| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * SLOB Allocator: Simple List Of Blocks | 
 |  * | 
 |  * Matt Mackall <mpm@selenic.com> 12/30/03 | 
 |  * | 
 |  * NUMA support by Paul Mundt, 2007. | 
 |  * | 
 |  * How SLOB works: | 
 |  * | 
 |  * The core of SLOB is a traditional K&R style heap allocator, with | 
 |  * support for returning aligned objects. The granularity of this | 
 |  * allocator is as little as 2 bytes, however typically most architectures | 
 |  * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | 
 |  * | 
 |  * The slob heap is a set of linked list of pages from alloc_pages(), | 
 |  * and within each page, there is a singly-linked list of free blocks | 
 |  * (slob_t). The heap is grown on demand. To reduce fragmentation, | 
 |  * heap pages are segregated into three lists, with objects less than | 
 |  * 256 bytes, objects less than 1024 bytes, and all other objects. | 
 |  * | 
 |  * Allocation from heap involves first searching for a page with | 
 |  * sufficient free blocks (using a next-fit-like approach) followed by | 
 |  * a first-fit scan of the page. Deallocation inserts objects back | 
 |  * into the free list in address order, so this is effectively an | 
 |  * address-ordered first fit. | 
 |  * | 
 |  * Above this is an implementation of kmalloc/kfree. Blocks returned | 
 |  * from kmalloc are prepended with a 4-byte header with the kmalloc size. | 
 |  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls | 
 |  * alloc_pages() directly, allocating compound pages so the page order | 
 |  * does not have to be separately tracked. | 
 |  * These objects are detected in kfree() because folio_test_slab() | 
 |  * is false for them. | 
 |  * | 
 |  * SLAB is emulated on top of SLOB by simply calling constructors and | 
 |  * destructors for every SLAB allocation. Objects are returned with the | 
 |  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | 
 |  * case the low-level allocator will fragment blocks to create the proper | 
 |  * alignment. Again, objects of page-size or greater are allocated by | 
 |  * calling alloc_pages(). As SLAB objects know their size, no separate | 
 |  * size bookkeeping is necessary and there is essentially no allocation | 
 |  * space overhead, and compound pages aren't needed for multi-page | 
 |  * allocations. | 
 |  * | 
 |  * NUMA support in SLOB is fairly simplistic, pushing most of the real | 
 |  * logic down to the page allocator, and simply doing the node accounting | 
 |  * on the upper levels. In the event that a node id is explicitly | 
 |  * provided, __alloc_pages_node() with the specified node id is used | 
 |  * instead. The common case (or when the node id isn't explicitly provided) | 
 |  * will default to the current node, as per numa_node_id(). | 
 |  * | 
 |  * Node aware pages are still inserted in to the global freelist, and | 
 |  * these are scanned for by matching against the node id encoded in the | 
 |  * page flags. As a result, block allocations that can be satisfied from | 
 |  * the freelist will only be done so on pages residing on the same node, | 
 |  * in order to prevent random node placement. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> /* struct reclaim_state */ | 
 | #include <linux/cache.h> | 
 | #include <linux/init.h> | 
 | #include <linux/export.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/list.h> | 
 | #include <linux/kmemleak.h> | 
 |  | 
 | #include <trace/events/kmem.h> | 
 |  | 
 | #include <linux/atomic.h> | 
 |  | 
 | #include "slab.h" | 
 | /* | 
 |  * slob_block has a field 'units', which indicates size of block if +ve, | 
 |  * or offset of next block if -ve (in SLOB_UNITs). | 
 |  * | 
 |  * Free blocks of size 1 unit simply contain the offset of the next block. | 
 |  * Those with larger size contain their size in the first SLOB_UNIT of | 
