| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * xHCI host controller driver | 
 |  * | 
 |  * Copyright (C) 2008 Intel Corp. | 
 |  * | 
 |  * Author: Sarah Sharp | 
 |  * Some code borrowed from the Linux EHCI driver. | 
 |  */ | 
 |  | 
 | #include <linux/usb.h> | 
 | #include <linux/overflow.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/dmapool.h> | 
 | #include <linux/dma-mapping.h> | 
 |  | 
 | #include "xhci.h" | 
 | #include "xhci-trace.h" | 
 | #include "xhci-debugfs.h" | 
 |  | 
 | /* | 
 |  * Allocates a generic ring segment from the ring pool, sets the dma address, | 
 |  * initializes the segment to zero, and sets the private next pointer to NULL. | 
 |  * | 
 |  * Section 4.11.1.1: | 
 |  * "All components of all Command and Transfer TRBs shall be initialized to '0'" | 
 |  */ | 
 | static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, | 
 | 					       unsigned int cycle_state, | 
 | 					       unsigned int max_packet, | 
 | 					       gfp_t flags) | 
 | { | 
 | 	struct xhci_segment *seg; | 
 | 	dma_addr_t	dma; | 
 | 	int		i; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); | 
 | 	if (!seg) | 
 | 		return NULL; | 
 |  | 
 | 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); | 
 | 	if (!seg->trbs) { | 
 | 		kfree(seg); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (max_packet) { | 
 | 		seg->bounce_buf = kzalloc_node(max_packet, flags, | 
 | 					dev_to_node(dev)); | 
 | 		if (!seg->bounce_buf) { | 
 | 			dma_pool_free(xhci->segment_pool, seg->trbs, dma); | 
 | 			kfree(seg); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ | 
 | 	if (cycle_state == 0) { | 
 | 		for (i = 0; i < TRBS_PER_SEGMENT; i++) | 
 | 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); | 
 | 	} | 
 | 	seg->dma = dma; | 
 | 	seg->next = NULL; | 
 |  | 
 | 	return seg; | 
 | } | 
 |  | 
 | static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) | 
 | { | 
 | 	if (seg->trbs) { | 
 | 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); | 
 | 		seg->trbs = NULL; | 
 | 	} | 
 | 	kfree(seg->bounce_buf); | 
 | 	kfree(seg); | 
 | } | 
 |  | 
 | static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, | 
 | 				struct xhci_segment *first) | 
 | { | 
 | 	struct xhci_segment *seg; | 
 |  | 
 | 	seg = first->next; | 
 | 	while (seg != first) { | 
 | 		struct xhci_segment *next = seg->next; | 
 | 		xhci_segment_free(xhci, seg); | 
 | 		seg = next; | 
 | 	} | 
 | 	xhci_segment_free(xhci, first); | 
 | } | 
 |  | 
 | /* | 
 |  * Make the prev segment point to the next segment. | 
 |  * | 
 |  * Change the last TRB in the prev segment to be a Link TRB which points to the | 
 |  * DMA address of the next segment.  The caller needs to set any Link TRB | 
 |  * related flags, such as End TRB, Toggle Cycle, and no snoop. | 
 |  */ | 
 | static void xhci_link_segments(struct xhci_segment *prev, | 
 | 			       struct xhci_segment *next, | 
 | 			       enum xhci_ring_type type, bool chain_links) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (!prev || !next) | 
 | 		return; | 
 | 	prev->next = next; | 
 | 	if (type != TYPE_EVENT) { | 
 | 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = | 
 | 			cpu_to_le64(next->dma); | 
 |  | 
 | 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */ | 
 | 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); | 
 | 		val &= ~TRB_TYPE_BITMASK; | 
 | 		val |= TRB_TYPE(TRB_LINK); | 
 | 		if (chain_links) | 
 | 			val |= TRB_CHAIN; | 
 | 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Link the ring to the new segments. | 
 |  * Set Toggle Cycle for the new ring if needed. | 
 |  */ | 
 | static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		struct xhci_segment *first, struct xhci_segment *last, | 
 | 		unsigned int num_segs) | 
 | { | 
 | 	struct xhci_segment *next; | 
 | 	bool chain_links; | 
 |  | 
 | 	if (!ring || !first || !last) | 
 | 		return; | 
 |  | 
 | 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ | 
 | 	chain_links = !!(xhci_link_trb_quirk(xhci) || | 
 | 			 (ring->type == TYPE_ISOC && | 
 | 			  (xhci->quirks & XHCI_AMD_0x96_HOST))); | 
 |  | 
 | 	next = ring->enq_seg->next; | 
 | 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); | 
 | 	xhci_link_segments(last, next, ring->type, chain_links); | 
 | 	ring->num_segs += num_segs; | 
 |  | 
 | 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { | 
 | 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control | 
 | 			&= ~cpu_to_le32(LINK_TOGGLE); | 
 | 		last->trbs[TRBS_PER_SEGMENT-1].link.control | 
 | 			|= cpu_to_le32(LINK_TOGGLE); | 
 | 		ring->last_seg = last; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We need a radix tree for mapping physical addresses of TRBs to which stream | 
 |  * ID they belong to.  We need to do this because the host controller won't tell | 
 |  * us which stream ring the TRB came from.  We could store the stream ID in an | 
 |  * event data TRB, but that doesn't help us for the cancellation case, since the | 
 |  * endpoint may stop before it reaches that event data TRB. | 
 |  * | 
 |  * The radix tree maps the upper portion of the TRB DMA address to a ring | 
 |  * segment that has the same upper portion of DMA addresses.  For example, say I | 
 |  * have segments of size 1KB, that are always 1KB aligned.  A segment may | 
 |  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the | 
 |  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to | 
 |  * pass the radix tree a key to get the right stream ID: | 
 |  * | 
 |  *	0x10c90fff >> 10 = 0x43243 | 
 |  *	0x10c912c0 >> 10 = 0x43244 | 
 |  *	0x10c91400 >> 10 = 0x43245 | 
 |  * | 
 |  * Obviously, only those TRBs with DMA addresses that are within the segment | 
 |  * will make the radix tree return the stream ID for that ring. | 
 |  * | 
 |  * Caveats for the radix tree: | 
 |  * | 
 |  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an | 
 |  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be | 
 |  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the | 
 |  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit | 
 |  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit | 
 |  * extended systems (where the DMA address can be bigger than 32-bits), | 
 |  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that. | 
 |  */ | 
 | static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, | 
 | 		struct xhci_ring *ring, | 
 | 		struct xhci_segment *seg, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	unsigned long key; | 
 | 	int ret; | 
 |  | 
 | 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); | 
 | 	/* Skip any segments that were already added. */ | 
 | 	if (radix_tree_lookup(trb_address_map, key)) | 
 | 		return 0; | 
 |  | 
 | 	ret = radix_tree_maybe_preload(mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = radix_tree_insert(trb_address_map, | 
 | 			key, ring); | 
 | 	radix_tree_preload_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, | 
 | 		struct xhci_segment *seg) | 
 | { | 
 | 	unsigned long key; | 
 |  | 
 | 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); | 
 | 	if (radix_tree_lookup(trb_address_map, key)) | 
 | 		radix_tree_delete(trb_address_map, key); | 
 | } | 
 |  | 
 | static int xhci_update_stream_segment_mapping( | 
 | 		struct radix_tree_root *trb_address_map, | 
 | 		struct xhci_ring *ring, | 
 | 		struct xhci_segment *first_seg, | 
 | 		struct xhci_segment *last_seg, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_segment *seg; | 
 | 	struct xhci_segment *failed_seg; | 
 | 	int ret; | 
 |  | 
 | 	if (WARN_ON_ONCE(trb_address_map == NULL)) | 
 | 		return 0; | 
 |  | 
 | 	seg = first_seg; | 
 | 	do { | 
 | 		ret = xhci_insert_segment_mapping(trb_address_map, | 
 | 				ring, seg, mem_flags); | 
 | 		if (ret) | 
 | 			goto remove_streams; | 
 | 		if (seg == last_seg) | 
 | 			return 0; | 
 | 		seg = seg->next; | 
 | 	} while (seg != first_seg); | 
 |  | 
 | 	return 0; | 
 |  | 
 | remove_streams: | 
 | 	failed_seg = seg; | 
 | 	seg = first_seg; | 
 | 	do { | 
 | 		xhci_remove_segment_mapping(trb_address_map, seg); | 
 | 		if (seg == failed_seg) | 
 | 			return ret; | 
 | 		seg = seg->next; | 
 | 	} while (seg != first_seg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xhci_remove_stream_mapping(struct xhci_ring *ring) | 
 | { | 
 | 	struct xhci_segment *seg; | 
 |  | 
 | 	if (WARN_ON_ONCE(ring->trb_address_map == NULL)) | 
 | 		return; | 
 |  | 
 | 	seg = ring->first_seg; | 
 | 	do { | 
 | 		xhci_remove_segment_mapping(ring->trb_address_map, seg); | 
 | 		seg = seg->next; | 
 | 	} while (seg != ring->first_seg); | 
 | } | 
 |  | 
 | static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) | 
 | { | 
 | 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, | 
 | 			ring->first_seg, ring->last_seg, mem_flags); | 
 | } | 
 |  | 
 | /* XXX: Do we need the hcd structure in all these functions? */ | 
 | void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
 | { | 
 | 	if (!ring) | 
 | 		return; | 
 |  | 
 | 	trace_xhci_ring_free(ring); | 
 |  | 
 | 	if (ring->first_seg) { | 
 | 		if (ring->type == TYPE_STREAM) | 
 | 			xhci_remove_stream_mapping(ring); | 
 | 		xhci_free_segments_for_ring(xhci, ring->first_seg); | 
 | 	} | 
 |  | 
 | 	kfree(ring); | 
 | } | 
 |  | 
 | void xhci_initialize_ring_info(struct xhci_ring *ring, | 
 | 			       unsigned int cycle_state) | 
 | { | 
 | 	/* The ring is empty, so the enqueue pointer == dequeue pointer */ | 
 | 	ring->enqueue = ring->first_seg->trbs; | 
 | 	ring->enq_seg = ring->first_seg; | 
 | 	ring->dequeue = ring->enqueue; | 
 | 	ring->deq_seg = ring->first_seg; | 
 | 	/* The ring is initialized to 0. The producer must write 1 to the cycle | 
 | 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must | 
 | 	 * compare CCS to the cycle bit to check ownership, so CCS = 1. | 
 | 	 * | 
 | 	 * New rings are initialized with cycle state equal to 1; if we are | 
 | 	 * handling ring expansion, set the cycle state equal to the old ring. | 
 | 	 */ | 
 | 	ring->cycle_state = cycle_state; | 
 |  | 
 | 	/* | 
 | 	 * Each segment has a link TRB, and leave an extra TRB for SW | 
 | 	 * accounting purpose | 
 | 	 */ | 
 | 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; | 
