client; // 0x12: |
| __le16 seq_num; // 0x14: |
| u8 align[6]; // 0x16: |
| __le32 name_bytes; // 0x1C: In bytes. |
| __le16 name[32]; // 0x20: Name of client. |
| }; |
| |
| static_assert(sizeof(struct CLIENT_REC) == 0x60); |
| |
| /* Two copies of these will exist at the beginning of the log file */ |
| struct RESTART_AREA { |
| __le64 current_lsn; // 0x00: Current logical end of log file. |
| __le16 log_clients; // 0x08: Maximum number of clients. |
| __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. |
| __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. |
| __le32 seq_num_bits; // 0x10: The number of bits in sequence number. |
| __le16 ra_len; // 0x14: |
| __le16 client_off; // 0x16: |
| __le64 l_size; // 0x18: Usable log file size. |
| __le32 last_lsn_data_len; // 0x20: |
| __le16 rec_hdr_len; // 0x24: Log page data offset. |
| __le16 data_off; // 0x26: Log page data length. |
| __le32 open_log_count; // 0x28: |
| __le32 align[5]; // 0x2C: |
| struct CLIENT_REC clients[]; // 0x40: |
| }; |
| |
| struct LOG_REC_HDR { |
| __le16 redo_op; // 0x00: NTFS_LOG_OPERATION |
| __le16 undo_op; // 0x02: NTFS_LOG_OPERATION |
| __le16 redo_off; // 0x04: Offset to Redo record. |
| __le16 redo_len; // 0x06: Redo length. |
| __le16 undo_off; // 0x08: Offset to Undo record. |
| __le16 undo_len; // 0x0A: Undo length. |
| __le16 target_attr; // 0x0C: |
| __le16 lcns_follow; // 0x0E: |
| __le16 record_off; // 0x10: |
| __le16 attr_off; // 0x12: |
| __le16 cluster_off; // 0x14: |
| __le16 reserved; // 0x16: |
| __le64 target_vcn; // 0x18: |
| __le64 page_lcns[]; // 0x20: |
| }; |
| |
| static_assert(sizeof(struct LOG_REC_HDR) == 0x20); |
| |
| #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF |
| #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) |
| |
| struct RESTART_TABLE { |
| __le16 size; // 0x00: In bytes |
| __le16 used; // 0x02: Entries |
| __le16 total; // 0x04: Entries |
| __le16 res[3]; // 0x06: |
| __le32 free_goal; // 0x0C: |
| __le32 first_free; // 0x10: |
| __le32 last_free; // 0x14: |
| |
| }; |
| |
| static_assert(sizeof(struct RESTART_TABLE) == 0x18); |
| |
| struct ATTR_NAME_ENTRY { |
| __le16 off; // Offset in the Open attribute Table. |
| __le16 name_bytes; |
| __le16 name[]; |
| }; |
| |
| struct OPEN_ATTR_ENRTY { |
| __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated |
| __le32 bytes_per_index; // 0x04: |
| enum ATTR_TYPE type; // 0x08: |
| u8 is_dirty_pages; // 0x0C: |
| u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' |
| u8 name_len; // 0x0C: Faked field to manage 'ptr' |
| u8 res; |
| struct MFT_REF ref; // 0x10: File Reference of file containing attribute |
| __le64 open_record_lsn; // 0x18: |
| void *ptr; // 0x20: |
| }; |
| |
| /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ |
| struct OPEN_ATTR_ENRTY_32 { |
| __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated |
| __le32 ptr; // 0x04: |
| struct MFT_REF ref; // 0x08: |
| __le64 open_record_lsn; // 0x10: |
| u8 is_dirty_pages; // 0x18: |
| u8 is_attr_name; // 0x19: |
| u8 res1[2]; |
| enum ATTR_TYPE type; // 0x1C: |
| u8 name_len; // 0x20: In wchar |
| u8 res2[3]; |
| __le32 AttributeName; // 0x24: |
| __le32 bytes_per_index; // 0x28: |
| }; |
| |
| #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c |
| // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); |
| static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); |
| |
| /* |
| * One entry exists in the Dirty Pages Table for each page which is dirty at |
| * the time the Restart Area is written. |
| */ |
| struct DIR_PAGE_ENTRY { |
| __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated |
| __le32 target_attr; // 0x04: Index into the Open attribute Table |
| __le32 transfer_len; // 0x08: |
| __le32 lcns_follow; // 0x0C: |
| __le64 vcn; // 0x10: Vcn of dirty page |
| __le64 oldest_lsn; // 0x18: |
| __le64 page_lcns[]; // 0x20: |
| }; |
| |
| static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); |
| |
| /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ |
| struct DIR_PAGE_ENTRY_32 { |
| __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated |
| __le32 target_attr; // 0x04: Index into the Open attribute Table |
| __le32 transfer_len; // 0x08: |
| __le32 lcns_follow; // 0x0C: |
| __le32 reserved; // 0x10: |
| __le32 vcn_low; // 0x14: Vcn of dirty page |
| __le32 vcn_hi; // 0x18: Vcn of dirty page |
| __le32 oldest_lsn_low; // 0x1C: |
| __le32 oldest_lsn_hi; // 0x1C: |
| __le32 page_lcns_low; // 0x24: |
| __le32 page_lcns_hi; // 0x24: |
| }; |
| |
| static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); |
| static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); |
| |
| enum transact_state { |
| TransactionUninitialized = 0, |
| TransactionActive, |
| TransactionPrepared, |
| TransactionCommitted |
| }; |
| |
| struct TRANSACTION_ENTRY { |
| __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated |
| u8 transact_state; // 0x04: |
| u8 reserved[3]; // 0x05: |
| __le64 first_lsn; // 0x08: |
| __le64 prev_lsn; // 0x10: |
| __le64 undo_next_lsn; // 0x18: |
| __le32 undo_records; // 0x20: Number of undo log records pending abort |
| __le32 undo_len; // 0x24: Total undo size |
| }; |
| |
| static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); |
| |
| struct NTFS_RESTART { |
| __le32 major_ver; // 0x00: |
| __le32 minor_ver; // 0x04: |
| __le64 check_point_start; // 0x08: |
| __le64 open_attr_table_lsn; // 0x10: |
| __le64 attr_names_lsn; // 0x18: |
| __le64 dirty_pages_table_lsn; // 0x20: |
| __le64 transact_table_lsn; // 0x28: |
| __le32 open_attr_len; // 0x30: In bytes |
| __le32 attr_names_len; // 0x34: In bytes |
| __le32 dirty_pages_len; // 0x38: In bytes |
| __le32 transact_table_len; // 0x3C: In bytes |
| }; |
| |
| static_assert(sizeof(struct NTFS_RESTART) == 0x40); |
| |
| struct NEW_ATTRIBUTE_SIZES { |
| __le64 alloc_size; |
| __le64 valid_size; |
| __le64 data_size; |
| __le64 total_size; |
| }; |
| |
| struct BITMAP_RANGE { |
| __le32 bitmap_off; |
| __le32 bits; |
| }; |
| |
| struct LCN_RANGE { |
| __le64 lcn; |
| __le64 len; |
| }; |
| |
| /* The following type defines the different log record types. */ |
| #define LfsClientRecord cpu_to_le32(1) |
| #define LfsClientRestart cpu_to_le32(2) |
| |
| /* This is used to uniquely identify a client for a particular log file. */ |
| struct CLIENT_ID { |
| __le16 seq_num; |
| __le16 client_idx; |
| }; |
| |
| /* This is the header that begins every Log Record in the log file. */ |
| struct LFS_RECORD_HDR { |
| __le64 this_lsn; // 0x00: |
| __le64 client_prev_lsn; // 0x08: |
| __le64 client_undo_next_lsn; // 0x10: |
| __le32 client_data_len; // 0x18: |
| struct CLIENT_ID client; // 0x1C: Owner of this log record. |
| __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. |
| __le32 transact_id; // 0x24: |
| __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE |
| u8 align[6]; // 0x2A: |
| }; |
| |
| #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) |
| |
| static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); |
| |
| struct LFS_RECORD { |
| __le16 next_record_off; // 0x00: Offset of the free space in the page, |
| u8 align[6]; // 0x02: |
| __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, |
| }; |
| |
| static_assert(sizeof(struct LFS_RECORD) == 0x10); |
| |
| struct RECORD_PAGE_HDR { |
| struct NTFS_RECORD_HEADER rhdr; // 'RCRD' |
| __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END |
| __le16 page_count; // 0x14: |
| __le16 page_pos; // 0x16: |
| struct LFS_RECORD record_hdr; // 0x18: |
| __le16 fixups[10]; // 0x28: |
| __le32 file_off; // 0x3c: Used when major version >= 2 |
| }; |
| |
| // clang-format on |
| |
| // Page contains the end of a log record. |
| #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) |
| |
| static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) |
| { |
| return hdr->rflags & LOG_PAGE_LOG_RECORD_END; |
| } |
| |
| static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); |
| |
| /* |
| * END of NTFS LOG structures |
| */ |
| |
| /* Define some tuning parameters to keep the restart tables a reasonable size. */ |
| #define INITIAL_NUMBER_TRANSACTIONS 5 |
| |
| enum NTFS_LOG_OPERATION { |
| |
| Noop = 0x00, |
| CompensationLogRecord = 0x01, |
| InitializeFileRecordSegment = 0x02, |
| DeallocateFileRecordSegment = 0x03, |
| WriteEndOfFileRecordSegment = 0x04, |
| CreateAttribute = 0x05, |
| DeleteAttribute = 0x06, |
| UpdateResidentValue = 0x07, |
| UpdateNonresidentValue = 0x08, |
| UpdateMappingPairs = 0x09, |
| DeleteDirtyClusters = 0x0A, |
| SetNewAttributeSizes = 0x0B, |
| AddIndexEntryRoot = 0x0C, |
| DeleteIndexEntryRoot = 0x0D, |
| AddIndexEntryAllocation = 0x0E, |
| DeleteIndexEntryAllocation = 0x0F, |
| WriteEndOfIndexBuffer = 0x10, |
| SetIndexEntryVcnRoot = 0x11, |
| SetIndexEntryVcnAllocation = 0x12, |
| UpdateFileNameRoot = 0x13, |
| UpdateFileNameAllocation = 0x14, |
| SetBitsInNonresidentBitMap = 0x15, |
| ClearBitsInNonresidentBitMap = 0x16, |
| HotFix = 0x17, |
| EndTopLevelAction = 0x18, |
| PrepareTransaction = 0x19, |
| CommitTransaction = 0x1A, |
| ForgetTransaction = 0x1B, |
| OpenNonresidentAttribute = 0x1C, |
| OpenAttributeTableDump = 0x1D, |
| AttributeNamesDump = 0x1E, |
| DirtyPageTableDump = 0x1F, |
| TransactionTableDump = 0x20, |
| UpdateRecordDataRoot = 0x21, |
| UpdateRecordDataAllocation = 0x22, |
| |
| UpdateRelativeDataInIndex = |
| 0x23, // NtOfsRestartUpdateRelativeDataInIndex |
| UpdateRelativeDataInIndex2 = 0x24, |
| ZeroEndOfFileRecord = 0x25, |
| }; |
| |
| /* |
| * Array for log records which require a target attribute. |
| * A true indicates that the corresponding restart operation |
| * requires a target attribute. |
| */ |
| static const u8 AttributeRequired[] = { |
| 0xFC, 0xFB, 0xFF, 0x10, 0x06, |
| }; |
| |
| static inline bool is_target_required(u16 op) |
| { |
| bool ret = op <= UpdateRecordDataAllocation && |
| (AttributeRequired[op >> 3] >> (op & 7) & 1); |
| return ret; |
| } |
| |
| static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) |
| { |
| switch (op) { |
| case Noop: |
| case DeleteDirtyClusters: |
| case HotFix: |
| case EndTopLevelAction: |
| case PrepareTransaction: |
| case CommitTransaction: |
| case ForgetTransaction: |
| case CompensationLogRecord: |
| case OpenNonresidentAttribute: |
| case OpenAttributeTableDump: |
| case AttributeNamesDump: |
| case DirtyPageTableDump: |
| case TransactionTableDump: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; |
| |
| /* Bytes per restart table. */ |
| static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) |
| { |
| return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + |
| sizeof(struct RESTART_TABLE); |
| } |
| |
| /* Log record length. */ |
| static inline u32 lrh_length(const struct LOG_REC_HDR *lr) |
| { |
| u16 t16 = le16_to_cpu(lr->lcns_follow); |
| |
| return struct_size(lr, page_lcns, max_t(u16, 1, t16)); |
| } |
| |
| struct lcb { |
| struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. |
| struct LOG_REC_HDR *log_rec; |
| u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next |
| struct CLIENT_ID client; |
| bool alloc; // If true the we should deallocate 'log_rec'. |
| }; |
| |
| static void lcb_put(struct lcb *lcb) |
| { |
| if (lcb->alloc) |
| kfree(lcb->log_rec); |
| kfree(lcb->lrh); |
| kfree(lcb); |
| } |
| |
| /* Find the oldest lsn from active clients. */ |
| static inline void oldest_client_lsn(const struct CLIENT_REC *ca, |
| __le16 next_client, u64 *oldest_lsn) |
| { |
| while (next_client != LFS_NO_CLIENT_LE) { |
| const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); |
| u64 lsn = le64_to_cpu(cr->oldest_lsn); |
| |
| /* Ignore this block if it's oldest lsn is 0. */ |
| if (lsn && lsn < *oldest_lsn) |
| *oldest_lsn = lsn; |
| |
| next_client = cr->next_client; |
| } |
| } |
| |
| static inline bool is_rst_page_hdr_valid(u32 file_off, |
| const struct RESTART_HDR *rhdr) |
| { |
| u32 sys_page = le32_to_cpu(rhdr->sys_page_size); |
| u32 page_size = le32_to_cpu(rhdr->page_size); |
| u32 end_usa; |
| u16 ro; |
| |
| if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || |
| sys_page & (sys_page - 1) || page_size & (page_size - 1)) { |
| return false; |
| } |
| |
| /* Check that if the file offset isn't 0, it is the system page size. */ |
| if (file_off && file_off != sys_page) |
| return false; |
| |
| /* Check support version 1.1+. */ |
| if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) |
| return false; |
| |
| if (le16_to_cpu(rhdr->major_ver) > 2) |
| return false; |
| |
| ro = le16_to_cpu(rhdr->ra_off); |
| if (!IS_ALIGNED(ro, 8) || ro > sys_page) |
| return false; |
| |
| end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); |
| end_usa += le16_to_cpu(rhdr->rhdr.fix_off); |
| |
| if (ro < end_usa) |
| return false; |
| |
| return true; |
| } |
| |
| static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) |
| { |
| const struct RESTART_AREA *ra; |
| u16 cl, fl, ul; |
| u32 off, l_size, file_dat_bits, file_size_round; |
| u16 ro = le16_to_cpu(rhdr->ra_off); |
| u32 sys_page = le32_to_cpu(rhdr->sys_page_size); |
| |
| if (ro + offsetof(struct RESTART_AREA, l_size) > |
| SECTOR_SIZE - sizeof(short)) |
| return false; |
| |
| ra = Add2Ptr(rhdr, ro); |
| cl = le16_to_cpu(ra->log_clients); |
| |
| if (cl > 1) |
| return false; |
| |
| off = le16_to_cpu(ra->client_off); |
| |
| if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) |
| return false; |
| |
| off += cl * sizeof(struct CLIENT_REC); |
| |
| if (off > sys_page) |
| return false; |
| |
| /* |
| * Check the restart length field and whether the entire |
| * restart area is contained that length. |
| */ |
| if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || |
| off > le16_to_cpu(ra->ra_len)) { |
| return false; |
| } |
| |
| /* |
| * As a final check make sure that the use list and the free list |
| * are either empty or point to a valid client. |
| */ |
| fl = le16_to_cpu(ra->client_idx[0]); |
| ul = le16_to_cpu(ra->client_idx[1]); |
| if ((fl != LFS_NO_CLIENT && fl >= cl) || |
| (ul != LFS_NO_CLIENT && ul >= cl)) |
| return false; |
| |
| /* Make sure the sequence number bits match the log file size. */ |
| l_size = le64_to_cpu(ra->l_size); |
| |
| file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits); |
| file_size_round = 1u << (file_dat_bits + 3); |
| if (file_size_round != l_size && |
| (file_size_round < l_size || (file_size_round / 2) > l_size)) { |
| return false; |
| } |
| |
| /* The log page data offset and record header length must be quad-aligned. */ |
| if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || |
| !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) |
| return false; |
| |
| return true; |
| } |
| |
| static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, |
| bool usa_error) |
| { |
| u16 ro = le16_to_cpu(rhdr->ra_off); |
| const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); |
| u16 ra_len = le16_to_cpu(ra->ra_len); |
| const struct CLIENT_REC *ca; |
| u32 i; |
| |
| if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) |
| return false; |
| |
| /* Find the start of the client array. */ |
| ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); |
| |
| /* |
| * Start with the free list. |
| * Check that all the clients are valid and that there isn't a cycle. |
| * Do the in-use list on the second pass. |
| */ |
| for (i = 0; i < 2; i++) { |
| u16 client_idx = le16_to_cpu(ra->client_idx[i]); |
| bool first_client = true; |
| u16 clients = le16_to_cpu(ra->log_clients); |
| |
| while (client_idx != LFS_NO_CLIENT) { |
| const struct CLIENT_REC *cr; |
| |
| if (!clients || |
| client_idx >= le16_to_cpu(ra->log_clients)) |
| return false; |
| |
| clients -= 1; |
| cr = ca + client_idx; |
| |
| client_idx = le16_to_cpu(cr->next_client); |
| |
| if (first_client) { |
| first_client = false; |
| if (cr->prev_client != LFS_NO_CLIENT_LE) |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * remove_client |
| * |
| * Remove a client record from a client record list an restart area. |
| */ |
| static inline void remove_client(struct CLIENT_REC *ca, |
| const struct CLIENT_REC *cr, __le16 *head) |
| { |
| if (cr->prev_client == LFS_NO_CLIENT_LE) |
| *head = cr->next_client; |
| else |
| ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; |
| |
| if (cr->next_client != LFS_NO_CLIENT_LE) |
| ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; |
| } |
| |
| /* |
| * add_client - Add a client record to the start of a list. |
| */ |
| static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) |
| { |
| struct CLIENT_REC *cr = ca + index; |
| |
| cr->prev_client = LFS_NO_CLIENT_LE; |
| cr->next_client = *head; |
| |
| if (*head != LFS_NO_CLIENT_LE) |
| ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); |
| |
| *head = cpu_to_le16(index); |
| } |
| |
