| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) Microsoft Corporation. | 
 |  * | 
 |  * Author: | 
 |  *   Jake Oshins <jakeo@microsoft.com> | 
 |  * | 
 |  * This driver acts as a paravirtual front-end for PCI Express root buses. | 
 |  * When a PCI Express function (either an entire device or an SR-IOV | 
 |  * Virtual Function) is being passed through to the VM, this driver exposes | 
 |  * a new bus to the guest VM.  This is modeled as a root PCI bus because | 
 |  * no bridges are being exposed to the VM.  In fact, with a "Generation 2" | 
 |  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM | 
 |  * until a device as been exposed using this driver. | 
 |  * | 
 |  * Each root PCI bus has its own PCI domain, which is called "Segment" in | 
 |  * the PCI Firmware Specifications.  Thus while each device passed through | 
 |  * to the VM using this front-end will appear at "device 0", the domain will | 
 |  * be unique.  Typically, each bus will have one PCI function on it, though | 
 |  * this driver does support more than one. | 
 |  * | 
 |  * In order to map the interrupts from the device through to the guest VM, | 
 |  * this driver also implements an IRQ Domain, which handles interrupts (either | 
 |  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are | 
 |  * set up, torn down, or reaffined, this driver communicates with the | 
 |  * underlying hypervisor to adjust the mappings in the I/O MMU so that each | 
 |  * interrupt will be delivered to the correct virtual processor at the right | 
 |  * vector.  This driver does not support level-triggered (line-based) | 
 |  * interrupts, and will report that the Interrupt Line register in the | 
 |  * function's configuration space is zero. | 
 |  * | 
 |  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V | 
 |  * facilities.  For instance, the configuration space of a function exposed | 
 |  * by Hyper-V is mapped into a single page of memory space, and the | 
 |  * read and write handlers for config space must be aware of this mechanism. | 
 |  * Similarly, device setup and teardown involves messages sent to and from | 
 |  * the PCI back-end driver in Hyper-V. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pci-ecam.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/semaphore.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/hyperv.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/sizes.h> | 
 | #include <asm/mshyperv.h> | 
 |  | 
 | /* | 
 |  * Protocol versions. The low word is the minor version, the high word the | 
 |  * major version. | 
 |  */ | 
 |  | 
 | #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) | 
 | #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) | 
 | #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) | 
 |  | 
 | enum pci_protocol_version_t { | 
 | 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */ | 
 | 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */ | 
 | 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */ | 
 | 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */ | 
 | }; | 
 |  | 
 | #define CPU_AFFINITY_ALL	-1ULL | 
 |  | 
 | /* | 
 |  * Supported protocol versions in the order of probing - highest go | 
 |  * first. | 
 |  */ | 
 | static enum pci_protocol_version_t pci_protocol_versions[] = { | 
 | 	PCI_PROTOCOL_VERSION_1_4, | 
 | 	PCI_PROTOCOL_VERSION_1_3, | 
 | 	PCI_PROTOCOL_VERSION_1_2, | 
 | 	PCI_PROTOCOL_VERSION_1_1, | 
 | }; | 
 |  | 
 | #define PCI_CONFIG_MMIO_LENGTH	0x2000 | 
 | #define CFG_PAGE_OFFSET 0x1000 | 
 | #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) | 
 |  | 
 | #define MAX_SUPPORTED_MSI_MESSAGES 0x400 | 
 |  | 
 | #define STATUS_REVISION_MISMATCH 0xC0000059 | 
 |  | 
 | /* space for 32bit serial number as string */ | 
 | #define SLOT_NAME_SIZE 11 | 
 |  | 
 | /* | 
 |  * Size of requestor for VMbus; the value is based on the observation | 
 |  * that having more than one request outstanding is 'rare', and so 64 | 
 |  * should be generous in ensuring that we don't ever run out. | 
 |  */ | 
 | #define HV_PCI_RQSTOR_SIZE 64 | 
 |  | 
 | /* | 
 |  * Message Types | 
 |  */ | 
 |  | 
 | enum pci_message_type { | 
 | 	/* | 
 | 	 * Version 1.1 | 
 | 	 */ | 
 | 	PCI_MESSAGE_BASE                = 0x42490000, | 
 | 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0, | 
 | 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1, | 
 | 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4, | 
 | 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, | 
 | 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6, | 
 | 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7, | 
 | 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8, | 
 | 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9, | 
 | 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA, | 
 | 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB, | 
 | 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC, | 
 | 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD, | 
 | 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE, | 
 | 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF, | 
 | 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10, | 
 | 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11, | 
 | 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12, | 
 | 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13, | 
 | 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14, | 
 | 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15, | 
 | 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16, | 
 | 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17, | 
 | 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */ | 
 | 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19, | 
 | 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A, | 
 | 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B, | 
 | 	PCI_MESSAGE_MAXIMUM | 
 | }; | 
 |  | 
 | /* | 
 |  * Structures defining the virtual PCI Express protocol. | 
 |  */ | 
 |  | 
 | union pci_version { | 
 | 	struct { | 
 | 		u16 minor_version; | 
 | 		u16 major_version; | 
 | 	} parts; | 
 | 	u32 version; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * Function numbers are 8-bits wide on Express, as interpreted through ARI, | 
 |  * which is all this driver does.  This representation is the one used in | 
 |  * Windows, which is what is expected when sending this back and forth with | 
 |  * the Hyper-V parent partition. | 
 |  */ | 
 | union win_slot_encoding { | 
 | 	struct { | 
 | 		u32	dev:5; | 
 | 		u32	func:3; | 
 | 		u32	reserved:24; | 
 | 	} bits; | 
 | 	u32 slot; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * Pretty much as defined in the PCI Specifications. | 
 |  */ | 
 | struct pci_function_description { | 
 | 	u16	v_id;	/* vendor ID */ | 
 | 	u16	d_id;	/* device ID */ | 
 | 	u8	rev; | 
 | 	u8	prog_intf; | 
 | 	u8	subclass; | 
 | 	u8	base_class; | 
 | 	u32	subsystem_id; | 
 | 	union win_slot_encoding win_slot; | 
 | 	u32	ser;	/* serial number */ | 
 | } __packed; | 
 |  | 
 | enum pci_device_description_flags { | 
 | 	HV_PCI_DEVICE_FLAG_NONE			= 0x0, | 
 | 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1, | 
 | }; | 
 |  | 
 | struct pci_function_description2 { | 
 | 	u16	v_id;	/* vendor ID */ | 
 | 	u16	d_id;	/* device ID */ | 
 | 	u8	rev; | 
 | 	u8	prog_intf; | 
 | 	u8	subclass; | 
 | 	u8	base_class; | 
 | 	u32	subsystem_id; | 
 | 	union	win_slot_encoding win_slot; | 
 | 	u32	ser;	/* serial number */ | 
 | 	u32	flags; | 
 | 	u16	virtual_numa_node; | 
 | 	u16	reserved; | 
 | } __packed; | 
 |  | 
 | /** | 
 |  * struct hv_msi_desc | 
 |  * @vector:		IDT entry | 
 |  * @delivery_mode:	As defined in Intel's Programmer's | 
 |  *			Reference Manual, Volume 3, Chapter 8. | 
 |  * @vector_count:	Number of contiguous entries in the | 
 |  *			Interrupt Descriptor Table that are | 
 |  *			occupied by this Message-Signaled | 
 |  *			Interrupt. For "MSI", as first defined | 
 |  *			in PCI 2.2, this can be between 1 and | 
 |  *			32. For "MSI-X," as first defined in PCI | 
 |  *			3.0, this must be 1, as each MSI-X table | 
 |  *			entry would have its own descriptor. | 
 |  * @reserved:		Empty space | 
 |  * @cpu_mask:		All the target virtual processors. | 
 |  */ | 
 | struct hv_msi_desc { | 
 | 	u8	vector; | 
 | 	u8	delivery_mode; | 
 | 	u16	vector_count; | 
 | 	u32	reserved; | 
 | 	u64	cpu_mask; | 
 | } __packed; | 
 |  | 
 | /** | 
 |  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc | 
 |  * @vector:		IDT entry | 
 |  * @delivery_mode:	As defined in Intel's Programmer's | 
 |  *			Reference Manual, Volume 3, Chapter 8. | 
 |  * @vector_count:	Number of contiguous entries in the | 
 |  *			Interrupt Descriptor Table that are | 
 |  *			occupied by this Message-Signaled | 
 |  *			Interrupt. For "MSI", as first defined | 
 |  *			in PCI 2.2, this can be between 1 and | 
 |  *			32. For "MSI-X," as first defined in PCI | 
 |  *			3.0, this must be 1, as each MSI-X table | 
 |  *			entry would have its own descriptor. | 
 |  * @processor_count:	number of bits enabled in array. | 
 |  * @processor_array:	All the target virtual processors. | 
 |  */ | 
 | struct hv_msi_desc2 { | 
 | 	u8	vector; | 
 | 	u8	delivery_mode; | 
 | 	u16	vector_count; | 
 | 	u16	processor_count; | 
 | 	u16	processor_array[32]; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc | 
 |  *	Everything is the same as in 'hv_msi_desc2' except that the size of the | 
 |  *	'vector' field is larger to support bigger vector values. For ex: LPI | 
 |  *	vectors on ARM. | 
 |  */ | 
 | struct hv_msi_desc3 { | 
 | 	u32	vector; | 
 | 	u8	delivery_mode; | 
 | 	u8	reserved; | 
 | 	u16	vector_count; | 
 | 	u16	processor_count; | 
 | 	u16	processor_array[32]; | 
 | } __packed; | 
 |  | 
 | /** | 
 |  * struct tran_int_desc | 
 |  * @reserved:		unused, padding | 
 |  * @vector_count:	same as in hv_msi_desc | 
 |  * @data:		This is the "data payload" value that is | 
 |  *			written by the device when it generates | 
 |  *			a message-signaled interrupt, either MSI | 
 |  *			or MSI-X. | 
 |  * @address:		This is the address to which the data | 
 |  *			payload is written on interrupt | 
 |  *			generation. | 
 |  */ | 
 | struct tran_int_desc { | 
 | 	u16	reserved; | 
 | 	u16	vector_count; | 
 | 	u32	data; | 
 | 	u64	address; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * A generic message format for virtual PCI. | 
 |  * Specific message formats are defined later in the file. | 
 |  */ | 
 |  | 
 | struct pci_message { | 
 | 	u32 type; | 
 | } __packed; | 
 |  | 
 | struct pci_child_message { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | } __packed; | 
 |  | 
 | struct pci_incoming_message { | 
 | 	struct vmpacket_descriptor hdr; | 
 | 	struct pci_message message_type; | 
 | } __packed; | 
 |  | 
 | struct pci_response { | 
 | 	struct vmpacket_descriptor hdr; | 