 |  * memory, and the offset of the next free block in the second SLOB_UNIT. | 
 |  */ | 
 | #if PAGE_SIZE <= (32767 * 2) | 
 | typedef s16 slobidx_t; | 
 | #else | 
 | typedef s32 slobidx_t; | 
 | #endif | 
 |  | 
 | struct slob_block { | 
 | 	slobidx_t units; | 
 | }; | 
 | typedef struct slob_block slob_t; | 
 |  | 
 | /* | 
 |  * All partially free slob pages go on these lists. | 
 |  */ | 
 | #define SLOB_BREAK1 256 | 
 | #define SLOB_BREAK2 1024 | 
 | static LIST_HEAD(free_slob_small); | 
 | static LIST_HEAD(free_slob_medium); | 
 | static LIST_HEAD(free_slob_large); | 
 |  | 
 | /* | 
 |  * slob_page_free: true for pages on free_slob_pages list. | 
 |  */ | 
 | static inline int slob_page_free(struct slab *slab) | 
 | { | 
 | 	return PageSlobFree(slab_page(slab)); | 
 | } | 
 |  | 
 | static void set_slob_page_free(struct slab *slab, struct list_head *list) | 
 | { | 
 | 	list_add(&slab->slab_list, list); | 
 | 	__SetPageSlobFree(slab_page(slab)); | 
 | } | 
 |  | 
 | static inline void clear_slob_page_free(struct slab *slab) | 
 | { | 
 | 	list_del(&slab->slab_list); | 
 | 	__ClearPageSlobFree(slab_page(slab)); | 
 | } | 
 |  | 
 | #define SLOB_UNIT sizeof(slob_t) | 
 | #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT) | 
 |  | 
 | /* | 
 |  * struct slob_rcu is inserted at the tail of allocated slob blocks, which | 
 |  * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free | 
 |  * the block using call_rcu. | 
 |  */ | 
 | struct slob_rcu { | 
 | 	struct rcu_head head; | 
 | 	int size; | 
 | }; | 
 |  | 
 | /* | 
 |  * slob_lock protects all slob allocator structures. | 
 |  */ | 
 | static DEFINE_SPINLOCK(slob_lock); | 
 |  | 
 | /* | 
 |  * Encode the given size and next info into a free slob block s. | 
 |  */ | 
 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | 
 | { | 
 | 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 
 | 	slobidx_t offset = next - base; | 
 |  | 
 | 	if (size > 1) { | 
 | 		s[0].units = size; | 
 | 		s[1].units = offset; | 
 | 	} else | 
 | 		s[0].units = -offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the size of a slob block. | 
 |  */ | 
 | static slobidx_t slob_units(slob_t *s) | 
 | { | 
 | 	if (s->units > 0) | 
 | 		return s->units; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the next free slob block pointer after this one. | 
 |  */ | 
 | static slob_t *slob_next(slob_t *s) | 
 | { | 
 | 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 
 | 	slobidx_t next; | 
 |  | 
 | 	if (s[0].units < 0) | 
 | 		next = -s[0].units; | 
 | 	else | 
 | 		next = s[1].units; | 
 | 	return base+next; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if s is the last free block in its page. | 
 |  */ | 
 | static int slob_last(slob_t *s) | 
 | { | 
 | 	return !((unsigned long)slob_next(s) & ~PAGE_MASK); | 
 | } | 
 |  | 
 | static void *slob_new_pages(gfp_t gfp, int order, int node) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	if (node != NUMA_NO_NODE) | 
 | 		page = __alloc_pages_node(node, gfp, order); | 
 | 	else | 
 | #endif | 
 | 		page = alloc_pages(gfp, order); | 
 |  | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, | 
 | 			    PAGE_SIZE << order); | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 | static void slob_free_pages(void *b, int order) | 
 | { | 
 | 	struct page *sp = virt_to_page(b); | 
 |  | 
 | 	if (current->reclaim_state) | 
 | 		current->reclaim_state->reclaimed_slab += 1 << order; | 
 |  | 
 | 	mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B, | 
 | 			    -(PAGE_SIZE << order)); | 
 | 	__free_pages(sp, order); | 
 | } | 
 |  | 
 | /* | 
 |  * slob_page_alloc() - Allocate a slob block within a given slob_page sp. | 
 |  * @sp: Page to look in. | 
 |  * @size: Size of the allocation. | 
 |  * @align: Allocation alignment. | 