| static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) |
| { |
| __le32 *e; |
| u32 bprt; |
| u16 rsize = t ? le16_to_cpu(t->size) : 0; |
| |
| if (!c) { |
| if (!t || !t->total) |
| return NULL; |
| e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); |
| } else { |
| e = Add2Ptr(c, rsize); |
| } |
| |
| /* Loop until we hit the first one allocated, or the end of the list. */ |
| for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; |
| e = Add2Ptr(e, rsize)) { |
| if (*e == RESTART_ENTRY_ALLOCATED_LE) |
| return e; |
| } |
| return NULL; |
| } |
| |
| /* |
| * find_dp - Search for a @vcn in Dirty Page Table. |
| */ |
| static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, |
| u32 target_attr, u64 vcn) |
| { |
| __le32 ta = cpu_to_le32(target_attr); |
| struct DIR_PAGE_ENTRY *dp = NULL; |
| |
| while ((dp = enum_rstbl(dptbl, dp))) { |
| u64 dp_vcn = le64_to_cpu(dp->vcn); |
| |
| if (dp->target_attr == ta && vcn >= dp_vcn && |
| vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { |
| return dp; |
| } |
| } |
| return NULL; |
| } |
| |
| static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) |
| { |
| if (use_default) |
| page_size = DefaultLogPageSize; |
| |
| /* Round the file size down to a system page boundary. */ |
| *l_size &= ~(page_size - 1); |
| |
| /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ |
| if (*l_size < (MinLogRecordPages + 2) * page_size) |
| return 0; |
| |
| return page_size; |
| } |
| |
| static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, |
| u32 bytes_per_attr_entry) |
| { |
| u16 t16; |
| |
| if (bytes < sizeof(struct LOG_REC_HDR)) |
| return false; |
| if (!tr) |
| return false; |
| |
| if ((tr - sizeof(struct RESTART_TABLE)) % |
| sizeof(struct TRANSACTION_ENTRY)) |
| return false; |
| |
| if (le16_to_cpu(lr->redo_off) & 7) |
| return false; |
| |
| if (le16_to_cpu(lr->undo_off) & 7) |
| return false; |
| |
| if (lr->target_attr) |
| goto check_lcns; |
| |
| if (is_target_required(le16_to_cpu(lr->redo_op))) |
| return false; |
| |
| if (is_target_required(le16_to_cpu(lr->undo_op))) |
| return false; |
| |
| check_lcns: |
| if (!lr->lcns_follow) |
| goto check_length; |
| |
| t16 = le16_to_cpu(lr->target_attr); |
| if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) |
| return false; |
| |
| check_length: |
| if (bytes < lrh_length(lr)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) |
| { |
| u32 ts; |
| u32 i, off; |
| u16 rsize = le16_to_cpu(rt->size); |
| u16 ne = le16_to_cpu(rt->used); |
| u32 ff = le32_to_cpu(rt->first_free); |
| u32 lf = le32_to_cpu(rt->last_free); |
| |
| ts = rsize * ne + sizeof(struct RESTART_TABLE); |
| |
| if (!rsize || rsize > bytes || |
| rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || |
| le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || |
| (ff && ff < sizeof(struct RESTART_TABLE)) || |
| (lf && lf < sizeof(struct RESTART_TABLE))) { |
| return false; |
| } |
| |
| /* |
| * Verify each entry is either allocated or points |
| * to a valid offset the table. |
| */ |
| for (i = 0; i < ne; i++) { |
| off = le32_to_cpu(*(__le32 *)Add2Ptr( |
| rt, i * rsize + sizeof(struct RESTART_TABLE))); |
| |
| if (off != RESTART_ENTRY_ALLOCATED && off && |
| (off < sizeof(struct RESTART_TABLE) || |
| ((off - sizeof(struct RESTART_TABLE)) % rsize))) { |
| return false; |
| } |
| } |
| |
| /* |
| * Walk through the list headed by the first entry to make |
| * sure none of the entries are currently being used. |
| */ |
| for (off = ff; off;) { |
| if (off == RESTART_ENTRY_ALLOCATED) |
| return false; |
| |
| off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * free_rsttbl_idx - Free a previously allocated index a Restart Table. |
| */ |
| static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) |
| { |
| __le32 *e; |
| u32 lf = le32_to_cpu(rt->last_free); |
| __le32 off_le = cpu_to_le32(off); |
| |
| e = Add2Ptr(rt, off); |
| |
| if (off < le32_to_cpu(rt->free_goal)) { |
| *e = rt->first_free; |
| rt->first_free = off_le; |
| if (!lf) |
| rt->last_free = off_le; |
| } else { |
| if (lf) |
| *(__le32 *)Add2Ptr(rt, lf) = off_le; |
| else |
| rt->first_free = off_le; |
| |
| rt->last_free = off_le; |
| *e = 0; |
| } |
| |
| le16_sub_cpu(&rt->total, 1); |
| } |
| |
| static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) |
| { |
| __le32 *e, *last_free; |
| u32 off; |
| u32 bytes = esize * used + sizeof(struct RESTART_TABLE); |
| u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; |
| struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); |
| |
| if (!t) |
| return NULL; |
| |
| t->size = cpu_to_le16(esize); |
| t->used = cpu_to_le16(used); |
| t->free_goal = cpu_to_le32(~0u); |
| t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); |
| t->last_free = cpu_to_le32(lf); |
| |
| e = (__le32 *)(t + 1); |
| last_free = Add2Ptr(t, lf); |
| |
| for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; |
| e = Add2Ptr(e, esize), off += esize) { |
| *e = cpu_to_le32(off); |
| } |
| return t; |
| } |
| |
| static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, |
| u32 add, u32 free_goal) |
| { |
| u16 esize = le16_to_cpu(tbl->size); |
| __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); |
| u32 used = le16_to_cpu(tbl->used); |
| struct RESTART_TABLE *rt; |
| |
| rt = init_rsttbl(esize, used + add); |
| if (!rt) |
| return NULL; |
| |
| memcpy(rt + 1, tbl + 1, esize * used); |
| |
| rt->free_goal = free_goal == ~0u |
| ? cpu_to_le32(~0u) |
| : cpu_to_le32(sizeof(struct RESTART_TABLE) + |
| free_goal * esize); |
| |
| if (tbl->first_free) { |
| rt->first_free = tbl->first_free; |
| *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; |
| } else { |
| rt->first_free = osize; |
| } |
| |
| rt->total = tbl->total; |
| |
| kfree(tbl); |
| return rt; |
| } |
| |
| /* |
| * alloc_rsttbl_idx |
| * |
| * Allocate an index from within a previously initialized Restart Table. |
| */ |
| static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) |
| { |
| u32 off; |
| __le32 *e; |
| struct RESTART_TABLE *t = *tbl; |
| |
| if (!t->first_free) { |
| *tbl = t = extend_rsttbl(t, 16, ~0u); |
| if (!t) |
| return NULL; |
| } |
| |
| off = le32_to_cpu(t->first_free); |
| |
| /* Dequeue this entry and zero it. */ |
| e = Add2Ptr(t, off); |
| |
| t->first_free = *e; |
| |
| memset(e, 0, le16_to_cpu(t->size)); |
| |
| *e = RESTART_ENTRY_ALLOCATED_LE; |
| |
| /* If list is going empty, then we fix the last_free as well. */ |
| if (!t->first_free) |
| t->last_free = 0; |
| |
| le16_add_cpu(&t->total, 1); |
| |
| return Add2Ptr(t, off); |
| } |
| |
| /* |
| * alloc_rsttbl_from_idx |
| * |
| * Allocate a specific index from within a previously initialized Restart Table. |
| */ |
| static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) |
| { |
| u32 off; |
| __le32 *e; |
| struct RESTART_TABLE *rt = *tbl; |
| u32 bytes = bytes_per_rt(rt); |
| u16 esize = le16_to_cpu(rt->size); |
| |
| /* If the entry is not the table, we will have to extend the table. */ |
| if (vbo >= bytes) { |
| /* |
| * Extend the size by computing the number of entries between |
| * the existing size and the desired index and adding 1 to that. |
| */ |
| u32 bytes2idx = vbo - bytes; |
| |
| /* |
| * There should always be an integral number of entries |
| * being added. Now extend the table. |
| */ |
| *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); |
| if (!rt) |
| return NULL; |
| } |
| |
| /* See if the entry is already allocated, and just return if it is. */ |
| e = Add2Ptr(rt, vbo); |
| |
| if (*e == RESTART_ENTRY_ALLOCATED_LE) |
| return e; |
| |
| /* |
| * Walk through the table, looking for the entry we're |
| * interested and the previous entry. |
| */ |
| off = le32_to_cpu(rt->first_free); |
| e = Add2Ptr(rt, off); |
| |
| if (off == vbo) { |
| /* this is a match */ |
| rt->first_free = *e; |
| goto skip_looking; |
| } |
| |
| /* |
| * Need to walk through the list looking for the predecessor |
| * of our entry. |
| */ |
| for (;;) { |
| /* Remember the entry just found */ |
| u32 last_off = off; |
| __le32 *last_e = e; |
| |
| /* Should never run of entries. */ |
| |
| /* Lookup up the next entry the list. */ |
| off = le32_to_cpu(*last_e); |
| e = Add2Ptr(rt, off); |
| |
| /* If this is our match we are done. */ |
| if (off == vbo) { |
| *last_e = *e; |
| |
| /* |
| * If this was the last entry, we update that |
| * table as well. |
| */ |
| if (le32_to_cpu(rt->last_free) == off) |
| rt->last_free = cpu_to_le32(last_off); |
| break; |
| } |
| } |
| |
| skip_looking: |
| /* If the list is now empty, we fix the last_free as well. */ |
| if (!rt->first_free) |
| rt->last_free = 0; |
| |
| /* Zero this entry. */ |
| memset(e, 0, esize); |
| *e = RESTART_ENTRY_ALLOCATED_LE; |
| |
| le16_add_cpu(&rt->total, 1); |
| |
| return e; |
| } |
| |
| #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) |
| |
| #define NTFSLOG_WRAPPED 0x00000001 |
| #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 |
| #define NTFSLOG_NO_LAST_LSN 0x00000004 |
| #define NTFSLOG_REUSE_TAIL 0x00000010 |
| #define NTFSLOG_NO_OLDEST_LSN 0x00000020 |
| |
| /* Helper struct to work with NTFS $LogFile. */ |
| struct ntfs_log { |
| struct ntfs_inode *ni; |
| |
| u32 l_size; |
| u32 sys_page_size; |
| u32 sys_page_mask; |
| u32 page_size; |
| u32 page_mask; // page_size - 1 |
| u8 page_bits; |
| struct RECORD_PAGE_HDR *one_page_buf; |
| |
| struct RESTART_TABLE *open_attr_tbl; |
| u32 transaction_id; |
| u32 clst_per_page; |
| |
| u32 first_page; |
| u32 next_page; |
| u32 ra_off; |
| u32 data_off; |
| u32 restart_size; |
| u32 data_size; |
| u16 record_header_len; |
| u64 seq_num; |
| u32 seq_num_bits; |
| u32 file_data_bits; |
| u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ |
| |
| struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ |
| u32 ra_size; /* The usable size of the restart area. */ |
| |
| /* |
| * If true, then the in-memory restart area is to be written |
| * to the first position on the disk. |
| */ |
| bool init_ra; |
| bool set_dirty; /* True if we need to set dirty flag. */ |
| |
| u64 oldest_lsn; |
| |
| u32 oldest_lsn_off; |
| u64 last_lsn; |
| |
| u32 total_avail; |
| u32 total_avail_pages; |
| u32 total_undo_commit; |
| u32 max_current_avail; |
| u32 current_avail; |
| u32 reserved; |
| |
| short major_ver; |
| short minor_ver; |
| |
| u32 l_flags; /* See NTFSLOG_XXX */ |
| u32 current_openlog_count; /* On-disk value for open_log_count. */ |
| |
| struct CLIENT_ID client_id; |
| u32 client_undo_commit; |
| }; |
| |
| static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) |
| { |
| u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); |
| |
| return vbo; |
| } |
| |
| /* Compute the offset in the log file of the next log page. */ |
| static inline u32 next_page_off(struct ntfs_log *log, u32 off) |
| { |
| off = (off & ~log->sys_page_mask) + log->page_size; |
| return off >= log->l_size ? log->first_page : off; |
| } |
| |
| static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) |
| { |
| return (((u32)lsn) << 3) & log->page_mask; |
| } |
| |
| static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) |
| { |
| return (off >> 3) + (Seq << log->file_data_bits); |
| } |
| |
| static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) |
| { |
| return lsn >= log->oldest_lsn && |
| lsn <= le64_to_cpu(log->ra->current_lsn); |
| } |
| |
| static inline u32 hdr_file_off(struct ntfs_log *log, |
| struct RECORD_PAGE_HDR *hdr) |
| { |
| if (log->major_ver < 2) |
| return le64_to_cpu(hdr->rhdr.lsn); |
| |
| return le32_to_cpu(hdr->file_off); |
| } |
| |
| static inline u64 base_lsn(struct ntfs_log *log, |
| const struct RECORD_PAGE_HDR *hdr, u64 lsn) |
| { |
| u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); |
| u64 ret = (((h_lsn >> log->file_data_bits) + |
| (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) |
| << log->file_data_bits) + |
| ((((is_log_record_end(hdr) && |
| h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) |
| ? le16_to_cpu(hdr->record_hdr.next_record_off) |
| : log->page_size) + |
| lsn) >> |
| 3); |
| |
| return ret; |
| } |
| |
| static inline bool verify_client_lsn(struct ntfs_log *log, |
| const struct CLIENT_REC *client, u64 lsn) |
| { |
| return lsn >= le64_to_cpu(client->oldest_lsn) && |
| lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; |
| } |
| |
| struct restart_info { |
| u64 last_lsn; |
| struct RESTART_HDR *r_page; |
| u32 vbo; |
| bool chkdsk_was_run; |
| bool valid_page; |
| bool initialized; |
| bool restart; |
| }; |
| |
| static int read_log_page(struct ntfs_log *log, u32 vbo, |
| struct RECORD_PAGE_HDR **buffer, bool *usa_error) |
| { |
| int err = 0; |
| u32 page_idx = vbo >> log->page_bits; |
| u32 page_off = vbo & log->page_mask; |
| u32 bytes = log->page_size - page_off; |
| void *to_free = NULL; |
| u32 page_vbo = page_idx << log->page_bits; |
| struct RECORD_PAGE_HDR *page_buf; |
| struct ntfs_inode *ni = log->ni; |
| bool bBAAD; |
| |
| if (vbo >= log->l_size) |
| return -EINVAL; |
| |
| if (!*buffer) { |
| to_free = kmalloc(log->page_size, GFP_NOFS); |
| if (!to_free) |
| return -ENOMEM; |
| *buffer = to_free; |
| } |
| |
| page_buf = page_off ? log->one_page_buf : *buffer; |
| |
| err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, |
| log->page_size, NULL); |
| if (err) |
| goto out; |
| |
| if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) |
| ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); |
| |
| if (page_buf != *buffer) |
| memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); |
| |
| bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; |
| |
| if (usa_error) |
| *usa_error = bBAAD; |
| /* Check that the update sequence array for this page is valid */ |
| /* If we don't allow errors, raise an error status */ |
| else if (bBAAD) |
| err = -EINVAL; |
| |
| out: |
| if (err && to_free) { |
| kfree(to_free); |
| *buffer = NULL; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * log_read_rst |
| * |
| * It walks through 512 blocks of the file looking for a valid |
| * restart page header. It will stop the first time we find a |
| * valid page header. |
| */ |
| static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first, |
| struct restart_info *info) |
| { |
| u32 skip, vbo; |
| struct RESTART_HDR *r_page = NULL; |
| |
| /* Determine which restart area we are looking for. */ |
| if (first) { |
| vbo = 0; |
| skip = 512; |
| } else { |
| vbo = 512; |
| skip = 0; |
| } |
| |
| /* Loop continuously until we succeed. */ |
| for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) { |
| bool usa_error; |
| bool brst, bchk; |
| struct RESTART_AREA *ra; |
| |
| /* Read a page header at the current offset. */ |
| if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, |
| &usa_error)) { |
| /* Ignore any errors. */ |
| continue; |
| } |
| |
| /* Exit if the signature is a log record page. */ |
| if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { |
| info->initialized = true; |
| break; |
| } |
| |
| brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; |
| bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; |
| |
| if (!bchk && !brst) { |
| if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { |
| /* |
| * Remember if the signature does not |
| * indicate uninitialized file. |
| */ |
| info->initialized = true; |
| } |
| continue; |
| } |
| |
| ra = NULL; |
| info->valid_page = false; |
| info->initialized = true; |
| info->vbo = vbo; |
| |
| /* Let's check the restart area if this is a valid page. */ |
| if (!is_rst_page_hdr_valid(vbo, r_page)) |
| goto check_result; |
| ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); |
| |
| if (!is_rst_area_valid(r_page)) |
| goto check_result; |
| |
| /* |
| * We have a valid restart page header and restart area. |
| * If chkdsk was run or we have no clients then we have |
| * no more checking to do. |
| */ |
| if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { |
| info->valid_page = true; |
| goto check_result; |
| } |
| |
| if (is_client_area_valid(r_page, usa_error)) { |
| info->valid_page = true; |
| ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); |
| } |
| |
| check_result: |
| /* |
| * If chkdsk was run then update the caller's |
| * values and return. |
| */ |
| if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { |
| info->chkdsk_was_run = true; |
| info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); |
| info->restart = true; |
| info->r_page = r_page; |
| return 0; |
| } |
| |
| /* |
| * If we have a valid page then copy the values |
| * we need from it. |
| */ |
| if (info->valid_page) { |
| info->last_lsn = le64_to_cpu(ra->current_lsn); |
| info->restart = true; |
| info->r_page = r_page; |
| return 0; |
| } |
| } |
| |
| kfree(r_page); |
| |
| return 0; |
| } |
| |
| /* |