 | 	s32 status;			/* negative values are failures */ | 
 | } __packed; | 
 |  | 
 | struct pci_packet { | 
 | 	void (*completion_func)(void *context, struct pci_response *resp, | 
 | 				int resp_packet_size); | 
 | 	void *compl_ctxt; | 
 |  | 
 | 	struct pci_message message[]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Specific message types supporting the PCI protocol. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Version negotiation message. Sent from the guest to the host. | 
 |  * The guest is free to try different versions until the host | 
 |  * accepts the version. | 
 |  * | 
 |  * pci_version: The protocol version requested. | 
 |  * is_last_attempt: If TRUE, this is the last version guest will request. | 
 |  * reservedz: Reserved field, set to zero. | 
 |  */ | 
 |  | 
 | struct pci_version_request { | 
 | 	struct pci_message message_type; | 
 | 	u32 protocol_version; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * Bus D0 Entry.  This is sent from the guest to the host when the virtual | 
 |  * bus (PCI Express port) is ready for action. | 
 |  */ | 
 |  | 
 | struct pci_bus_d0_entry { | 
 | 	struct pci_message message_type; | 
 | 	u32 reserved; | 
 | 	u64 mmio_base; | 
 | } __packed; | 
 |  | 
 | struct pci_bus_relations { | 
 | 	struct pci_incoming_message incoming; | 
 | 	u32 device_count; | 
 | 	struct pci_function_description func[]; | 
 | } __packed; | 
 |  | 
 | struct pci_bus_relations2 { | 
 | 	struct pci_incoming_message incoming; | 
 | 	u32 device_count; | 
 | 	struct pci_function_description2 func[]; | 
 | } __packed; | 
 |  | 
 | struct pci_q_res_req_response { | 
 | 	struct vmpacket_descriptor hdr; | 
 | 	s32 status;			/* negative values are failures */ | 
 | 	u32 probed_bar[PCI_STD_NUM_BARS]; | 
 | } __packed; | 
 |  | 
 | struct pci_set_power { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	u32 power_state;		/* In Windows terms */ | 
 | 	u32 reserved; | 
 | } __packed; | 
 |  | 
 | struct pci_set_power_response { | 
 | 	struct vmpacket_descriptor hdr; | 
 | 	s32 status;			/* negative values are failures */ | 
 | 	union win_slot_encoding wslot; | 
 | 	u32 resultant_state;		/* In Windows terms */ | 
 | 	u32 reserved; | 
 | } __packed; | 
 |  | 
 | struct pci_resources_assigned { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	u8 memory_range[0x14][6];	/* not used here */ | 
 | 	u32 msi_descriptors; | 
 | 	u32 reserved[4]; | 
 | } __packed; | 
 |  | 
 | struct pci_resources_assigned2 { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	u8 memory_range[0x14][6];	/* not used here */ | 
 | 	u32 msi_descriptor_count; | 
 | 	u8 reserved[70]; | 
 | } __packed; | 
 |  | 
 | struct pci_create_interrupt { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	struct hv_msi_desc int_desc; | 
 | } __packed; | 
 |  | 
 | struct pci_create_int_response { | 
 | 	struct pci_response response; | 
 | 	u32 reserved; | 
 | 	struct tran_int_desc int_desc; | 
 | } __packed; | 
 |  | 
 | struct pci_create_interrupt2 { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	struct hv_msi_desc2 int_desc; | 
 | } __packed; | 
 |  | 
 | struct pci_create_interrupt3 { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	struct hv_msi_desc3 int_desc; | 
 | } __packed; | 
 |  | 
 | struct pci_delete_interrupt { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	struct tran_int_desc int_desc; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * Note: the VM must pass a valid block id, wslot and bytes_requested. | 
 |  */ | 
 | struct pci_read_block { | 
 | 	struct pci_message message_type; | 
 | 	u32 block_id; | 
 | 	union win_slot_encoding wslot; | 
 | 	u32 bytes_requested; | 
 | } __packed; | 
 |  | 
 | struct pci_read_block_response { | 
 | 	struct vmpacket_descriptor hdr; | 
 | 	u32 status; | 
 | 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * Note: the VM must pass a valid block id, wslot and byte_count. | 
 |  */ | 
 | struct pci_write_block { | 
 | 	struct pci_message message_type; | 
 | 	u32 block_id; | 
 | 	union win_slot_encoding wslot; | 
 | 	u32 byte_count; | 
 | 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; | 
 | } __packed; | 
 |  | 
 | struct pci_dev_inval_block { | 
 | 	struct pci_incoming_message incoming; | 
 | 	union win_slot_encoding wslot; | 
 | 	u64 block_mask; | 
 | } __packed; | 
 |  | 
 | struct pci_dev_incoming { | 
 | 	struct pci_incoming_message incoming; | 
 | 	union win_slot_encoding wslot; | 
 | } __packed; | 
 |  | 
 | struct pci_eject_response { | 
 | 	struct pci_message message_type; | 
 | 	union win_slot_encoding wslot; | 
 | 	u32 status; | 
 | } __packed; | 
 |  | 
 | static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); | 
 |  | 
 | /* | 
 |  * Driver specific state. | 
 |  */ | 
 |  | 
 | enum hv_pcibus_state { | 
 | 	hv_pcibus_init = 0, | 
 | 	hv_pcibus_probed, | 
 | 	hv_pcibus_installed, | 
 | 	hv_pcibus_removing, | 
 | 	hv_pcibus_maximum | 
 | }; | 
 |  | 
 | struct hv_pcibus_device { | 
 | #ifdef CONFIG_X86 | 
 | 	struct pci_sysdata sysdata; | 
 | #elif defined(CONFIG_ARM64) | 
 | 	struct pci_config_window sysdata; | 
 | #endif | 
 | 	struct pci_host_bridge *bridge; | 
 | 	struct fwnode_handle *fwnode; | 
 | 	/* Protocol version negotiated with the host */ | 
 | 	enum pci_protocol_version_t protocol_version; | 
 |  | 
 | 	struct mutex state_lock; | 
 | 	enum hv_pcibus_state state; | 
 |  | 
 | 	struct hv_device *hdev; | 
 | 	resource_size_t low_mmio_space; | 
 | 	resource_size_t high_mmio_space; | 
 | 	struct resource *mem_config; | 
 | 	struct resource *low_mmio_res; | 
 | 	struct resource *high_mmio_res; | 
 | 	struct completion *survey_event; | 
 | 	struct pci_bus *pci_bus; | 
 | 	spinlock_t config_lock;	/* Avoid two threads writing index page */ | 
 | 	spinlock_t device_list_lock;	/* Protect lists below */ | 
 | 	void __iomem *cfg_addr; | 
 |  | 
 | 	struct list_head children; | 
 | 	struct list_head dr_list; | 
 |  | 
 | 	struct msi_domain_info msi_info; | 
 | 	struct irq_domain *irq_domain; | 
 |  | 
 | 	struct workqueue_struct *wq; | 
 |  | 
 | 	/* Highest slot of child device with resources allocated */ | 
 | 	int wslot_res_allocated; | 
 | 	bool use_calls; /* Use hypercalls to access mmio cfg space */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Tracks "Device Relations" messages from the host, which must be both | 
 |  * processed in order and deferred so that they don't run in the context | 
 |  * of the incoming packet callback. | 
 |  */ | 
 | struct hv_dr_work { | 
 | 	struct work_struct wrk; | 
 | 	struct hv_pcibus_device *bus; | 
 | }; | 
 |  | 
 | struct hv_pcidev_description { | 
 | 	u16	v_id;	/* vendor ID */ | 
 | 	u16	d_id;	/* device ID */ | 
 | 	u8	rev; | 
 | 	u8	prog_intf; | 
 | 	u8	subclass; | 
 | 	u8	base_class; | 
 | 	u32	subsystem_id; | 
 | 	union	win_slot_encoding win_slot; | 
 | 	u32	ser;	/* serial number */ | 
 | 	u32	flags; | 
 | 	u16	virtual_numa_node; | 
 | }; | 
 |  | 
 | struct hv_dr_state { | 
 | 	struct list_head list_entry; | 
 | 	u32 device_count; | 
 | 	struct hv_pcidev_description func[]; | 
 | }; | 
 |  | 
 | struct hv_pci_dev { | 
 | 	/* List protected by pci_rescan_remove_lock */ | 
 | 	struct list_head list_entry; | 
 | 	refcount_t refs; | 
 | 	struct pci_slot *pci_slot; | 
 | 	struct hv_pcidev_description desc; | 
 | 	bool reported_missing; | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	struct work_struct wrk; | 
 |  | 
 | 	void (*block_invalidate)(void *context, u64 block_mask); | 
 | 	void *invalidate_context; | 
 |  | 
 | 	/* | 
 | 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then | 
 | 	 * read it back, for each of the BAR offsets within config space. | 
 | 	 */ | 
 | 	u32 probed_bar[PCI_STD_NUM_BARS]; | 
 | }; | 
 |  | 
 | struct hv_pci_compl { | 
 | 	struct completion host_event; | 
 | 	s32 completion_status; | 
 | }; | 
 |  | 
 | static void hv_pci_onchannelcallback(void *context); | 
 |  | 
 | #ifdef CONFIG_X86 | 
 | #define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED | 
 | #define FLOW_HANDLER	handle_edge_irq | 
 | #define FLOW_NAME	"edge" | 
 |  | 
 | static int hv_pci_irqchip_init(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct irq_domain *hv_pci_get_root_domain(void) | 
 | { | 
 | 	return x86_vector_domain; | 
 | } | 
 |  | 
 | static unsigned int hv_msi_get_int_vector(struct irq_data *data) | 
 | { | 
 | 	struct irq_cfg *cfg = irqd_cfg(data); | 
 |  | 
 | 	return cfg->vector; | 
 | } | 
 |  | 
 | #define hv_msi_prepare		pci_msi_prepare | 
 |  | 
 | /** | 
 |  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current | 
 |  * affinity. | 
 |  * @data:	Describes the IRQ | 
 |  * | 
 |  * Build new a destination for the MSI and make a hypercall to | 
 |  * update the Interrupt Redirection Table. "Device Logical ID" | 
 |  * is built out of this PCI bus's instance GUID and the function | 
 |  * number of the device. | 
 |  */ | 
 | static void hv_arch_irq_unmask(struct irq_data *data) | 
 | { | 
 | 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data); | 
 | 	struct hv_retarget_device_interrupt *params; | 
 | 	struct tran_int_desc *int_desc; | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	const struct cpumask *dest; | 
 | 	cpumask_var_t tmp; | 
 | 	struct pci_bus *pbus; | 
 | 	struct pci_dev *pdev; | 
 | 	unsigned long flags; | 
 | 	u32 var_size = 0; | 
 | 	int cpu, nr_bank; | 
 | 	u64 res; | 
 |  | 
 | 	dest = irq_data_get_effective_affinity_mask(data); | 
 | 	pdev = msi_desc_to_pci_dev(msi_desc); | 
 | 	pbus = pdev->bus; | 
 | 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); | 
 | 	int_desc = data->chip_data; | 
 | 	if (!int_desc) { | 
 | 		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", | 
 | 			 __func__, data->irq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	params = *this_cpu_ptr(hyperv_pcpu_input_arg); | 
 | 	memset(params, 0, sizeof(*params)); | 
 | 	params->partition_id = HV_PARTITION_ID_SELF; | 
 | 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; | 
 | 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; | 
 | 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data; | 
 | 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | | 
 | 			   (hbus->hdev->dev_instance.b[4] << 16) | | 
 | 			   (hbus->hdev->dev_instance.b[7] << 8) | | 
 | 			   (hbus->hdev->dev_instance.b[6] & 0xf8) | | 
 | 			   PCI_FUNC(pdev->devfn); | 
 | 	params->int_target.vector = hv_msi_get_int_vector(data); | 
 |  | 
 | 	/* | 
 | 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by | 
 | 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a | 
 | 	 * spurious interrupt storm. Not doing so does not seem to have a | 
 | 	 * negative effect (yet?). | 
 | 	 */ | 
 |  | 
 | 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { | 
 | 		/* | 
 | 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the | 
 | 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides | 
 | 		 * with >64 VP support. | 