 | } | 
 |  | 
 | /* Allocate segments and link them for a ring */ | 
 | static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, | 
 | 		struct xhci_segment **first, struct xhci_segment **last, | 
 | 		unsigned int num_segs, unsigned int cycle_state, | 
 | 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) | 
 | { | 
 | 	struct xhci_segment *prev; | 
 | 	bool chain_links; | 
 |  | 
 | 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ | 
 | 	chain_links = !!(xhci_link_trb_quirk(xhci) || | 
 | 			 (type == TYPE_ISOC && | 
 | 			  (xhci->quirks & XHCI_AMD_0x96_HOST))); | 
 |  | 
 | 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); | 
 | 	if (!prev) | 
 | 		return -ENOMEM; | 
 | 	num_segs--; | 
 |  | 
 | 	*first = prev; | 
 | 	while (num_segs > 0) { | 
 | 		struct xhci_segment	*next; | 
 |  | 
 | 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); | 
 | 		if (!next) { | 
 | 			prev = *first; | 
 | 			while (prev) { | 
 | 				next = prev->next; | 
 | 				xhci_segment_free(xhci, prev); | 
 | 				prev = next; | 
 | 			} | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		xhci_link_segments(prev, next, type, chain_links); | 
 |  | 
 | 		prev = next; | 
 | 		num_segs--; | 
 | 	} | 
 | 	xhci_link_segments(prev, *first, type, chain_links); | 
 | 	*last = prev; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Create a new ring with zero or more segments. | 
 |  * | 
 |  * Link each segment together into a ring. | 
 |  * Set the end flag and the cycle toggle bit on the last segment. | 
 |  * See section 4.9.1 and figures 15 and 16. | 
 |  */ | 
 | struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, | 
 | 		unsigned int num_segs, unsigned int cycle_state, | 
 | 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) | 
 | { | 
 | 	struct xhci_ring	*ring; | 
 | 	int ret; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); | 
 | 	if (!ring) | 
 | 		return NULL; | 
 |  | 
 | 	ring->num_segs = num_segs; | 
 | 	ring->bounce_buf_len = max_packet; | 
 | 	INIT_LIST_HEAD(&ring->td_list); | 
 | 	ring->type = type; | 
 | 	if (num_segs == 0) | 
 | 		return ring; | 
 |  | 
 | 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, | 
 | 			&ring->last_seg, num_segs, cycle_state, type, | 
 | 			max_packet, flags); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	/* Only event ring does not use link TRB */ | 
 | 	if (type != TYPE_EVENT) { | 
 | 		/* See section 4.9.2.1 and 6.4.4.1 */ | 
 | 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= | 
 | 			cpu_to_le32(LINK_TOGGLE); | 
 | 	} | 
 | 	xhci_initialize_ring_info(ring, cycle_state); | 
 | 	trace_xhci_ring_alloc(ring); | 
 | 	return ring; | 
 |  | 
 | fail: | 
 | 	kfree(ring); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void xhci_free_endpoint_ring(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); | 
 | 	virt_dev->eps[ep_index].ring = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Expand an existing ring. | 
 |  * Allocate a new ring which has same segment numbers and link the two rings. | 
 |  */ | 
 | int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 				unsigned int num_new_segs, gfp_t flags) | 
 | { | 
 | 	struct xhci_segment	*first; | 
 | 	struct xhci_segment	*last; | 
 | 	int			ret; | 
 |  | 
 | 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last, | 
 | 			num_new_segs, ring->cycle_state, ring->type, | 
 | 			ring->bounce_buf_len, flags); | 
 | 	if (ret) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (ring->type == TYPE_STREAM) | 
 | 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, | 
 | 						ring, first, last, flags); | 
 | 	if (ret) { | 
 | 		struct xhci_segment *next; | 
 | 		do { | 
 | 			next = first->next; | 
 | 			xhci_segment_free(xhci, first); | 
 | 			if (first == last) | 
 | 				break; | 
 | 			first = next; | 
 | 		} while (true); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	xhci_link_rings(xhci, ring, first, last, num_new_segs); | 
 | 	trace_xhci_ring_expansion(ring); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, | 
 | 			"ring expansion succeed, now has %d segments", | 
 | 			ring->num_segs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, | 
 | 						    int type, gfp_t flags) | 
 | { | 
 | 	struct xhci_container_ctx *ctx; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) | 
 | 		return NULL; | 
 |  | 
 | 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); | 
 | 	if (!ctx) | 
 | 		return NULL; | 
 |  | 
 | 	ctx->type = type; | 
 | 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; | 
 | 	if (type == XHCI_CTX_TYPE_INPUT) | 
 | 		ctx->size += CTX_SIZE(xhci->hcc_params); | 
 |  | 
 | 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); | 
 | 	if (!ctx->bytes) { | 
 | 		kfree(ctx); | 
 | 		return NULL; | 
 | 	} | 
 | 	return ctx; | 
 | } | 
 |  | 
 | void xhci_free_container_ctx(struct xhci_hcd *xhci, | 
 | 			     struct xhci_container_ctx *ctx) | 
 | { | 
 | 	if (!ctx) | 
 | 		return; | 
 | 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | struct xhci_input_control_ctx *xhci_get_input_control_ctx( | 
 | 					      struct xhci_container_ctx *ctx) | 
 | { | 
 | 	if (ctx->type != XHCI_CTX_TYPE_INPUT) | 
 | 		return NULL; | 
 |  | 
 | 	return (struct xhci_input_control_ctx *)ctx->bytes; | 
 | } | 
 |  | 
 | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, | 
 | 					struct xhci_container_ctx *ctx) | 
 | { | 
 | 	if (ctx->type == XHCI_CTX_TYPE_DEVICE) | 
 | 		return (struct xhci_slot_ctx *)ctx->bytes; | 
 |  | 
 | 	return (struct xhci_slot_ctx *) | 
 | 		(ctx->bytes + CTX_SIZE(xhci->hcc_params)); | 
 | } | 
 |  | 
 | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, | 
 | 				    struct xhci_container_ctx *ctx, | 
 | 				    unsigned int ep_index) | 
 | { | 
 | 	/* increment ep index by offset of start of ep ctx array */ | 
 | 	ep_index++; | 
 | 	if (ctx->type == XHCI_CTX_TYPE_INPUT) | 
 | 		ep_index++; | 
 |  | 
 | 	return (struct xhci_ep_ctx *) | 
 | 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); | 
 |  | 
 | /***************** Streams structures manipulation *************************/ | 
 |  | 
 | static void xhci_free_stream_ctx(struct xhci_hcd *xhci, | 
 | 		unsigned int num_stream_ctxs, | 
 | 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; | 
 |  | 
 | 	if (size > MEDIUM_STREAM_ARRAY_SIZE) | 
 | 		dma_free_coherent(dev, size, stream_ctx, dma); | 
 | 	else if (size > SMALL_STREAM_ARRAY_SIZE) | 
 | 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); | 
 | 	else | 
 | 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); | 
 | } | 
 |  | 
 | /* | 
 |  * The stream context array for each endpoint with bulk streams enabled can | 
 |  * vary in size, based on: | 
 |  *  - how many streams the endpoint supports, | 
 |  *  - the maximum primary stream array size the host controller supports, | 
 |  *  - and how many streams the device driver asks for. | 
 |  * | 
 |  * The stream context array must be a power of 2, and can be as small as | 
 |  * 64 bytes or as large as 1MB. | 
 |  */ | 
 | static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, | 
 | 		unsigned int num_stream_ctxs, dma_addr_t *dma, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs); | 
 |  | 
 | 	if (size > MEDIUM_STREAM_ARRAY_SIZE) | 
 | 		return dma_alloc_coherent(dev, size, dma, mem_flags); | 
 | 	if (size > SMALL_STREAM_ARRAY_SIZE) | 
 | 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); | 
 | 	else | 
 | 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); | 
 | } | 
 |  | 
 | struct xhci_ring *xhci_dma_to_transfer_ring( | 
 | 		struct xhci_virt_ep *ep, | 
 | 		u64 address) | 
 | { | 
 | 	if (ep->ep_state & EP_HAS_STREAMS) | 
 | 		return radix_tree_lookup(&ep->stream_info->trb_address_map, | 
 | 				address >> TRB_SEGMENT_SHIFT); | 
 | 	return ep->ring; | 
 | } | 
 |  | 
 | /* | 
 |  * Change an endpoint's internal structure so it supports stream IDs.  The | 
 |  * number of requested streams includes stream 0, which cannot be used by device | 
 |  * drivers. | 
 |  * | 
 |  * The number of stream contexts in the stream context array may be bigger than | 
 |  * the number of streams the driver wants to use.  This is because the number of | 
 |  * stream context array entries must be a power of two. | 
 |  */ | 
 | struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, | 
 | 		unsigned int num_stream_ctxs, | 
 | 		unsigned int num_streams, | 
 | 		unsigned int max_packet, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_stream_info *stream_info; | 
 | 	u32 cur_stream; | 
 | 	struct xhci_ring *cur_ring; | 
 | 	u64 addr; | 
 | 	int ret; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", | 
 | 			num_streams, num_stream_ctxs); | 
 | 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { | 
 | 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); | 
 | 		return NULL; | 
 | 	} | 
 | 	xhci->cmd_ring_reserved_trbs++; | 
 |  | 
 | 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, | 
 | 			dev_to_node(dev)); | 
 | 	if (!stream_info) | 
 | 		goto cleanup_trbs; | 
 |  | 
 | 	stream_info->num_streams = num_streams; | 
 | 	stream_info->num_stream_ctxs = num_stream_ctxs; | 
 |  | 
 | 	/* Initialize the array of virtual pointers to stream rings. */ | 
 | 	stream_info->stream_rings = kcalloc_node( | 
 | 			num_streams, sizeof(struct xhci_ring *), mem_flags, | 
 | 			dev_to_node(dev)); | 
 | 	if (!stream_info->stream_rings) | 
 | 		goto cleanup_info; | 
 |  | 
 | 	/* Initialize the array of DMA addresses for stream rings for the HW. */ | 
 | 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, | 
 | 			num_stream_ctxs, &stream_info->ctx_array_dma, | 
 | 			mem_flags); | 
 | 	if (!stream_info->stream_ctx_array) | 
 | 		goto cleanup_ring_array; | 
 |  | 
 | 	/* Allocate everything needed to free the stream rings later */ | 
 | 	stream_info->free_streams_command = | 
 | 		xhci_alloc_command_with_ctx(xhci, true, mem_flags); | 
 | 	if (!stream_info->free_streams_command) | 
 | 		goto cleanup_ctx; | 
 |  | 
 | 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); | 
 |  | 
 | 	/* Allocate rings for all the streams that the driver will use, | 
 | 	 * and add their segment DMA addresses to the radix tree. | 
 | 	 * Stream 0 is reserved. | 