 |  * @align_offset: Offset in the allocated block that will be aligned. | 
 |  * @page_removed_from_list: Return parameter. | 
 |  * | 
 |  * Tries to find a chunk of memory at least @size bytes big within @page. | 
 |  * | 
 |  * Return: Pointer to memory if allocated, %NULL otherwise.  If the | 
 |  *         allocation fills up @page then the page is removed from the | 
 |  *         freelist, in this case @page_removed_from_list will be set to | 
 |  *         true (set to false otherwise). | 
 |  */ | 
 | static void *slob_page_alloc(struct slab *sp, size_t size, int align, | 
 | 			      int align_offset, bool *page_removed_from_list) | 
 | { | 
 | 	slob_t *prev, *cur, *aligned = NULL; | 
 | 	int delta = 0, units = SLOB_UNITS(size); | 
 |  | 
 | 	*page_removed_from_list = false; | 
 | 	for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { | 
 | 		slobidx_t avail = slob_units(cur); | 
 |  | 
 | 		/* | 
 | 		 * 'aligned' will hold the address of the slob block so that the | 
 | 		 * address 'aligned'+'align_offset' is aligned according to the | 
 | 		 * 'align' parameter. This is for kmalloc() which prepends the | 
 | 		 * allocated block with its size, so that the block itself is | 
 | 		 * aligned when needed. | 
 | 		 */ | 
 | 		if (align) { | 
 | 			aligned = (slob_t *) | 
 | 				(ALIGN((unsigned long)cur + align_offset, align) | 
 | 				 - align_offset); | 
 | 			delta = aligned - cur; | 
 | 		} | 
 | 		if (avail >= units + delta) { /* room enough? */ | 
 | 			slob_t *next; | 
 |  | 
 | 			if (delta) { /* need to fragment head to align? */ | 
 | 				next = slob_next(cur); | 
 | 				set_slob(aligned, avail - delta, next); | 
 | 				set_slob(cur, delta, aligned); | 
 | 				prev = cur; | 
 | 				cur = aligned; | 
 | 				avail = slob_units(cur); | 
 | 			} | 
 |  | 
 | 			next = slob_next(cur); | 
 | 			if (avail == units) { /* exact fit? unlink. */ | 
 | 				if (prev) | 
 | 					set_slob(prev, slob_units(prev), next); | 
 | 				else | 
 | 					sp->freelist = next; | 
 | 			} else { /* fragment */ | 
 | 				if (prev) | 
 | 					set_slob(prev, slob_units(prev), cur + units); | 
 | 				else | 
 | 					sp->freelist = cur + units; | 
 | 				set_slob(cur + units, avail - units, next); | 
 | 			} | 
 |  | 
 | 			sp->units -= units; | 
 | 			if (!sp->units) { | 
 | 				clear_slob_page_free(sp); | 
 | 				*page_removed_from_list = true; | 
 | 			} | 
 | 			return cur; | 
 | 		} | 
 | 		if (slob_last(cur)) | 
 | 			return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * slob_alloc: entry point into the slob allocator. | 
 |  */ | 
 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node, | 
 | 							int align_offset) | 
 | { | 
 | 	struct folio *folio; | 
 | 	struct slab *sp; | 
 | 	struct list_head *slob_list; | 
 | 	slob_t *b = NULL; | 
 | 	unsigned long flags; | 
 | 	bool _unused; | 
 |  | 
 | 	if (size < SLOB_BREAK1) | 
 | 		slob_list = &free_slob_small; | 
 | 	else if (size < SLOB_BREAK2) | 
 | 		slob_list = &free_slob_medium; | 
 | 	else | 
 | 		slob_list = &free_slob_large; | 
 |  | 
 | 	spin_lock_irqsave(&slob_lock, flags); | 
 | 	/* Iterate through each partially free page, try to find room */ | 
 | 	list_for_each_entry(sp, slob_list, slab_list) { | 
 | 		bool page_removed_from_list = false; | 
 | #ifdef CONFIG_NUMA | 
 | 		/* | 
 | 		 * If there's a node specification, search for a partial | 
 | 		 * page with a matching node id in the freelist. | 
 | 		 */ | 
 | 		if (node != NUMA_NO_NODE && slab_nid(sp) != node) | 
 | 			continue; | 
 | #endif | 
 | 		/* Enough room on this page? */ | 
 | 		if (sp->units < SLOB_UNITS(size)) | 
 | 			continue; | 
 |  | 
 | 		b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list); | 
 | 		if (!b) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If slob_page_alloc() removed sp from the list then we | 