 | 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED | 
 | 		 * is not sufficient for this hypercall. | 
 | 		 */ | 
 | 		params->int_target.flags |= | 
 | 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; | 
 |  | 
 | 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { | 
 | 			res = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		cpumask_and(tmp, dest, cpu_online_mask); | 
 | 		nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); | 
 | 		free_cpumask_var(tmp); | 
 |  | 
 | 		if (nr_bank <= 0) { | 
 | 			res = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * var-sized hypercall, var-size starts after vp_mask (thus | 
 | 		 * vp_set.format does not count, but vp_set.valid_bank_mask | 
 | 		 * does). | 
 | 		 */ | 
 | 		var_size = 1 + nr_bank; | 
 | 	} else { | 
 | 		for_each_cpu_and(cpu, dest, cpu_online_mask) { | 
 | 			params->int_target.vp_mask |= | 
 | 				(1ULL << hv_cpu_number_to_vp_number(cpu)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), | 
 | 			      params, NULL); | 
 |  | 
 | out: | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	/* | 
 | 	 * During hibernation, when a CPU is offlined, the kernel tries | 
 | 	 * to move the interrupt to the remaining CPUs that haven't | 
 | 	 * been offlined yet. In this case, the below hv_do_hypercall() | 
 | 	 * always fails since the vmbus channel has been closed: | 
 | 	 * refer to cpu_disable_common() -> fixup_irqs() -> | 
 | 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). | 
 | 	 * | 
 | 	 * Suppress the error message for hibernation because the failure | 
 | 	 * during hibernation does not matter (at this time all the devices | 
 | 	 * have been frozen). Note: the correct affinity info is still updated | 
 | 	 * into the irqdata data structure in migrate_one_irq() -> | 
 | 	 * irq_do_set_affinity(), so later when the VM resumes, | 
 | 	 * hv_pci_restore_msi_state() is able to correctly restore the | 
 | 	 * interrupt with the correct affinity. | 
 | 	 */ | 
 | 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"%s() failed: %#llx", __func__, res); | 
 | } | 
 | #elif defined(CONFIG_ARM64) | 
 | /* | 
 |  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit | 
 |  * of room at the start to allow for SPIs to be specified through ACPI and | 
 |  * starting with a power of two to satisfy power of 2 multi-MSI requirement. | 
 |  */ | 
 | #define HV_PCI_MSI_SPI_START	64 | 
 | #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START) | 
 | #define DELIVERY_MODE		0 | 
 | #define FLOW_HANDLER		NULL | 
 | #define FLOW_NAME		NULL | 
 | #define hv_msi_prepare		NULL | 
 |  | 
 | struct hv_pci_chip_data { | 
 | 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); | 
 | 	struct mutex	map_lock; | 
 | }; | 
 |  | 
 | /* Hyper-V vPCI MSI GIC IRQ domain */ | 
 | static struct irq_domain *hv_msi_gic_irq_domain; | 
 |  | 
 | /* Hyper-V PCI MSI IRQ chip */ | 
 | static struct irq_chip hv_arm64_msi_irq_chip = { | 
 | 	.name = "MSI", | 
 | 	.irq_set_affinity = irq_chip_set_affinity_parent, | 
 | 	.irq_eoi = irq_chip_eoi_parent, | 
 | 	.irq_mask = irq_chip_mask_parent, | 
 | 	.irq_unmask = irq_chip_unmask_parent | 
 | }; | 
 |  | 
 | static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) | 
 | { | 
 | 	return irqd->parent_data->hwirq; | 
 | } | 
 |  | 
 | /* | 
 |  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from | 
 |  *			the bitmap. | 
 |  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from | 
 |  *			the parent domain. | 
 |  */ | 
 | static void hv_pci_vec_irq_free(struct irq_domain *domain, | 
 | 				unsigned int virq, | 
 | 				unsigned int nr_bm_irqs, | 
 | 				unsigned int nr_dom_irqs) | 
 | { | 
 | 	struct hv_pci_chip_data *chip_data = domain->host_data; | 
 | 	struct irq_data *d = irq_domain_get_irq_data(domain, virq); | 
 | 	int first = d->hwirq - HV_PCI_MSI_SPI_START; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&chip_data->map_lock); | 
 | 	bitmap_release_region(chip_data->spi_map, | 
 | 			      first, | 
 | 			      get_count_order(nr_bm_irqs)); | 
 | 	mutex_unlock(&chip_data->map_lock); | 
 | 	for (i = 0; i < nr_dom_irqs; i++) { | 
 | 		if (i) | 
 | 			d = irq_domain_get_irq_data(domain, virq + i); | 
 | 		irq_domain_reset_irq_data(d); | 
 | 	} | 
 |  | 
 | 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); | 
 | } | 
 |  | 
 | static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, | 
 | 				       unsigned int virq, | 
 | 				       unsigned int nr_irqs) | 
 | { | 
 | 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); | 
 | } | 
 |  | 
 | static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, | 
 | 				       unsigned int nr_irqs, | 
 | 				       irq_hw_number_t *hwirq) | 
 | { | 
 | 	struct hv_pci_chip_data *chip_data = domain->host_data; | 
 | 	int index; | 
 |  | 
 | 	/* Find and allocate region from the SPI bitmap */ | 
 | 	mutex_lock(&chip_data->map_lock); | 
 | 	index = bitmap_find_free_region(chip_data->spi_map, | 
 | 					HV_PCI_MSI_SPI_NR, | 
 | 					get_count_order(nr_irqs)); | 
 | 	mutex_unlock(&chip_data->map_lock); | 
 | 	if (index < 0) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	*hwirq = index + HV_PCI_MSI_SPI_START; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, | 
 | 					   unsigned int virq, | 
 | 					   irq_hw_number_t hwirq) | 
 | { | 
 | 	struct irq_fwspec fwspec; | 
 | 	struct irq_data *d; | 
 | 	int ret; | 
 |  | 
 | 	fwspec.fwnode = domain->parent->fwnode; | 
 | 	fwspec.param_count = 2; | 
 | 	fwspec.param[0] = hwirq; | 
 | 	fwspec.param[1] = IRQ_TYPE_EDGE_RISING; | 
 |  | 
 | 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Since the interrupt specifier is not coming from ACPI or DT, the | 
 | 	 * trigger type will need to be set explicitly. Otherwise, it will be | 
 | 	 * set to whatever is in the GIC configuration. | 
 | 	 */ | 
 | 	d = irq_domain_get_irq_data(domain->parent, virq); | 
 |  | 
 | 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); | 
 | } | 
 |  | 
 | static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, | 
 | 				       unsigned int virq, unsigned int nr_irqs, | 
 | 				       void *args) | 
 | { | 
 | 	irq_hw_number_t hwirq; | 
 | 	unsigned int i; | 
 | 	int ret; | 
 |  | 
 | 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, | 
 | 						      hwirq + i); | 
 | 		if (ret) { | 
 | 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, | 
 | 					      hwirq + i, | 
 | 					      &hv_arm64_msi_irq_chip, | 
 | 					      domain->host_data); | 
 | 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Pick the first cpu as the irq affinity that can be temporarily used for | 
 |  * composing MSI from the hypervisor. GIC will eventually set the right | 
 |  * affinity for the irq and the 'unmask' will retarget the interrupt to that | 
 |  * cpu. | 
 |  */ | 
 | static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, | 
 | 					  struct irq_data *irqd, bool reserve) | 
 | { | 
 | 	int cpu = cpumask_first(cpu_present_mask); | 
 |  | 
 | 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct irq_domain_ops hv_pci_domain_ops = { | 
 | 	.alloc	= hv_pci_vec_irq_domain_alloc, | 
 | 	.free	= hv_pci_vec_irq_domain_free, | 
 | 	.activate = hv_pci_vec_irq_domain_activate, | 
 | }; | 
 |  | 
 | static int hv_pci_irqchip_init(void) | 
 | { | 
 | 	static struct hv_pci_chip_data *chip_data; | 
 | 	struct fwnode_handle *fn = NULL; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); | 
 | 	if (!chip_data) | 
 | 		return ret; | 
 |  | 
 | 	mutex_init(&chip_data->map_lock); | 
 | 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); | 
 | 	if (!fn) | 
 | 		goto free_chip; | 
 |  | 
 | 	/* | 
 | 	 * IRQ domain once enabled, should not be removed since there is no | 
 | 	 * way to ensure that all the corresponding devices are also gone and | 
 | 	 * no interrupts will be generated. | 
 | 	 */ | 
 | 	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, | 
 | 							  fn, &hv_pci_domain_ops, | 
 | 							  chip_data); | 
 |  | 
 | 	if (!hv_msi_gic_irq_domain) { | 
 | 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); | 
 | 		goto free_chip; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_chip: | 
 | 	kfree(chip_data); | 
 | 	if (fn) | 
 | 		irq_domain_free_fwnode(fn); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct irq_domain *hv_pci_get_root_domain(void) | 
 | { | 
 | 	return hv_msi_gic_irq_domain; | 
 | } | 
 |  | 
 | /* | 
 |  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD | 
 |  * registers which Hyper-V already supports, so no hypercall needed. | 
 |  */ | 
 | static void hv_arch_irq_unmask(struct irq_data *data) { } | 
 | #endif /* CONFIG_ARM64 */ | 
 |  | 
 | /** | 
 |  * hv_pci_generic_compl() - Invoked for a completion packet | 
 |  * @context:		Set up by the sender of the packet. | 
 |  * @resp:		The response packet | 
 |  * @resp_packet_size:	Size in bytes of the packet | 
 |  * | 
 |  * This function is used to trigger an event and report status | 
 |  * for any message for which the completion packet contains a | 
 |  * status and nothing else. | 
 |  */ | 
 | static void hv_pci_generic_compl(void *context, struct pci_response *resp, | 
 | 				 int resp_packet_size) | 
 | { | 
 | 	struct hv_pci_compl *comp_pkt = context; | 
 |  | 
 | 	comp_pkt->completion_status = resp->status; | 
 | 	complete(&comp_pkt->host_event); | 
 | } | 
 |  | 
 | static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, | 
 | 						u32 wslot); | 
 |  | 
 | static void get_pcichild(struct hv_pci_dev *hpdev) | 
 | { | 
 | 	refcount_inc(&hpdev->refs); | 
 | } | 
 |  | 
 | static void put_pcichild(struct hv_pci_dev *hpdev) | 
 | { | 
 | 	if (refcount_dec_and_test(&hpdev->refs)) | 
 | 		kfree(hpdev); | 
 | } | 
 |  | 
 | /* | 
 |  * There is no good way to get notified from vmbus_onoffer_rescind(), | 
 |  * so let's use polling here, since this is not a hot path. | 
 |  */ | 
 | static int wait_for_response(struct hv_device *hdev, | 
 | 			     struct completion *comp) | 
 | { | 
 | 	while (true) { | 
 | 		if (hdev->channel->rescind) { | 
 | 			dev_warn_once(&hdev->device, "The device is gone.\n"); | 
 | 			return -ENODEV; | 
 | 		} | 
 |  | 
 | 		if (wait_for_completion_timeout(comp, HZ / 10)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * devfn_to_wslot() - Convert from Linux PCI slot to Windows | 
 |  * @devfn:	The Linux representation of PCI slot | 
 |  * | 
 |  * Windows uses a slightly different representation of PCI slot. | 
 |  * | 
 |  * Return: The Windows representation | 
 |  */ | 
 | static u32 devfn_to_wslot(int devfn) | 
 | { | 
 | 	union win_slot_encoding wslot; | 
 |  | 
 | 	wslot.slot = 0; | 
 | 	wslot.bits.dev = PCI_SLOT(devfn); | 
 | 	wslot.bits.func = PCI_FUNC(devfn); | 
 |  | 
 | 	return wslot.slot; | 
 | } | 
 |  | 
 | /** | 
 |  * wslot_to_devfn() - Convert from Windows PCI slot to Linux | 
 |  * @wslot:	The Windows representation of PCI slot | 
 |  * | 