 | 	 */ | 
 |  | 
 | 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
 | 		stream_info->stream_rings[cur_stream] = | 
 | 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, | 
 | 					mem_flags); | 
 | 		cur_ring = stream_info->stream_rings[cur_stream]; | 
 | 		if (!cur_ring) | 
 | 			goto cleanup_rings; | 
 | 		cur_ring->stream_id = cur_stream; | 
 | 		cur_ring->trb_address_map = &stream_info->trb_address_map; | 
 | 		/* Set deq ptr, cycle bit, and stream context type */ | 
 | 		addr = cur_ring->first_seg->dma | | 
 | 			SCT_FOR_CTX(SCT_PRI_TR) | | 
 | 			cur_ring->cycle_state; | 
 | 		stream_info->stream_ctx_array[cur_stream].stream_ring = | 
 | 			cpu_to_le64(addr); | 
 | 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); | 
 |  | 
 | 		ret = xhci_update_stream_mapping(cur_ring, mem_flags); | 
 | 		if (ret) { | 
 | 			xhci_ring_free(xhci, cur_ring); | 
 | 			stream_info->stream_rings[cur_stream] = NULL; | 
 | 			goto cleanup_rings; | 
 | 		} | 
 | 	} | 
 | 	/* Leave the other unused stream ring pointers in the stream context | 
 | 	 * array initialized to zero.  This will cause the xHC to give us an | 
 | 	 * error if the device asks for a stream ID we don't have setup (if it | 
 | 	 * was any other way, the host controller would assume the ring is | 
 | 	 * "empty" and wait forever for data to be queued to that stream ID). | 
 | 	 */ | 
 |  | 
 | 	return stream_info; | 
 |  | 
 | cleanup_rings: | 
 | 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
 | 		cur_ring = stream_info->stream_rings[cur_stream]; | 
 | 		if (cur_ring) { | 
 | 			xhci_ring_free(xhci, cur_ring); | 
 | 			stream_info->stream_rings[cur_stream] = NULL; | 
 | 		} | 
 | 	} | 
 | 	xhci_free_command(xhci, stream_info->free_streams_command); | 
 | cleanup_ctx: | 
 | 	xhci_free_stream_ctx(xhci, | 
 | 		stream_info->num_stream_ctxs, | 
 | 		stream_info->stream_ctx_array, | 
 | 		stream_info->ctx_array_dma); | 
 | cleanup_ring_array: | 
 | 	kfree(stream_info->stream_rings); | 
 | cleanup_info: | 
 | 	kfree(stream_info); | 
 | cleanup_trbs: | 
 | 	xhci->cmd_ring_reserved_trbs--; | 
 | 	return NULL; | 
 | } | 
 | /* | 
 |  * Sets the MaxPStreams field and the Linear Stream Array field. | 
 |  * Sets the dequeue pointer to the stream context array. | 
 |  */ | 
 | void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, | 
 | 		struct xhci_ep_ctx *ep_ctx, | 
 | 		struct xhci_stream_info *stream_info) | 
 | { | 
 | 	u32 max_primary_streams; | 
 | 	/* MaxPStreams is the number of stream context array entries, not the | 
 | 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format. | 
 | 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. | 
 | 	 */ | 
 | 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; | 
 | 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change, | 
 | 			"Setting number of stream ctx array entries to %u", | 
 | 			1 << (max_primary_streams + 1)); | 
 | 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); | 
 | 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) | 
 | 				       | EP_HAS_LSA); | 
 | 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma); | 
 | } | 
 |  | 
 | /* | 
 |  * Sets the MaxPStreams field and the Linear Stream Array field to 0. | 
 |  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, | 
 |  * not at the beginning of the ring). | 
 |  */ | 
 | void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, | 
 | 		struct xhci_virt_ep *ep) | 
 | { | 
 | 	dma_addr_t addr; | 
 | 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); | 
 | 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); | 
 | 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state); | 
 | } | 
 |  | 
 | /* Frees all stream contexts associated with the endpoint, | 
 |  * | 
 |  * Caller should fix the endpoint context streams fields. | 
 |  */ | 
 | void xhci_free_stream_info(struct xhci_hcd *xhci, | 
 | 		struct xhci_stream_info *stream_info) | 
 | { | 
 | 	int cur_stream; | 
 | 	struct xhci_ring *cur_ring; | 
 |  | 
 | 	if (!stream_info) | 
 | 		return; | 
 |  | 
 | 	for (cur_stream = 1; cur_stream < stream_info->num_streams; | 
 | 			cur_stream++) { | 
 | 		cur_ring = stream_info->stream_rings[cur_stream]; | 
 | 		if (cur_ring) { | 
 | 			xhci_ring_free(xhci, cur_ring); | 
 | 			stream_info->stream_rings[cur_stream] = NULL; | 
 | 		} | 
 | 	} | 
 | 	xhci_free_command(xhci, stream_info->free_streams_command); | 
 | 	xhci->cmd_ring_reserved_trbs--; | 
 | 	if (stream_info->stream_ctx_array) | 
 | 		xhci_free_stream_ctx(xhci, | 
 | 				stream_info->num_stream_ctxs, | 
 | 				stream_info->stream_ctx_array, | 
 | 				stream_info->ctx_array_dma); | 
 |  | 
 | 	kfree(stream_info->stream_rings); | 
 | 	kfree(stream_info); | 
 | } | 
 |  | 
 |  | 
 | /***************** Device context manipulation *************************/ | 
 |  | 
 | static void xhci_free_tt_info(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		int slot_id) | 
 | { | 
 | 	struct list_head *tt_list_head; | 
 | 	struct xhci_tt_bw_info *tt_info, *next; | 
 | 	bool slot_found = false; | 
 |  | 
 | 	/* If the device never made it past the Set Address stage, | 
 | 	 * it may not have the real_port set correctly. | 
 | 	 */ | 
 | 	if (virt_dev->real_port == 0 || | 
 | 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { | 
 | 		xhci_dbg(xhci, "Bad real port.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); | 
 | 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { | 
 | 		/* Multi-TT hubs will have more than one entry */ | 
 | 		if (tt_info->slot_id == slot_id) { | 
 | 			slot_found = true; | 
 | 			list_del(&tt_info->tt_list); | 
 | 			kfree(tt_info); | 
 | 		} else if (slot_found) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int xhci_alloc_tt_info(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		struct usb_device *hdev, | 
 | 		struct usb_tt *tt, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_tt_bw_info		*tt_info; | 
 | 	unsigned int			num_ports; | 
 | 	int				i, j; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	if (!tt->multi) | 
 | 		num_ports = 1; | 
 | 	else | 
 | 		num_ports = hdev->maxchild; | 
 |  | 
 | 	for (i = 0; i < num_ports; i++, tt_info++) { | 
 | 		struct xhci_interval_bw_table *bw_table; | 
 |  | 
 | 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, | 
 | 				dev_to_node(dev)); | 
 | 		if (!tt_info) | 
 | 			goto free_tts; | 
 | 		INIT_LIST_HEAD(&tt_info->tt_list); | 
 | 		list_add(&tt_info->tt_list, | 
 | 				&xhci->rh_bw[virt_dev->real_port - 1].tts); | 
 | 		tt_info->slot_id = virt_dev->udev->slot_id; | 
 | 		if (tt->multi) | 
 | 			tt_info->ttport = i+1; | 
 | 		bw_table = &tt_info->bw_table; | 
 | 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) | 
 | 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | free_tts: | 
 | 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 |  | 
 | /* All the xhci_tds in the ring's TD list should be freed at this point. | 
 |  * Should be called with xhci->lock held if there is any chance the TT lists | 
 |  * will be manipulated by the configure endpoint, allocate device, or update | 
 |  * hub functions while this function is removing the TT entries from the list. | 
 |  */ | 
 | void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *dev; | 
 | 	int i; | 
 | 	int old_active_eps = 0; | 
 |  | 
 | 	/* Slot ID 0 is reserved */ | 
 | 	if (slot_id == 0 || !xhci->devs[slot_id]) | 
 | 		return; | 
 |  | 
 | 	dev = xhci->devs[slot_id]; | 
 |  | 
 | 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0; | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	trace_xhci_free_virt_device(dev); | 
 |  | 
 | 	if (dev->tt_info) | 
 | 		old_active_eps = dev->tt_info->active_eps; | 
 |  | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		if (dev->eps[i].ring) | 
 | 			xhci_ring_free(xhci, dev->eps[i].ring); | 
 | 		if (dev->eps[i].stream_info) | 
 | 			xhci_free_stream_info(xhci, | 
 | 					dev->eps[i].stream_info); | 
 | 		/* | 
 | 		 * Endpoints are normally deleted from the bandwidth list when | 
 | 		 * endpoints are dropped, before device is freed. | 
 | 		 * If host is dying or being removed then endpoints aren't | 
 | 		 * dropped cleanly, so delete the endpoint from list here. | 
 | 		 * Only applicable for hosts with software bandwidth checking. | 
 | 		 */ | 
 |  | 
 | 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) { | 
 | 			list_del_init(&dev->eps[i].bw_endpoint_list); | 
 | 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", | 
 | 				 slot_id, i); | 
 | 		} | 
 | 	} | 
 | 	/* If this is a hub, free the TT(s) from the TT list */ | 
 | 	xhci_free_tt_info(xhci, dev, slot_id); | 
 | 	/* If necessary, update the number of active TTs on this root port */ | 
 | 	xhci_update_tt_active_eps(xhci, dev, old_active_eps); | 
 |  | 
 | 	if (dev->in_ctx) | 
 | 		xhci_free_container_ctx(xhci, dev->in_ctx); | 
 | 	if (dev->out_ctx) | 
 | 		xhci_free_container_ctx(xhci, dev->out_ctx); | 
 |  | 
 | 	if (dev->udev && dev->udev->slot_id) | 
 | 		dev->udev->slot_id = 0; | 
 | 	kfree(xhci->devs[slot_id]); | 
 | 	xhci->devs[slot_id] = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a virt_device structure. | 
 |  * If the virt_device added a tt_info (a hub) and has children pointing to | 
 |  * that tt_info, then free the child first. Recursive. | 
 |  * We can't rely on udev at this point to find child-parent relationships. | 
 |  */ | 
 | static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct list_head *tt_list_head; | 
 | 	struct xhci_tt_bw_info *tt_info, *next; | 
 | 	int i; | 
 |  | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	if (!vdev) | 
 | 		return; | 
 |  | 
 | 	if (vdev->real_port == 0 || | 
 | 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { | 
 | 		xhci_dbg(xhci, "Bad vdev->real_port.\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); | 
 | 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { | 
 | 		/* is this a hub device that added a tt_info to the tts list */ | 
 | 		if (tt_info->slot_id == slot_id) { | 
 | 			/* are any devices using this tt_info? */ | 
 | 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { | 
 | 				vdev = xhci->devs[i]; | 
 | 				if (vdev && (vdev->tt_info == tt_info)) | 