| * Ilog_init_pg_hdr - Init @log from restart page header. |
| */ |
| static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size, |
| u32 page_size, u16 major_ver, u16 minor_ver) |
| { |
| log->sys_page_size = sys_page_size; |
| log->sys_page_mask = sys_page_size - 1; |
| log->page_size = page_size; |
| log->page_mask = page_size - 1; |
| log->page_bits = blksize_bits(page_size); |
| |
| log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; |
| if (!log->clst_per_page) |
| log->clst_per_page = 1; |
| |
| log->first_page = major_ver >= 2 |
| ? 0x22 * page_size |
| : ((sys_page_size << 1) + (page_size << 1)); |
| log->major_ver = major_ver; |
| log->minor_ver = minor_ver; |
| } |
| |
| /* |
| * log_create - Init @log in cases when we don't have a restart area to use. |
| */ |
| static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn, |
| u32 open_log_count, bool wrapped, bool use_multi_page) |
| { |
| log->l_size = l_size; |
| /* All file offsets must be quadword aligned. */ |
| log->file_data_bits = blksize_bits(l_size) - 3; |
| log->seq_num_mask = (8 << log->file_data_bits) - 1; |
| log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; |
| log->seq_num = (last_lsn >> log->file_data_bits) + 2; |
| log->next_page = log->first_page; |
| log->oldest_lsn = log->seq_num << log->file_data_bits; |
| log->oldest_lsn_off = 0; |
| log->last_lsn = log->oldest_lsn; |
| |
| log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; |
| |
| /* Set the correct flags for the I/O and indicate if we have wrapped. */ |
| if (wrapped) |
| log->l_flags |= NTFSLOG_WRAPPED; |
| |
| if (use_multi_page) |
| log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; |
| |
| /* Compute the log page values. */ |
| log->data_off = ALIGN( |
| offsetof(struct RECORD_PAGE_HDR, fixups) + |
| sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), |
| 8); |
| log->data_size = log->page_size - log->data_off; |
| log->record_header_len = sizeof(struct LFS_RECORD_HDR); |
| |
| /* Remember the different page sizes for reservation. */ |
| log->reserved = log->data_size - log->record_header_len; |
| |
| /* Compute the restart page values. */ |
| log->ra_off = ALIGN( |
| offsetof(struct RESTART_HDR, fixups) + |
| sizeof(short) * |
| ((log->sys_page_size >> SECTOR_SHIFT) + 1), |
| 8); |
| log->restart_size = log->sys_page_size - log->ra_off; |
| log->ra_size = struct_size(log->ra, clients, 1); |
| log->current_openlog_count = open_log_count; |
| |
| /* |
| * The total available log file space is the number of |
| * log file pages times the space available on each page. |
| */ |
| log->total_avail_pages = log->l_size - log->first_page; |
| log->total_avail = log->total_avail_pages >> log->page_bits; |
| |
| /* |
| * We assume that we can't use the end of the page less than |
| * the file record size. |
| * Then we won't need to reserve more than the caller asks for. |
| */ |
| log->max_current_avail = log->total_avail * log->reserved; |
| log->total_avail = log->total_avail * log->data_size; |
| log->current_avail = log->max_current_avail; |
| } |
| |
| /* |
| * log_create_ra - Fill a restart area from the values stored in @log. |
| */ |
| static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) |
| { |
| struct CLIENT_REC *cr; |
| struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); |
| |
| if (!ra) |
| return NULL; |
| |
| ra->current_lsn = cpu_to_le64(log->last_lsn); |
| ra->log_clients = cpu_to_le16(1); |
| ra->client_idx[1] = LFS_NO_CLIENT_LE; |
| if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) |
| ra->flags = RESTART_SINGLE_PAGE_IO; |
| ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); |
| ra->ra_len = cpu_to_le16(log->ra_size); |
| ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); |
| ra->l_size = cpu_to_le64(log->l_size); |
| ra->rec_hdr_len = cpu_to_le16(log->record_header_len); |
| ra->data_off = cpu_to_le16(log->data_off); |
| ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); |
| |
| cr = ra->clients; |
| |
| cr->prev_client = LFS_NO_CLIENT_LE; |
| cr->next_client = LFS_NO_CLIENT_LE; |
| |
| return ra; |
| } |
| |
| static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) |
| { |
| u32 base_vbo = lsn << 3; |
| u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; |
| u32 page_off = base_vbo & log->page_mask; |
| u32 tail = log->page_size - page_off; |
| |
| page_off -= 1; |
| |
| /* Add the length of the header. */ |
| data_len += log->record_header_len; |
| |
| /* |
| * If this lsn is contained this log page we are done. |
| * Otherwise we need to walk through several log pages. |
| */ |
| if (data_len > tail) { |
| data_len -= tail; |
| tail = log->data_size; |
| page_off = log->data_off - 1; |
| |
| for (;;) { |
| final_log_off = next_page_off(log, final_log_off); |
| |
| /* |
| * We are done if the remaining bytes |
| * fit on this page. |
| */ |
| if (data_len <= tail) |
| break; |
| data_len -= tail; |
| } |
| } |
| |
| /* |
| * We add the remaining bytes to our starting position on this page |
| * and then add that value to the file offset of this log page. |
| */ |
| return final_log_off + data_len + page_off; |
| } |
| |
| static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, |
| u64 *lsn) |
| { |
| int err; |
| u64 this_lsn = le64_to_cpu(rh->this_lsn); |
| u32 vbo = lsn_to_vbo(log, this_lsn); |
| u32 end = |
| final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); |
| u32 hdr_off = end & ~log->sys_page_mask; |
| u64 seq = this_lsn >> log->file_data_bits; |
| struct RECORD_PAGE_HDR *page = NULL; |
| |
| /* Remember if we wrapped. */ |
| if (end <= vbo) |
| seq += 1; |
| |
| /* Log page header for this page. */ |
| err = read_log_page(log, hdr_off, &page, NULL); |
| if (err) |
| return err; |
| |
| /* |
| * If the lsn we were given was not the last lsn on this page, |
| * then the starting offset for the next lsn is on a quad word |
| * boundary following the last file offset for the current lsn. |
| * Otherwise the file offset is the start of the data on the next page. |
| */ |
| if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { |
| /* If we wrapped, we need to increment the sequence number. */ |
| hdr_off = next_page_off(log, hdr_off); |
| if (hdr_off == log->first_page) |
| seq += 1; |
| |
| vbo = hdr_off + log->data_off; |
| } else { |
| vbo = ALIGN(end, 8); |
| } |
| |
| /* Compute the lsn based on the file offset and the sequence count. */ |
| *lsn = vbo_to_lsn(log, vbo, seq); |
| |
| /* |
| * If this lsn is within the legal range for the file, we return true. |
| * Otherwise false indicates that there are no more lsn's. |
| */ |
| if (!is_lsn_in_file(log, *lsn)) |
| *lsn = 0; |
| |
| kfree(page); |
| |
| return 0; |
| } |
| |
| /* |
| * current_log_avail - Calculate the number of bytes available for log records. |
| */ |
| static u32 current_log_avail(struct ntfs_log *log) |
| { |
| u32 oldest_off, next_free_off, free_bytes; |
| |
| if (log->l_flags & NTFSLOG_NO_LAST_LSN) { |
| /* The entire file is available. */ |
| return log->max_current_avail; |
| } |
| |
| /* |
| * If there is a last lsn the restart area then we know that we will |
| * have to compute the free range. |
| * If there is no oldest lsn then start at the first page of the file. |
| */ |
| oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) |
| ? log->first_page |
| : (log->oldest_lsn_off & ~log->sys_page_mask); |
| |
| /* |
| * We will use the next log page offset to compute the next free page. |
| * If we are going to reuse this page go to the next page. |
| * If we are at the first page then use the end of the file. |
| */ |
| next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) |
| ? log->next_page + log->page_size |
| : log->next_page == log->first_page |
| ? log->l_size |
| : log->next_page; |
| |
| /* If the two offsets are the same then there is no available space. */ |
| if (oldest_off == next_free_off) |
| return 0; |
| /* |
| * If the free offset follows the oldest offset then subtract |
| * this range from the total available pages. |
| */ |
| free_bytes = |
| oldest_off < next_free_off |
| ? log->total_avail_pages - (next_free_off - oldest_off) |
| : oldest_off - next_free_off; |
| |
| free_bytes >>= log->page_bits; |
| return free_bytes * log->reserved; |
| } |
| |
| static bool check_subseq_log_page(struct ntfs_log *log, |
| const struct RECORD_PAGE_HDR *rp, u32 vbo, |
| u64 seq) |
| { |
| u64 lsn_seq; |
| const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; |
| u64 lsn = le64_to_cpu(rhdr->lsn); |
| |
| if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) |
| return false; |
| |
| /* |
| * If the last lsn on the page occurs was written after the page |
| * that caused the original error then we have a fatal error. |
| */ |
| lsn_seq = lsn >> log->file_data_bits; |
| |
| /* |
| * If the sequence number for the lsn the page is equal or greater |
| * than lsn we expect, then this is a subsequent write. |
| */ |
| return lsn_seq >= seq || |
| (lsn_seq == seq - 1 && log->first_page == vbo && |
| vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); |
| } |
| |
| /* |
| * last_log_lsn |
| * |
| * Walks through the log pages for a file, searching for the |
| * last log page written to the file. |
| */ |
| static int last_log_lsn(struct ntfs_log *log) |
| { |
| int err; |
| bool usa_error = false; |
| bool replace_page = false; |
| bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; |
| bool wrapped_file, wrapped; |
| |
| u32 page_cnt = 1, page_pos = 1; |
| u32 page_off = 0, page_off1 = 0, saved_off = 0; |
| u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; |
| u32 first_file_off = 0, second_file_off = 0; |
| u32 part_io_count = 0; |
| u32 tails = 0; |
| u32 this_off, curpage_off, nextpage_off, remain_pages; |
| |
| u64 expected_seq, seq_base = 0, lsn_base = 0; |
| u64 best_lsn, best_lsn1, best_lsn2; |
| u64 lsn_cur, lsn1, lsn2; |
| u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; |
| |
| u16 cur_pos, best_page_pos; |
| |
| struct RECORD_PAGE_HDR *page = NULL; |
| struct RECORD_PAGE_HDR *tst_page = NULL; |
| struct RECORD_PAGE_HDR *first_tail = NULL; |
| struct RECORD_PAGE_HDR *second_tail = NULL; |
| struct RECORD_PAGE_HDR *tail_page = NULL; |
| struct RECORD_PAGE_HDR *second_tail_prev = NULL; |
| struct RECORD_PAGE_HDR *first_tail_prev = NULL; |
| struct RECORD_PAGE_HDR *page_bufs = NULL; |
| struct RECORD_PAGE_HDR *best_page; |
| |
| if (log->major_ver >= 2) { |
| final_off = 0x02 * log->page_size; |
| second_off = 0x12 * log->page_size; |
| |
| // 0x10 == 0x12 - 0x2 |
| page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); |
| if (!page_bufs) |
| return -ENOMEM; |
| } else { |
| second_off = log->first_page - log->page_size; |
| final_off = second_off - log->page_size; |
| } |
| |
| next_tail: |
| /* Read second tail page (at pos 3/0x12000). */ |
| if (read_log_page(log, second_off, &second_tail, &usa_error) || |
| usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { |
| kfree(second_tail); |
| second_tail = NULL; |
| second_file_off = 0; |
| lsn2 = 0; |
| } else { |
| second_file_off = hdr_file_off(log, second_tail); |
| lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); |
| } |
| |
| /* Read first tail page (at pos 2/0x2000). */ |
| if (read_log_page(log, final_off, &first_tail, &usa_error) || |
| usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { |
| kfree(first_tail); |
| first_tail = NULL; |
| first_file_off = 0; |
| lsn1 = 0; |
| } else { |
| first_file_off = hdr_file_off(log, first_tail); |
| lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); |
| } |
| |
| if (log->major_ver < 2) { |
| int best_page; |
| |
| first_tail_prev = first_tail; |
| final_off_prev = first_file_off; |
| second_tail_prev = second_tail; |
| second_off_prev = second_file_off; |
| tails = 1; |
| |
| if (!first_tail && !second_tail) |
| goto tail_read; |
| |
| if (first_tail && second_tail) |
| best_page = lsn1 < lsn2 ? 1 : 0; |
| else if (first_tail) |
| best_page = 0; |
| else |
| best_page = 1; |
| |
| page_off = best_page ? second_file_off : first_file_off; |
| seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; |
| goto tail_read; |
| } |
| |
| best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; |
| best_lsn2 = |
| second_tail ? base_lsn(log, second_tail, second_file_off) : 0; |
| |
| if (first_tail && second_tail) { |
| if (best_lsn1 > best_lsn2) { |
| best_lsn = best_lsn1; |
| best_page = first_tail; |
| this_off = first_file_off; |
| } else { |
| best_lsn = best_lsn2; |
| best_page = second_tail; |
| this_off = second_file_off; |
| } |
| } else if (first_tail) { |
| best_lsn = best_lsn1; |
| best_page = first_tail; |
| this_off = first_file_off; |
| } else if (second_tail) { |
| best_lsn = best_lsn2; |
| best_page = second_tail; |
| this_off = second_file_off; |
| } else { |
| goto tail_read; |
| } |
| |
| best_page_pos = le16_to_cpu(best_page->page_pos); |
| |
| if (!tails) { |
| if (best_page_pos == page_pos) { |
| seq_base = best_lsn >> log->file_data_bits; |
| saved_off = page_off = le32_to_cpu(best_page->file_off); |
| lsn_base = best_lsn; |
| |
| memmove(page_bufs, best_page, log->page_size); |
| |
| page_cnt = le16_to_cpu(best_page->page_count); |
| if (page_cnt > 1) |
| page_pos += 1; |
| |
| tails = 1; |
| } |
| } else if (seq_base == (best_lsn >> log->file_data_bits) && |
| saved_off + log->page_size == this_off && |
| lsn_base < best_lsn && |
| (page_pos != page_cnt || best_page_pos == page_pos || |
| best_page_pos == 1) && |
| (page_pos >= page_cnt || best_page_pos == page_pos)) { |
| u16 bppc = le16_to_cpu(best_page->page_count); |
| |
| saved_off += log->page_size; |
| lsn_base = best_lsn; |
| |
| memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, |
| log->page_size); |
| |
| tails += 1; |
| |
| if (best_page_pos != bppc) { |
| page_cnt = bppc; |
| page_pos = best_page_pos; |
| |
| if (page_cnt > 1) |
| page_pos += 1; |
| } else { |
| page_pos = page_cnt = 1; |
| } |
| } else { |
| kfree(first_tail); |
| kfree(second_tail); |
| goto tail_read; |
| } |
| |
| kfree(first_tail_prev); |
| first_tail_prev = first_tail; |
| final_off_prev = first_file_off; |
| first_tail = NULL; |
| |
| kfree(second_tail_prev); |
| second_tail_prev = second_tail; |
| second_off_prev = second_file_off; |
| second_tail = NULL; |
| |
| final_off += log->page_size; |
| second_off += log->page_size; |
| |
| if (tails < 0x10) |
| goto next_tail; |
| tail_read: |
| first_tail = first_tail_prev; |
| final_off = final_off_prev; |
| |
| second_tail = second_tail_prev; |
| second_off = second_off_prev; |
| |
| page_cnt = page_pos = 1; |
| |
| curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) |
| : log->next_page; |
| |
| wrapped_file = |
| curpage_off == log->first_page && |
| !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); |
| |
| expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; |
| |
| nextpage_off = curpage_off; |
| |
| next_page: |
| tail_page = NULL; |
| /* Read the next log page. */ |
| err = read_log_page(log, curpage_off, &page, &usa_error); |
| |
| /* Compute the next log page offset the file. */ |
| nextpage_off = next_page_off(log, curpage_off); |
| wrapped = nextpage_off == log->first_page; |
| |
| if (tails > 1) { |
| struct RECORD_PAGE_HDR *cur_page = |
| Add2Ptr(page_bufs, curpage_off - page_off); |
| |
| if (curpage_off == saved_off) { |
| tail_page = cur_page; |
| goto use_tail_page; |
| } |
| |
| if (page_off > curpage_off || curpage_off >= saved_off) |
| goto use_tail_page; |
| |
| if (page_off1) |
| goto use_cur_page; |
| |
| if (!err && !usa_error && |
| page->rhdr.sign == NTFS_RCRD_SIGNATURE && |
| cur_page->rhdr.lsn == page->rhdr.lsn && |
| cur_page->record_hdr.next_record_off == |
| page->record_hdr.next_record_off && |
| ((page_pos == page_cnt && |
| le16_to_cpu(page->page_pos) == 1) || |
| (page_pos != page_cnt && |
| le16_to_cpu(page->page_pos) == page_pos + 1 && |
| le16_to_cpu(page->page_count) == page_cnt))) { |
| cur_page = NULL; |
| goto use_tail_page; |
| } |
| |
| page_off1 = page_off; |
| |
| use_cur_page: |
| |
| lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); |
| |
| if (last_ok_lsn != |
| le64_to_cpu(cur_page->record_hdr.last_end_lsn) && |
| ((lsn_cur >> log->file_data_bits) + |
| ((curpage_off < |
| (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) |
| ? 1 |
| : 0)) != expected_seq) { |
| goto check_tail; |
| } |
| |
| if (!is_log_record_end(cur_page)) { |
| tail_page = NULL; |
| last_ok_lsn = lsn_cur; |
| goto next_page_1; |
| } |
| |
| log->seq_num = expected_seq; |
| log->l_flags &= ~NTFSLOG_NO_LAST_LSN; |
| log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); |
| log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; |
| |
| if (log->record_header_len <= |
| log->page_size - |
| le16_to_cpu(cur_page->record_hdr.next_record_off)) { |
| log->l_flags |= NTFSLOG_REUSE_TAIL; |