 |  * Windows uses a slightly different representation of PCI slot. | 
 |  * | 
 |  * Return: The Linux representation | 
 |  */ | 
 | static int wslot_to_devfn(u32 wslot) | 
 | { | 
 | 	union win_slot_encoding slot_no; | 
 |  | 
 | 	slot_no.slot = wslot; | 
 | 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); | 
 | } | 
 |  | 
 | static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) | 
 | { | 
 | 	struct hv_mmio_read_input *in; | 
 | 	struct hv_mmio_read_output *out; | 
 | 	u64 ret; | 
 |  | 
 | 	/* | 
 | 	 * Must be called with interrupts disabled so it is safe | 
 | 	 * to use the per-cpu input argument page.  Use it for | 
 | 	 * both input and output. | 
 | 	 */ | 
 | 	in = *this_cpu_ptr(hyperv_pcpu_input_arg); | 
 | 	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); | 
 | 	in->gpa = gpa; | 
 | 	in->size = size; | 
 |  | 
 | 	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); | 
 | 	if (hv_result_success(ret)) { | 
 | 		switch (size) { | 
 | 		case 1: | 
 | 			*val = *(u8 *)(out->data); | 
 | 			break; | 
 | 		case 2: | 
 | 			*val = *(u16 *)(out->data); | 
 | 			break; | 
 | 		default: | 
 | 			*val = *(u32 *)(out->data); | 
 | 			break; | 
 | 		} | 
 | 	} else | 
 | 		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", | 
 | 				ret, gpa, size); | 
 | } | 
 |  | 
 | static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) | 
 | { | 
 | 	struct hv_mmio_write_input *in; | 
 | 	u64 ret; | 
 |  | 
 | 	/* | 
 | 	 * Must be called with interrupts disabled so it is safe | 
 | 	 * to use the per-cpu input argument memory. | 
 | 	 */ | 
 | 	in = *this_cpu_ptr(hyperv_pcpu_input_arg); | 
 | 	in->gpa = gpa; | 
 | 	in->size = size; | 
 | 	switch (size) { | 
 | 	case 1: | 
 | 		*(u8 *)(in->data) = val; | 
 | 		break; | 
 | 	case 2: | 
 | 		*(u16 *)(in->data) = val; | 
 | 		break; | 
 | 	default: | 
 | 		*(u32 *)(in->data) = val; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); | 
 | 	if (!hv_result_success(ret)) | 
 | 		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", | 
 | 				ret, gpa, size); | 
 | } | 
 |  | 
 | /* | 
 |  * PCI Configuration Space for these root PCI buses is implemented as a pair | 
 |  * of pages in memory-mapped I/O space.  Writing to the first page chooses | 
 |  * the PCI function being written or read.  Once the first page has been | 
 |  * written to, the following page maps in the entire configuration space of | 
 |  * the function. | 
 |  */ | 
 |  | 
 | /** | 
 |  * _hv_pcifront_read_config() - Internal PCI config read | 
 |  * @hpdev:	The PCI driver's representation of the device | 
 |  * @where:	Offset within config space | 
 |  * @size:	Size of the transfer | 
 |  * @val:	Pointer to the buffer receiving the data | 
 |  */ | 
 | static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, | 
 | 				     int size, u32 *val) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hpdev->hbus; | 
 | 	struct device *dev = &hbus->hdev->device; | 
 | 	int offset = where + CFG_PAGE_OFFSET; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * If the attempt is to read the IDs or the ROM BAR, simulate that. | 
 | 	 */ | 
 | 	if (where + size <= PCI_COMMAND) { | 
 | 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); | 
 | 	} else if (where >= PCI_CLASS_REVISION && where + size <= | 
 | 		   PCI_CACHE_LINE_SIZE) { | 
 | 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where - | 
 | 		       PCI_CLASS_REVISION, size); | 
 | 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= | 
 | 		   PCI_ROM_ADDRESS) { | 
 | 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - | 
 | 		       PCI_SUBSYSTEM_VENDOR_ID, size); | 
 | 	} else if (where >= PCI_ROM_ADDRESS && where + size <= | 
 | 		   PCI_CAPABILITY_LIST) { | 
 | 		/* ROM BARs are unimplemented */ | 
 | 		*val = 0; | 
 | 	} else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || | 
 | 		   (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { | 
 | 		/* | 
 | 		 * Interrupt Line and Interrupt PIN are hard-wired to zero | 
 | 		 * because this front-end only supports message-signaled | 
 | 		 * interrupts. | 
 | 		 */ | 
 | 		*val = 0; | 
 | 	} else if (where + size <= CFG_PAGE_SIZE) { | 
 |  | 
 | 		spin_lock_irqsave(&hbus->config_lock, flags); | 
 | 		if (hbus->use_calls) { | 
 | 			phys_addr_t addr = hbus->mem_config->start + offset; | 
 |  | 
 | 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4, | 
 | 						hpdev->desc.win_slot.slot); | 
 | 			hv_pci_read_mmio(dev, addr, size, val); | 
 | 		} else { | 
 | 			void __iomem *addr = hbus->cfg_addr + offset; | 
 |  | 
 | 			/* Choose the function to be read. (See comment above) */ | 
 | 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); | 
 | 			/* Make sure the function was chosen before reading. */ | 
 | 			mb(); | 
 | 			/* Read from that function's config space. */ | 
 | 			switch (size) { | 
 | 			case 1: | 
 | 				*val = readb(addr); | 
 | 				break; | 
 | 			case 2: | 
 | 				*val = readw(addr); | 
 | 				break; | 
 | 			default: | 
 | 				*val = readl(addr); | 
 | 				break; | 
 | 			} | 
 | 			/* | 
 | 			 * Make sure the read was done before we release the | 
 | 			 * spinlock allowing consecutive reads/writes. | 
 | 			 */ | 
 | 			mb(); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hbus->config_lock, flags); | 
 | 	} else { | 
 | 		dev_err(dev, "Attempt to read beyond a function's config space.\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hpdev->hbus; | 
 | 	struct device *dev = &hbus->hdev->device; | 
 | 	u32 val; | 
 | 	u16 ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&hbus->config_lock, flags); | 
 |  | 
 | 	if (hbus->use_calls) { | 
 | 		phys_addr_t addr = hbus->mem_config->start + | 
 | 					 CFG_PAGE_OFFSET + PCI_VENDOR_ID; | 
 |  | 
 | 		hv_pci_write_mmio(dev, hbus->mem_config->start, 4, | 
 | 					hpdev->desc.win_slot.slot); | 
 | 		hv_pci_read_mmio(dev, addr, 2, &val); | 
 | 		ret = val;  /* Truncates to 16 bits */ | 
 | 	} else { | 
 | 		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + | 
 | 					     PCI_VENDOR_ID; | 
 | 		/* Choose the function to be read. (See comment above) */ | 
 | 		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); | 
 | 		/* Make sure the function was chosen before we start reading. */ | 
 | 		mb(); | 
 | 		/* Read from that function's config space. */ | 
 | 		ret = readw(addr); | 
 | 		/* | 
 | 		 * mb() is not required here, because the | 
 | 		 * spin_unlock_irqrestore() is a barrier. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&hbus->config_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * _hv_pcifront_write_config() - Internal PCI config write | 
 |  * @hpdev:	The PCI driver's representation of the device | 
 |  * @where:	Offset within config space | 
 |  * @size:	Size of the transfer | 
 |  * @val:	The data being transferred | 
 |  */ | 
 | static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, | 
 | 				      int size, u32 val) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hpdev->hbus; | 
 | 	struct device *dev = &hbus->hdev->device; | 
 | 	int offset = where + CFG_PAGE_OFFSET; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (where >= PCI_SUBSYSTEM_VENDOR_ID && | 
 | 	    where + size <= PCI_CAPABILITY_LIST) { | 
 | 		/* SSIDs and ROM BARs are read-only */ | 
 | 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { | 
 | 		spin_lock_irqsave(&hbus->config_lock, flags); | 
 |  | 
 | 		if (hbus->use_calls) { | 
 | 			phys_addr_t addr = hbus->mem_config->start + offset; | 
 |  | 
 | 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4, | 
 | 						hpdev->desc.win_slot.slot); | 
 | 			hv_pci_write_mmio(dev, addr, size, val); | 
 | 		} else { | 
 | 			void __iomem *addr = hbus->cfg_addr + offset; | 
 |  | 
 | 			/* Choose the function to write. (See comment above) */ | 
 | 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); | 
 | 			/* Make sure the function was chosen before writing. */ | 
 | 			wmb(); | 
 | 			/* Write to that function's config space. */ | 
 | 			switch (size) { | 
 | 			case 1: | 
 | 				writeb(val, addr); | 
 | 				break; | 
 | 			case 2: | 
 | 				writew(val, addr); | 
 | 				break; | 
 | 			default: | 
 | 				writel(val, addr); | 
 | 				break; | 
 | 			} | 
 | 			/* | 
 | 			 * Make sure the write was done before we release the | 
 | 			 * spinlock allowing consecutive reads/writes. | 
 | 			 */ | 
 | 			mb(); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hbus->config_lock, flags); | 
 | 	} else { | 
 | 		dev_err(dev, "Attempt to write beyond a function's config space.\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pcifront_read_config() - Read configuration space | 
 |  * @bus: PCI Bus structure | 
 |  * @devfn: Device/function | 
 |  * @where: Offset from base | 
 |  * @size: Byte/word/dword | 
 |  * @val: Value to be read | 
 |  * | 
 |  * Return: PCIBIOS_SUCCESSFUL on success | 
 |  *	   PCIBIOS_DEVICE_NOT_FOUND on failure | 
 |  */ | 
 | static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, | 
 | 				   int where, int size, u32 *val) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = | 
 | 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata); | 
 | 	struct hv_pci_dev *hpdev; | 
 |  | 
 | 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); | 
 | 	if (!hpdev) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	_hv_pcifront_read_config(hpdev, where, size, val); | 
 |  | 
 | 	put_pcichild(hpdev); | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pcifront_write_config() - Write configuration space | 
 |  * @bus: PCI Bus structure | 
 |  * @devfn: Device/function | 
 |  * @where: Offset from base | 
 |  * @size: Byte/word/dword | 
 |  * @val: Value to be written to device | 
 |  * | 
 |  * Return: PCIBIOS_SUCCESSFUL on success | 
 |  *	   PCIBIOS_DEVICE_NOT_FOUND on failure | 
 |  */ | 
 | static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, | 
 | 				    int where, int size, u32 val) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = | 
 | 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata); | 
 | 	struct hv_pci_dev *hpdev; | 
 |  | 
 | 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); | 
 | 	if (!hpdev) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	_hv_pcifront_write_config(hpdev, where, size, val); | 
 |  | 
 | 	put_pcichild(hpdev); | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 |  | 
 | /* PCIe operations */ | 
 | static struct pci_ops hv_pcifront_ops = { | 
 | 	.read  = hv_pcifront_read_config, | 
 | 	.write = hv_pcifront_write_config, | 
 | }; | 
 |  | 
 | /* | 
 |  * Paravirtual backchannel | 
 |  * | 
 |  * Hyper-V SR-IOV provides a backchannel mechanism in software for | 
 |  * communication between a VF driver and a PF driver.  These | 
 |  * "configuration blocks" are similar in concept to PCI configuration space, | 
 |  * but instead of doing reads and writes in 32-bit chunks through a very slow | 