 | 					xhci_free_virt_devices_depth_first( | 
 | 						xhci, i); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	/* we are now at a leaf device */ | 
 | 	xhci_debugfs_remove_slot(xhci, slot_id); | 
 | 	xhci_free_virt_device(xhci, slot_id); | 
 | } | 
 |  | 
 | int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, | 
 | 		struct usb_device *udev, gfp_t flags) | 
 | { | 
 | 	struct xhci_virt_device *dev; | 
 | 	int i; | 
 |  | 
 | 	/* Slot ID 0 is reserved */ | 
 | 	if (slot_id == 0 || xhci->devs[slot_id]) { | 
 | 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	dev = kzalloc(sizeof(*dev), flags); | 
 | 	if (!dev) | 
 | 		return 0; | 
 |  | 
 | 	dev->slot_id = slot_id; | 
 |  | 
 | 	/* Allocate the (output) device context that will be used in the HC. */ | 
 | 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); | 
 | 	if (!dev->out_ctx) | 
 | 		goto fail; | 
 |  | 
 | 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); | 
 |  | 
 | 	/* Allocate the (input) device context for address device command */ | 
 | 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); | 
 | 	if (!dev->in_ctx) | 
 | 		goto fail; | 
 |  | 
 | 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); | 
 |  | 
 | 	/* Initialize the cancellation and bandwidth list for each ep */ | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		dev->eps[i].ep_index = i; | 
 | 		dev->eps[i].vdev = dev; | 
 | 		dev->eps[i].xhci = xhci; | 
 | 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); | 
 | 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); | 
 | 	} | 
 |  | 
 | 	/* Allocate endpoint 0 ring */ | 
 | 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); | 
 | 	if (!dev->eps[0].ring) | 
 | 		goto fail; | 
 |  | 
 | 	dev->udev = udev; | 
 |  | 
 | 	/* Point to output device context in dcbaa. */ | 
 | 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); | 
 | 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", | 
 | 		 slot_id, | 
 | 		 &xhci->dcbaa->dev_context_ptrs[slot_id], | 
 | 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); | 
 |  | 
 | 	trace_xhci_alloc_virt_device(dev); | 
 |  | 
 | 	xhci->devs[slot_id] = dev; | 
 |  | 
 | 	return 1; | 
 | fail: | 
 |  | 
 | 	if (dev->in_ctx) | 
 | 		xhci_free_container_ctx(xhci, dev->in_ctx); | 
 | 	if (dev->out_ctx) | 
 | 		xhci_free_container_ctx(xhci, dev->out_ctx); | 
 | 	kfree(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev) | 
 | { | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_ep_ctx	*ep0_ctx; | 
 | 	struct xhci_ring	*ep_ring; | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); | 
 | 	ep_ring = virt_dev->eps[0].ring; | 
 | 	/* | 
 | 	 * FIXME we don't keep track of the dequeue pointer very well after a | 
 | 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the | 
 | 	 * host to our enqueue pointer.  This should only be called after a | 
 | 	 * configured device has reset, so all control transfers should have | 
 | 	 * been completed or cancelled before the reset. | 
 | 	 */ | 
 | 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, | 
 | 							ep_ring->enqueue) | 
 | 				   | ep_ring->cycle_state); | 
 | } | 
 |  | 
 | /* | 
 |  * The xHCI roothub may have ports of differing speeds in any order in the port | 
 |  * status registers. | 
 |  * | 
 |  * The xHCI hardware wants to know the roothub port number that the USB device | 
 |  * is attached to (or the roothub port its ancestor hub is attached to).  All we | 
 |  * know is the index of that port under either the USB 2.0 or the USB 3.0 | 
 |  * roothub, but that doesn't give us the real index into the HW port status | 
 |  * registers. Call xhci_find_raw_port_number() to get real index. | 
 |  */ | 
 | static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev) | 
 | { | 
 | 	struct usb_device *top_dev; | 
 | 	struct usb_hcd *hcd; | 
 |  | 
 | 	if (udev->speed >= USB_SPEED_SUPER) | 
 | 		hcd = xhci_get_usb3_hcd(xhci); | 
 | 	else | 
 | 		hcd = xhci->main_hcd; | 
 |  | 
 | 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent; | 
 | 			top_dev = top_dev->parent) | 
 | 		/* Found device below root hub */; | 
 |  | 
 | 	return	xhci_find_raw_port_number(hcd, top_dev->portnum); | 
 | } | 
 |  | 
 | /* Setup an xHCI virtual device for a Set Address command */ | 
 | int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_virt_device *dev; | 
 | 	struct xhci_ep_ctx	*ep0_ctx; | 
 | 	struct xhci_slot_ctx    *slot_ctx; | 
 | 	u32			port_num; | 
 | 	u32			max_packets; | 
 | 	struct usb_device *top_dev; | 
 |  | 
 | 	dev = xhci->devs[udev->slot_id]; | 
 | 	/* Slot ID 0 is reserved */ | 
 | 	if (udev->slot_id == 0 || !dev) { | 
 | 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", | 
 | 				udev->slot_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); | 
 |  | 
 | 	/* 3) Only the control endpoint is valid - one endpoint context */ | 
 | 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); | 
 | 	switch (udev->speed) { | 
 | 	case USB_SPEED_SUPER_PLUS: | 
 | 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); | 
 | 		max_packets = MAX_PACKET(512); | 
 | 		break; | 
 | 	case USB_SPEED_SUPER: | 
 | 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); | 
 | 		max_packets = MAX_PACKET(512); | 
 | 		break; | 
 | 	case USB_SPEED_HIGH: | 
 | 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); | 
 | 		max_packets = MAX_PACKET(64); | 
 | 		break; | 
 | 	/* USB core guesses at a 64-byte max packet first for FS devices */ | 
 | 	case USB_SPEED_FULL: | 
 | 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); | 
 | 		max_packets = MAX_PACKET(64); | 
 | 		break; | 
 | 	case USB_SPEED_LOW: | 
 | 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); | 
 | 		max_packets = MAX_PACKET(8); | 
 | 		break; | 
 | 	default: | 
 | 		/* Speed was set earlier, this shouldn't happen. */ | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* Find the root hub port this device is under */ | 
 | 	port_num = xhci_find_real_port_number(xhci, udev); | 
 | 	if (!port_num) | 
 | 		return -EINVAL; | 
 | 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); | 
 | 	/* Set the port number in the virtual_device to the faked port number */ | 
 | 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent; | 
 | 			top_dev = top_dev->parent) | 
 | 		/* Found device below root hub */; | 
 | 	dev->fake_port = top_dev->portnum; | 
 | 	dev->real_port = port_num; | 
 | 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); | 
 | 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); | 
 |  | 
 | 	/* Find the right bandwidth table that this device will be a part of. | 
 | 	 * If this is a full speed device attached directly to a root port (or a | 
 | 	 * decendent of one), it counts as a primary bandwidth domain, not a | 
 | 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure | 
 | 	 * will never be created for the HS root hub. | 
 | 	 */ | 
 | 	if (!udev->tt || !udev->tt->hub->parent) { | 
 | 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; | 
 | 	} else { | 
 | 		struct xhci_root_port_bw_info *rh_bw; | 
 | 		struct xhci_tt_bw_info *tt_bw; | 
 |  | 
 | 		rh_bw = &xhci->rh_bw[port_num - 1]; | 
 | 		/* Find the right TT. */ | 
 | 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { | 
 | 			if (tt_bw->slot_id != udev->tt->hub->slot_id) | 
 | 				continue; | 
 |  | 
 | 			if (!dev->udev->tt->multi || | 
 | 					(udev->tt->multi && | 
 | 					 tt_bw->ttport == dev->udev->ttport)) { | 
 | 				dev->bw_table = &tt_bw->bw_table; | 
 | 				dev->tt_info = tt_bw; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (!dev->tt_info) | 
 | 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); | 
 | 	} | 
 |  | 
 | 	/* Is this a LS/FS device under an external HS hub? */ | 
 | 	if (udev->tt && udev->tt->hub->parent) { | 
 | 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | | 
 | 						(udev->ttport << 8)); | 
 | 		if (udev->tt->multi) | 
 | 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); | 
 | 	} | 
 | 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); | 
 | 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); | 
 |  | 
 | 	/* Step 4 - ring already allocated */ | 
 | 	/* Step 5 */ | 
 | 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); | 
 |  | 
 | 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ | 
 | 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | | 
 | 					 max_packets); | 
 |  | 
 | 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | | 
 | 				   dev->eps[0].ring->cycle_state); | 
 |  | 
 | 	trace_xhci_setup_addressable_virt_device(dev); | 
 |  | 
 | 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert interval expressed as 2^(bInterval - 1) == interval into | 
 |  * straight exponent value 2^n == interval. | 
 |  * | 
 |  */ | 
 | static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	unsigned int interval; | 
 |  | 
 | 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; | 
 | 	if (interval != ep->desc.bInterval - 1) | 
 | 		dev_warn(&udev->dev, | 
 | 			 "ep %#x - rounding interval to %d %sframes\n", | 
 | 			 ep->desc.bEndpointAddress, | 
 | 			 1 << interval, | 
 | 			 udev->speed == USB_SPEED_FULL ? "" : "micro"); | 
 |  | 
 | 	if (udev->speed == USB_SPEED_FULL) { | 
 | 		/* | 
 | 		 * Full speed isoc endpoints specify interval in frames, | 
 | 		 * not microframes. We are using microframes everywhere, | 
 | 		 * so adjust accordingly. | 
 | 		 */ | 
 | 		interval += 3;	/* 1 frame = 2^3 uframes */ | 
 | 	} | 
 |  | 
 | 	return interval; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of | 
 |  * microframes, rounded down to nearest power of 2. | 
 |  */ | 
 | static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep, unsigned int desc_interval, | 
 | 		unsigned int min_exponent, unsigned int max_exponent) | 
 | { | 
 | 	unsigned int interval; | 
 |  | 
 | 	interval = fls(desc_interval) - 1; | 
 | 	interval = clamp_val(interval, min_exponent, max_exponent); | 
 | 	if ((1 << interval) != desc_interval) | 
 | 		dev_dbg(&udev->dev, | 
 | 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", | 
 | 			 ep->desc.bEndpointAddress, | 
 | 			 1 << interval, | 
 | 			 desc_interval); | 
 |  | 
 | 	return interval; | 
 | } | 
 |  | 