 | 		 * cannot call list functions on sp.  If so allocation | 
 | 		 * did not fragment the page anyway so optimisation is | 
 | 		 * unnecessary. | 
 | 		 */ | 
 | 		if (!page_removed_from_list) { | 
 | 			/* | 
 | 			 * Improve fragment distribution and reduce our average | 
 | 			 * search time by starting our next search here. (see | 
 | 			 * Knuth vol 1, sec 2.5, pg 449) | 
 | 			 */ | 
 | 			if (!list_is_first(&sp->slab_list, slob_list)) | 
 | 				list_rotate_to_front(&sp->slab_list, slob_list); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&slob_lock, flags); | 
 |  | 
 | 	/* Not enough space: must allocate a new page */ | 
 | 	if (!b) { | 
 | 		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); | 
 | 		if (!b) | 
 | 			return NULL; | 
 | 		folio = virt_to_folio(b); | 
 | 		__folio_set_slab(folio); | 
 | 		sp = folio_slab(folio); | 
 |  | 
 | 		spin_lock_irqsave(&slob_lock, flags); | 
 | 		sp->units = SLOB_UNITS(PAGE_SIZE); | 
 | 		sp->freelist = b; | 
 | 		INIT_LIST_HEAD(&sp->slab_list); | 
 | 		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | 
 | 		set_slob_page_free(sp, slob_list); | 
 | 		b = slob_page_alloc(sp, size, align, align_offset, &_unused); | 
 | 		BUG_ON(!b); | 
 | 		spin_unlock_irqrestore(&slob_lock, flags); | 
 | 	} | 
 | 	if (unlikely(gfp & __GFP_ZERO)) | 
 | 		memset(b, 0, size); | 
 | 	return b; | 
 | } | 
 |  | 
 | /* | 
 |  * slob_free: entry point into the slob allocator. | 
 |  */ | 
 | static void slob_free(void *block, int size) | 
 | { | 
 | 	struct slab *sp; | 
 | 	slob_t *prev, *next, *b = (slob_t *)block; | 
 | 	slobidx_t units; | 
 | 	unsigned long flags; | 
 | 	struct list_head *slob_list; | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(block))) | 
 | 		return; | 
 | 	BUG_ON(!size); | 
 |  | 
 | 	sp = virt_to_slab(block); | 
 | 	units = SLOB_UNITS(size); | 
 |  | 
 | 	spin_lock_irqsave(&slob_lock, flags); | 
 |  | 
 | 	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { | 
 | 		/* Go directly to page allocator. Do not pass slob allocator */ | 
 | 		if (slob_page_free(sp)) | 
 | 			clear_slob_page_free(sp); | 
 | 		spin_unlock_irqrestore(&slob_lock, flags); | 
 | 		__folio_clear_slab(slab_folio(sp)); | 
 | 		slob_free_pages(b, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!slob_page_free(sp)) { | 
 | 		/* This slob page is about to become partially free. Easy! */ | 
 | 		sp->units = units; | 
 | 		sp->freelist = b; | 
 | 		set_slob(b, units, | 
 | 			(void *)((unsigned long)(b + | 
 | 					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | 
 | 		if (size < SLOB_BREAK1) | 
 | 			slob_list = &free_slob_small; | 
 | 		else if (size < SLOB_BREAK2) | 
 | 			slob_list = &free_slob_medium; | 
 | 		else | 
 | 			slob_list = &free_slob_large; | 
 | 		set_slob_page_free(sp, slob_list); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Otherwise the page is already partially free, so find reinsertion | 
 | 	 * point. | 
 | 	 */ | 
 | 	sp->units += units; | 
 |  | 
 | 	if (b < (slob_t *)sp->freelist) { | 
 | 		if (b + units == sp->freelist) { | 
 | 			units += slob_units(sp->freelist); | 
 | 			sp->freelist = slob_next(sp->freelist); | 
 | 		} | 
 | 		set_slob(b, units, sp->freelist); | 
 | 		sp->freelist = b; | 
 | 	} else { | 
 | 		prev = sp->freelist; | 
 | 		next = slob_next(prev); | 
 | 		while (b > next) { | 
 | 			prev = next; | 
 | 			next = slob_next(prev); | 
 | 		} | 
 |  | 
 | 		if (!slob_last(prev) && b + units == next) { | 
 | 			units += slob_units(next); | 
 | 			set_slob(b, units, slob_next(next)); | 
 | 		} else | 
 | 			set_slob(b, units, next); | 
 |  | 
 | 		if (prev + slob_units(prev) == b) { | 
 | 			units = slob_units(b) + slob_units(prev); | 
 | 			set_slob(prev, units, slob_next(b)); | 
 | 		} else | 