 |  * path, packets of up to 128 bytes can be sent or received asynchronously. | 
 |  * | 
 |  * Nearly every SR-IOV device contains just such a communications channel in | 
 |  * hardware, so using this one in software is usually optional.  Using the | 
 |  * software channel, however, allows driver implementers to leverage software | 
 |  * tools that fuzz the communications channel looking for vulnerabilities. | 
 |  * | 
 |  * The usage model for these packets puts the responsibility for reading or | 
 |  * writing on the VF driver.  The VF driver sends a read or a write packet, | 
 |  * indicating which "block" is being referred to by number. | 
 |  * | 
 |  * If the PF driver wishes to initiate communication, it can "invalidate" one or | 
 |  * more of the first 64 blocks.  This invalidation is delivered via a callback | 
 |  * supplied by the VF driver by this driver. | 
 |  * | 
 |  * No protocol is implied, except that supplied by the PF and VF drivers. | 
 |  */ | 
 |  | 
 | struct hv_read_config_compl { | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	void *buf; | 
 | 	unsigned int len; | 
 | 	unsigned int bytes_returned; | 
 | }; | 
 |  | 
 | /** | 
 |  * hv_pci_read_config_compl() - Invoked when a response packet | 
 |  * for a read config block operation arrives. | 
 |  * @context:		Identifies the read config operation | 
 |  * @resp:		The response packet itself | 
 |  * @resp_packet_size:	Size in bytes of the response packet | 
 |  */ | 
 | static void hv_pci_read_config_compl(void *context, struct pci_response *resp, | 
 | 				     int resp_packet_size) | 
 | { | 
 | 	struct hv_read_config_compl *comp = context; | 
 | 	struct pci_read_block_response *read_resp = | 
 | 		(struct pci_read_block_response *)resp; | 
 | 	unsigned int data_len, hdr_len; | 
 |  | 
 | 	hdr_len = offsetof(struct pci_read_block_response, bytes); | 
 | 	if (resp_packet_size < hdr_len) { | 
 | 		comp->comp_pkt.completion_status = -1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	data_len = resp_packet_size - hdr_len; | 
 | 	if (data_len > 0 && read_resp->status == 0) { | 
 | 		comp->bytes_returned = min(comp->len, data_len); | 
 | 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); | 
 | 	} else { | 
 | 		comp->bytes_returned = 0; | 
 | 	} | 
 |  | 
 | 	comp->comp_pkt.completion_status = read_resp->status; | 
 | out: | 
 | 	complete(&comp->comp_pkt.host_event); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_read_config_block() - Sends a read config block request to | 
 |  * the back-end driver running in the Hyper-V parent partition. | 
 |  * @pdev:		The PCI driver's representation for this device. | 
 |  * @buf:		Buffer into which the config block will be copied. | 
 |  * @len:		Size in bytes of buf. | 
 |  * @block_id:		Identifies the config block which has been requested. | 
 |  * @bytes_returned:	Size which came back from the back-end driver. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_read_config_block(struct pci_dev *pdev, void *buf, | 
 | 				unsigned int len, unsigned int block_id, | 
 | 				unsigned int *bytes_returned) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = | 
 | 		container_of(pdev->bus->sysdata, struct hv_pcibus_device, | 
 | 			     sysdata); | 
 | 	struct { | 
 | 		struct pci_packet pkt; | 
 | 		char buf[sizeof(struct pci_read_block)]; | 
 | 	} pkt; | 
 | 	struct hv_read_config_compl comp_pkt; | 
 | 	struct pci_read_block *read_blk; | 
 | 	int ret; | 
 |  | 
 | 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	init_completion(&comp_pkt.comp_pkt.host_event); | 
 | 	comp_pkt.buf = buf; | 
 | 	comp_pkt.len = len; | 
 |  | 
 | 	memset(&pkt, 0, sizeof(pkt)); | 
 | 	pkt.pkt.completion_func = hv_pci_read_config_compl; | 
 | 	pkt.pkt.compl_ctxt = &comp_pkt; | 
 | 	read_blk = (struct pci_read_block *)&pkt.pkt.message; | 
 | 	read_blk->message_type.type = PCI_READ_BLOCK; | 
 | 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); | 
 | 	read_blk->block_id = block_id; | 
 | 	read_blk->bytes_requested = len; | 
 |  | 
 | 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, | 
 | 			       sizeof(*read_blk), (unsigned long)&pkt.pkt, | 
 | 			       VM_PKT_DATA_INBAND, | 
 | 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (comp_pkt.comp_pkt.completion_status != 0 || | 
 | 	    comp_pkt.bytes_returned == 0) { | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"Read Config Block failed: 0x%x, bytes_returned=%d\n", | 
 | 			comp_pkt.comp_pkt.completion_status, | 
 | 			comp_pkt.bytes_returned); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	*bytes_returned = comp_pkt.bytes_returned; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_write_config_compl() - Invoked when a response packet for a write | 
 |  * config block operation arrives. | 
 |  * @context:		Identifies the write config operation | 
 |  * @resp:		The response packet itself | 
 |  * @resp_packet_size:	Size in bytes of the response packet | 
 |  */ | 
 | static void hv_pci_write_config_compl(void *context, struct pci_response *resp, | 
 | 				      int resp_packet_size) | 
 | { | 
 | 	struct hv_pci_compl *comp_pkt = context; | 
 |  | 
 | 	comp_pkt->completion_status = resp->status; | 
 | 	complete(&comp_pkt->host_event); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_write_config_block() - Sends a write config block request to the | 
 |  * back-end driver running in the Hyper-V parent partition. | 
 |  * @pdev:		The PCI driver's representation for this device. | 
 |  * @buf:		Buffer from which the config block will	be copied. | 
 |  * @len:		Size in bytes of buf. | 
 |  * @block_id:		Identifies the config block which is being written. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_write_config_block(struct pci_dev *pdev, void *buf, | 
 | 				unsigned int len, unsigned int block_id) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = | 
 | 		container_of(pdev->bus->sysdata, struct hv_pcibus_device, | 
 | 			     sysdata); | 
 | 	struct { | 
 | 		struct pci_packet pkt; | 
 | 		char buf[sizeof(struct pci_write_block)]; | 
 | 		u32 reserved; | 
 | 	} pkt; | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	struct pci_write_block *write_blk; | 
 | 	u32 pkt_size; | 
 | 	int ret; | 
 |  | 
 | 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	init_completion(&comp_pkt.host_event); | 
 |  | 
 | 	memset(&pkt, 0, sizeof(pkt)); | 
 | 	pkt.pkt.completion_func = hv_pci_write_config_compl; | 
 | 	pkt.pkt.compl_ctxt = &comp_pkt; | 
 | 	write_blk = (struct pci_write_block *)&pkt.pkt.message; | 
 | 	write_blk->message_type.type = PCI_WRITE_BLOCK; | 
 | 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); | 
 | 	write_blk->block_id = block_id; | 
 | 	write_blk->byte_count = len; | 
 | 	memcpy(write_blk->bytes, buf, len); | 
 | 	pkt_size = offsetof(struct pci_write_block, bytes) + len; | 
 | 	/* | 
 | 	 * This quirk is required on some hosts shipped around 2018, because | 
 | 	 * these hosts don't check the pkt_size correctly (new hosts have been | 
 | 	 * fixed since early 2019). The quirk is also safe on very old hosts | 
 | 	 * and new hosts, because, on them, what really matters is the length | 
 | 	 * specified in write_blk->byte_count. | 
 | 	 */ | 
 | 	pkt_size += sizeof(pkt.reserved); | 
 |  | 
 | 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, | 
 | 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, | 
 | 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (comp_pkt.completion_status != 0) { | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"Write Config Block failed: 0x%x\n", | 
 | 			comp_pkt.completion_status); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_register_block_invalidate() - Invoked when a config block invalidation | 
 |  * arrives from the back-end driver. | 
 |  * @pdev:		The PCI driver's representation for this device. | 
 |  * @context:		Identifies the device. | 
 |  * @block_invalidate:	Identifies all of the blocks being invalidated. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, | 
 | 					void (*block_invalidate)(void *context, | 
 | 								 u64 block_mask)) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = | 
 | 		container_of(pdev->bus->sysdata, struct hv_pcibus_device, | 
 | 			     sysdata); | 
 | 	struct hv_pci_dev *hpdev; | 
 |  | 
 | 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); | 
 | 	if (!hpdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	hpdev->block_invalidate = block_invalidate; | 
 | 	hpdev->invalidate_context = context; | 
 |  | 
 | 	put_pcichild(hpdev); | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | /* Interrupt management hooks */ | 
 | static void hv_int_desc_free(struct hv_pci_dev *hpdev, | 
 | 			     struct tran_int_desc *int_desc) | 
 | { | 
 | 	struct pci_delete_interrupt *int_pkt; | 
 | 	struct { | 
 | 		struct pci_packet pkt; | 
 | 		u8 buffer[sizeof(struct pci_delete_interrupt)]; | 
 | 	} ctxt; | 
 |  | 
 | 	if (!int_desc->vector_count) { | 
 | 		kfree(int_desc); | 
 | 		return; | 
 | 	} | 
 | 	memset(&ctxt, 0, sizeof(ctxt)); | 
 | 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; | 
 | 	int_pkt->message_type.type = | 
 | 		PCI_DELETE_INTERRUPT_MESSAGE; | 
 | 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot; | 
 | 	int_pkt->int_desc = *int_desc; | 
 | 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), | 
 | 			 0, VM_PKT_DATA_INBAND, 0); | 
 | 	kfree(int_desc); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_msi_free() - Free the MSI. | 
 |  * @domain:	The interrupt domain pointer | 
 |  * @info:	Extra MSI-related context | 
 |  * @irq:	Identifies the IRQ. | 
 |  * | 
 |  * The Hyper-V parent partition and hypervisor are tracking the | 
 |  * messages that are in use, keeping the interrupt redirection | 
 |  * table up to date.  This callback sends a message that frees | 
 |  * the IRT entry and related tracking nonsense. | 
 |  */ | 
 | static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, | 
 | 			unsigned int irq) | 
 | { | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	struct pci_dev *pdev; | 
 | 	struct tran_int_desc *int_desc; | 
 | 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); | 
 | 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data); | 
 |  | 
 | 	pdev = msi_desc_to_pci_dev(msi); | 
 | 	hbus = info->data; | 
 | 	int_desc = irq_data_get_irq_chip_data(irq_data); | 
 | 	if (!int_desc) | 
 | 		return; | 
 |  | 
 | 	irq_data->chip_data = NULL; | 
 | 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); | 
 | 	if (!hpdev) { | 
 | 		kfree(int_desc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hv_int_desc_free(hpdev, int_desc); | 
 | 	put_pcichild(hpdev); | 
 | } | 
 |  | 
 | static void hv_irq_mask(struct irq_data *data) | 
 | { | 
 | 	pci_msi_mask_irq(data); | 
 | 	if (data->parent_data->chip->irq_mask) | 
 | 		irq_chip_mask_parent(data); | 
 | } | 
 |  | 
 | static void hv_irq_unmask(struct irq_data *data) | 
 | { | 