 | static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	if (ep->desc.bInterval == 0) | 
 | 		return 0; | 
 | 	return xhci_microframes_to_exponent(udev, ep, | 
 | 			ep->desc.bInterval, 0, 15); | 
 | } | 
 |  | 
 |  | 
 | static unsigned int xhci_parse_frame_interval(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	return xhci_microframes_to_exponent(udev, ep, | 
 | 			ep->desc.bInterval * 8, 3, 10); | 
 | } | 
 |  | 
 | /* Return the polling or NAK interval. | 
 |  * | 
 |  * The polling interval is expressed in "microframes".  If xHCI's Interval field | 
 |  * is set to N, it will service the endpoint every 2^(Interval)*125us. | 
 |  * | 
 |  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval | 
 |  * is set to 0. | 
 |  */ | 
 | static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	unsigned int interval = 0; | 
 |  | 
 | 	switch (udev->speed) { | 
 | 	case USB_SPEED_HIGH: | 
 | 		/* Max NAK rate */ | 
 | 		if (usb_endpoint_xfer_control(&ep->desc) || | 
 | 		    usb_endpoint_xfer_bulk(&ep->desc)) { | 
 | 			interval = xhci_parse_microframe_interval(udev, ep); | 
 | 			break; | 
 | 		} | 
 | 		fallthrough;	/* SS and HS isoc/int have same decoding */ | 
 |  | 
 | 	case USB_SPEED_SUPER_PLUS: | 
 | 	case USB_SPEED_SUPER: | 
 | 		if (usb_endpoint_xfer_int(&ep->desc) || | 
 | 		    usb_endpoint_xfer_isoc(&ep->desc)) { | 
 | 			interval = xhci_parse_exponent_interval(udev, ep); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case USB_SPEED_FULL: | 
 | 		if (usb_endpoint_xfer_isoc(&ep->desc)) { | 
 | 			interval = xhci_parse_exponent_interval(udev, ep); | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Fall through for interrupt endpoint interval decoding | 
 | 		 * since it uses the same rules as low speed interrupt | 
 | 		 * endpoints. | 
 | 		 */ | 
 | 		fallthrough; | 
 |  | 
 | 	case USB_SPEED_LOW: | 
 | 		if (usb_endpoint_xfer_int(&ep->desc) || | 
 | 		    usb_endpoint_xfer_isoc(&ep->desc)) { | 
 |  | 
 | 			interval = xhci_parse_frame_interval(udev, ep); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	return interval; | 
 | } | 
 |  | 
 | /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. | 
 |  * High speed endpoint descriptors can define "the number of additional | 
 |  * transaction opportunities per microframe", but that goes in the Max Burst | 
 |  * endpoint context field. | 
 |  */ | 
 | static u32 xhci_get_endpoint_mult(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	if (udev->speed < USB_SPEED_SUPER || | 
 | 			!usb_endpoint_xfer_isoc(&ep->desc)) | 
 | 		return 0; | 
 | 	return ep->ss_ep_comp.bmAttributes; | 
 | } | 
 |  | 
 | static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, | 
 | 				       struct usb_host_endpoint *ep) | 
 | { | 
 | 	/* Super speed and Plus have max burst in ep companion desc */ | 
 | 	if (udev->speed >= USB_SPEED_SUPER) | 
 | 		return ep->ss_ep_comp.bMaxBurst; | 
 |  | 
 | 	if (udev->speed == USB_SPEED_HIGH && | 
 | 	    (usb_endpoint_xfer_isoc(&ep->desc) || | 
 | 	     usb_endpoint_xfer_int(&ep->desc))) | 
 | 		return usb_endpoint_maxp_mult(&ep->desc) - 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) | 
 | { | 
 | 	int in; | 
 |  | 
 | 	in = usb_endpoint_dir_in(&ep->desc); | 
 |  | 
 | 	switch (usb_endpoint_type(&ep->desc)) { | 
 | 	case USB_ENDPOINT_XFER_CONTROL: | 
 | 		return CTRL_EP; | 
 | 	case USB_ENDPOINT_XFER_BULK: | 
 | 		return in ? BULK_IN_EP : BULK_OUT_EP; | 
 | 	case USB_ENDPOINT_XFER_ISOC: | 
 | 		return in ? ISOC_IN_EP : ISOC_OUT_EP; | 
 | 	case USB_ENDPOINT_XFER_INT: | 
 | 		return in ? INT_IN_EP : INT_OUT_EP; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Return the maximum endpoint service interval time (ESIT) payload. | 
 |  * Basically, this is the maxpacket size, multiplied by the burst size | 
 |  * and mult size. | 
 |  */ | 
 | static u32 xhci_get_max_esit_payload(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	int max_burst; | 
 | 	int max_packet; | 
 |  | 
 | 	/* Only applies for interrupt or isochronous endpoints */ | 
 | 	if (usb_endpoint_xfer_control(&ep->desc) || | 
 | 			usb_endpoint_xfer_bulk(&ep->desc)) | 
 | 		return 0; | 
 |  | 
 | 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */ | 
 | 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) && | 
 | 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) | 
 | 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); | 
 |  | 
 | 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ | 
 | 	if (udev->speed >= USB_SPEED_SUPER) | 
 | 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); | 
 |  | 
 | 	max_packet = usb_endpoint_maxp(&ep->desc); | 
 | 	max_burst = usb_endpoint_maxp_mult(&ep->desc); | 
 | 	/* A 0 in max burst means 1 transfer per ESIT */ | 
 | 	return max_packet * max_burst; | 
 | } | 
 |  | 
 | /* Set up an endpoint with one ring segment.  Do not allocate stream rings. | 
 |  * Drivers will have to call usb_alloc_streams() to do that. | 
 |  */ | 
 | int xhci_endpoint_init(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int max_packet; | 
 | 	enum xhci_ring_type ring_type; | 
 | 	u32 max_esit_payload; | 
 | 	u32 endpoint_type; | 
 | 	unsigned int max_burst; | 
 | 	unsigned int interval; | 
 | 	unsigned int mult; | 
 | 	unsigned int avg_trb_len; | 
 | 	unsigned int err_count = 0; | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
 |  | 
 | 	endpoint_type = xhci_get_endpoint_type(ep); | 
 | 	if (!endpoint_type) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ring_type = usb_endpoint_type(&ep->desc); | 
 |  | 
 | 	/* | 
 | 	 * Get values to fill the endpoint context, mostly from ep descriptor. | 
 | 	 * The average TRB buffer lengt for bulk endpoints is unclear as we | 
 | 	 * have no clue on scatter gather list entry size. For Isoc and Int, | 
 | 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. | 
 | 	 */ | 
 | 	max_esit_payload = xhci_get_max_esit_payload(udev, ep); | 
 | 	interval = xhci_get_endpoint_interval(udev, ep); | 
 |  | 
 | 	/* Periodic endpoint bInterval limit quirk */ | 
 | 	if (usb_endpoint_xfer_int(&ep->desc) || | 
 | 	    usb_endpoint_xfer_isoc(&ep->desc)) { | 
 | 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && | 
 | 		    udev->speed >= USB_SPEED_HIGH && | 
 | 		    interval >= 7) { | 
 | 			interval = 6; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mult = xhci_get_endpoint_mult(udev, ep); | 
 | 	max_packet = usb_endpoint_maxp(&ep->desc); | 
 | 	max_burst = xhci_get_endpoint_max_burst(udev, ep); | 
 | 	avg_trb_len = max_esit_payload; | 
 |  | 
 | 	/* FIXME dig Mult and streams info out of ep companion desc */ | 
 |  | 
 | 	/* Allow 3 retries for everything but isoc, set CErr = 3 */ | 
 | 	if (!usb_endpoint_xfer_isoc(&ep->desc)) | 
 | 		err_count = 3; | 
 | 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ | 
 | 	if (usb_endpoint_xfer_bulk(&ep->desc)) { | 
 | 		if (udev->speed == USB_SPEED_HIGH) | 
 | 			max_packet = 512; | 
 | 		if (udev->speed == USB_SPEED_FULL) { | 
 | 			max_packet = rounddown_pow_of_two(max_packet); | 
 | 			max_packet = clamp_val(max_packet, 8, 64); | 
 | 		} | 
 | 	} | 
 | 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ | 
 | 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) | 
 | 		avg_trb_len = 8; | 
 | 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ | 
 | 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) | 
 | 		mult = 0; | 
 |  | 
 | 	/* Set up the endpoint ring */ | 
 | 	virt_dev->eps[ep_index].new_ring = | 
 | 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); | 
 | 	if (!virt_dev->eps[ep_index].new_ring) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	virt_dev->eps[ep_index].skip = false; | 
 | 	ep_ring = virt_dev->eps[ep_index].new_ring; | 
 |  | 
 | 	/* Fill the endpoint context */ | 
 | 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | | 
 | 				      EP_INTERVAL(interval) | | 
 | 				      EP_MULT(mult)); | 
 | 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | | 
 | 				       MAX_PACKET(max_packet) | | 
 | 				       MAX_BURST(max_burst) | | 
 | 				       ERROR_COUNT(err_count)); | 
 | 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | | 
 | 				  ep_ring->cycle_state); | 
 |  | 
 | 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | | 
 | 				      EP_AVG_TRB_LENGTH(avg_trb_len)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void xhci_endpoint_zero(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
 |  | 
 | 	ep_ctx->ep_info = 0; | 
 | 	ep_ctx->ep_info2 = 0; | 
 | 	ep_ctx->deq = 0; | 
 | 	ep_ctx->tx_info = 0; | 
 | 	/* Don't free the endpoint ring until the set interface or configuration | 
 | 	 * request succeeds. | 
 | 	 */ | 
 | } | 
 |  | 
 | void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) | 
 | { | 
 | 	bw_info->ep_interval = 0; | 
 | 	bw_info->mult = 0; | 
 | 	bw_info->num_packets = 0; | 
 | 	bw_info->max_packet_size = 0; | 
 | 	bw_info->type = 0; | 
 | 	bw_info->max_esit_payload = 0; | 
 | } | 
 |  | 
 | void xhci_update_bw_info(struct xhci_hcd *xhci, | 
 | 		struct xhci_container_ctx *in_ctx, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx, | 
 | 		struct xhci_virt_device *virt_dev) | 
 | { | 
 | 	struct xhci_bw_info *bw_info; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	unsigned int ep_type; | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < 31; i++) { | 
 | 		bw_info = &virt_dev->eps[i].bw_info; | 
 |  | 
 | 		/* We can't tell what endpoint type is being dropped, but | 
 | 		 * unconditionally clearing the bandwidth info for non-periodic | 
 | 		 * endpoints should be harmless because the info will never be | 
 | 		 * set in the first place. | 
 | 		 */ | 
 | 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { | 
 | 			/* Dropped endpoint */ | 
 | 			xhci_clear_endpoint_bw_info(bw_info); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (EP_IS_ADDED(ctrl_ctx, i)) { | 
 | 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); | 
 | 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); | 
 |  | 
 | 			/* Ignore non-periodic endpoints */ | 
 | 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && | 
 | 					ep_type != ISOC_IN_EP && | 
 | 					ep_type != INT_IN_EP) | 
 | 				continue; | 
 |  | 
 | 			/* Added or changed endpoint */ | 