| log->next_page = curpage_off; |
| } else { |
| log->l_flags &= ~NTFSLOG_REUSE_TAIL; |
| log->next_page = nextpage_off; |
| } |
| |
| if (wrapped_file) |
| log->l_flags |= NTFSLOG_WRAPPED; |
| |
| last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); |
| goto next_page_1; |
| } |
| |
| /* |
| * If we are at the expected first page of a transfer check to see |
| * if either tail copy is at this offset. |
| * If this page is the last page of a transfer, check if we wrote |
| * a subsequent tail copy. |
| */ |
| if (page_cnt == page_pos || page_cnt == page_pos + 1) { |
| /* |
| * Check if the offset matches either the first or second |
| * tail copy. It is possible it will match both. |
| */ |
| if (curpage_off == final_off) |
| tail_page = first_tail; |
| |
| /* |
| * If we already matched on the first page then |
| * check the ending lsn's. |
| */ |
| if (curpage_off == second_off) { |
| if (!tail_page || |
| (second_tail && |
| le64_to_cpu(second_tail->record_hdr.last_end_lsn) > |
| le64_to_cpu(first_tail->record_hdr |
| .last_end_lsn))) { |
| tail_page = second_tail; |
| } |
| } |
| } |
| |
| use_tail_page: |
| if (tail_page) { |
| /* We have a candidate for a tail copy. */ |
| lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); |
| |
| if (last_ok_lsn < lsn_cur) { |
| /* |
| * If the sequence number is not expected, |
| * then don't use the tail copy. |
| */ |
| if (expected_seq != (lsn_cur >> log->file_data_bits)) |
| tail_page = NULL; |
| } else if (last_ok_lsn > lsn_cur) { |
| /* |
| * If the last lsn is greater than the one on |
| * this page then forget this tail. |
| */ |
| tail_page = NULL; |
| } |
| } |
| |
| /* |
| *If we have an error on the current page, |
| * we will break of this loop. |
| */ |
| if (err || usa_error) |
| goto check_tail; |
| |
| /* |
| * Done if the last lsn on this page doesn't match the previous known |
| * last lsn or the sequence number is not expected. |
| */ |
| lsn_cur = le64_to_cpu(page->rhdr.lsn); |
| if (last_ok_lsn != lsn_cur && |
| expected_seq != (lsn_cur >> log->file_data_bits)) { |
| goto check_tail; |
| } |
| |
| /* |
| * Check that the page position and page count values are correct. |
| * If this is the first page of a transfer the position must be 1 |
| * and the count will be unknown. |
| */ |
| if (page_cnt == page_pos) { |
| if (page->page_pos != cpu_to_le16(1) && |
| (!reuse_page || page->page_pos != page->page_count)) { |
| /* |
| * If the current page is the first page we are |
| * looking at and we are reusing this page then |
| * it can be either the first or last page of a |
| * transfer. Otherwise it can only be the first. |
| */ |
| goto check_tail; |
| } |
| } else if (le16_to_cpu(page->page_count) != page_cnt || |
| le16_to_cpu(page->page_pos) != page_pos + 1) { |
| /* |
| * The page position better be 1 more than the last page |
| * position and the page count better match. |
| */ |
| goto check_tail; |
| } |
| |
| /* |
| * We have a valid page the file and may have a valid page |
| * the tail copy area. |
| * If the tail page was written after the page the file then |
| * break of the loop. |
| */ |
| if (tail_page && |
| le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { |
| /* Remember if we will replace the page. */ |
| replace_page = true; |
| goto check_tail; |
| } |
| |
| tail_page = NULL; |
| |
| if (is_log_record_end(page)) { |
| /* |
| * Since we have read this page we know the sequence number |
| * is the same as our expected value. |
| */ |
| log->seq_num = expected_seq; |
| log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); |
| log->ra->current_lsn = page->record_hdr.last_end_lsn; |
| log->l_flags &= ~NTFSLOG_NO_LAST_LSN; |
| |
| /* |
| * If there is room on this page for another header then |
| * remember we want to reuse the page. |
| */ |
| if (log->record_header_len <= |
| log->page_size - |
| le16_to_cpu(page->record_hdr.next_record_off)) { |
| log->l_flags |= NTFSLOG_REUSE_TAIL; |
| log->next_page = curpage_off; |
| } else { |
| log->l_flags &= ~NTFSLOG_REUSE_TAIL; |
| log->next_page = nextpage_off; |
| } |
| |
| /* Remember if we wrapped the log file. */ |
| if (wrapped_file) |
| log->l_flags |= NTFSLOG_WRAPPED; |
| } |
| |
| /* |
| * Remember the last page count and position. |
| * Also remember the last known lsn. |
| */ |
| page_cnt = le16_to_cpu(page->page_count); |
| page_pos = le16_to_cpu(page->page_pos); |
| last_ok_lsn = le64_to_cpu(page->rhdr.lsn); |
| |
| next_page_1: |
| |
| if (wrapped) { |
| expected_seq += 1; |
| wrapped_file = 1; |
| } |
| |
| curpage_off = nextpage_off; |
| kfree(page); |
| page = NULL; |
| reuse_page = 0; |
| goto next_page; |
| |
| check_tail: |
| if (tail_page) { |
| log->seq_num = expected_seq; |
| log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); |
| log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; |
| log->l_flags &= ~NTFSLOG_NO_LAST_LSN; |
| |
| if (log->page_size - |
| le16_to_cpu( |
| tail_page->record_hdr.next_record_off) >= |
| log->record_header_len) { |
| log->l_flags |= NTFSLOG_REUSE_TAIL; |
| log->next_page = curpage_off; |
| } else { |
| log->l_flags &= ~NTFSLOG_REUSE_TAIL; |
| log->next_page = nextpage_off; |
| } |
| |
| if (wrapped) |
| log->l_flags |= NTFSLOG_WRAPPED; |
| } |
| |
| /* Remember that the partial IO will start at the next page. */ |
| second_off = nextpage_off; |
| |
| /* |
| * If the next page is the first page of the file then update |
| * the sequence number for log records which begon the next page. |
| */ |
| if (wrapped) |
| expected_seq += 1; |
| |
| /* |
| * If we have a tail copy or are performing single page I/O we can |
| * immediately look at the next page. |
| */ |
| if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { |
| page_cnt = 2; |
| page_pos = 1; |
| goto check_valid; |
| } |
| |
| if (page_pos != page_cnt) |
| goto check_valid; |
| /* |
| * If the next page causes us to wrap to the beginning of the log |
| * file then we know which page to check next. |
| */ |
| if (wrapped) { |
| page_cnt = 2; |
| page_pos = 1; |
| goto check_valid; |
| } |
| |
| cur_pos = 2; |
| |
| next_test_page: |
| kfree(tst_page); |
| tst_page = NULL; |
| |
| /* Walk through the file, reading log pages. */ |
| err = read_log_page(log, nextpage_off, &tst_page, &usa_error); |
| |
| /* |
| * If we get a USA error then assume that we correctly found |
| * the end of the original transfer. |
| */ |
| if (usa_error) |
| goto file_is_valid; |
| |
| /* |
| * If we were able to read the page, we examine it to see if it |
| * is the same or different Io block. |
| */ |
| if (err) |
| goto next_test_page_1; |
| |
| if (le16_to_cpu(tst_page->page_pos) == cur_pos && |
| check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { |
| page_cnt = le16_to_cpu(tst_page->page_count) + 1; |
| page_pos = le16_to_cpu(tst_page->page_pos); |
| goto check_valid; |
| } else { |
| goto file_is_valid; |
| } |
| |
| next_test_page_1: |
| |
| nextpage_off = next_page_off(log, curpage_off); |
| wrapped = nextpage_off == log->first_page; |
| |
| if (wrapped) { |
| expected_seq += 1; |
| page_cnt = 2; |
| page_pos = 1; |
| } |
| |
| cur_pos += 1; |
| part_io_count += 1; |
| if (!wrapped) |
| goto next_test_page; |
| |
| check_valid: |
| /* Skip over the remaining pages this transfer. */ |
| remain_pages = page_cnt - page_pos - 1; |
| part_io_count += remain_pages; |
| |
| while (remain_pages--) { |
| nextpage_off = next_page_off(log, curpage_off); |
| wrapped = nextpage_off == log->first_page; |
| |
| if (wrapped) |
| expected_seq += 1; |
| } |
| |
| /* Call our routine to check this log page. */ |
| kfree(tst_page); |
| tst_page = NULL; |
| |
| err = read_log_page(log, nextpage_off, &tst_page, &usa_error); |
| if (!err && !usa_error && |
| check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| file_is_valid: |
| |
| /* We have a valid file. */ |
| if (page_off1 || tail_page) { |
| struct RECORD_PAGE_HDR *tmp_page; |
| |
| if (sb_rdonly(log->ni->mi.sbi->sb)) { |
| err = -EROFS; |
| goto out; |
| } |
| |
| if (page_off1) { |
| tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); |
| tails -= (page_off1 - page_off) / log->page_size; |
| if (!tail_page) |
| tails -= 1; |
| } else { |
| tmp_page = tail_page; |
| tails = 1; |
| } |
| |
| while (tails--) { |
| u64 off = hdr_file_off(log, tmp_page); |
| |
| if (!page) { |
| page = kmalloc(log->page_size, GFP_NOFS); |
| if (!page) |
| return -ENOMEM; |
| } |
| |
| /* |
| * Correct page and copy the data from this page |
| * into it and flush it to disk. |
| */ |
| memcpy(page, tmp_page, log->page_size); |
| |
| /* Fill last flushed lsn value flush the page. */ |
| if (log->major_ver < 2) |
| page->rhdr.lsn = page->record_hdr.last_end_lsn; |
| else |
| page->file_off = 0; |
| |
| page->page_pos = page->page_count = cpu_to_le16(1); |
| |
| ntfs_fix_pre_write(&page->rhdr, log->page_size); |
| |
| err = ntfs_sb_write_run(log->ni->mi.sbi, |
| &log->ni->file.run, off, page, |
| log->page_size, 0); |
| |
| if (err) |
| goto out; |
| |
| if (part_io_count && second_off == off) { |
| second_off += log->page_size; |
| part_io_count -= 1; |
| } |
| |
| tmp_page = Add2Ptr(tmp_page, log->page_size); |
| } |
| } |
| |
| if (part_io_count) { |
| if (sb_rdonly(log->ni->mi.sbi->sb)) { |
| err = -EROFS; |
| goto out; |
| } |
| } |
| |
| out: |
| kfree(second_tail); |
| kfree(first_tail); |
| kfree(page); |
| kfree(tst_page); |
| kfree(page_bufs); |
| |
| return err; |
| } |
| |
| /* |
| * read_log_rec_buf - Copy a log record from the file to a buffer. |
| * |
| * The log record may span several log pages and may even wrap the file. |
| */ |
| static int read_log_rec_buf(struct ntfs_log *log, |
| const struct LFS_RECORD_HDR *rh, void *buffer) |
| { |
| int err; |
| struct RECORD_PAGE_HDR *ph = NULL; |
| u64 lsn = le64_to_cpu(rh->this_lsn); |
| u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; |
| u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; |
| u32 data_len = le32_to_cpu(rh->client_data_len); |
| |
| /* |
| * While there are more bytes to transfer, |
| * we continue to attempt to perform the read. |
| */ |
| for (;;) { |
| bool usa_error; |
| u32 tail = log->page_size - off; |
| |
| if (tail >= data_len) |
| tail = data_len; |
| |
| data_len -= tail; |
| |
| err = read_log_page(log, vbo, &ph, &usa_error); |
| if (err) |
| goto out; |
| |
| /* |
| * The last lsn on this page better be greater or equal |
| * to the lsn we are copying. |
| */ |
| if (lsn > le64_to_cpu(ph->rhdr.lsn)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| memcpy(buffer, Add2Ptr(ph, off), tail); |
| |
| /* If there are no more bytes to transfer, we exit the loop. */ |
| if (!data_len) { |
| if (!is_log_record_end(ph) || |
| lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { |
| err = -EINVAL; |
| goto out; |
| } |
| break; |
| } |
| |
| if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || |
| lsn > le64_to_cpu(ph->rhdr.lsn)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| vbo = next_page_off(log, vbo); |
| off = log->data_off; |
| |
| /* |
| * Adjust our pointer the user's buffer to transfer |
| * the next block to. |
| */ |
| buffer = Add2Ptr(buffer, tail); |
| } |
| |
| out: |
| kfree(ph); |
| return err; |
| } |
| |
| static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, |
| u64 *lsn) |
| { |
| int err; |
| struct LFS_RECORD_HDR *rh = NULL; |
| const struct CLIENT_REC *cr = |
| Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); |
| u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); |
| u32 len; |
| struct NTFS_RESTART *rst; |
| |
| *lsn = 0; |
| *rst_ = NULL; |
| |
| /* If the client doesn't have a restart area, go ahead and exit now. */ |
| if (!lsnc) |
| return 0; |
| |
| err = read_log_page(log, lsn_to_vbo(log, lsnc), |
| (struct RECORD_PAGE_HDR **)&rh, NULL); |
| if (err) |
| return err; |
| |
| rst = NULL; |
| lsnr = le64_to_cpu(rh->this_lsn); |
| |
| if (lsnc != lsnr) { |
| /* If the lsn values don't match, then the disk is corrupt. */ |
| err = -EINVAL; |
| goto out; |
| } |
| |
| *lsn = lsnr; |
| len = le32_to_cpu(rh->client_data_len); |
| |
| if (!len) { |
| err = 0; |
| goto out; |
| } |
| |
| if (len < sizeof(struct NTFS_RESTART)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| rst = kmalloc(len, GFP_NOFS); |
| if (!rst) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Copy the data into the 'rst' buffer. */ |
| err = read_log_rec_buf(log, rh, rst); |
| if (err) |
| goto out; |
| |
| *rst_ = rst; |
| rst = NULL; |
| |
| out: |
| kfree(rh); |
| kfree(rst); |
| |
| return err; |
| } |
| |
| static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) |
| { |
| int err; |
| struct LFS_RECORD_HDR *rh = lcb->lrh; |
| u32 rec_len, len; |
| |
| /* Read the record header for this lsn. */ |
| if (!rh) { |
| err = read_log_page(log, lsn_to_vbo(log, lsn), |
| (struct RECORD_PAGE_HDR **)&rh, NULL); |
| |
| lcb->lrh = rh; |
| if (err) |
| return err; |
| } |
| |
| /* |
| * If the lsn the log record doesn't match the desired |
| * lsn then the disk is corrupt. |
| */ |
| if (lsn != le64_to_cpu(rh->this_lsn)) |
| return -EINVAL; |
| |
| len = le32_to_cpu(rh->client_data_len); |
| |
| /* |
| * Check that the length field isn't greater than the total |
| * available space the log file. |
| */ |
| rec_len = len + log->record_header_len; |
| if (rec_len >= log->total_avail) |
| return -EINVAL; |
| |
| /* |
| * If the entire log record is on this log page, |
| * put a pointer to the log record the context block. |
| */ |
| if (rh->flags & LOG_RECORD_MULTI_PAGE) { |
| void *lr = kmalloc(len, GFP_NOFS); |
| |
| if (!lr) |
| return -ENOMEM; |
| |
| lcb->log_rec = lr; |
| lcb->alloc = true; |
| |
| /* Copy the data into the buffer returned. */ |
| err = read_log_rec_buf(log, rh, lr); |
| if (err) |
| return err; |
| } else { |
| /* If beyond the end of the current page -> an error. */ |
| u32 page_off = lsn_to_page_off(log, lsn); |
| |
| if (page_off + len + log->record_header_len > log->page_size) |
| return -EINVAL; |
| |
| lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); |
| lcb->alloc = false; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * read_log_rec_lcb - Init the query operation. |
| */ |
| static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, |
| struct lcb **lcb_) |
| { |
| int err; |
| const struct CLIENT_REC *cr; |
| struct lcb *lcb; |
| |
| switch (ctx_mode) { |
| case lcb_ctx_undo_next: |
| case lcb_ctx_prev: |
| case lcb_ctx_next: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Check that the given lsn is the legal range for this client. */ |
| cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); |
| |
| if (!verify_client_lsn(log, cr, lsn)) |
| return -EINVAL; |
| |
| lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); |
| if (!lcb) |
| return -ENOMEM; |
| lcb->client = log->client_id; |
| lcb->ctx_mode = ctx_mode; |
| |
| /* Find the log record indicated by the given lsn. */ |
| err = find_log_rec(log, lsn, lcb); |
| if (err) |
| goto out; |
| |
| *lcb_ = lcb; |
| return 0; |
| |
| out: |
| lcb_put(lcb); |
| *lcb_ = NULL; |
| return err; |
| } |
| |
| /* |
| * find_client_next_lsn |
| * |
| * Attempt to find the next lsn to return to a client based on the context mode. |
| */ |
| static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) |
| { |
| int err; |
| u64 next_lsn; |
| struct LFS_RECORD_HDR *hdr; |
| |
| hdr = lcb->lrh; |
| *lsn = 0; |
| |
| if (lcb_ctx_next != lcb->ctx_mode) |
| goto check_undo_next; |
| |
| /* Loop as long as another lsn can be found. */ |
| for (;;) { |
| u64 current_lsn; |
| |
| err = next_log_lsn(log, hdr, ¤t_lsn); |
| if (err) |
| goto out; |
| |
| if (!current_lsn) |
| break; |
| |
| if (hdr != lcb->lrh) |
| kfree(hdr); |
| |
| hdr = NULL; |
| err = read_log_page(log, lsn_to_vbo(log, current_lsn), |
| (struct RECORD_PAGE_HDR **)&hdr, NULL); |
| if (err) |
| goto out; |
| |
| if (memcmp(&hdr->client, &lcb->client, |
| sizeof(struct CLIENT_ID))) { |
| /*err = -EINVAL; */ |
| } else if (LfsClientRecord == hdr->record_type) { |
| kfree(lcb->lrh); |
| lcb->lrh = hdr; |
| *lsn = current_lsn; |
| return 0; |
| } |
| } |
| |
| out: |
| if (hdr != lcb->lrh) |
| kfree(hdr); |
| return err; |
| |
| check_undo_next: |
| if (lcb_ctx_undo_next == lcb->ctx_mode) |
| next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); |
| else if (lcb_ctx_prev == lcb->ctx_mode) |
| next_lsn = le64_to_cpu(hdr->client_prev_lsn); |
| else |
| return 0; |
| |
| if (!next_lsn) |
| return 0; |
| |
| if (!verify_client_lsn( |
| log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), |
| next_lsn)) |
| return 0; |
| |
| hdr = NULL; |
| err = read_log_page(log, lsn_to_vbo(log, next_lsn), |
| (struct RECORD_PAGE_HDR **)&hdr, NULL); |
| if (err) |
| return err; |
| kfree(lcb->lrh); |
| lcb->lrh = hdr; |
| |
| *lsn = next_lsn; |
| |
| return 0; |