 | 	hv_arch_irq_unmask(data); | 
 |  | 
 | 	if (data->parent_data->chip->irq_unmask) | 
 | 		irq_chip_unmask_parent(data); | 
 | 	pci_msi_unmask_irq(data); | 
 | } | 
 |  | 
 | struct compose_comp_ctxt { | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	struct tran_int_desc int_desc; | 
 | }; | 
 |  | 
 | static void hv_pci_compose_compl(void *context, struct pci_response *resp, | 
 | 				 int resp_packet_size) | 
 | { | 
 | 	struct compose_comp_ctxt *comp_pkt = context; | 
 | 	struct pci_create_int_response *int_resp = | 
 | 		(struct pci_create_int_response *)resp; | 
 |  | 
 | 	if (resp_packet_size < sizeof(*int_resp)) { | 
 | 		comp_pkt->comp_pkt.completion_status = -1; | 
 | 		goto out; | 
 | 	} | 
 | 	comp_pkt->comp_pkt.completion_status = resp->status; | 
 | 	comp_pkt->int_desc = int_resp->int_desc; | 
 | out: | 
 | 	complete(&comp_pkt->comp_pkt.host_event); | 
 | } | 
 |  | 
 | static u32 hv_compose_msi_req_v1( | 
 | 	struct pci_create_interrupt *int_pkt, | 
 | 	u32 slot, u8 vector, u16 vector_count) | 
 | { | 
 | 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; | 
 | 	int_pkt->wslot.slot = slot; | 
 | 	int_pkt->int_desc.vector = vector; | 
 | 	int_pkt->int_desc.vector_count = vector_count; | 
 | 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE; | 
 |  | 
 | 	/* | 
 | 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in | 
 | 	 * hv_irq_unmask(). | 
 | 	 */ | 
 | 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; | 
 |  | 
 | 	return sizeof(*int_pkt); | 
 | } | 
 |  | 
 | /* | 
 |  * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and | 
 |  * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be | 
 |  * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V | 
 |  * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is | 
 |  * not irrelevant because Hyper-V chooses the physical CPU to handle the | 
 |  * interrupts based on the vCPU specified in message sent to the vPCI VSP in | 
 |  * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, | 
 |  * but assigning too many vPCI device interrupts to the same pCPU can cause a | 
 |  * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V | 
 |  * to spread out the pCPUs that it selects. | 
 |  * | 
 |  * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() | 
 |  * to always return the same dummy vCPU, because a second call to | 
 |  * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a | 
 |  * new pCPU for the interrupt. But for the multi-MSI case, the second call to | 
 |  * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the | 
 |  * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that | 
 |  * the pCPUs are spread out. All interrupts for a multi-MSI device end up using | 
 |  * the same pCPU, even though the vCPUs will be spread out by later calls | 
 |  * to hv_irq_unmask(), but that is the best we can do now. | 
 |  * | 
 |  * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* | 
 |  * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an | 
 |  * enhancement is planned for a future version. With that enhancement, the | 
 |  * dummy vCPU selection won't matter, and interrupts for the same multi-MSI | 
 |  * device will be spread across multiple pCPUs. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten | 
 |  * by subsequent retarget in hv_irq_unmask(). | 
 |  */ | 
 | static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) | 
 | { | 
 | 	return cpumask_first_and(affinity, cpu_online_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. | 
 |  */ | 
 | static int hv_compose_multi_msi_req_get_cpu(void) | 
 | { | 
 | 	static DEFINE_SPINLOCK(multi_msi_cpu_lock); | 
 |  | 
 | 	/* -1 means starting with CPU 0 */ | 
 | 	static int cpu_next = -1; | 
 |  | 
 | 	unsigned long flags; | 
 | 	int cpu; | 
 |  | 
 | 	spin_lock_irqsave(&multi_msi_cpu_lock, flags); | 
 |  | 
 | 	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids, | 
 | 				     false); | 
 | 	cpu = cpu_next; | 
 |  | 
 | 	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static u32 hv_compose_msi_req_v2( | 
 | 	struct pci_create_interrupt2 *int_pkt, int cpu, | 
 | 	u32 slot, u8 vector, u16 vector_count) | 
 | { | 
 | 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; | 
 | 	int_pkt->wslot.slot = slot; | 
 | 	int_pkt->int_desc.vector = vector; | 
 | 	int_pkt->int_desc.vector_count = vector_count; | 
 | 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE; | 
 | 	int_pkt->int_desc.processor_array[0] = | 
 | 		hv_cpu_number_to_vp_number(cpu); | 
 | 	int_pkt->int_desc.processor_count = 1; | 
 |  | 
 | 	return sizeof(*int_pkt); | 
 | } | 
 |  | 
 | static u32 hv_compose_msi_req_v3( | 
 | 	struct pci_create_interrupt3 *int_pkt, int cpu, | 
 | 	u32 slot, u32 vector, u16 vector_count) | 
 | { | 
 | 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; | 
 | 	int_pkt->wslot.slot = slot; | 
 | 	int_pkt->int_desc.vector = vector; | 
 | 	int_pkt->int_desc.reserved = 0; | 
 | 	int_pkt->int_desc.vector_count = vector_count; | 
 | 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE; | 
 | 	int_pkt->int_desc.processor_array[0] = | 
 | 		hv_cpu_number_to_vp_number(cpu); | 
 | 	int_pkt->int_desc.processor_count = 1; | 
 |  | 
 | 	return sizeof(*int_pkt); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_compose_msi_msg() - Supplies a valid MSI address/data | 
 |  * @data:	Everything about this MSI | 
 |  * @msg:	Buffer that is filled in by this function | 
 |  * | 
 |  * This function unpacks the IRQ looking for target CPU set, IDT | 
 |  * vector and mode and sends a message to the parent partition | 
 |  * asking for a mapping for that tuple in this partition.  The | 
 |  * response supplies a data value and address to which that data | 
 |  * should be written to trigger that interrupt. | 
 |  */ | 
 | static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) | 
 | { | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	struct vmbus_channel *channel; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	struct pci_bus *pbus; | 
 | 	struct pci_dev *pdev; | 
 | 	const struct cpumask *dest; | 
 | 	struct compose_comp_ctxt comp; | 
 | 	struct tran_int_desc *int_desc; | 
 | 	struct msi_desc *msi_desc; | 
 | 	/* | 
 | 	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 | 
 | 	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. | 
 | 	 */ | 
 | 	u16 vector_count; | 
 | 	u32 vector; | 
 | 	struct { | 
 | 		struct pci_packet pci_pkt; | 
 | 		union { | 
 | 			struct pci_create_interrupt v1; | 
 | 			struct pci_create_interrupt2 v2; | 
 | 			struct pci_create_interrupt3 v3; | 
 | 		} int_pkts; | 
 | 	} __packed ctxt; | 
 | 	bool multi_msi; | 
 | 	u64 trans_id; | 
 | 	u32 size; | 
 | 	int ret; | 
 | 	int cpu; | 
 |  | 
 | 	msi_desc  = irq_data_get_msi_desc(data); | 
 | 	multi_msi = !msi_desc->pci.msi_attrib.is_msix && | 
 | 		    msi_desc->nvec_used > 1; | 
 |  | 
 | 	/* Reuse the previous allocation */ | 
 | 	if (data->chip_data && multi_msi) { | 
 | 		int_desc = data->chip_data; | 
 | 		msg->address_hi = int_desc->address >> 32; | 
 | 		msg->address_lo = int_desc->address & 0xffffffff; | 
 | 		msg->data = int_desc->data; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pdev = msi_desc_to_pci_dev(msi_desc); | 
 | 	dest = irq_data_get_effective_affinity_mask(data); | 
 | 	pbus = pdev->bus; | 
 | 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); | 
 | 	channel = hbus->hdev->channel; | 
 | 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); | 
 | 	if (!hpdev) | 
 | 		goto return_null_message; | 
 |  | 
 | 	/* Free any previous message that might have already been composed. */ | 
 | 	if (data->chip_data && !multi_msi) { | 
 | 		int_desc = data->chip_data; | 
 | 		data->chip_data = NULL; | 
 | 		hv_int_desc_free(hpdev, int_desc); | 
 | 	} | 
 |  | 
 | 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); | 
 | 	if (!int_desc) | 
 | 		goto drop_reference; | 
 |  | 
 | 	if (multi_msi) { | 
 | 		/* | 
 | 		 * If this is not the first MSI of Multi MSI, we already have | 
 | 		 * a mapping.  Can exit early. | 
 | 		 */ | 
 | 		if (msi_desc->irq != data->irq) { | 
 | 			data->chip_data = int_desc; | 
 | 			int_desc->address = msi_desc->msg.address_lo | | 
 | 					    (u64)msi_desc->msg.address_hi << 32; | 
 | 			int_desc->data = msi_desc->msg.data + | 
 | 					 (data->irq - msi_desc->irq); | 
 | 			msg->address_hi = msi_desc->msg.address_hi; | 
 | 			msg->address_lo = msi_desc->msg.address_lo; | 
 | 			msg->data = int_desc->data; | 
 | 			put_pcichild(hpdev); | 
 | 			return; | 
 | 		} | 
 | 		/* | 
 | 		 * The vector we select here is a dummy value.  The correct | 
 | 		 * value gets sent to the hypervisor in unmask().  This needs | 
 | 		 * to be aligned with the count, and also not zero.  Multi-msi | 
 | 		 * is powers of 2 up to 32, so 32 will always work here. | 
 | 		 */ | 
 | 		vector = 32; | 
 | 		vector_count = msi_desc->nvec_used; | 
 | 		cpu = hv_compose_multi_msi_req_get_cpu(); | 
 | 	} else { | 
 | 		vector = hv_msi_get_int_vector(data); | 
 | 		vector_count = 1; | 
 | 		cpu = hv_compose_msi_req_get_cpu(dest); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' | 
 | 	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly | 
 | 	 * for better readability. | 
 | 	 */ | 
 | 	memset(&ctxt, 0, sizeof(ctxt)); | 
 | 	init_completion(&comp.comp_pkt.host_event); | 
 | 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl; | 
 | 	ctxt.pci_pkt.compl_ctxt = ∁ | 
 |  | 
 | 	switch (hbus->protocol_version) { | 
 | 	case PCI_PROTOCOL_VERSION_1_1: | 
 | 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, | 
 | 					hpdev->desc.win_slot.slot, | 
 | 					(u8)vector, | 
 | 					vector_count); | 
 | 		break; | 
 |  | 
 | 	case PCI_PROTOCOL_VERSION_1_2: | 
 | 	case PCI_PROTOCOL_VERSION_1_3: | 
 | 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, | 
 | 					cpu, | 
 | 					hpdev->desc.win_slot.slot, | 
 | 					(u8)vector, | 
 | 					vector_count); | 
 | 		break; | 
 |  | 
 | 	case PCI_PROTOCOL_VERSION_1_4: | 
 | 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, | 
 | 					cpu, | 
 | 					hpdev->desc.win_slot.slot, | 
 | 					vector, | 
 | 					vector_count); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* As we only negotiate protocol versions known to this driver, | 
 | 		 * this path should never hit. However, this is it not a hot | 
 | 		 * path so we print a message to aid future updates. | 
 | 		 */ | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"Unexpected vPCI protocol, update driver."); | 
 | 		goto free_int_desc; | 
 | 	} | 
 |  | 
 | 	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, | 
 | 				     size, (unsigned long)&ctxt.pci_pkt, | 
 | 				     &trans_id, VM_PKT_DATA_INBAND, | 
 | 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 	if (ret) { | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"Sending request for interrupt failed: 0x%x", | 
 | 			comp.comp_pkt.completion_status); | 