 | 			bw_info->ep_interval = CTX_TO_EP_INTERVAL( | 
 | 					le32_to_cpu(ep_ctx->ep_info)); | 
 | 			/* Number of packets and mult are zero-based in the | 
 | 			 * input context, but we want one-based for the | 
 | 			 * interval table. | 
 | 			 */ | 
 | 			bw_info->mult = CTX_TO_EP_MULT( | 
 | 					le32_to_cpu(ep_ctx->ep_info)) + 1; | 
 | 			bw_info->num_packets = CTX_TO_MAX_BURST( | 
 | 					le32_to_cpu(ep_ctx->ep_info2)) + 1; | 
 | 			bw_info->max_packet_size = MAX_PACKET_DECODED( | 
 | 					le32_to_cpu(ep_ctx->ep_info2)); | 
 | 			bw_info->type = ep_type; | 
 | 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( | 
 | 					le32_to_cpu(ep_ctx->tx_info)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. | 
 |  * Useful when you want to change one particular aspect of the endpoint and then | 
 |  * issue a configure endpoint command. | 
 |  */ | 
 | void xhci_endpoint_copy(struct xhci_hcd *xhci, | 
 | 		struct xhci_container_ctx *in_ctx, | 
 | 		struct xhci_container_ctx *out_ctx, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ep_ctx *out_ep_ctx; | 
 | 	struct xhci_ep_ctx *in_ep_ctx; | 
 |  | 
 | 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
 | 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); | 
 |  | 
 | 	in_ep_ctx->ep_info = out_ep_ctx->ep_info; | 
 | 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; | 
 | 	in_ep_ctx->deq = out_ep_ctx->deq; | 
 | 	in_ep_ctx->tx_info = out_ep_ctx->tx_info; | 
 | 	if (xhci->quirks & XHCI_MTK_HOST) { | 
 | 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; | 
 | 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; | 
 | 	} | 
 | } | 
 |  | 
 | /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. | 
 |  * Useful when you want to change one particular aspect of the endpoint and then | 
 |  * issue a configure endpoint command.  Only the context entries field matters, | 
 |  * but we'll copy the whole thing anyway. | 
 |  */ | 
 | void xhci_slot_copy(struct xhci_hcd *xhci, | 
 | 		struct xhci_container_ctx *in_ctx, | 
 | 		struct xhci_container_ctx *out_ctx) | 
 | { | 
 | 	struct xhci_slot_ctx *in_slot_ctx; | 
 | 	struct xhci_slot_ctx *out_slot_ctx; | 
 |  | 
 | 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
 | 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); | 
 |  | 
 | 	in_slot_ctx->dev_info = out_slot_ctx->dev_info; | 
 | 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; | 
 | 	in_slot_ctx->tt_info = out_slot_ctx->tt_info; | 
 | 	in_slot_ctx->dev_state = out_slot_ctx->dev_state; | 
 | } | 
 |  | 
 | /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ | 
 | static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) | 
 | { | 
 | 	int i; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Allocating %d scratchpad buffers", num_sp); | 
 |  | 
 | 	if (!num_sp) | 
 | 		return 0; | 
 |  | 
 | 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, | 
 | 				dev_to_node(dev)); | 
 | 	if (!xhci->scratchpad) | 
 | 		goto fail_sp; | 
 |  | 
 | 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev, | 
 | 				     size_mul(sizeof(u64), num_sp), | 
 | 				     &xhci->scratchpad->sp_dma, flags); | 
 | 	if (!xhci->scratchpad->sp_array) | 
 | 		goto fail_sp2; | 
 |  | 
 | 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), | 
 | 					flags, dev_to_node(dev)); | 
 | 	if (!xhci->scratchpad->sp_buffers) | 
 | 		goto fail_sp3; | 
 |  | 
 | 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); | 
 | 	for (i = 0; i < num_sp; i++) { | 
 | 		dma_addr_t dma; | 
 | 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, | 
 | 					       flags); | 
 | 		if (!buf) | 
 | 			goto fail_sp4; | 
 |  | 
 | 		xhci->scratchpad->sp_array[i] = dma; | 
 | 		xhci->scratchpad->sp_buffers[i] = buf; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 |  fail_sp4: | 
 | 	while (i--) | 
 | 		dma_free_coherent(dev, xhci->page_size, | 
 | 				    xhci->scratchpad->sp_buffers[i], | 
 | 				    xhci->scratchpad->sp_array[i]); | 
 |  | 
 | 	kfree(xhci->scratchpad->sp_buffers); | 
 |  | 
 |  fail_sp3: | 
 | 	dma_free_coherent(dev, num_sp * sizeof(u64), | 
 | 			    xhci->scratchpad->sp_array, | 
 | 			    xhci->scratchpad->sp_dma); | 
 |  | 
 |  fail_sp2: | 
 | 	kfree(xhci->scratchpad); | 
 | 	xhci->scratchpad = NULL; | 
 |  | 
 |  fail_sp: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void scratchpad_free(struct xhci_hcd *xhci) | 
 | { | 
 | 	int num_sp; | 
 | 	int i; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	if (!xhci->scratchpad) | 
 | 		return; | 
 |  | 
 | 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
 |  | 
 | 	for (i = 0; i < num_sp; i++) { | 
 | 		dma_free_coherent(dev, xhci->page_size, | 
 | 				    xhci->scratchpad->sp_buffers[i], | 
 | 				    xhci->scratchpad->sp_array[i]); | 
 | 	} | 
 | 	kfree(xhci->scratchpad->sp_buffers); | 
 | 	dma_free_coherent(dev, num_sp * sizeof(u64), | 
 | 			    xhci->scratchpad->sp_array, | 
 | 			    xhci->scratchpad->sp_dma); | 
 | 	kfree(xhci->scratchpad); | 
 | 	xhci->scratchpad = NULL; | 
 | } | 
 |  | 
 | struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, | 
 | 		bool allocate_completion, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_command *command; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); | 
 | 	if (!command) | 
 | 		return NULL; | 
 |  | 
 | 	if (allocate_completion) { | 
 | 		command->completion = | 
 | 			kzalloc_node(sizeof(struct completion), mem_flags, | 
 | 				dev_to_node(dev)); | 
 | 		if (!command->completion) { | 
 | 			kfree(command); | 
 | 			return NULL; | 
 | 		} | 
 | 		init_completion(command->completion); | 
 | 	} | 
 |  | 
 | 	command->status = 0; | 
 | 	/* set default timeout to 5000 ms */ | 
 | 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; | 
 | 	INIT_LIST_HEAD(&command->cmd_list); | 
 | 	return command; | 
 | } | 
 |  | 
 | struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, | 
 | 		bool allocate_completion, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_command *command; | 
 |  | 
 | 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags); | 
 | 	if (!command) | 
 | 		return NULL; | 
 |  | 
 | 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, | 
 | 						   mem_flags); | 
 | 	if (!command->in_ctx) { | 
 | 		kfree(command->completion); | 
 | 		kfree(command); | 
 | 		return NULL; | 
 | 	} | 
 | 	return command; | 
 | } | 
 |  | 
 | void xhci_urb_free_priv(struct urb_priv *urb_priv) | 
 | { | 
 | 	kfree(urb_priv); | 
 | } | 
 |  | 
 | void xhci_free_command(struct xhci_hcd *xhci, | 
 | 		struct xhci_command *command) | 
 | { | 
 | 	xhci_free_container_ctx(xhci, | 
 | 			command->in_ctx); | 
 | 	kfree(command->completion); | 
 | 	kfree(command); | 
 | } | 
 |  | 
 | int xhci_alloc_erst(struct xhci_hcd *xhci, | 
 | 		    struct xhci_ring *evt_ring, | 
 | 		    struct xhci_erst *erst, | 
 | 		    gfp_t flags) | 
 | { | 
 | 	size_t size; | 
 | 	unsigned int val; | 
 | 	struct xhci_segment *seg; | 
 | 	struct xhci_erst_entry *entry; | 
 |  | 
 | 	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs); | 
 | 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, | 
 | 					   size, &erst->erst_dma_addr, flags); | 
 | 	if (!erst->entries) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	erst->num_entries = evt_ring->num_segs; | 
 |  | 
 | 	seg = evt_ring->first_seg; | 
 | 	for (val = 0; val < evt_ring->num_segs; val++) { | 
 | 		entry = &erst->entries[val]; | 
 | 		entry->seg_addr = cpu_to_le64(seg->dma); | 
 | 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); | 
 | 		entry->rsvd = 0; | 
 | 		seg = seg->next; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	size_t erst_size; | 
 | 	u64 tmp64; | 
 | 	u32 tmp; | 
 |  | 
 | 	if (!ir) | 
 | 		return; | 
 |  | 
 | 	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries; | 
 | 	if (ir->erst.entries) | 
 | 		dma_free_coherent(dev, erst_size, | 
 | 				  ir->erst.entries, | 
 | 				  ir->erst.erst_dma_addr); | 
 | 	ir->erst.entries = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Clean out interrupter registers except ERSTBA. Clearing either the | 
 | 	 * low or high 32 bits of ERSTBA immediately causes the controller to | 
 | 	 * dereference the partially cleared 64 bit address, causing IOMMU error. | 
 | 	 */ | 
 | 	if (ir->ir_set) { | 
 | 		tmp = readl(&ir->ir_set->erst_size); | 
 | 		tmp &= ERST_SIZE_MASK; | 
 | 		writel(tmp, &ir->ir_set->erst_size); | 
 |  | 
 | 		tmp64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); | 
 | 		tmp64 &= (u64) ERST_PTR_MASK; | 
 | 		xhci_write_64(xhci, tmp64, &ir->ir_set->erst_dequeue); | 
 | 	} | 
 |  | 
 | 	/* free interrrupter event ring */ | 
 | 	if (ir->event_ring) | 
 | 		xhci_ring_free(xhci, ir->event_ring); | 
 | 	ir->event_ring = NULL; | 
 |  | 
 | 	kfree(ir); | 
 | } | 
 |  | 
 | void xhci_mem_cleanup(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	int i, j, num_ports; | 
 |  | 
 | 	cancel_delayed_work_sync(&xhci->cmd_timer); | 
 |  | 
 | 	xhci_free_interrupter(xhci, xhci->interrupter); | 
 | 	xhci->interrupter = NULL; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring"); | 
 |  | 
 | 	if (xhci->cmd_ring) | 
 | 		xhci_ring_free(xhci, xhci->cmd_ring); | 
 | 	xhci->cmd_ring = NULL; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); | 
 | 	xhci_cleanup_command_queue(xhci); | 
 |  | 
 | 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
 | 	for (i = 0; i < num_ports && xhci->rh_bw; i++) { | 
 | 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; | 
 | 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) { | 
 | 			struct list_head *ep = &bwt->interval_bw[j].endpoints; | 
 | 			while (!list_empty(ep)) | 
 | 				list_del_init(ep->next); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) | 
 | 		xhci_free_virt_devices_depth_first(xhci, i); | 
 |  | 
 | 	dma_pool_destroy(xhci->segment_pool); | 
 | 	xhci->segment_pool = NULL; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); | 
 |  | 
 | 	dma_pool_destroy(xhci->device_pool); | 
 | 	xhci->device_pool = NULL; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); | 
 |  | 
 | 	dma_pool_destroy(xhci->small_streams_pool); | 
 | 	xhci->small_streams_pool = NULL; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Freed small stream array pool"); | 
 |  | 