| } |
| |
| static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) |
| { |
| int err; |
| |
| err = find_client_next_lsn(log, lcb, lsn); |
| if (err) |
| return err; |
| |
| if (!*lsn) |
| return 0; |
| |
| if (lcb->alloc) |
| kfree(lcb->log_rec); |
| |
| lcb->log_rec = NULL; |
| lcb->alloc = false; |
| kfree(lcb->lrh); |
| lcb->lrh = NULL; |
| |
| return find_log_rec(log, *lsn, lcb); |
| } |
| |
| static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) |
| { |
| __le16 mask; |
| u32 min_de, de_off, used, total; |
| const struct NTFS_DE *e; |
| |
| if (hdr_has_subnode(hdr)) { |
| min_de = sizeof(struct NTFS_DE) + sizeof(u64); |
| mask = NTFS_IE_HAS_SUBNODES; |
| } else { |
| min_de = sizeof(struct NTFS_DE); |
| mask = 0; |
| } |
| |
| de_off = le32_to_cpu(hdr->de_off); |
| used = le32_to_cpu(hdr->used); |
| total = le32_to_cpu(hdr->total); |
| |
| if (de_off > bytes - min_de || used > bytes || total > bytes || |
| de_off + min_de > used || used > total) { |
| return false; |
| } |
| |
| e = Add2Ptr(hdr, de_off); |
| for (;;) { |
| u16 esize = le16_to_cpu(e->size); |
| struct NTFS_DE *next = Add2Ptr(e, esize); |
| |
| if (esize < min_de || PtrOffset(hdr, next) > used || |
| (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { |
| return false; |
| } |
| |
| if (de_is_last(e)) |
| break; |
| |
| e = next; |
| } |
| |
| return true; |
| } |
| |
| static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) |
| { |
| u16 fo; |
| const struct NTFS_RECORD_HEADER *r = &ib->rhdr; |
| |
| if (r->sign != NTFS_INDX_SIGNATURE) |
| return false; |
| |
| fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); |
| |
| if (le16_to_cpu(r->fix_off) > fo) |
| return false; |
| |
| if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) |
| return false; |
| |
| return check_index_header(&ib->ihdr, |
| bytes - offsetof(struct INDEX_BUFFER, ihdr)); |
| } |
| |
| static inline bool check_index_root(const struct ATTRIB *attr, |
| struct ntfs_sb_info *sbi) |
| { |
| bool ret; |
| const struct INDEX_ROOT *root = resident_data(attr); |
| u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size |
| ? sbi->cluster_bits |
| : SECTOR_SHIFT; |
| u8 block_clst = root->index_block_clst; |
| |
| if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || |
| (root->type != ATTR_NAME && root->type != ATTR_ZERO) || |
| (root->type == ATTR_NAME && |
| root->rule != NTFS_COLLATION_TYPE_FILENAME) || |
| (le32_to_cpu(root->index_block_size) != |
| (block_clst << index_bits)) || |
| (block_clst != 1 && block_clst != 2 && block_clst != 4 && |
| block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && |
| block_clst != 0x40 && block_clst != 0x80)) { |
| return false; |
| } |
| |
| ret = check_index_header(&root->ihdr, |
| le32_to_cpu(attr->res.data_size) - |
| offsetof(struct INDEX_ROOT, ihdr)); |
| return ret; |
| } |
| |
| static inline bool check_attr(const struct MFT_REC *rec, |
| const struct ATTRIB *attr, |
| struct ntfs_sb_info *sbi) |
| { |
| u32 asize = le32_to_cpu(attr->size); |
| u32 rsize = 0; |
| u64 dsize, svcn, evcn; |
| u16 run_off; |
| |
| /* Check the fixed part of the attribute record header. */ |
| if (asize >= sbi->record_size || |
| asize + PtrOffset(rec, attr) >= sbi->record_size || |
| (attr->name_len && |
| le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > |
| asize)) { |
| return false; |
| } |
| |
| /* Check the attribute fields. */ |
| switch (attr->non_res) { |
| case 0: |
| rsize = le32_to_cpu(attr->res.data_size); |
| if (rsize >= asize || |
| le16_to_cpu(attr->res.data_off) + rsize > asize) { |
| return false; |
| } |
| break; |
| |
| case 1: |
| dsize = le64_to_cpu(attr->nres.data_size); |
| svcn = le64_to_cpu(attr->nres.svcn); |
| evcn = le64_to_cpu(attr->nres.evcn); |
| run_off = le16_to_cpu(attr->nres.run_off); |
| |
| if (svcn > evcn + 1 || run_off >= asize || |
| le64_to_cpu(attr->nres.valid_size) > dsize || |
| dsize > le64_to_cpu(attr->nres.alloc_size)) { |
| return false; |
| } |
| |
| if (run_off > asize) |
| return false; |
| |
| if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, |
| Add2Ptr(attr, run_off), asize - run_off) < 0) { |
| return false; |
| } |
| |
| return true; |
| |
| default: |
| return false; |
| } |
| |
| switch (attr->type) { |
| case ATTR_NAME: |
| if (fname_full_size(Add2Ptr( |
| attr, le16_to_cpu(attr->res.data_off))) > asize) { |
| return false; |
| } |
| break; |
| |
| case ATTR_ROOT: |
| return check_index_root(attr, sbi); |
| |
| case ATTR_STD: |
| if (rsize < sizeof(struct ATTR_STD_INFO5) && |
| rsize != sizeof(struct ATTR_STD_INFO)) { |
| return false; |
| } |
| break; |
| |
| case ATTR_LIST: |
| case ATTR_ID: |
| case ATTR_SECURE: |
| case ATTR_LABEL: |
| case ATTR_VOL_INFO: |
| case ATTR_DATA: |
| case ATTR_ALLOC: |
| case ATTR_BITMAP: |
| case ATTR_REPARSE: |
| case ATTR_EA_INFO: |
| case ATTR_EA: |
| case ATTR_PROPERTYSET: |
| case ATTR_LOGGED_UTILITY_STREAM: |
| break; |
| |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline bool check_file_record(const struct MFT_REC *rec, |
| const struct MFT_REC *rec2, |
| struct ntfs_sb_info *sbi) |
| { |
| const struct ATTRIB *attr; |
| u16 fo = le16_to_cpu(rec->rhdr.fix_off); |
| u16 fn = le16_to_cpu(rec->rhdr.fix_num); |
| u16 ao = le16_to_cpu(rec->attr_off); |
| u32 rs = sbi->record_size; |
| |
| /* Check the file record header for consistency. */ |
| if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || |
| fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || |
| (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || |
| ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || |
| le32_to_cpu(rec->total) != rs) { |
| return false; |
| } |
| |
| /* Loop to check all of the attributes. */ |
| for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; |
| attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { |
| if (check_attr(rec, attr, sbi)) |
| continue; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, |
| const u64 *rlsn) |
| { |
| u64 lsn; |
| |
| if (!rlsn) |
| return true; |
| |
| lsn = le64_to_cpu(hdr->lsn); |
| |
| if (hdr->sign == NTFS_HOLE_SIGNATURE) |
| return false; |
| |
| if (*rlsn > lsn) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool check_if_attr(const struct MFT_REC *rec, |
| const struct LOG_REC_HDR *lrh) |
| { |
| u16 ro = le16_to_cpu(lrh->record_off); |
| u16 o = le16_to_cpu(rec->attr_off); |
| const struct ATTRIB *attr = Add2Ptr(rec, o); |
| |
| while (o < ro) { |
| u32 asize; |
| |
| if (attr->type == ATTR_END) |
| break; |
| |
| asize = le32_to_cpu(attr->size); |
| if (!asize) |
| break; |
| |
| o += asize; |
| attr = Add2Ptr(attr, asize); |
| } |
| |
| return o == ro; |
| } |
| |
| static inline bool check_if_index_root(const struct MFT_REC *rec, |
| const struct LOG_REC_HDR *lrh) |
| { |
| u16 ro = le16_to_cpu(lrh->record_off); |
| u16 o = le16_to_cpu(rec->attr_off); |
| const struct ATTRIB *attr = Add2Ptr(rec, o); |
| |
| while (o < ro) { |
| u32 asize; |
| |
| if (attr->type == ATTR_END) |
| break; |
| |
| asize = le32_to_cpu(attr->size); |
| if (!asize) |
| break; |
| |
| o += asize; |
| attr = Add2Ptr(attr, asize); |
| } |
| |
| return o == ro && attr->type == ATTR_ROOT; |
| } |
| |
| static inline bool check_if_root_index(const struct ATTRIB *attr, |
| const struct INDEX_HDR *hdr, |
| const struct LOG_REC_HDR *lrh) |
| { |
| u16 ao = le16_to_cpu(lrh->attr_off); |
| u32 de_off = le32_to_cpu(hdr->de_off); |
| u32 o = PtrOffset(attr, hdr) + de_off; |
| const struct NTFS_DE *e = Add2Ptr(hdr, de_off); |
| u32 asize = le32_to_cpu(attr->size); |
| |
| while (o < ao) { |
| u16 esize; |
| |
| if (o >= asize) |
| break; |
| |
| esize = le16_to_cpu(e->size); |
| if (!esize) |
| break; |
| |
| o += esize; |
| e = Add2Ptr(e, esize); |
| } |
| |
| return o == ao; |
| } |
| |
| static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, |
| u32 attr_off) |
| { |
| u32 de_off = le32_to_cpu(hdr->de_off); |
| u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; |
| const struct NTFS_DE *e = Add2Ptr(hdr, de_off); |
| u32 used = le32_to_cpu(hdr->used); |
| |
| while (o < attr_off) { |
| u16 esize; |
| |
| if (de_off >= used) |
| break; |
| |
| esize = le16_to_cpu(e->size); |
| if (!esize) |
| break; |
| |
| o += esize; |
| de_off += esize; |
| e = Add2Ptr(e, esize); |
| } |
| |
| return o == attr_off; |
| } |
| |
| static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, |
| u32 nsize) |
| { |
| u32 asize = le32_to_cpu(attr->size); |
| int dsize = nsize - asize; |
| u8 *next = Add2Ptr(attr, asize); |
| u32 used = le32_to_cpu(rec->used); |
| |
| memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); |
| |
| rec->used = cpu_to_le32(used + dsize); |
| attr->size = cpu_to_le32(nsize); |
| } |
| |
| struct OpenAttr { |
| struct ATTRIB *attr; |
| struct runs_tree *run1; |
| struct runs_tree run0; |
| struct ntfs_inode *ni; |
| // CLST rno; |
| }; |
| |
| /* |
| * cmp_type_and_name |
| * |
| * Return: 0 if 'attr' has the same type and name. |
| */ |
| static inline int cmp_type_and_name(const struct ATTRIB *a1, |
| const struct ATTRIB *a2) |
| { |
| return a1->type != a2->type || a1->name_len != a2->name_len || |
| (a1->name_len && memcmp(attr_name(a1), attr_name(a2), |
| a1->name_len * sizeof(short))); |
| } |
| |
| static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, |
| const struct ATTRIB *attr, CLST rno) |
| { |
| struct OPEN_ATTR_ENRTY *oe = NULL; |
| |
| while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { |
| struct OpenAttr *op_attr; |
| |
| if (ino_get(&oe->ref) != rno) |
| continue; |
| |
| op_attr = (struct OpenAttr *)oe->ptr; |
| if (!cmp_type_and_name(op_attr->attr, attr)) |
| return op_attr; |
| } |
| return NULL; |
| } |
| |
| static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, |
| enum ATTR_TYPE type, u64 size, |
| const u16 *name, size_t name_len, |
| __le16 flags) |
| { |
| struct ATTRIB *attr; |
| u32 name_size = ALIGN(name_len * sizeof(short), 8); |
| bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); |
| u32 asize = name_size + |
| (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); |
| |
| attr = kzalloc(asize, GFP_NOFS); |
| if (!attr) |
| return NULL; |
| |
| attr->type = type; |
| attr->size = cpu_to_le32(asize); |
| attr->flags = flags; |
| attr->non_res = 1; |
| attr->name_len = name_len; |
| |
| attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); |
| attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); |
| attr->nres.data_size = cpu_to_le64(size); |
| attr->nres.valid_size = attr->nres.data_size; |
| if (is_ext) { |
| attr->name_off = SIZEOF_NONRESIDENT_EX_LE; |
| if (is_attr_compressed(attr)) |
| attr->nres.c_unit = COMPRESSION_UNIT; |
| |
| attr->nres.run_off = |
| cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); |
| memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, |
| name_len * sizeof(short)); |
| } else { |
| attr->name_off = SIZEOF_NONRESIDENT_LE; |
| attr->nres.run_off = |
| cpu_to_le16(SIZEOF_NONRESIDENT + name_size); |
| memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, |
| name_len * sizeof(short)); |
| } |
| |
| return attr; |
| } |
| |
| /* |
| * do_action - Common routine for the Redo and Undo Passes. |
| * @rlsn: If it is NULL then undo. |
| */ |
| static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, |
| const struct LOG_REC_HDR *lrh, u32 op, void *data, |
| u32 dlen, u32 rec_len, const u64 *rlsn) |
| { |
| int err = 0; |
| struct ntfs_sb_info *sbi = log->ni->mi.sbi; |
| struct inode *inode = NULL, *inode_parent; |
| struct mft_inode *mi = NULL, *mi2_child = NULL; |
| CLST rno = 0, rno_base = 0; |
| struct INDEX_BUFFER *ib = NULL; |
| struct MFT_REC *rec = NULL; |
| struct ATTRIB *attr = NULL, *attr2; |
| struct INDEX_HDR *hdr; |
| struct INDEX_ROOT *root; |
| struct NTFS_DE *e, *e1, *e2; |
| struct NEW_ATTRIBUTE_SIZES *new_sz; |
| struct ATTR_FILE_NAME *fname; |
| struct OpenAttr *oa, *oa2; |
| u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits; |
| u16 id, id2; |
| u32 record_size = sbi->record_size; |
| u64 t64; |
| u16 roff = le16_to_cpu(lrh->record_off); |
| u16 aoff = le16_to_cpu(lrh->attr_off); |
| u64 lco = 0; |
| u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; |
| u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; |
| u64 vbo = cbo + tvo; |
| void *buffer_le = NULL; |
| u32 bytes = 0; |
| bool a_dirty = false; |
| u16 data_off; |
| |
| oa = oe->ptr; |
| |
| /* Big switch to prepare. */ |
| switch (op) { |
| /* ============================================================ |
| * Process MFT records, as described by the current log record. |
| * ============================================================ |
| */ |
| case InitializeFileRecordSegment: |
| case DeallocateFileRecordSegment: |
| case WriteEndOfFileRecordSegment: |
| case CreateAttribute: |
| case DeleteAttribute: |
| case UpdateResidentValue: |
| case UpdateMappingPairs: |
| case SetNewAttributeSizes: |
| case AddIndexEntryRoot: |
| case DeleteIndexEntryRoot: |
| case SetIndexEntryVcnRoot: |
| case UpdateFileNameRoot: |
| case UpdateRecordDataRoot: |
| case ZeroEndOfFileRecord: |
| rno = vbo >> sbi->record_bits; |
| inode = ilookup(sbi->sb, rno); |
| if (inode) { |
| mi = &ntfs_i(inode)->mi; |
| } else if (op == InitializeFileRecordSegment) { |
| mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); |
| if (!mi) |
| return -ENOMEM; |
| err = mi_format_new(mi, sbi, rno, 0, false); |
| if (err) |
| goto out; |
| } else { |
| /* Read from disk. */ |
| err = mi_get(sbi, rno, &mi); |
| if (err) |
| return err; |
| } |
| rec = mi->mrec; |
| |
| if (op == DeallocateFileRecordSegment) |
| goto skip_load_parent; |
| |
| if (InitializeFileRecordSegment != op) { |
| if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) |
| goto dirty_vol; |
| if (!check_lsn(&rec->rhdr, rlsn)) |
| goto out; |
| if (!check_file_record(rec, NULL, sbi)) |
| goto dirty_vol; |
| attr = Add2Ptr(rec, roff); |
| } |
| |
| if (is_rec_base(rec) || InitializeFileRecordSegment == op) { |
| rno_base = rno; |
| goto skip_load_parent; |
| } |
| |
| rno_base = ino_get(&rec->parent_ref); |
| inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); |
| if (IS_ERR(inode_parent)) |
| goto skip_load_parent; |
| |
| if (is_bad_inode(inode_parent)) { |
| iput(inode_parent); |
| goto skip_load_parent; |
| } |
| |
| if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { |
| iput(inode_parent); |
| } else { |
| if (mi2_child->mrec != mi->mrec) |
| memcpy(mi2_child->mrec, mi->mrec, |
| sbi->record_size); |
| |
| if (inode) |
| iput(inode); |
| else if (mi) |
| mi_put(mi); |
| |
| inode = inode_parent; |
| mi = mi2_child; |
| rec = mi2_child->mrec; |
| attr = Add2Ptr(rec, roff); |
| } |
| |
| skip_load_parent: |
| inode_parent = NULL; |
| break; |
| |
| /* |
| * Process attributes, as described by the current log record. |
| */ |
| case UpdateNonresidentValue: |
| case AddIndexEntryAllocation: |
| case DeleteIndexEntryAllocation: |
| case WriteEndOfIndexBuffer: |
| case SetIndexEntryVcnAllocation: |
| case UpdateFileNameAllocation: |
| case SetBitsInNonresidentBitMap: |
| case ClearBitsInNonresidentBitMap: |
| case UpdateRecordDataAllocation: |
| attr = oa->attr; |
| bytes = UpdateNonresidentValue == op ? dlen : 0; |
| lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; |
| |
| if (attr->type == ATTR_ALLOC) { |
| t32 = le32_to_cpu(oe->bytes_per_index); |
| if (bytes < t32) |
| bytes = t32; |
| } |
| |
| if (!bytes) |
| bytes = lco - cbo; |
| |
| bytes += roff; |
| if (attr->type == ATTR_ALLOC) |
| bytes = (bytes + 511) & ~511; // align |
| |
| buffer_le = kmalloc(bytes, GFP_NOFS); |
| if (!buffer_le) |
| return -ENOMEM; |
| |
| err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, |
| NULL); |
| if (err) |
| goto out; |
| |
| if (attr->type == ATTR_ALLOC && *(int *)buffer_le) |
| ntfs_fix_post_read(buffer_le, bytes, false); |
| break; |
| |
| default: |
| WARN_ON(1); |
| } |
| |
| /* Big switch to do operation. */ |
| switch (op) { |
| case InitializeFileRecordSegment: |
| if (roff + dlen > record_size) |
| goto dirty_vol; |
| |
| memcpy(Add2Ptr(rec, roff), data, dlen); |
| mi->dirty = true; |
| break; |
| |
| case DeallocateFileRecordSegment: |
| clear_rec_inuse(rec); |
| le16_add_cpu(&rec->seq, 1); |
| mi->dirty = true; |
| break; |
| |
| case WriteEndOfFileRecordSegment: |
| attr2 = (struct ATTRIB *)data; |
| if (!check_if_attr(rec, lrh) || roff + dlen > record_size) |
| goto dirty_vol; |
| |
| memmove(attr, attr2, dlen); |
| rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); |
| |
| mi->dirty = true; |
| break; |
| |
| case CreateAttribute: |
| attr2 = (struct ATTRIB *)data; |
| asize = le32_to_cpu(attr2->size); |
| used = le32_to_cpu(rec->used); |
| |
| if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || |
| !IS_ALIGNED(asize, 8) || |
| Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || |
| dlen > record_size - used) { |
| goto dirty_vol; |
| } |
| |
| memmove(Add2Ptr(attr, asize), attr, used - roff); |
| memcpy(attr, attr2, asize); |
| |
| rec->used = cpu_to_le32(used + asize); |
| id = le16_to_cpu(rec->next_attr_id); |
| id2 = le16_to_cpu(attr2->id); |
| if (id <= id2) |
| rec->next_attr_id = cpu_to_le16(id2 + 1); |
| if (is_attr_indexed(attr)) |
| le16_add_cpu(&rec->hard_links, 1); |
| |
| oa2 = find_loaded_attr(log, attr, rno_base); |
| if (oa2) { |
| void *p2 = kmemdup(attr, le32_to_cpu(attr->size), |
| GFP_NOFS); |
| if (p2) { |
| // run_close(oa2->run1); |
| kfree(oa2->attr); |
| oa2->attr = p2; |
| } |
| } |
| |
| mi->dirty = true; |
| break; |
| |
| case DeleteAttribute: |
| asize = le32_to_cpu(attr->size); |
| used = le32_to_cpu(rec->used); |
| |
| if (!check_if_attr(rec, lrh)) |
| goto dirty_vol; |
| |
| rec->used = cpu_to_le32(used - asize); |
| if (is_attr_indexed(attr)) |
| le16_add_cpu(&rec->hard_links, -1); |
| |
| memmove(attr, Add2Ptr(attr, asize), used - asize - roff); |
| |
| mi->dirty = true; |
| break; |
| |
| case UpdateResidentValue: |
| nsize = aoff + dlen; |
| |
| if (!check_if_attr(rec, lrh)) |
| goto dirty_vol; |
| |
| asize = le32_to_cpu(attr->size); |
| used = le32_to_cpu(rec->used); |
| |
| if (lrh->redo_len == lrh->undo_len) { |
| if (nsize > asize) |
| goto dirty_vol; |
| goto move_data; |
| } |
| |
| if (nsize > asize && nsize - asize > record_size - used) |
| goto dirty_vol; |
| |
| nsize = ALIGN(nsize, 8); |
| data_off = le16_to_cpu(attr->res.data_off); |
| |
| if (nsize < asize) { |
| memmove(Add2Ptr(attr, aoff), data, dlen); |
| data = NULL; // To skip below memmove(). |
| } |
| |
| memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), |
| used - le16_to_cpu(lrh->record_off) - asize); |
| |
| rec->used = cpu_to_le32(used + nsize - asize); |
| attr->size = cpu_to_le32(nsize); |
| attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); |
| |
| move_data: |
| if (data) |
| memmove(Add2Ptr(attr, aoff), data, dlen); |
| |
| oa2 = find_loaded_attr(log, attr, rno_base); |
| if (oa2) { |
| void *p2 = kmemdup(attr, le32_to_cpu(attr->size), |
| GFP_NOFS); |
| if (p2) { |
| // run_close(&oa2->run0); |
| oa2->run1 = &oa2->run0; |
| kfree(oa2->attr); |
| oa2->attr = p2; |
| } |
| } |
| |
| mi->dirty = true; |
| break; |
| |
| case UpdateMappingPairs: |
| nsize = aoff + dlen; |
| asize = le32_to_cpu(attr->size); |
| used = le32_to_cpu(rec->used); |
| |
| if (!check_if_attr(rec, lrh) || !attr->non_res || |
| aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || |
| (nsize > asize && nsize - asize > record_size - used)) { |
| goto dirty_vol; |
| } |
| |
| nsize = ALIGN(nsize, 8); |
| |
| memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), |
| used - le16_to_cpu(lrh->record_off) - asize); |
| rec->used = cpu_to_le32(used + nsize - asize); |
| attr->size = cpu_to_le32(nsize); |
| memmove(Add2Ptr(attr, aoff), data, dlen); |
| |
| if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), |
| attr_run(attr), &t64)) { |
| goto dirty_vol; |
| } |
| |
| attr->nres.evcn = cpu_to_le64(t64); |
| oa2 = find_loaded_attr(log, attr, rno_base); |
| if (oa2 && oa2->attr->non_res) |
| oa2->attr->nres.evcn = attr->nres.evcn; |
| |
| mi->dirty = true; |
| break; |
| |
| case SetNewAttributeSizes: |
| new_sz = data; |
| if (!check_if_attr(rec, lrh) || !attr->non_res) |
| goto dirty_vol; |
| |
| attr->nres.alloc_size = new_sz->alloc_size; |
| attr->nres.data_size = new_sz->data_size; |
| attr->nres.valid_size = new_sz->valid_size; |
| |
| if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) |
| attr->nres.total_size = new_sz->total_size; |
| |
| oa2 = find_loaded_attr(log, attr, rno_base); |
| if (oa2) { |
| void *p2 = kmemdup(attr, le32_to_cpu(attr->size), |
| GFP_NOFS); |
| if (p2) { |
| kfree(oa2->attr); |
| oa2->attr = p2; |
| } |
| } |
| mi->dirty = true; |
| break; |
| |
| case AddIndexEntryRoot: |
| e = (struct NTFS_DE *)data; |
| esize = le16_to_cpu(e->size); |
| root = resident_data(attr); |
| hdr = &root->ihdr; |
| used = le32_to_cpu(hdr->used); |
| |
| if (!check_if_index_root(rec, lrh) || |
| !check_if_root_index(attr, hdr, lrh) || |
| Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || |
| esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { |
| goto dirty_vol; |
| } |
| |
| e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); |
| |
| change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); |
| |
| memmove(Add2Ptr(e1, esize), e1, |
| PtrOffset(e1, Add2Ptr(hdr, used))); |
| memmove(e1, e, esize); |
| |
| le32_add_cpu(&attr->res.data_size, esize); |
| hdr->used = cpu_to_le32(used + esize); |
| le32_add_cpu(&hdr->total, esize); |
| |
| mi->dirty = true; |
| break; |
| |
| case DeleteIndexEntryRoot: |
| root = resident_data(attr); |
| hdr = &root->ihdr; |
| used = le32_to_cpu(hdr->used); |
| |
| if (!check_if_index_root(rec, lrh) || |
| !check_if_root_index(attr, hdr, lrh)) { |
| goto dirty_vol; |
| } |
| |
| e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); |
| esize = le16_to_cpu(e1->size); |
| e2 = Add2Ptr(e1, esize); |
| |
| memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); |
| |
| le32_sub_cpu(&attr->res.data_size, esize); |
| hdr->used = cpu_to_le32(used - esize); |
| le32_sub_cpu(&hdr->total, esize); |
| |
| change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); |
| |
| mi->dirty = true; |
| break; |
| |
| case SetIndexEntryVcnRoot: |
| root = resident_data(attr); |
| hdr = &root->ihdr; |
| |
| if (!check_if_index_root(rec, lrh) || |
| !check_if_root_index(attr, hdr, lrh)) { |
| goto dirty_vol; |
| } |
| |
| e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); |
| |
| de_set_vbn_le(e, *(__le64 *)data); |
| mi->dirty = true; |
| break; |
| |
| case UpdateFileNameRoot: |
| root = resident_data(attr); |
| hdr = &root->ihdr; |
| |
| if (!check_if_index_root(rec, lrh) || |
| !check_if_root_index(attr, hdr, lrh)) { |
| goto dirty_vol; |
| } |
| |
| e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); |
| fname = (struct ATTR_FILE_NAME *)(e + 1); |
| memmove(&fname->dup, data, sizeof(fname->dup)); // |
| mi->dirty = true; |
| break; |
| |
| case UpdateRecordDataRoot: |
| root = resident_data(attr); |
| hdr = &root->ihdr; |
| |
| if (!check_if_index_root(rec, lrh) || |
| !check_if_root_index(attr, hdr, lrh)) { |
| goto dirty_vol; |
| } |
| |
| e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); |
| |
| memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); |
| |
| mi->dirty = true; |
| break; |
| |
| case ZeroEndOfFileRecord: |
| if (roff + dlen > record_size) |
| goto dirty_vol; |
| |
| memset(attr, 0, dlen); |
| mi->dirty = true; |
| break; |
| |
| case UpdateNonresidentValue: |
| if (lco < cbo + roff + dlen) |
| goto dirty_vol; |
| |
| memcpy(Add2Ptr(buffer_le, roff), data, dlen); |
| |
| a_dirty = true; |
| if (attr->type == ATTR_ALLOC) |
| ntfs_fix_pre_write(buffer_le, bytes); |
| break; |
| |
| case AddIndexEntryAllocation: |
| ib = Add2Ptr(buffer_le, roff); |
| hdr = &ib->ihdr; |
| e = data; |
| esize = le16_to_cpu(e->size); |
| e1 = Add2Ptr(ib, aoff); |
| |
| if (is_baad(&ib->rhdr)) |
| goto dirty_vol; |
| if (!check_lsn(&ib->rhdr, rlsn)) |
| goto out; |
| |
| used = le32_to_cpu(hdr->used); |
| |
| if (!check_index_buffer(ib, bytes) || |
| !check_if_alloc_index(hdr, aoff) || |
| Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || |
| used + esize > le32_to_cpu(hdr->total)) { |
| goto dirty_vol; |
| } |
| |
| memmove(Add2Ptr(e1, esize), e1, |
| PtrOffset(e1, Add2Ptr(hdr, used))); |
| memcpy(e1, e, esize); |
| |
| hdr->used = cpu_to_le32(used + esize); |
| |
| a_dirty = true; |
| |
| ntfs_fix_pre_write(&ib->rhdr, bytes); |
| break; |
| |
| case DeleteIndexEntryAllocation: |
| ib = Add2Ptr(buffer_le, roff); |
| hdr = &ib->ihdr; |
| e = Add2Ptr(ib, aoff); |
| esize = le16_to_cpu(e->size); |
| |
| if (is_baad(&ib->rhdr)) |
| goto dirty_vol; |
| if (!check_lsn(&ib->rhdr, rlsn)) |
| goto out; |
| |
| if (!check_index_buffer(ib, bytes) || |
| !check_if_alloc_index(hdr, aoff)) { |
| goto dirty_vol; |
| } |
| |
| e1 = Add2Ptr(e, esize); |
| nsize = esize; |
| used = le32_to_cpu(hdr->used); |
| |
| memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); |
| |
| hdr->used = cpu_to_le32(used - nsize); |
| |
| a_dirty = true; |
| |
| ntfs_fix_pre_write(&ib->rhdr, bytes); |
| break; |
| |
| case WriteEndOfIndexBuffer: |
| ib = Add2Ptr(buffer_le, roff); |
| hdr = &ib->ihdr; |
| e = Add2Ptr(ib, aoff); |
| |
| if (is_baad(&ib->rhdr)) |
| goto dirty_vol; |
| if (!check_lsn(&ib->rhdr, rlsn)) |
| goto out; |
| if (!check_index_buffer(ib, bytes) || |
| !check_if_alloc_index(hdr, aoff) || |
| aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + |
| le32_to_cpu(hdr->total)) { |
| goto dirty_vol; |
| } |
| |
| hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); |
| memmove(e, data, dlen); |
| |
| a_dirty = true; |
| ntfs_fix_pre_write(&ib->rhdr, bytes); |
| break; |
| |
| case SetIndexEntryVcnAllocation: |
| ib = Add2Ptr(buffer_le, roff); |
| hdr = &ib->ihdr; |
| e = Add2Ptr(ib, aoff); |
| |
| if (is_baad(&ib->rhdr)) |
| goto dirty_vol; |
| |
| if (!check_lsn(&ib->rhdr, rlsn)) |
| goto out; |
| if (!check_index_buffer(ib, bytes) || |
| !check_if_alloc_index(hdr, aoff)) { |
| goto dirty_vol; |
| } |
| |
| de_set_vbn_le(e, *(__le64 *)data); |
| |
| a_dirty = true; |
| ntfs_fix_pre_write(&ib->rhdr, bytes); |
| break; |
| |
| case UpdateFileNameAllocation: |
| ib = Add2Ptr(buffer_le, roff); |
| hdr = &ib->ihdr; |
| e = Add2Ptr(ib, aoff); |
| |
| if (is_baad(&ib->rhdr)) |
| goto dirty_vol; |
| |
| if (!check_lsn(&ib->rhdr, rlsn)) |
| goto out; |
| if (!check_index_buffer(ib, bytes) || |
| !check_if_alloc_index(hdr, aoff)) { |
| goto dirty_vol; |
| } |
| |
| fname = (struct ATTR_FILE_NAME *)(e + 1); |
| memmove(&fname->dup, data, sizeof(fname->dup)); |
| |
| a_dirty = true; |
| ntfs_fix_pre_write(&ib->rhdr, bytes); |
| break; |
| |
| case SetBitsInNonresidentBitMap: |
| bmp_off = |
| le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); |
| bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); |
| |
| if (cbo + (bmp_off + 7) / 8 > lco || |
| cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { |
| goto dirty_vol; |
| } |
| |
| __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); |
| a_dirty = true; |
| break; |
| |
| case ClearBitsInNonresidentBitMap: |
| bmp_off = |
| le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); |
| bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); |
| |
| if (cbo + (bmp_off + 7) / 8 > lco || |
| cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { |
| goto dirty_vol; |
| } |
| |
| __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); |
| a_dirty = true; |
| break; |
| |
| case UpdateRecordDataAllocation: |
| ib = Add2Ptr(buffer_le, roff); |
| hdr = &ib->ihdr; |
| e = Add2Ptr(ib, aoff); |
| |
| if (is_baad(&ib->rhdr)) |
| goto dirty_vol; |
| |
| if (!check_lsn(&ib->rhdr, rlsn)) |
| goto out; |
| if (!check_index_buffer(ib, bytes) || |
| !check_if_alloc_index(hdr, aoff)) { |
| goto dirty_vol; |
| } |
| |
| memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); |
| |
| a_dirty = true; |
| ntfs_fix_pre_write(&ib->rhdr, bytes); |
| break; |
| |
| default: |
| WARN_ON(1); |
| } |
| |
| if (rlsn) { |
| __le64 t64 = cpu_to_le64(*rlsn); |
| |
| if (rec) |
| rec->rhdr.lsn = t64; |
| if (ib) |
| ib->rhdr.lsn = t64; |
| } |
| |
| if (mi && mi->dirty) { |
| err = mi_write(mi, 0); |
| if (err) |
| goto out; |
| } |
| |
| if (a_dirty) { |
| attr = oa->attr; |
| err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0); |
| if (err) |
| goto out; |
| } |
| |
| out: |
| |
| if (inode) |
| iput(inode); |
| else if (mi != mi2_child) |
| mi_put(mi); |
| |
| kfree(buffer_le); |
| |
| return err; |
| |
| dirty_vol: |
| log->set_dirty = true; |
| goto out; |
| } |
| |
| /* |
| * log_replay - Replays log and empties it. |
| * |
| * This function is called during mount operation. |
| * It replays log and empties it. |
| * Initialized is set false if logfile contains '-1'. |
| */ |
| int log_replay(struct ntfs_inode *ni, bool *initialized) |
| { |
| int err; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct ntfs_log *log; |
| |
| struct restart_info rst_info, rst_info2; |
| u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0; |
| struct ATTR_NAME_ENTRY *attr_names = NULL; |
| struct ATTR_NAME_ENTRY *ane; |
| struct RESTART_TABLE *dptbl = NULL; |
| struct RESTART_TABLE *trtbl = NULL; |
| const struct RESTART_TABLE *rt; |
| struct RESTART_TABLE *oatbl = NULL; |
| struct inode *inode; |
| struct OpenAttr *oa; |
| struct ntfs_inode *ni_oe; |
| struct ATTRIB *attr = NULL; |
| u64 size, vcn, undo_next_lsn; |
| CLST rno, lcn, lcn0, len0, clen; |
| void *data; |
| struct NTFS_RESTART *rst = NULL; |
| struct lcb *lcb = NULL; |
| struct OPEN_ATTR_ENRTY *oe; |
| struct TRANSACTION_ENTRY *tr; |
| struct DIR_PAGE_ENTRY *dp; |
| u32 i, bytes_per_attr_entry; |
| u32 l_size = ni->vfs_inode.i_size; |
| u32 orig_file_size = l_size; |
| u32 page_size, vbo, tail, off, dlen; |
| u32 saved_len, rec_len, transact_id; |
| bool use_second_page; |
| struct RESTART_AREA *ra2, *ra = NULL; |
| struct CLIENT_REC *ca, *cr; |
| __le16 client; |
| struct RESTART_HDR *rh; |
| const struct LFS_RECORD_HDR *frh; |
| const struct LOG_REC_HDR *lrh; |
| bool is_mapped; |
| bool is_ro = sb_rdonly(sbi->sb); |
| u64 t64; |
| u16 t16; |
| u32 t32; |
| |
| /* Get the size of page. NOTE: To replay we can use default page. */ |
| #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 |
| page_size = norm_file_page(PAGE_SIZE, &l_size, true); |
| #else |
| page_size = norm_file_page(PAGE_SIZE, &l_size, false); |
| #endif |
| if (!page_size) |
| return -EINVAL; |
| |
| log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); |
| if (!log) |
| return -ENOMEM; |
| |
| memset(&rst_info, 0, sizeof(struct restart_info)); |
| |
| log->ni = ni; |
| log->l_size = l_size; |
| log->one_page_buf = kmalloc(page_size, GFP_NOFS); |
| if (!log->one_page_buf) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| log->page_size = page_size; |
| log->page_mask = page_size - 1; |
| log->page_bits = blksize_bits(page_size); |
| |
| /* Look for a restart area on the disk. */ |
| err = log_read_rst(log, l_size, true, &rst_info); |
| if (err) |
| goto out; |
| |
| /* remember 'initialized' */ |
| *initialized = rst_info.initialized; |
| |
| if (!rst_info.restart) { |
| if (rst_info.initialized) { |
| /* No restart area but the file is not initialized. */ |
| err = -EINVAL; |
| goto out; |
| } |
| |
| log_init_pg_hdr(log, page_size, page_size, 1, 1); |
| log_create(log, l_size, 0, get_random_int(), false, false); |
| |
| log->ra = ra; |
| |
| ra = log_create_ra(log); |
| if (!ra) { |
| err = -ENOMEM; |
| goto out; |
| } |
| log->ra = ra; |
| log->init_ra = true; |
| |
| goto process_log; |
| } |
| |
| /* |
| * If the restart offset above wasn't zero then we won't |
| * look for a second restart. |
| */ |
| if (rst_info.vbo) |
| goto check_restart_area; |
| |
| memset(&rst_info2, 0, sizeof(struct restart_info)); |
| err = log_read_rst(log, l_size, false, &rst_info2); |
| |
| /* Determine which restart area to use. */ |
| if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn) |
| goto use_first_page; |
| |
| use_second_page = true; |
| |
| if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) { |
| struct RECORD_PAGE_HDR *sp = NULL; |
| bool usa_error; |
| |
| if (!read_log_page(log, page_size, &sp, &usa_error) && |
| sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { |
| use_second_page = false; |
| } |
| kfree(sp); |
| } |
| |
| if (use_second_page) { |
| kfree(rst_info.r_page); |
| memcpy(&rst_info, &rst_info2, sizeof(struct restart_info)); |
| rst_info2.r_page = NULL; |
| } |
| |
| use_first_page: |
| kfree(rst_info2.r_page); |
| |
| check_restart_area: |
| /* |
| * If the restart area is at offset 0, we want |
| * to write the second restart area first. |
| */ |
| log->init_ra = !!rst_info.vbo; |
| |
| /* If we have a valid page then grab a pointer to the restart area. */ |
| ra2 = rst_info.valid_page |
| ? Add2Ptr(rst_info.r_page, |
| le16_to_cpu(rst_info.r_page->ra_off)) |
| : NULL; |
| |
| if (rst_info.chkdsk_was_run || |
| (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { |
| bool wrapped = false; |
| bool use_multi_page = false; |
| u32 open_log_count; |
| |
| /* Do some checks based on whether we have a valid log page. */ |
| if (!rst_info.valid_page) { |
| open_log_count = get_random_int(); |
| goto init_log_instance; |
| } |
| open_log_count = le32_to_cpu(ra2->open_log_count); |
| |
| /* |
| * If the restart page size isn't changing then we want to |
| * check how much work we need to do. |
| */ |
| if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size)) |
| goto init_log_instance; |
| |
| init_log_instance: |