 | 			set_slob(prev, slob_units(prev), b); | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&slob_lock, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) | 
 | { | 
 | 	kpp->kp_ptr = object; | 
 | 	kpp->kp_slab = slab; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | 
 |  */ | 
 |  | 
 | static __always_inline void * | 
 | __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller) | 
 | { | 
 | 	unsigned int *m; | 
 | 	unsigned int minalign; | 
 | 	void *ret; | 
 |  | 
 | 	minalign = max_t(unsigned int, ARCH_KMALLOC_MINALIGN, | 
 | 			 arch_slab_minalign()); | 
 | 	gfp &= gfp_allowed_mask; | 
 |  | 
 | 	might_alloc(gfp); | 
 |  | 
 | 	if (size < PAGE_SIZE - minalign) { | 
 | 		int align = minalign; | 
 |  | 
 | 		/* | 
 | 		 * For power of two sizes, guarantee natural alignment for | 
 | 		 * kmalloc()'d objects. | 
 | 		 */ | 
 | 		if (is_power_of_2(size)) | 
 | 			align = max_t(unsigned int, minalign, size); | 
 |  | 
 | 		if (!size) | 
 | 			return ZERO_SIZE_PTR; | 
 |  | 
 | 		m = slob_alloc(size + minalign, gfp, align, node, minalign); | 
 |  | 
 | 		if (!m) | 
 | 			return NULL; | 
 | 		*m = size; | 
 | 		ret = (void *)m + minalign; | 
 |  | 
 | 		trace_kmalloc(caller, ret, size, size + minalign, gfp, node); | 
 | 	} else { | 
 | 		unsigned int order = get_order(size); | 
 |  | 
 | 		if (likely(order)) | 
 | 			gfp |= __GFP_COMP; | 
 | 		ret = slob_new_pages(gfp, order, node); | 
 |  | 
 | 		trace_kmalloc(caller, ret, size, PAGE_SIZE << order, gfp, node); | 
 | 	} | 
 |  | 
 | 	kmemleak_alloc(ret, size, 1, gfp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void *__kmalloc(size_t size, gfp_t gfp) | 
 | { | 
 | 	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 |  | 
 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfp, | 
 | 					int node, unsigned long caller) | 
 | { | 
 | 	return __do_kmalloc_node(size, gfp, node, caller); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | 
 |  | 
 | void kfree(const void *block) | 
 | { | 
 | 	struct folio *sp; | 
 |  | 
 | 	trace_kfree(_RET_IP_, block); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(block))) | 
 | 		return; | 
 | 	kmemleak_free(block); | 
 |  | 
 | 	sp = virt_to_folio(block); | 
 | 	if (folio_test_slab(sp)) { | 
 | 		unsigned int align = max_t(unsigned int, | 
 | 					   ARCH_KMALLOC_MINALIGN, | 
 | 					   arch_slab_minalign()); | 
 | 		unsigned int *m = (unsigned int *)(block - align); | 
 |  | 
 | 		slob_free(m, *m + align); | 
 | 	} else { | 
 | 		unsigned int order = folio_order(sp); | 
 |  | 
 | 		mod_node_page_state(folio_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B, | 
 | 				    -(PAGE_SIZE << order)); | 
 | 		__free_pages(folio_page(sp, 0), order); | 
 |  | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | size_t kmalloc_size_roundup(size_t size) | 
 | { | 
 | 	/* Short-circuit the 0 size case. */ | 
 | 	if (unlikely(size == 0)) | 
 | 		return 0; | 
 | 	/* Short-circuit saturated "too-large" case. */ | 
 | 	if (unlikely(size == SIZE_MAX)) | 
 | 		return SIZE_MAX; | 
 |  | 
 | 	return ALIGN(size, ARCH_KMALLOC_MINALIGN); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(kmalloc_size_roundup); | 
 |  | 
 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ | 
 | size_t __ksize(const void *block) | 
 | { | 
 | 	struct folio *folio; | 
 | 	unsigned int align; | 
 | 	unsigned int *m; | 
 |  | 
 | 	BUG_ON(!block); | 
 | 	if (unlikely(block == ZERO_SIZE_PTR)) | 
 | 		return 0; | 
 |  | 
 | 	folio = virt_to_folio(block); | 
 | 	if (unlikely(!folio_test_slab(folio))) | 
 | 		return folio_size(folio); | 
 |  | 
 | 	align = max_t(unsigned int, ARCH_KMALLOC_MINALIGN, | 
 | 		      arch_slab_minalign()); | 
 | 	m = (unsigned int *)(block - align); | 
 | 	return SLOB_UNITS(*m) * SLOB_UNIT; | 
 | } | 
 |  | 
 | int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags) | 
 | { | 
 | 	if (flags & SLAB_TYPESAFE_BY_RCU) { | 