 | 	dma_pool_destroy(xhci->medium_streams_pool); | 
 | 	xhci->medium_streams_pool = NULL; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Freed medium stream array pool"); | 
 |  | 
 | 	if (xhci->dcbaa) | 
 | 		dma_free_coherent(dev, sizeof(*xhci->dcbaa), | 
 | 				xhci->dcbaa, xhci->dcbaa->dma); | 
 | 	xhci->dcbaa = NULL; | 
 |  | 
 | 	scratchpad_free(xhci); | 
 |  | 
 | 	if (!xhci->rh_bw) | 
 | 		goto no_bw; | 
 |  | 
 | 	for (i = 0; i < num_ports; i++) { | 
 | 		struct xhci_tt_bw_info *tt, *n; | 
 | 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { | 
 | 			list_del(&tt->tt_list); | 
 | 			kfree(tt); | 
 | 		} | 
 | 	} | 
 |  | 
 | no_bw: | 
 | 	xhci->cmd_ring_reserved_trbs = 0; | 
 | 	xhci->usb2_rhub.num_ports = 0; | 
 | 	xhci->usb3_rhub.num_ports = 0; | 
 | 	xhci->num_active_eps = 0; | 
 | 	kfree(xhci->usb2_rhub.ports); | 
 | 	kfree(xhci->usb3_rhub.ports); | 
 | 	kfree(xhci->hw_ports); | 
 | 	kfree(xhci->rh_bw); | 
 | 	kfree(xhci->ext_caps); | 
 | 	for (i = 0; i < xhci->num_port_caps; i++) | 
 | 		kfree(xhci->port_caps[i].psi); | 
 | 	kfree(xhci->port_caps); | 
 | 	xhci->num_port_caps = 0; | 
 |  | 
 | 	xhci->usb2_rhub.ports = NULL; | 
 | 	xhci->usb3_rhub.ports = NULL; | 
 | 	xhci->hw_ports = NULL; | 
 | 	xhci->rh_bw = NULL; | 
 | 	xhci->ext_caps = NULL; | 
 | 	xhci->port_caps = NULL; | 
 |  | 
 | 	xhci->page_size = 0; | 
 | 	xhci->page_shift = 0; | 
 | 	xhci->usb2_rhub.bus_state.bus_suspended = 0; | 
 | 	xhci->usb3_rhub.bus_state.bus_suspended = 0; | 
 | } | 
 |  | 
 | static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) | 
 | { | 
 | 	u64 temp; | 
 | 	dma_addr_t deq; | 
 |  | 
 | 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, | 
 | 			ir->event_ring->dequeue); | 
 | 	if (!deq) | 
 | 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); | 
 | 	/* Update HC event ring dequeue pointer */ | 
 | 	temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); | 
 | 	temp &= ERST_PTR_MASK; | 
 | 	/* Don't clear the EHB bit (which is RW1C) because | 
 | 	 * there might be more events to service. | 
 | 	 */ | 
 | 	temp &= ~ERST_EHB; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 		       "// Write event ring dequeue pointer, preserving EHB bit"); | 
 | 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, | 
 | 			&ir->ir_set->erst_dequeue); | 
 | } | 
 |  | 
 | static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, | 
 | 		__le32 __iomem *addr, int max_caps) | 
 | { | 
 | 	u32 temp, port_offset, port_count; | 
 | 	int i; | 
 | 	u8 major_revision, minor_revision, tmp_minor_revision; | 
 | 	struct xhci_hub *rhub; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	struct xhci_port_cap *port_cap; | 
 |  | 
 | 	temp = readl(addr); | 
 | 	major_revision = XHCI_EXT_PORT_MAJOR(temp); | 
 | 	minor_revision = XHCI_EXT_PORT_MINOR(temp); | 
 |  | 
 | 	if (major_revision == 0x03) { | 
 | 		rhub = &xhci->usb3_rhub; | 
 | 		/* | 
 | 		 * Some hosts incorrectly use sub-minor version for minor | 
 | 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 | 
 | 		 * for bcdUSB 0x310). Since there is no USB release with sub | 
 | 		 * minor version 0x301 to 0x309, we can assume that they are | 
 | 		 * incorrect and fix it here. | 
 | 		 */ | 
 | 		if (minor_revision > 0x00 && minor_revision < 0x10) | 
 | 			minor_revision <<= 4; | 
 | 		/* | 
 | 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec | 
 | 		 * but only support Gen1. | 
 | 		 */ | 
 | 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) { | 
 | 			tmp_minor_revision = minor_revision; | 
 | 			minor_revision = 0; | 
 | 		} | 
 |  | 
 | 	} else if (major_revision <= 0x02) { | 
 | 		rhub = &xhci->usb2_rhub; | 
 | 	} else { | 
 | 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", | 
 | 				addr, major_revision); | 
 | 		/* Ignoring port protocol we can't understand. FIXME */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Port offset and count in the third dword, see section 7.2 */ | 
 | 	temp = readl(addr + 2); | 
 | 	port_offset = XHCI_EXT_PORT_OFF(temp); | 
 | 	port_count = XHCI_EXT_PORT_COUNT(temp); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", | 
 | 		       addr, port_offset, port_count, major_revision); | 
 | 	/* Port count includes the current port offset */ | 
 | 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) | 
 | 		/* WTF? "Valid values are ‘1’ to MaxPorts" */ | 
 | 		return; | 
 |  | 
 | 	port_cap = &xhci->port_caps[xhci->num_port_caps++]; | 
 | 	if (xhci->num_port_caps > max_caps) | 
 | 		return; | 
 |  | 
 | 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); | 
 |  | 
 | 	if (port_cap->psi_count) { | 
 | 		port_cap->psi = kcalloc_node(port_cap->psi_count, | 
 | 					     sizeof(*port_cap->psi), | 
 | 					     GFP_KERNEL, dev_to_node(dev)); | 
 | 		if (!port_cap->psi) | 
 | 			port_cap->psi_count = 0; | 
 |  | 
 | 		port_cap->psi_uid_count++; | 
 | 		for (i = 0; i < port_cap->psi_count; i++) { | 
 | 			port_cap->psi[i] = readl(addr + 4 + i); | 
 |  | 
 | 			/* count unique ID values, two consecutive entries can | 
 | 			 * have the same ID if link is assymetric | 
 | 			 */ | 
 | 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != | 
 | 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) | 
 | 				port_cap->psi_uid_count++; | 
 |  | 
 | 			if (xhci->quirks & XHCI_ZHAOXIN_HOST && | 
 | 			    major_revision == 0x03 && | 
 | 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) | 
 | 				minor_revision = tmp_minor_revision; | 
 |  | 
 | 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", | 
 | 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]), | 
 | 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]), | 
 | 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]), | 
 | 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]), | 
 | 				  XHCI_EXT_PORT_LP(port_cap->psi[i]), | 
 | 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i])); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rhub->maj_rev = major_revision; | 
 |  | 
 | 	if (rhub->min_rev < minor_revision) | 
 | 		rhub->min_rev = minor_revision; | 
 |  | 
 | 	port_cap->maj_rev = major_revision; | 
 | 	port_cap->min_rev = minor_revision; | 
 |  | 
 | 	/* cache usb2 port capabilities */ | 
 | 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) | 
 | 		xhci->ext_caps[xhci->num_ext_caps++] = temp; | 
 |  | 
 | 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && | 
 | 		 (temp & XHCI_HLC)) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			       "xHCI 1.0: support USB2 hardware lpm"); | 
 | 		xhci->hw_lpm_support = 1; | 
 | 	} | 
 |  | 
 | 	port_offset--; | 
 | 	for (i = port_offset; i < (port_offset + port_count); i++) { | 
 | 		struct xhci_port *hw_port = &xhci->hw_ports[i]; | 
 | 		/* Duplicate entry.  Ignore the port if the revisions differ. */ | 
 | 		if (hw_port->rhub) { | 
 | 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); | 
 | 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", | 
 | 					hw_port->rhub->maj_rev, major_revision); | 
 | 			/* Only adjust the roothub port counts if we haven't | 
 | 			 * found a similar duplicate. | 
 | 			 */ | 
 | 			if (hw_port->rhub != rhub && | 
 | 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) { | 
 | 				hw_port->rhub->num_ports--; | 
 | 				hw_port->hcd_portnum = DUPLICATE_ENTRY; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		hw_port->rhub = rhub; | 
 | 		hw_port->port_cap = port_cap; | 
 | 		rhub->num_ports++; | 
 | 	} | 
 | 	/* FIXME: Should we disable ports not in the Extended Capabilities? */ | 
 | } | 
 |  | 
 | static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, | 
 | 					struct xhci_hub *rhub, gfp_t flags) | 
 | { | 
 | 	int port_index = 0; | 
 | 	int i; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	if (!rhub->num_ports) | 
 | 		return; | 
 | 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), | 
 | 			flags, dev_to_node(dev)); | 
 | 	if (!rhub->ports) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { | 
 | 		if (xhci->hw_ports[i].rhub != rhub || | 
 | 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) | 
 | 			continue; | 
 | 		xhci->hw_ports[i].hcd_portnum = port_index; | 
 | 		rhub->ports[port_index] = &xhci->hw_ports[i]; | 
 | 		port_index++; | 
 | 		if (port_index == rhub->num_ports) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that | 
 |  * specify what speeds each port is supposed to be.  We can't count on the port | 
 |  * speed bits in the PORTSC register being correct until a device is connected, | 
 |  * but we need to set up the two fake roothubs with the correct number of USB | 
 |  * 3.0 and USB 2.0 ports at host controller initialization time. | 
 |  */ | 
 | static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) | 
 | { | 
 | 	void __iomem *base; | 
 | 	u32 offset; | 
 | 	unsigned int num_ports; | 
 | 	int i, j; | 
 | 	int cap_count = 0; | 
 | 	u32 cap_start; | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 |  | 
 | 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
 | 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), | 
 | 				flags, dev_to_node(dev)); | 
 | 	if (!xhci->hw_ports) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < num_ports; i++) { | 
 | 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + | 
 | 			NUM_PORT_REGS * i; | 
 | 		xhci->hw_ports[i].hw_portnum = i; | 
 |  | 
 | 		init_completion(&xhci->hw_ports[i].rexit_done); | 
 | 		init_completion(&xhci->hw_ports[i].u3exit_done); | 
 | 	} | 
 |  | 
 | 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, | 
 | 				   dev_to_node(dev)); | 
 | 	if (!xhci->rh_bw) | 
 | 		return -ENOMEM; | 
 | 	for (i = 0; i < num_ports; i++) { | 
 | 		struct xhci_interval_bw_table *bw_table; | 
 |  | 
 | 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts); | 
 | 		bw_table = &xhci->rh_bw[i].bw_table; | 
 | 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) | 
 | 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); | 
 | 	} | 
 | 	base = &xhci->cap_regs->hc_capbase; | 
 |  | 
 | 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); | 
 | 	if (!cap_start) { | 
 | 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	offset = cap_start; | 
 | 	/* count extended protocol capability entries for later caching */ | 