| log_init_pg_hdr(log, page_size, page_size, 1, 1); |
| |
| log_create(log, l_size, rst_info.last_lsn, open_log_count, |
| wrapped, use_multi_page); |
| |
| ra = log_create_ra(log); |
| if (!ra) { |
| err = -ENOMEM; |
| goto out; |
| } |
| log->ra = ra; |
| |
| /* Put the restart areas and initialize |
| * the log file as required. |
| */ |
| goto process_log; |
| } |
| |
| if (!ra2) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * If the log page or the system page sizes have changed, we can't |
| * use the log file. We must use the system page size instead of the |
| * default size if there is not a clean shutdown. |
| */ |
| t32 = le32_to_cpu(rst_info.r_page->sys_page_size); |
| if (page_size != t32) { |
| l_size = orig_file_size; |
| page_size = |
| norm_file_page(t32, &l_size, t32 == DefaultLogPageSize); |
| } |
| |
| if (page_size != t32 || |
| page_size != le32_to_cpu(rst_info.r_page->page_size)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* If the file size has shrunk then we won't mount it. */ |
| if (l_size < le64_to_cpu(ra2->l_size)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| log_init_pg_hdr(log, page_size, page_size, |
| le16_to_cpu(rst_info.r_page->major_ver), |
| le16_to_cpu(rst_info.r_page->minor_ver)); |
| |
| log->l_size = le64_to_cpu(ra2->l_size); |
| log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); |
| log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; |
| log->seq_num_mask = (8 << log->file_data_bits) - 1; |
| log->last_lsn = le64_to_cpu(ra2->current_lsn); |
| log->seq_num = log->last_lsn >> log->file_data_bits; |
| log->ra_off = le16_to_cpu(rst_info.r_page->ra_off); |
| log->restart_size = log->sys_page_size - log->ra_off; |
| log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); |
| log->ra_size = le16_to_cpu(ra2->ra_len); |
| log->data_off = le16_to_cpu(ra2->data_off); |
| log->data_size = log->page_size - log->data_off; |
| log->reserved = log->data_size - log->record_header_len; |
| |
| vbo = lsn_to_vbo(log, log->last_lsn); |
| |
| if (vbo < log->first_page) { |
| /* This is a pseudo lsn. */ |
| log->l_flags |= NTFSLOG_NO_LAST_LSN; |
| log->next_page = log->first_page; |
| goto find_oldest; |
| } |
| |
| /* Find the end of this log record. */ |
| off = final_log_off(log, log->last_lsn, |
| le32_to_cpu(ra2->last_lsn_data_len)); |
| |
| /* If we wrapped the file then increment the sequence number. */ |
| if (off <= vbo) { |
| log->seq_num += 1; |
| log->l_flags |= NTFSLOG_WRAPPED; |
| } |
| |
| /* Now compute the next log page to use. */ |
| vbo &= ~log->sys_page_mask; |
| tail = log->page_size - (off & log->page_mask) - 1; |
| |
| /* |
| *If we can fit another log record on the page, |
| * move back a page the log file. |
| */ |
| if (tail >= log->record_header_len) { |
| log->l_flags |= NTFSLOG_REUSE_TAIL; |
| log->next_page = vbo; |
| } else { |
| log->next_page = next_page_off(log, vbo); |
| } |
| |
| find_oldest: |
| /* |
| * Find the oldest client lsn. Use the last |
| * flushed lsn as a starting point. |
| */ |
| log->oldest_lsn = log->last_lsn; |
| oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), |
| ra2->client_idx[1], &log->oldest_lsn); |
| log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); |
| |
| if (log->oldest_lsn_off < log->first_page) |
| log->l_flags |= NTFSLOG_NO_OLDEST_LSN; |
| |
| if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) |
| log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; |
| |
| log->current_openlog_count = le32_to_cpu(ra2->open_log_count); |
| log->total_avail_pages = log->l_size - log->first_page; |
| log->total_avail = log->total_avail_pages >> log->page_bits; |
| log->max_current_avail = log->total_avail * log->reserved; |
| log->total_avail = log->total_avail * log->data_size; |
| |
| log->current_avail = current_log_avail(log); |
| |
| ra = kzalloc(log->restart_size, GFP_NOFS); |
| if (!ra) { |
| err = -ENOMEM; |
| goto out; |
| } |
| log->ra = ra; |
| |
| t16 = le16_to_cpu(ra2->client_off); |
| if (t16 == offsetof(struct RESTART_AREA, clients)) { |
| memcpy(ra, ra2, log->ra_size); |
| } else { |
| memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); |
| memcpy(ra->clients, Add2Ptr(ra2, t16), |
| le16_to_cpu(ra2->ra_len) - t16); |
| |
| log->current_openlog_count = get_random_int(); |
| ra->open_log_count = cpu_to_le32(log->current_openlog_count); |
| log->ra_size = offsetof(struct RESTART_AREA, clients) + |
| sizeof(struct CLIENT_REC); |
| ra->client_off = |
| cpu_to_le16(offsetof(struct RESTART_AREA, clients)); |
| ra->ra_len = cpu_to_le16(log->ra_size); |
| } |
| |
| le32_add_cpu(&ra->open_log_count, 1); |
| |
| /* Now we need to walk through looking for the last lsn. */ |
| err = last_log_lsn(log); |
| if (err) |
| goto out; |
| |
| log->current_avail = current_log_avail(log); |
| |
| /* Remember which restart area to write first. */ |
| log->init_ra = rst_info.vbo; |
| |
| process_log: |
| /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ |
| switch ((log->major_ver << 16) + log->minor_ver) { |
| case 0x10000: |
| case 0x10001: |
| case 0x20000: |
| break; |
| default: |
| ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", |
| log->major_ver, log->minor_ver); |
| err = -EOPNOTSUPP; |
| log->set_dirty = true; |
| goto out; |
| } |
| |
| /* One client "NTFS" per logfile. */ |
| ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); |
| |
| for (client = ra->client_idx[1];; client = cr->next_client) { |
| if (client == LFS_NO_CLIENT_LE) { |
| /* Insert "NTFS" client LogFile. */ |
| client = ra->client_idx[0]; |
| if (client == LFS_NO_CLIENT_LE) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| t16 = le16_to_cpu(client); |
| cr = ca + t16; |
| |
| remove_client(ca, cr, &ra->client_idx[0]); |
| |
| cr->restart_lsn = 0; |
| cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); |
| cr->name_bytes = cpu_to_le32(8); |
| cr->name[0] = cpu_to_le16('N'); |
| cr->name[1] = cpu_to_le16('T'); |
| cr->name[2] = cpu_to_le16('F'); |
| cr->name[3] = cpu_to_le16('S'); |
| |
| add_client(ca, t16, &ra->client_idx[1]); |
| break; |
| } |
| |
| cr = ca + le16_to_cpu(client); |
| |
| if (cpu_to_le32(8) == cr->name_bytes && |
| cpu_to_le16('N') == cr->name[0] && |
| cpu_to_le16('T') == cr->name[1] && |
| cpu_to_le16('F') == cr->name[2] && |
| cpu_to_le16('S') == cr->name[3]) |
| break; |
| } |
| |
| /* Update the client handle with the client block information. */ |
| log->client_id.seq_num = cr->seq_num; |
| log->client_id.client_idx = client; |
| |
| err = read_rst_area(log, &rst, &ra_lsn); |
| if (err) |
| goto out; |
| |
| if (!rst) |
| goto out; |
| |
| bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; |
| |
| checkpt_lsn = le64_to_cpu(rst->check_point_start); |
| if (!checkpt_lsn) |
| checkpt_lsn = ra_lsn; |
| |
| /* Allocate and Read the Transaction Table. */ |
| if (!rst->transact_table_len) |
| goto check_dirty_page_table; |
| |
| t64 = le64_to_cpu(rst->transact_table_lsn); |
| err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); |
| if (err) |
| goto out; |
| |
| lrh = lcb->log_rec; |
| frh = lcb->lrh; |
| rec_len = le32_to_cpu(frh->client_data_len); |
| |
| if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), |
| bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| t16 = le16_to_cpu(lrh->redo_off); |
| |
| rt = Add2Ptr(lrh, t16); |
| t32 = rec_len - t16; |
| |
| /* Now check that this is a valid restart table. */ |
| if (!check_rstbl(rt, t32)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| trtbl = kmemdup(rt, t32, GFP_NOFS); |
| if (!trtbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| check_dirty_page_table: |
| /* The next record back should be the Dirty Pages Table. */ |
| if (!rst->dirty_pages_len) |
| goto check_attribute_names; |
| |
| t64 = le64_to_cpu(rst->dirty_pages_table_lsn); |
| err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); |
| if (err) |
| goto out; |
| |
| lrh = lcb->log_rec; |
| frh = lcb->lrh; |
| rec_len = le32_to_cpu(frh->client_data_len); |
| |
| if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), |
| bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| t16 = le16_to_cpu(lrh->redo_off); |
| |
| rt = Add2Ptr(lrh, t16); |
| t32 = rec_len - t16; |
| |
| /* Now check that this is a valid restart table. */ |
| if (!check_rstbl(rt, t32)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| dptbl = kmemdup(rt, t32, GFP_NOFS); |
| if (!dptbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Convert Ra version '0' into version '1'. */ |
| if (rst->major_ver) |
| goto end_conv_1; |
| |
| dp = NULL; |
| while ((dp = enum_rstbl(dptbl, dp))) { |
| struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; |
| // NOTE: Danger. Check for of boundary. |
| memmove(&dp->vcn, &dp0->vcn_low, |
| 2 * sizeof(u64) + |
| le32_to_cpu(dp->lcns_follow) * sizeof(u64)); |
| } |
| |
| end_conv_1: |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| /* |
| * Go through the table and remove the duplicates, |
| * remembering the oldest lsn values. |
| */ |
| if (sbi->cluster_size <= log->page_size) |
| goto trace_dp_table; |
| |
| dp = NULL; |
| while ((dp = enum_rstbl(dptbl, dp))) { |
| struct DIR_PAGE_ENTRY *next = dp; |
| |
| while ((next = enum_rstbl(dptbl, next))) { |
| if (next->target_attr == dp->target_attr && |
| next->vcn == dp->vcn) { |
| if (le64_to_cpu(next->oldest_lsn) < |
| le64_to_cpu(dp->oldest_lsn)) { |
| dp->oldest_lsn = next->oldest_lsn; |
| } |
| |
| free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); |
| } |
| } |
| } |
| trace_dp_table: |
| check_attribute_names: |
| /* The next record should be the Attribute Names. */ |
| if (!rst->attr_names_len) |
| goto check_attr_table; |
| |
| t64 = le64_to_cpu(rst->attr_names_lsn); |
| err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); |
| if (err) |
| goto out; |
| |
| lrh = lcb->log_rec; |
| frh = lcb->lrh; |
| rec_len = le32_to_cpu(frh->client_data_len); |
| |
| if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), |
| bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| t32 = lrh_length(lrh); |
| rec_len -= t32; |
| |
| attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); |
| |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| check_attr_table: |
| /* The next record should be the attribute Table. */ |
| if (!rst->open_attr_len) |
| goto check_attribute_names2; |
| |
| t64 = le64_to_cpu(rst->open_attr_table_lsn); |
| err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); |
| if (err) |
| goto out; |
| |
| lrh = lcb->log_rec; |
| frh = lcb->lrh; |
| rec_len = le32_to_cpu(frh->client_data_len); |
| |
| if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), |
| bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| t16 = le16_to_cpu(lrh->redo_off); |
| |
| rt = Add2Ptr(lrh, t16); |
| t32 = rec_len - t16; |
| |
| if (!check_rstbl(rt, t32)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| oatbl = kmemdup(rt, t32, GFP_NOFS); |
| if (!oatbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| log->open_attr_tbl = oatbl; |
| |
| /* Clear all of the Attr pointers. */ |
| oe = NULL; |
| while ((oe = enum_rstbl(oatbl, oe))) { |
| if (!rst->major_ver) { |
| struct OPEN_ATTR_ENRTY_32 oe0; |
| |
| /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ |
| memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); |
| |
| oe->bytes_per_index = oe0.bytes_per_index; |
| oe->type = oe0.type; |
| oe->is_dirty_pages = oe0.is_dirty_pages; |
| oe->name_len = 0; |
| oe->ref = oe0.ref; |
| oe->open_record_lsn = oe0.open_record_lsn; |
| } |
| |
| oe->is_attr_name = 0; |
| oe->ptr = NULL; |
| } |
| |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| check_attribute_names2: |
| if (!rst->attr_names_len) |
| goto trace_attribute_table; |
| |
| ane = attr_names; |
| if (!oatbl) |
| goto trace_attribute_table; |
| while (ane->off) { |
| /* TODO: Clear table on exit! */ |
| oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); |
| t16 = le16_to_cpu(ane->name_bytes); |
| oe->name_len = t16 / sizeof(short); |
| oe->ptr = ane->name; |
| oe->is_attr_name = 2; |
| ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16); |
| } |
| |
| trace_attribute_table: |
| /* |
| * If the checkpt_lsn is zero, then this is a freshly |
| * formatted disk and we have no work to do. |
| */ |
| if (!checkpt_lsn) { |
| err = 0; |
| goto out; |
| } |
| |
| if (!oatbl) { |
| oatbl = init_rsttbl(bytes_per_attr_entry, 8); |
| if (!oatbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| log->open_attr_tbl = oatbl; |
| |
| /* Start the analysis pass from the Checkpoint lsn. */ |
| rec_lsn = checkpt_lsn; |
| |
| /* Read the first lsn. */ |
| err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); |
| if (err) |
| goto out; |
| |
| /* Loop to read all subsequent records to the end of the log file. */ |
| next_log_record_analyze: |
| err = read_next_log_rec(log, lcb, &rec_lsn); |
| if (err) |
| goto out; |
| |
| if (!rec_lsn) |
| goto end_log_records_enumerate; |
| |
| frh = lcb->lrh; |
| transact_id = le32_to_cpu(frh->transact_id); |
| rec_len = le32_to_cpu(frh->client_data_len); |
| lrh = lcb->log_rec; |
| |
| if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * The first lsn after the previous lsn remembered |
| * the checkpoint is the first candidate for the rlsn. |
| */ |
| if (!rlsn) |
| rlsn = rec_lsn; |
| |
| if (LfsClientRecord != frh->record_type) |
| goto next_log_record_analyze; |
| |
| /* |
| * Now update the Transaction Table for this transaction. If there |
| * is no entry present or it is unallocated we allocate the entry. |
| */ |
| if (!trtbl) { |
| trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), |
| INITIAL_NUMBER_TRANSACTIONS); |
| if (!trtbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| tr = Add2Ptr(trtbl, transact_id); |
| |
| if (transact_id >= bytes_per_rt(trtbl) || |
| tr->next != RESTART_ENTRY_ALLOCATED_LE) { |
| tr = alloc_rsttbl_from_idx(&trtbl, transact_id); |
| if (!tr) { |
| err = -ENOMEM; |
| goto out; |
| } |
| tr->transact_state = TransactionActive; |
| tr->first_lsn = cpu_to_le64(rec_lsn); |
| } |
| |
| tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); |
| |
| /* |
| * If this is a compensation log record, then change |
| * the undo_next_lsn to be the undo_next_lsn of this record. |
| */ |
| if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) |
| tr->undo_next_lsn = frh->client_undo_next_lsn; |
| |
| /* Dispatch to handle log record depending on type. */ |
| switch (le16_to_cpu(lrh->redo_op)) { |
| case InitializeFileRecordSegment: |
| case DeallocateFileRecordSegment: |
| case WriteEndOfFileRecordSegment: |
| case CreateAttribute: |
| case DeleteAttribute: |
| case UpdateResidentValue: |
| case UpdateNonresidentValue: |
| case UpdateMappingPairs: |
| case SetNewAttributeSizes: |
| case AddIndexEntryRoot: |
| case DeleteIndexEntryRoot: |
| case AddIndexEntryAllocation: |
| case DeleteIndexEntryAllocation: |
| case WriteEndOfIndexBuffer: |
| case SetIndexEntryVcnRoot: |
| case SetIndexEntryVcnAllocation: |
| case UpdateFileNameRoot: |
| case UpdateFileNameAllocation: |
| case SetBitsInNonresidentBitMap: |
| case ClearBitsInNonresidentBitMap: |
| case UpdateRecordDataRoot: |
| case UpdateRecordDataAllocation: |
| case ZeroEndOfFileRecord: |
| t16 = le16_to_cpu(lrh->target_attr); |
| t64 = le64_to_cpu(lrh->target_vcn); |
| dp = find_dp(dptbl, t16, t64); |
| |
| if (dp) |
| goto copy_lcns; |
| |
| /* |
| * Calculate the number of clusters per page the system |
| * which wrote the checkpoint, possibly creating the table. |
| */ |
| if (dptbl) { |
| t32 = (le16_to_cpu(dptbl->size) - |
| sizeof(struct DIR_PAGE_ENTRY)) / |
| sizeof(u64); |
| } else { |
| t32 = log->clst_per_page; |
| kfree(dptbl); |
| dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), |
| 32); |
| if (!dptbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| dp = alloc_rsttbl_idx(&dptbl); |
| if (!dp) { |
| err = -ENOMEM; |
| goto out; |
| } |
| dp->target_attr = cpu_to_le32(t16); |
| dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); |
| dp->lcns_follow = cpu_to_le32(t32); |
| dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); |
| dp->oldest_lsn = cpu_to_le64(rec_lsn); |
| |
| copy_lcns: |
| /* |
| * Copy the Lcns from the log record into the Dirty Page Entry. |
| * TODO: For different page size support, must somehow make |
| * whole routine a loop, case Lcns do not fit below. |
| */ |
| t16 = le16_to_cpu(lrh->lcns_follow); |
| for (i = 0; i < t16; i++) { |
| size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - |
| le64_to_cpu(dp->vcn)); |
| dp->page_lcns[j + i] = lrh->page_lcns[i]; |
| } |
| |
| goto next_log_record_analyze; |
| |
| case DeleteDirtyClusters: { |
| u32 range_count = |
| le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); |
| const struct LCN_RANGE *r = |
| Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); |
| |
| /* Loop through all of the Lcn ranges this log record. */ |
| for (i = 0; i < range_count; i++, r++) { |
| u64 lcn0 = le64_to_cpu(r->lcn); |
| u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; |
| |
| dp = NULL; |
| while ((dp = enum_rstbl(dptbl, dp))) { |
| u32 j; |
| |
| t32 = le32_to_cpu(dp->lcns_follow); |
| for (j = 0; j < t32; j++) { |
| t64 = le64_to_cpu(dp->page_lcns[j]); |
| if (t64 >= lcn0 && t64 <= lcn_e) |
| dp->page_lcns[j] = 0; |
| } |
| } |
| } |
| goto next_log_record_analyze; |
| ; |
| } |
| |
| case OpenNonresidentAttribute: |
| t16 = le16_to_cpu(lrh->target_attr); |
| if (t16 >= bytes_per_rt(oatbl)) { |
| /* |
| * Compute how big the table needs to be. |
| * Add 10 extra entries for some cushion. |
| */ |
| u32 new_e = t16 / le16_to_cpu(oatbl->size); |
| |
| new_e += 10 - le16_to_cpu(oatbl->used); |
| |
| oatbl = extend_rsttbl(oatbl, new_e, ~0u); |
| log->open_attr_tbl = oatbl; |
| if (!oatbl) { |
| err = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| /* Point to the entry being opened. */ |
| oe = alloc_rsttbl_from_idx(&oatbl, t16); |
| log->open_attr_tbl = oatbl; |
| if (!oe) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Initialize this entry from the log record. */ |
| t16 = le16_to_cpu(lrh->redo_off); |
| if (!rst->major_ver) { |
| /* Convert version '0' into version '1'. */ |
| struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); |
| |
| oe->bytes_per_index = oe0->bytes_per_index; |
| oe->type = oe0->type; |
| oe->is_dirty_pages = oe0->is_dirty_pages; |
| oe->name_len = 0; //oe0.name_len; |
| oe->ref = oe0->ref; |
| oe->open_record_lsn = oe0->open_record_lsn; |
| } else { |
| memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); |
| } |
| |
| t16 = le16_to_cpu(lrh->undo_len); |
| if (t16) { |
| oe->ptr = kmalloc(t16, GFP_NOFS); |
| if (!oe->ptr) { |
| err = -ENOMEM; |
| goto out; |
| } |
| oe->name_len = t16 / sizeof(short); |
| memcpy(oe->ptr, |
| Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); |
| oe->is_attr_name = 1; |
| } else { |
| oe->ptr = NULL; |
| oe->is_attr_name = 0; |
| } |
| |
| goto next_log_record_analyze; |
| |
| case HotFix: |
| t16 = le16_to_cpu(lrh->target_attr); |
| t64 = le64_to_cpu(lrh->target_vcn); |
| dp = find_dp(dptbl, t16, t64); |
| if (dp) { |
| size_t j = le64_to_cpu(lrh->target_vcn) - |
| le64_to_cpu(dp->vcn); |
| if (dp->page_lcns[j]) |
| dp->page_lcns[j] = lrh->page_lcns[0]; |
| } |
| goto next_log_record_analyze; |
| |
| case EndTopLevelAction: |
| tr = Add2Ptr(trtbl, transact_id); |
| tr->prev_lsn = cpu_to_le64(rec_lsn); |
| tr->undo_next_lsn = frh->client_undo_next_lsn; |
| goto next_log_record_analyze; |
| |
| case PrepareTransaction: |
| tr = Add2Ptr(trtbl, transact_id); |
| tr->transact_state = TransactionPrepared; |
| goto next_log_record_analyze; |
| |
| case CommitTransaction: |
| tr = Add2Ptr(trtbl, transact_id); |
| tr->transact_state = TransactionCommitted; |
| goto next_log_record_analyze; |
| |
| case ForgetTransaction: |
| free_rsttbl_idx(trtbl, transact_id); |
| goto next_log_record_analyze; |
| |
| case Noop: |
| case OpenAttributeTableDump: |
| case AttributeNamesDump: |
| case DirtyPageTableDump: |
| case TransactionTableDump: |
| /* The following cases require no action the Analysis Pass. */ |
| goto next_log_record_analyze; |
| |
| default: |
| /* |
| * All codes will be explicitly handled. |
| * If we see a code we do not expect, then we are trouble. |
| */ |
| goto next_log_record_analyze; |
| } |
| |
| end_log_records_enumerate: |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| /* |
| * Scan the Dirty Page Table and Transaction Table for |
| * the lowest lsn, and return it as the Redo lsn. |
| */ |
| dp = NULL; |
| while ((dp = enum_rstbl(dptbl, dp))) { |
| t64 = le64_to_cpu(dp->oldest_lsn); |
| if (t64 && t64 < rlsn) |
| rlsn = t64; |
| } |
| |
| tr = NULL; |
| while ((tr = enum_rstbl(trtbl, tr))) { |
| t64 = le64_to_cpu(tr->first_lsn); |
| if (t64 && t64 < rlsn) |
| rlsn = t64; |
| } |
| |
| /* |
| * Only proceed if the Dirty Page Table or Transaction |
| * table are not empty. |
| */ |
| if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) |
| goto end_reply; |
| |
| sbi->flags |= NTFS_FLAGS_NEED_REPLAY; |
| if (is_ro) |
| goto out; |
| |
| /* Reopen all of the attributes with dirty pages. */ |
| oe = NULL; |
| next_open_attribute: |
| |
| oe = enum_rstbl(oatbl, oe); |
| if (!oe) { |
| err = 0; |
| dp = NULL; |
| goto next_dirty_page; |
| } |
| |
| oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); |
| if (!oa) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); |
| if (IS_ERR(inode)) |
| goto fake_attr; |
| |
| if (is_bad_inode(inode)) { |
| iput(inode); |
| fake_attr: |
| if (oa->ni) { |
| iput(&oa->ni->vfs_inode); |
| oa->ni = NULL; |
| } |
| |
| attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, |
| oe->name_len, 0); |
| if (!attr) { |
| kfree(oa); |
| err = -ENOMEM; |
| goto out; |
| } |
| oa->attr = attr; |
| oa->run1 = &oa->run0; |
| goto final_oe; |
| } |
| |
| ni_oe = ntfs_i(inode); |
| oa->ni = ni_oe; |
| |
| attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, |
| NULL, NULL); |
| |
| if (!attr) |
| goto fake_attr; |
| |
| t32 = le32_to_cpu(attr->size); |
| oa->attr = kmemdup(attr, t32, GFP_NOFS); |
| if (!oa->attr) |
| goto fake_attr; |
| |
| if (!S_ISDIR(inode->i_mode)) { |
| if (attr->type == ATTR_DATA && !attr->name_len) { |
| oa->run1 = &ni_oe->file.run; |
| goto final_oe; |
| } |
| } else { |
| if (attr->type == ATTR_ALLOC && |
| attr->name_len == ARRAY_SIZE(I30_NAME) && |
| !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { |
| oa->run1 = &ni_oe->dir.alloc_run; |
| goto final_oe; |
| } |
| } |
| |
| if (attr->non_res) { |
| u16 roff = le16_to_cpu(attr->nres.run_off); |
| CLST svcn = le64_to_cpu(attr->nres.svcn); |
| |
| if (roff > t32) { |
| kfree(oa->attr); |
| oa->attr = NULL; |
| goto fake_attr; |
| } |
| |
| err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, |
| le64_to_cpu(attr->nres.evcn), svcn, |
| Add2Ptr(attr, roff), t32 - roff); |
| if (err < 0) { |
| kfree(oa->attr); |
| oa->attr = NULL; |
| goto fake_attr; |
| } |
| err = 0; |
| } |
| oa->run1 = &oa->run0; |
| attr = oa->attr; |
| |
| final_oe: |
| if (oe->is_attr_name == 1) |
| kfree(oe->ptr); |
| oe->is_attr_name = 0; |
| oe->ptr = oa; |
| oe->name_len = attr->name_len; |
| |
| goto next_open_attribute; |
| |
| /* |
| * Now loop through the dirty page table to extract all of the Vcn/Lcn. |
| * Mapping that we have, and insert it into the appropriate run. |
| */ |
| next_dirty_page: |
| dp = enum_rstbl(dptbl, dp); |
| if (!dp) |
| goto do_redo_1; |
| |
| oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); |
| |
| if (oe->next != RESTART_ENTRY_ALLOCATED_LE) |
| goto next_dirty_page; |
| |
| oa = oe->ptr; |
| if (!oa) |
| goto next_dirty_page; |
| |
| i = -1; |
| next_dirty_page_vcn: |
| i += 1; |
| if (i >= le32_to_cpu(dp->lcns_follow)) |
| goto next_dirty_page; |
| |
| vcn = le64_to_cpu(dp->vcn) + i; |
| size = (vcn + 1) << sbi->cluster_bits; |
| |
| if (!dp->page_lcns[i]) |
| goto next_dirty_page_vcn; |
| |
| rno = ino_get(&oe->ref); |
| if (rno <= MFT_REC_MIRR && |
| size < (MFT_REC_VOL + 1) * sbi->record_size && |
| oe->type == ATTR_DATA) { |
| goto next_dirty_page_vcn; |
| } |
| |
| lcn = le64_to_cpu(dp->page_lcns[i]); |
| |
| if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || |
| lcn0 != lcn) && |
| !run_add_entry(oa->run1, vcn, lcn, 1, false)) { |
| err = -ENOMEM; |
| goto out; |
| } |
| attr = oa->attr; |
| t64 = le64_to_cpu(attr->nres.alloc_size); |
| if (size > t64) { |
| attr->nres.valid_size = attr->nres.data_size = |
| attr->nres.alloc_size = cpu_to_le64(size); |
| } |
| goto next_dirty_page_vcn; |
| |
| do_redo_1: |
| /* |
| * Perform the Redo Pass, to restore all of the dirty pages to the same |
| * contents that they had immediately before the crash. If the dirty |
| * page table is empty, then we can skip the entire Redo Pass. |
| */ |
| if (!dptbl || !dptbl->total) |
| goto do_undo_action; |
| |
| rec_lsn = rlsn; |
| |
| /* |
| * Read the record at the Redo lsn, before falling |
| * into common code to handle each record. |
| */ |
| err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); |
| if (err) |
| goto out; |
| |
| /* |
| * Now loop to read all of our log records forwards, until |
| * we hit the end of the file, cleaning up at the end. |
| */ |
| do_action_next: |
| frh = lcb->lrh; |
| |
| if (LfsClientRecord != frh->record_type) |
| goto read_next_log_do_action; |
| |
| transact_id = le32_to_cpu(frh->transact_id); |
| rec_len = le32_to_cpu(frh->client_data_len); |
| lrh = lcb->log_rec; |
| |
| if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Ignore log records that do not update pages. */ |
| if (lrh->lcns_follow) |
| goto find_dirty_page; |
| |
| goto read_next_log_do_action; |
| |
| find_dirty_page: |
| t16 = le16_to_cpu(lrh->target_attr); |
| t64 = le64_to_cpu(lrh->target_vcn); |
| dp = find_dp(dptbl, t16, t64); |
| |
| if (!dp) |
| goto read_next_log_do_action; |
| |
| if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) |
| goto read_next_log_do_action; |
| |
| t16 = le16_to_cpu(lrh->target_attr); |
| if (t16 >= bytes_per_rt(oatbl)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| oe = Add2Ptr(oatbl, t16); |
| |
| if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| oa = oe->ptr; |
| |
| if (!oa) { |
| err = -EINVAL; |
| goto out; |
| } |
| attr = oa->attr; |
| |
| vcn = le64_to_cpu(lrh->target_vcn); |
| |
| if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || |
| lcn == SPARSE_LCN) { |
| goto read_next_log_do_action; |
| } |
| |
| /* Point to the Redo data and get its length. */ |
| data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); |
| dlen = le16_to_cpu(lrh->redo_len); |
| |
| /* Shorten length by any Lcns which were deleted. */ |
| saved_len = dlen; |
| |
| for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { |
| size_t j; |
| u32 alen, voff; |
| |
| voff = le16_to_cpu(lrh->record_off) + |
| le16_to_cpu(lrh->attr_off); |
| voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; |
| |
| /* If the Vcn question is allocated, we can just get out. */ |
| j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); |
| if (dp->page_lcns[j + i - 1]) |
| break; |
| |
| if (!saved_len) |
| saved_len = 1; |
| |
| /* |
| * Calculate the allocated space left relative to the |
| * log record Vcn, after removing this unallocated Vcn. |
| */ |
| alen = (i - 1) << sbi->cluster_bits; |
| |
| /* |
| * If the update described this log record goes beyond |
| * the allocated space, then we will have to reduce the length. |
| */ |
| if (voff >= alen) |
| dlen = 0; |
| else if (voff + dlen > alen) |
| dlen = alen - voff; |
| } |
| |
| /* |
| * If the resulting dlen from above is now zero, |
| * we can skip this log record. |
| */ |
| if (!dlen && saved_len) |
| goto read_next_log_do_action; |
| |
| t16 = le16_to_cpu(lrh->redo_op); |
| if (can_skip_action(t16)) |
| goto read_next_log_do_action; |
| |
| /* Apply the Redo operation a common routine. */ |
| err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); |
| if (err) |
| goto out; |
| |
| /* Keep reading and looping back until end of file. */ |
| read_next_log_do_action: |
| err = read_next_log_rec(log, lcb, &rec_lsn); |
| if (!err && rec_lsn) |
| goto do_action_next; |
| |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| do_undo_action: |
| /* Scan Transaction Table. */ |
| tr = NULL; |
| transaction_table_next: |
| tr = enum_rstbl(trtbl, tr); |
| if (!tr) |
| goto undo_action_done; |
| |
| if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { |
| free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); |
| goto transaction_table_next; |
| } |
| |
| log->transaction_id = PtrOffset(trtbl, tr); |
| undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); |
| |
| /* |
| * We only have to do anything if the transaction has |
| * something its undo_next_lsn field. |
| */ |
| if (!undo_next_lsn) |
| goto commit_undo; |
| |
| /* Read the first record to be undone by this transaction. */ |
| err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); |
| if (err) |
| goto out; |
| |
| /* |
| * Now loop to read all of our log records forwards, |
| * until we hit the end of the file, cleaning up at the end. |
| */ |
| undo_action_next: |
| |
| lrh = lcb->log_rec; |
| frh = lcb->lrh; |
| transact_id = le32_to_cpu(frh->transact_id); |
| rec_len = le32_to_cpu(frh->client_data_len); |
| |
| if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (lrh->undo_op == cpu_to_le16(Noop)) |
| goto read_next_log_undo_action; |
| |
| oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); |
| oa = oe->ptr; |
| |
| t16 = le16_to_cpu(lrh->lcns_follow); |
| if (!t16) |
| goto add_allocated_vcns; |
| |
| is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), |
| &lcn, &clen, NULL); |
| |
| /* |
| * If the mapping isn't already the table or the mapping |
| * corresponds to a hole the mapping, we need to make sure |
| * there is no partial page already memory. |
| */ |
| if (is_mapped && lcn != SPARSE_LCN && clen >= t16) |
| goto add_allocated_vcns; |
| |
| vcn = le64_to_cpu(lrh->target_vcn); |
| vcn &= ~(u64)(log->clst_per_page - 1); |
| |
| add_allocated_vcns: |
| for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), |
| size = (vcn + 1) << sbi->cluster_bits; |
| i < t16; i++, vcn += 1, size += sbi->cluster_size) { |
| attr = oa->attr; |
| if (!attr->non_res) { |
| if (size > le32_to_cpu(attr->res.data_size)) |
| attr->res.data_size = cpu_to_le32(size); |
| } else { |
| if (size > le64_to_cpu(attr->nres.data_size)) |
| attr->nres.valid_size = attr->nres.data_size = |
| attr->nres.alloc_size = |
| cpu_to_le64(size); |
| } |
| } |
| |
| t16 = le16_to_cpu(lrh->undo_op); |
| if (can_skip_action(t16)) |
| goto read_next_log_undo_action; |
| |
| /* Point to the Redo data and get its length. */ |
| data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); |
| dlen = le16_to_cpu(lrh->undo_len); |
| |
| /* It is time to apply the undo action. */ |
| err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); |
| |
| read_next_log_undo_action: |
| /* |
| * Keep reading and looping back until we have read the |
| * last record for this transaction. |
| */ |
| err = read_next_log_rec(log, lcb, &rec_lsn); |
| if (err) |
| goto out; |
| |
| if (rec_lsn) |
| goto undo_action_next; |
| |
| lcb_put(lcb); |
| lcb = NULL; |
| |
| commit_undo: |
| free_rsttbl_idx(trtbl, log->transaction_id); |
| |
| log->transaction_id = 0; |
| |
| goto transaction_table_next; |
| |
| undo_action_done: |
| |
| ntfs_update_mftmirr(sbi, 0); |
| |
| sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; |
| |
| end_reply: |
| |
| err = 0; |
| if (is_ro) |
| goto out; |
| |
| rh = kzalloc(log->page_size, GFP_NOFS); |
| if (!rh) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| rh->rhdr.sign = NTFS_RSTR_SIGNATURE; |
| rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); |
| t16 = (log->page_size >> SECTOR_SHIFT) + 1; |
| rh->rhdr.fix_num = cpu_to_le16(t16); |
| rh->sys_page_size = cpu_to_le32(log->page_size); |
| rh->page_size = cpu_to_le32(log->page_size); |
| |
| t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, |
| 8); |
| rh->ra_off = cpu_to_le16(t16); |
| rh->minor_ver = cpu_to_le16(1); // 0x1A: |
| rh->major_ver = cpu_to_le16(1); // 0x1C: |
| |
| ra2 = Add2Ptr(rh, t16); |
| memcpy(ra2, ra, sizeof(struct RESTART_AREA)); |
| |
| ra2->client_idx[0] = 0; |
| ra2->client_idx[1] = LFS_NO_CLIENT_LE; |
| ra2->flags = cpu_to_le16(2); |
| |
| le32_add_cpu(&ra2->open_log_count, 1); |
| |
| ntfs_fix_pre_write(&rh->rhdr, log->page_size); |
| |
| err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); |
| if (!err) |
| err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, |
| rh, log->page_size, 0); |
| |
| kfree(rh); |
| if (err) |
| goto out; |
| |
| out: |
| kfree(rst); |
| if (lcb) |
| lcb_put(lcb); |
| |
| /* |
| * Scan the Open Attribute Table to close all of |
| * the open attributes. |
| */ |
| oe = NULL; |
| while ((oe = enum_rstbl(oatbl, oe))) { |
| rno = ino_get(&oe->ref); |
| |
| if (oe->is_attr_name == 1) { |
| kfree(oe->ptr); |
| oe->ptr = NULL; |
| continue; |
| } |
| |
| if (oe->is_attr_name) |
| continue; |
| |
| oa = oe->ptr; |
| if (!oa) |
| continue; |
| |
| run_close(&oa->run0); |
| kfree(oa->attr); |
| if (oa->ni) |
| iput(&oa->ni->vfs_inode); |
| kfree(oa); |
| } |
| |
| kfree(trtbl); |
| kfree(oatbl); |
| kfree(dptbl); |
| kfree(attr_names); |
| kfree(rst_info.r_page); |
| |
| kfree(ra); |
| kfree(log->one_page_buf); |
| |
| if (err) |
| sbi->flags |= NTFS_FLAGS_NEED_REPLAY; |
| |
| if (err == -EROFS) |
| err = 0; |
| else if (log->set_dirty) |
| ntfs_set_state(sbi, NTFS_DIRTY_ERROR); |
| |
| kfree(log); |
| |
| return err; |
| } |