 | 		/* leave room for rcu footer at the end of object */ | 
 | 		c->size += sizeof(struct slob_rcu); | 
 | 	} | 
 |  | 
 | 	/* Actual size allocated */ | 
 | 	c->size = SLOB_UNITS(c->size) * SLOB_UNIT; | 
 | 	c->flags = flags; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | 
 | { | 
 | 	void *b; | 
 |  | 
 | 	flags &= gfp_allowed_mask; | 
 |  | 
 | 	might_alloc(flags); | 
 |  | 
 | 	if (c->size < PAGE_SIZE) { | 
 | 		b = slob_alloc(c->size, flags, c->align, node, 0); | 
 | 		trace_kmem_cache_alloc(_RET_IP_, b, c, flags, node); | 
 | 	} else { | 
 | 		b = slob_new_pages(flags, get_order(c->size), node); | 
 | 		trace_kmem_cache_alloc(_RET_IP_, b, c, flags, node); | 
 | 	} | 
 |  | 
 | 	if (b && c->ctor) { | 
 | 		WARN_ON_ONCE(flags & __GFP_ZERO); | 
 | 		c->ctor(b); | 
 | 	} | 
 |  | 
 | 	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); | 
 | 	return b; | 
 | } | 
 |  | 
 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	return slob_alloc_node(cachep, flags, NUMA_NO_NODE); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 |  | 
 |  | 
 | void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags) | 
 | { | 
 | 	return slob_alloc_node(cachep, flags, NUMA_NO_NODE); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_lru); | 
 |  | 
 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) | 
 | { | 
 | 	return __do_kmalloc_node(size, gfp, node, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 |  | 
 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node) | 
 | { | 
 | 	return slob_alloc_node(cachep, gfp, node); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 |  | 
 | static void __kmem_cache_free(void *b, int size) | 
 | { | 
 | 	if (size < PAGE_SIZE) | 
 | 		slob_free(b, size); | 
 | 	else | 
 | 		slob_free_pages(b, get_order(size)); | 
 | } | 
 |  | 
 | static void kmem_rcu_free(struct rcu_head *head) | 
 | { | 
 | 	struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | 
 | 	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | 
 |  | 
 | 	__kmem_cache_free(b, slob_rcu->size); | 
 | } | 
 |  | 
 | void kmem_cache_free(struct kmem_cache *c, void *b) | 
 | { | 
 | 	kmemleak_free_recursive(b, c->flags); | 
 | 	trace_kmem_cache_free(_RET_IP_, b, c); | 
 | 	if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) { | 
 | 		struct slob_rcu *slob_rcu; | 
 | 		slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | 
 | 		slob_rcu->size = c->size; | 
 | 		call_rcu(&slob_rcu->head, kmem_rcu_free); | 
 | 	} else { | 
 | 		__kmem_cache_free(b, c->size); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (s) | 
 | 			kmem_cache_free(s, p[i]); | 
 | 		else | 
 | 			kfree(p[i]); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free_bulk); | 
 |  | 
 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, | 
 | 								void **p) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		void *x = p[i] = kmem_cache_alloc(s, flags); | 
 |  | 
 | 		if (!x) { | 
 | 			kmem_cache_free_bulk(s, i, p); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return i; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | 
 |  | 
 | int __kmem_cache_shutdown(struct kmem_cache *c) | 
 | { | 
 | 	/* No way to check for remaining objects */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __kmem_cache_release(struct kmem_cache *c) | 
 | { | 
 | } | 
 |  | 
 | int __kmem_cache_shrink(struct kmem_cache *d) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kmem_cache kmem_cache_boot = { | 
 | 	.name = "kmem_cache", | 
 | 	.size = sizeof(struct kmem_cache), | 
 | 	.flags = SLAB_PANIC, | 
 | 	.align = ARCH_KMALLOC_MINALIGN, | 
 | }; | 
 |  | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	kmem_cache = &kmem_cache_boot; | 
 | 	slab_state = UP; | 
 | } | 
 |  | 
 | void __init kmem_cache_init_late(void) | 
 | { | 
 | 	slab_state = FULL; | 
 | } |