 | 		goto free_int_desc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prevents hv_pci_onchannelcallback() from running concurrently | 
 | 	 * in the tasklet. | 
 | 	 */ | 
 | 	tasklet_disable_in_atomic(&channel->callback_event); | 
 |  | 
 | 	/* | 
 | 	 * Since this function is called with IRQ locks held, can't | 
 | 	 * do normal wait for completion; instead poll. | 
 | 	 */ | 
 | 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* 0xFFFF means an invalid PCI VENDOR ID. */ | 
 | 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { | 
 | 			dev_err_once(&hbus->hdev->device, | 
 | 				     "the device has gone\n"); | 
 | 			goto enable_tasklet; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure that the ring buffer data structure doesn't get | 
 | 		 * freed while we dereference the ring buffer pointer.  Test | 
 | 		 * for the channel's onchannel_callback being NULL within a | 
 | 		 * sched_lock critical section.  See also the inline comments | 
 | 		 * in vmbus_reset_channel_cb(). | 
 | 		 */ | 
 | 		spin_lock_irqsave(&channel->sched_lock, flags); | 
 | 		if (unlikely(channel->onchannel_callback == NULL)) { | 
 | 			spin_unlock_irqrestore(&channel->sched_lock, flags); | 
 | 			goto enable_tasklet; | 
 | 		} | 
 | 		hv_pci_onchannelcallback(hbus); | 
 | 		spin_unlock_irqrestore(&channel->sched_lock, flags); | 
 |  | 
 | 		udelay(100); | 
 | 	} | 
 |  | 
 | 	tasklet_enable(&channel->callback_event); | 
 |  | 
 | 	if (comp.comp_pkt.completion_status < 0) { | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"Request for interrupt failed: 0x%x", | 
 | 			comp.comp_pkt.completion_status); | 
 | 		goto free_int_desc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Record the assignment so that this can be unwound later. Using | 
 | 	 * irq_set_chip_data() here would be appropriate, but the lock it takes | 
 | 	 * is already held. | 
 | 	 */ | 
 | 	*int_desc = comp.int_desc; | 
 | 	data->chip_data = int_desc; | 
 |  | 
 | 	/* Pass up the result. */ | 
 | 	msg->address_hi = comp.int_desc.address >> 32; | 
 | 	msg->address_lo = comp.int_desc.address & 0xffffffff; | 
 | 	msg->data = comp.int_desc.data; | 
 |  | 
 | 	put_pcichild(hpdev); | 
 | 	return; | 
 |  | 
 | enable_tasklet: | 
 | 	tasklet_enable(&channel->callback_event); | 
 | 	/* | 
 | 	 * The completion packet on the stack becomes invalid after 'return'; | 
 | 	 * remove the ID from the VMbus requestor if the identifier is still | 
 | 	 * mapped to/associated with the packet.  (The identifier could have | 
 | 	 * been 're-used', i.e., already removed and (re-)mapped.) | 
 | 	 * | 
 | 	 * Cf. hv_pci_onchannelcallback(). | 
 | 	 */ | 
 | 	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); | 
 | free_int_desc: | 
 | 	kfree(int_desc); | 
 | drop_reference: | 
 | 	put_pcichild(hpdev); | 
 | return_null_message: | 
 | 	msg->address_hi = 0; | 
 | 	msg->address_lo = 0; | 
 | 	msg->data = 0; | 
 | } | 
 |  | 
 | /* HW Interrupt Chip Descriptor */ | 
 | static struct irq_chip hv_msi_irq_chip = { | 
 | 	.name			= "Hyper-V PCIe MSI", | 
 | 	.irq_compose_msi_msg	= hv_compose_msi_msg, | 
 | 	.irq_set_affinity	= irq_chip_set_affinity_parent, | 
 | #ifdef CONFIG_X86 | 
 | 	.irq_ack		= irq_chip_ack_parent, | 
 | #elif defined(CONFIG_ARM64) | 
 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | #endif | 
 | 	.irq_mask		= hv_irq_mask, | 
 | 	.irq_unmask		= hv_irq_unmask, | 
 | }; | 
 |  | 
 | static struct msi_domain_ops hv_msi_ops = { | 
 | 	.msi_prepare	= hv_msi_prepare, | 
 | 	.msi_free	= hv_msi_free, | 
 | }; | 
 |  | 
 | /** | 
 |  * hv_pcie_init_irq_domain() - Initialize IRQ domain | 
 |  * @hbus:	The root PCI bus | 
 |  * | 
 |  * This function creates an IRQ domain which will be used for | 
 |  * interrupts from devices that have been passed through.  These | 
 |  * devices only support MSI and MSI-X, not line-based interrupts | 
 |  * or simulations of line-based interrupts through PCIe's | 
 |  * fabric-layer messages.  Because interrupts are remapped, we | 
 |  * can support multi-message MSI here. | 
 |  * | 
 |  * Return: '0' on success and error value on failure | 
 |  */ | 
 | static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	hbus->msi_info.chip = &hv_msi_irq_chip; | 
 | 	hbus->msi_info.ops = &hv_msi_ops; | 
 | 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | | 
 | 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | | 
 | 		MSI_FLAG_PCI_MSIX); | 
 | 	hbus->msi_info.handler = FLOW_HANDLER; | 
 | 	hbus->msi_info.handler_name = FLOW_NAME; | 
 | 	hbus->msi_info.data = hbus; | 
 | 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, | 
 | 						     &hbus->msi_info, | 
 | 						     hv_pci_get_root_domain()); | 
 | 	if (!hbus->irq_domain) { | 
 | 		dev_err(&hbus->hdev->device, | 
 | 			"Failed to build an MSI IRQ domain\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * get_bar_size() - Get the address space consumed by a BAR | 
 |  * @bar_val:	Value that a BAR returned after -1 was written | 
 |  *              to it. | 
 |  * | 
 |  * This function returns the size of the BAR, rounded up to 1 | 
 |  * page.  It has to be rounded up because the hypervisor's page | 
 |  * table entry that maps the BAR into the VM can't specify an | 
 |  * offset within a page.  The invariant is that the hypervisor | 
 |  * must place any BARs of smaller than page length at the | 
 |  * beginning of a page. | 
 |  * | 
 |  * Return:	Size in bytes of the consumed MMIO space. | 
 |  */ | 
 | static u64 get_bar_size(u64 bar_val) | 
 | { | 
 | 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), | 
 | 			PAGE_SIZE); | 
 | } | 
 |  | 
 | /** | 
 |  * survey_child_resources() - Total all MMIO requirements | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  */ | 
 | static void survey_child_resources(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	resource_size_t bar_size = 0; | 
 | 	unsigned long flags; | 
 | 	struct completion *event; | 
 | 	u64 bar_val; | 
 | 	int i; | 
 |  | 
 | 	/* If nobody is waiting on the answer, don't compute it. */ | 
 | 	event = xchg(&hbus->survey_event, NULL); | 
 | 	if (!event) | 
 | 		return; | 
 |  | 
 | 	/* If the answer has already been computed, go with it. */ | 
 | 	if (hbus->low_mmio_space || hbus->high_mmio_space) { | 
 | 		complete(event); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Due to an interesting quirk of the PCI spec, all memory regions | 
 | 	 * for a child device are a power of 2 in size and aligned in memory, | 
 | 	 * so it's sufficient to just add them up without tracking alignment. | 
 | 	 */ | 
 | 	list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 		for (i = 0; i < PCI_STD_NUM_BARS; i++) { | 
 | 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) | 
 | 				dev_err(&hbus->hdev->device, | 
 | 					"There's an I/O BAR in this list!\n"); | 
 |  | 
 | 			if (hpdev->probed_bar[i] != 0) { | 
 | 				/* | 
 | 				 * A probed BAR has all the upper bits set that | 
 | 				 * can be changed. | 
 | 				 */ | 
 |  | 
 | 				bar_val = hpdev->probed_bar[i]; | 
 | 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) | 
 | 					bar_val |= | 
 | 					((u64)hpdev->probed_bar[++i] << 32); | 
 | 				else | 
 | 					bar_val |= 0xffffffff00000000ULL; | 
 |  | 
 | 				bar_size = get_bar_size(bar_val); | 
 |  | 
 | 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) | 
 | 					hbus->high_mmio_space += bar_size; | 
 | 				else | 
 | 					hbus->low_mmio_space += bar_size; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 | 	complete(event); | 
 | } | 
 |  | 
 | /** | 
 |  * prepopulate_bars() - Fill in BARs with defaults | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * | 
 |  * The core PCI driver code seems much, much happier if the BARs | 
 |  * for a device have values upon first scan. So fill them in. | 
 |  * The algorithm below works down from large sizes to small, | 
 |  * attempting to pack the assignments optimally. The assumption, | 
 |  * enforced in other parts of the code, is that the beginning of | 
 |  * the memory-mapped I/O space will be aligned on the largest | 
 |  * BAR size. | 
 |  */ | 
 | static void prepopulate_bars(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	resource_size_t high_size = 0; | 
 | 	resource_size_t low_size = 0; | 
 | 	resource_size_t high_base = 0; | 
 | 	resource_size_t low_base = 0; | 
 | 	resource_size_t bar_size; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	unsigned long flags; | 
 | 	u64 bar_val; | 
 | 	u32 command; | 
 | 	bool high; | 
 | 	int i; | 
 |  | 
 | 	if (hbus->low_mmio_space) { | 
 | 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); | 
 | 		low_base = hbus->low_mmio_res->start; | 
 | 	} | 
 |  | 
 | 	if (hbus->high_mmio_space) { | 
 | 		high_size = 1ULL << | 
 | 			(63 - __builtin_clzll(hbus->high_mmio_space)); | 
 | 		high_base = hbus->high_mmio_res->start; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Clear the memory enable bit, in case it's already set. This occurs | 
 | 	 * in the suspend path of hibernation, where the device is suspended, | 
 | 	 * resumed and suspended again: see hibernation_snapshot() and | 
 | 	 * hibernation_platform_enter(). | 
 | 	 * | 
 | 	 * If the memory enable bit is already set, Hyper-V silently ignores | 
 | 	 * the below BAR updates, and the related PCI device driver can not | 
 | 	 * work, because reading from the device register(s) always returns | 
 | 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). | 
 | 	 */ | 
 | 	list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); | 
 | 		command &= ~PCI_COMMAND_MEMORY; | 
 | 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); | 
 | 	} | 
 |  | 
 | 	/* Pick addresses for the BARs. */ | 
 | 	do { | 
 | 		list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 			for (i = 0; i < PCI_STD_NUM_BARS; i++) { | 
 | 				bar_val = hpdev->probed_bar[i]; | 
 | 				if (bar_val == 0) | 
 | 					continue; | 
 | 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; | 
 | 				if (high) { | 
 | 					bar_val |= | 
 | 						((u64)hpdev->probed_bar[i + 1] | 
 | 						 << 32); | 
 | 				} else { | 
 | 					bar_val |= 0xffffffffULL << 32; | 
 | 				} | 
 | 				bar_size = get_bar_size(bar_val); | 
 | 				if (high) { | 
 | 					if (high_size != bar_size) { | 
 | 						i++; | 
 | 						continue; | 
 | 					} | 
 | 					_hv_pcifront_write_config(hpdev, | 
 | 						PCI_BASE_ADDRESS_0 + (4 * i), | 
 | 						4, | 
 | 						(u32)(high_base & 0xffffff00)); | 
 | 					i++; | 
 | 					_hv_pcifront_write_config(hpdev, | 
 | 						PCI_BASE_ADDRESS_0 + (4 * i), | 
 | 						4, (u32)(high_base >> 32)); | 
 | 					high_base += bar_size; | 
 | 				} else { | 
 | 					if (low_size != bar_size) | 
 | 						continue; | 
 | 					_hv_pcifront_write_config(hpdev, | 
 | 						PCI_BASE_ADDRESS_0 + (4 * i), | 
 | 						4, | 
 | 						(u32)(low_base & 0xffffff00)); | 
 | 					low_base += bar_size; | 
 | 				} | 
 | 			} | 