 | 	while (offset) { | 
 | 		cap_count++; | 
 | 		offset = xhci_find_next_ext_cap(base, offset, | 
 | 						      XHCI_EXT_CAPS_PROTOCOL); | 
 | 	} | 
 |  | 
 | 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), | 
 | 				flags, dev_to_node(dev)); | 
 | 	if (!xhci->ext_caps) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), | 
 | 				flags, dev_to_node(dev)); | 
 | 	if (!xhci->port_caps) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	offset = cap_start; | 
 |  | 
 | 	while (offset) { | 
 | 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count); | 
 | 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == | 
 | 		    num_ports) | 
 | 			break; | 
 | 		offset = xhci_find_next_ext_cap(base, offset, | 
 | 						XHCI_EXT_CAPS_PROTOCOL); | 
 | 	} | 
 | 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { | 
 | 		xhci_warn(xhci, "No ports on the roothubs?\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.", | 
 | 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); | 
 |  | 
 | 	/* Place limits on the number of roothub ports so that the hub | 
 | 	 * descriptors aren't longer than the USB core will allocate. | 
 | 	 */ | 
 | 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 				"Limiting USB 3.0 roothub ports to %u.", | 
 | 				USB_SS_MAXPORTS); | 
 | 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; | 
 | 	} | 
 | 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 				"Limiting USB 2.0 roothub ports to %u.", | 
 | 				USB_MAXCHILDREN); | 
 | 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; | 
 | 	} | 
 |  | 
 | 	if (!xhci->usb2_rhub.num_ports) | 
 | 		xhci_info(xhci, "USB2 root hub has no ports\n"); | 
 |  | 
 | 	if (!xhci->usb3_rhub.num_ports) | 
 | 		xhci_info(xhci, "USB3 root hub has no ports\n"); | 
 |  | 
 | 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); | 
 | 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct xhci_interrupter * | 
 | xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	struct xhci_interrupter *ir; | 
 | 	int ret; | 
 |  | 
 | 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); | 
 | 	if (!ir) | 
 | 		return NULL; | 
 |  | 
 | 	ir->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, | 
 | 					0, flags); | 
 | 	if (!ir->event_ring) { | 
 | 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); | 
 | 		kfree(ir); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); | 
 | 	if (ret) { | 
 | 		xhci_warn(xhci, "Failed to allocate interrupter erst\n"); | 
 | 		xhci_ring_free(xhci, ir->event_ring); | 
 | 		kfree(ir); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return ir; | 
 | } | 
 |  | 
 | static int | 
 | xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, | 
 | 		     unsigned int intr_num) | 
 | { | 
 | 	u64 erst_base; | 
 | 	u32 erst_size; | 
 |  | 
 | 	if (intr_num > xhci->max_interrupters) { | 
 | 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", | 
 | 			  intr_num, xhci->max_interrupters); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ir->ir_set = &xhci->run_regs->ir_set[intr_num]; | 
 |  | 
 | 	/* set ERST count with the number of entries in the segment table */ | 
 | 	erst_size = readl(&ir->ir_set->erst_size); | 
 | 	erst_size &= ERST_SIZE_MASK; | 
 | 	erst_size |= ERST_NUM_SEGS; | 
 | 	writel(erst_size, &ir->ir_set->erst_size); | 
 |  | 
 | 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); | 
 | 	erst_base &= ERST_BASE_RSVDP; | 
 | 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP; | 
 | 	if (xhci->quirks & XHCI_WRITE_64_HI_LO) | 
 | 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base); | 
 | 	else | 
 | 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); | 
 |  | 
 | 	/* Set the event ring dequeue address of this interrupter */ | 
 | 	xhci_set_hc_event_deq(xhci, ir); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) | 
 | { | 
 | 	dma_addr_t	dma; | 
 | 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	unsigned int	val, val2; | 
 | 	u64		val_64; | 
 | 	u32		page_size, temp; | 
 | 	int		i; | 
 |  | 
 | 	INIT_LIST_HEAD(&xhci->cmd_list); | 
 |  | 
 | 	/* init command timeout work */ | 
 | 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); | 
 | 	init_completion(&xhci->cmd_ring_stop_completion); | 
 |  | 
 | 	page_size = readl(&xhci->op_regs->page_size); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Supported page size register = 0x%x", page_size); | 
 | 	val = ffs(page_size) - 1; | 
 | 	if (val < 16) | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Supported page size of %iK", (1 << (val + 12)) / 1024); | 
 | 	else | 
 | 		xhci_warn(xhci, "WARN: no supported page size\n"); | 
 | 	/* Use 4K pages, since that's common and the minimum the HC supports */ | 
 | 	xhci->page_shift = 12; | 
 | 	xhci->page_size = 1 << xhci->page_shift; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"HCD page size set to %iK", xhci->page_size / 1024); | 
 |  | 
 | 	/* | 
 | 	 * Program the Number of Device Slots Enabled field in the CONFIG | 
 | 	 * register with the max value of slots the HC can handle. | 
 | 	 */ | 
 | 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// xHC can handle at most %d device slots.", val); | 
 | 	val2 = readl(&xhci->op_regs->config_reg); | 
 | 	val |= (val2 & ~HCS_SLOTS_MASK); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Setting Max device slots reg = 0x%x.", val); | 
 | 	writel(val, &xhci->op_regs->config_reg); | 
 |  | 
 | 	/* | 
 | 	 * xHCI section 5.4.6 - Device Context array must be | 
 | 	 * "physically contiguous and 64-byte (cache line) aligned". | 
 | 	 */ | 
 | 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, | 
 | 			flags); | 
 | 	if (!xhci->dcbaa) | 
 | 		goto fail; | 
 | 	xhci->dcbaa->dma = dma; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Device context base array address = 0x%pad (DMA), %p (virt)", | 
 | 			&xhci->dcbaa->dma, xhci->dcbaa); | 
 | 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the ring segment pool.  The ring must be a contiguous | 
 | 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned, | 
 | 	 * however, the command ring segment needs 64-byte aligned segments | 
 | 	 * and our use of dma addresses in the trb_address_map radix tree needs | 
 | 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_TRB_OVERFETCH) | 
 | 		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */ | 
 | 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, | 
 | 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); | 
 | 	else | 
 | 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, | 
 | 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); | 
 |  | 
 | 	/* See Table 46 and Note on Figure 55 */ | 
 | 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, | 
 | 			2112, 64, xhci->page_size); | 
 | 	if (!xhci->segment_pool || !xhci->device_pool) | 
 | 		goto fail; | 
 |  | 
 | 	/* Linear stream context arrays don't have any boundary restrictions, | 
 | 	 * and only need to be 16-byte aligned. | 
 | 	 */ | 
 | 	xhci->small_streams_pool = | 
 | 		dma_pool_create("xHCI 256 byte stream ctx arrays", | 
 | 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); | 
 | 	xhci->medium_streams_pool = | 
 | 		dma_pool_create("xHCI 1KB stream ctx arrays", | 
 | 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); | 
 | 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE | 
 | 	 * will be allocated with dma_alloc_coherent() | 
 | 	 */ | 
 |  | 
 | 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool) | 
 | 		goto fail; | 
 |  | 
 | 	/* Set up the command ring to have one segments for now. */ | 
 | 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); | 
 | 	if (!xhci->cmd_ring) | 
 | 		goto fail; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Allocated command ring at %p", xhci->cmd_ring); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", | 
 | 			&xhci->cmd_ring->first_seg->dma); | 
 |  | 
 | 	/* Set the address in the Command Ring Control register */ | 
 | 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | | 
 | 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | | 
 | 		xhci->cmd_ring->cycle_state; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Setting command ring address to 0x%016llx", val_64); | 
 | 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); | 
 |  | 
 | 	/* Reserve one command ring TRB for disabling LPM. | 
 | 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before | 
 | 	 * disabling LPM, we only need to reserve one TRB for all devices. | 
 | 	 */ | 
 | 	xhci->cmd_ring_reserved_trbs++; | 
 |  | 
 | 	val = readl(&xhci->cap_regs->db_off); | 
 | 	val &= DBOFF_MASK; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 		       "// Doorbell array is located at offset 0x%x from cap regs base addr", | 
 | 		       val); | 
 | 	xhci->dba = (void __iomem *) xhci->cap_regs + val; | 
 |  | 
 | 	/* Allocate and set up primary interrupter 0 with an event ring. */ | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 		       "Allocating primary event ring"); | 
 | 	xhci->interrupter = xhci_alloc_interrupter(xhci, flags); | 
 | 	if (!xhci->interrupter) | 
 | 		goto fail; | 
 |  | 
 | 	if (xhci_add_interrupter(xhci, xhci->interrupter, 0)) | 
 | 		goto fail; | 
 |  | 
 | 	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; | 
 |  | 
 | 	/* | 
 | 	 * XXX: Might need to set the Interrupter Moderation Register to | 
 | 	 * something other than the default (~1ms minimum between interrupts). | 
 | 	 * See section 5.5.1.2. | 
 | 	 */ | 
 | 	for (i = 0; i < MAX_HC_SLOTS; i++) | 
 | 		xhci->devs[i] = NULL; | 
 |  | 
 | 	if (scratchpad_alloc(xhci, flags)) | 
 | 		goto fail; | 
 | 	if (xhci_setup_port_arrays(xhci, flags)) | 
 | 		goto fail; | 
 |  | 
 | 	/* Enable USB 3.0 device notifications for function remote wake, which | 
 | 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from | 
 | 	 * U3 (device suspend). | 
 | 	 */ | 
 | 	temp = readl(&xhci->op_regs->dev_notification); | 
 | 	temp &= ~DEV_NOTE_MASK; | 
 | 	temp |= DEV_NOTE_FWAKE; | 
 | 	writel(temp, &xhci->op_regs->dev_notification); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	xhci_halt(xhci); | 
 | 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC); | 
 | 	xhci_mem_cleanup(xhci); | 
 | 	return -ENOMEM; | 
 | } |