 | 			if (high_size <= 1 && low_size <= 1) { | 
 | 				/* | 
 | 				 * No need to set the PCI_COMMAND_MEMORY bit as | 
 | 				 * the core PCI driver doesn't require the bit | 
 | 				 * to be pre-set. Actually here we intentionally | 
 | 				 * keep the bit off so that the PCI BAR probing | 
 | 				 * in the core PCI driver doesn't cause Hyper-V | 
 | 				 * to unnecessarily unmap/map the virtual BARs | 
 | 				 * from/to the physical BARs multiple times. | 
 | 				 * This reduces the VM boot time significantly | 
 | 				 * if the BAR sizes are huge. | 
 | 				 */ | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		high_size >>= 1; | 
 | 		low_size >>= 1; | 
 | 	}  while (high_size || low_size); | 
 |  | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Assign entries in sysfs pci slot directory. | 
 |  * | 
 |  * Note that this function does not need to lock the children list | 
 |  * because it is called from pci_devices_present_work which | 
 |  * is serialized with hv_eject_device_work because they are on the | 
 |  * same ordered workqueue. Therefore hbus->children list will not change | 
 |  * even when pci_create_slot sleeps. | 
 |  */ | 
 | static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	char name[SLOT_NAME_SIZE]; | 
 | 	int slot_nr; | 
 |  | 
 | 	list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 		if (hpdev->pci_slot) | 
 | 			continue; | 
 |  | 
 | 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); | 
 | 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); | 
 | 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, | 
 | 					  name, NULL); | 
 | 		if (IS_ERR(hpdev->pci_slot)) { | 
 | 			pr_warn("pci_create slot %s failed\n", name); | 
 | 			hpdev->pci_slot = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove entries in sysfs pci slot directory. | 
 |  */ | 
 | static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	struct hv_pci_dev *hpdev; | 
 |  | 
 | 	list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 		if (!hpdev->pci_slot) | 
 | 			continue; | 
 | 		pci_destroy_slot(hpdev->pci_slot); | 
 | 		hpdev->pci_slot = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Set NUMA node for the devices on the bus | 
 |  */ | 
 | static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	struct pci_dev *dev; | 
 | 	struct pci_bus *bus = hbus->bridge->bus; | 
 | 	struct hv_pci_dev *hv_dev; | 
 |  | 
 | 	list_for_each_entry(dev, &bus->devices, bus_list) { | 
 | 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); | 
 | 		if (!hv_dev) | 
 | 			continue; | 
 |  | 
 | 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && | 
 | 		    hv_dev->desc.virtual_numa_node < num_possible_nodes()) | 
 | 			/* | 
 | 			 * The kernel may boot with some NUMA nodes offline | 
 | 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via | 
 | 			 * "numa=off". In those cases, adjust the host provided | 
 | 			 * NUMA node to a valid NUMA node used by the kernel. | 
 | 			 */ | 
 | 			set_dev_node(&dev->dev, | 
 | 				     numa_map_to_online_node( | 
 | 					     hv_dev->desc.virtual_numa_node)); | 
 |  | 
 | 		put_pcichild(hv_dev); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * create_root_hv_pci_bus() - Expose a new root PCI bus | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	int error; | 
 | 	struct pci_host_bridge *bridge = hbus->bridge; | 
 |  | 
 | 	bridge->dev.parent = &hbus->hdev->device; | 
 | 	bridge->sysdata = &hbus->sysdata; | 
 | 	bridge->ops = &hv_pcifront_ops; | 
 |  | 
 | 	error = pci_scan_root_bus_bridge(bridge); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	pci_lock_rescan_remove(); | 
 | 	hv_pci_assign_numa_node(hbus); | 
 | 	pci_bus_assign_resources(bridge->bus); | 
 | 	hv_pci_assign_slots(hbus); | 
 | 	pci_bus_add_devices(bridge->bus); | 
 | 	pci_unlock_rescan_remove(); | 
 | 	hbus->state = hv_pcibus_installed; | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct q_res_req_compl { | 
 | 	struct completion host_event; | 
 | 	struct hv_pci_dev *hpdev; | 
 | }; | 
 |  | 
 | /** | 
 |  * q_resource_requirements() - Query Resource Requirements | 
 |  * @context:		The completion context. | 
 |  * @resp:		The response that came from the host. | 
 |  * @resp_packet_size:	The size in bytes of resp. | 
 |  * | 
 |  * This function is invoked on completion of a Query Resource | 
 |  * Requirements packet. | 
 |  */ | 
 | static void q_resource_requirements(void *context, struct pci_response *resp, | 
 | 				    int resp_packet_size) | 
 | { | 
 | 	struct q_res_req_compl *completion = context; | 
 | 	struct pci_q_res_req_response *q_res_req = | 
 | 		(struct pci_q_res_req_response *)resp; | 
 | 	s32 status; | 
 | 	int i; | 
 |  | 
 | 	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; | 
 | 	if (status < 0) { | 
 | 		dev_err(&completion->hpdev->hbus->hdev->device, | 
 | 			"query resource requirements failed: %x\n", | 
 | 			status); | 
 | 	} else { | 
 | 		for (i = 0; i < PCI_STD_NUM_BARS; i++) { | 
 | 			completion->hpdev->probed_bar[i] = | 
 | 				q_res_req->probed_bar[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	complete(&completion->host_event); | 
 | } | 
 |  | 
 | /** | 
 |  * new_pcichild_device() - Create a new child device | 
 |  * @hbus:	The internal struct tracking this root PCI bus. | 
 |  * @desc:	The information supplied so far from the host | 
 |  *              about the device. | 
 |  * | 
 |  * This function creates the tracking structure for a new child | 
 |  * device and kicks off the process of figuring out what it is. | 
 |  * | 
 |  * Return: Pointer to the new tracking struct | 
 |  */ | 
 | static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, | 
 | 		struct hv_pcidev_description *desc) | 
 | { | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	struct pci_child_message *res_req; | 
 | 	struct q_res_req_compl comp_pkt; | 
 | 	struct { | 
 | 		struct pci_packet init_packet; | 
 | 		u8 buffer[sizeof(struct pci_child_message)]; | 
 | 	} pkt; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); | 
 | 	if (!hpdev) | 
 | 		return NULL; | 
 |  | 
 | 	hpdev->hbus = hbus; | 
 |  | 
 | 	memset(&pkt, 0, sizeof(pkt)); | 
 | 	init_completion(&comp_pkt.host_event); | 
 | 	comp_pkt.hpdev = hpdev; | 
 | 	pkt.init_packet.compl_ctxt = &comp_pkt; | 
 | 	pkt.init_packet.completion_func = q_resource_requirements; | 
 | 	res_req = (struct pci_child_message *)&pkt.init_packet.message; | 
 | 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; | 
 | 	res_req->wslot.slot = desc->win_slot.slot; | 
 |  | 
 | 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req, | 
 | 			       sizeof(struct pci_child_message), | 
 | 			       (unsigned long)&pkt.init_packet, | 
 | 			       VM_PKT_DATA_INBAND, | 
 | 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 	if (ret) | 
 | 		goto error; | 
 |  | 
 | 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) | 
 | 		goto error; | 
 |  | 
 | 	hpdev->desc = *desc; | 
 | 	refcount_set(&hpdev->refs, 1); | 
 | 	get_pcichild(hpdev); | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 |  | 
 | 	list_add_tail(&hpdev->list_entry, &hbus->children); | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 | 	return hpdev; | 
 |  | 
 | error: | 
 | 	kfree(hpdev); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * get_pcichild_wslot() - Find device from slot | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * @wslot:	Location on the bus | 
 |  * | 
 |  * This function looks up a PCI device and returns the internal | 
 |  * representation of it.  It acquires a reference on it, so that | 
 |  * the device won't be deleted while somebody is using it.  The | 
 |  * caller is responsible for calling put_pcichild() to release | 
 |  * this reference. | 
 |  * | 
 |  * Return:	Internal representation of a PCI device | 
 |  */ | 
 | static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, | 
 | 					     u32 wslot) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct hv_pci_dev *iter, *hpdev = NULL; | 
 |  | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 	list_for_each_entry(iter, &hbus->children, list_entry) { | 
 | 		if (iter->desc.win_slot.slot == wslot) { | 
 | 			hpdev = iter; | 
 | 			get_pcichild(hpdev); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 	return hpdev; | 
 | } | 
 |  | 
 | /** | 
 |  * pci_devices_present_work() - Handle new list of child devices | 
 |  * @work:	Work struct embedded in struct hv_dr_work | 
 |  * | 
 |  * "Bus Relations" is the Windows term for "children of this | 
 |  * bus."  The terminology is preserved here for people trying to | 
 |  * debug the interaction between Hyper-V and Linux.  This | 
 |  * function is called when the parent partition reports a list | 
 |  * of functions that should be observed under this PCI Express | 
 |  * port (bus). | 
 |  * | 
 |  * This function updates the list, and must tolerate being | 
 |  * called multiple times with the same information.  The typical | 
 |  * number of child devices is one, with very atypical cases | 
 |  * involving three or four, so the algorithms used here can be | 
 |  * simple and inefficient. | 
 |  * | 
 |  * It must also treat the omission of a previously observed device as | 
 |  * notification that the device no longer exists. | 
 |  * | 
 |  * Note that this function is serialized with hv_eject_device_work(), | 
 |  * because both are pushed to the ordered workqueue hbus->wq. | 
 |  */ | 
 | static void pci_devices_present_work(struct work_struct *work) | 
 | { | 
 | 	u32 child_no; | 
 | 	bool found; | 
 | 	struct hv_pcidev_description *new_desc; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	struct list_head removed; | 
 | 	struct hv_dr_work *dr_wrk; | 
 | 	struct hv_dr_state *dr = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	dr_wrk = container_of(work, struct hv_dr_work, wrk); | 
 | 	hbus = dr_wrk->bus; | 
 | 	kfree(dr_wrk); | 
 |  | 
 | 	INIT_LIST_HEAD(&removed); | 
 |  | 
 | 	/* Pull this off the queue and process it if it was the last one. */ | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 	while (!list_empty(&hbus->dr_list)) { | 
 | 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, | 
 | 				      list_entry); | 
 | 		list_del(&dr->list_entry); | 
 |  | 
 | 		/* Throw this away if the list still has stuff in it. */ | 
 | 		if (!list_empty(&hbus->dr_list)) { | 
 | 			kfree(dr); | 
 | 			continue; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 	if (!dr) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&hbus->state_lock); | 
 |  | 
 | 	/* First, mark all existing children as reported missing. */ | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 	list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 		hpdev->reported_missing = true; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 	/* Next, add back any reported devices. */ | 
 | 	for (child_no = 0; child_no < dr->device_count; child_no++) { | 
 | 		found = false; | 
 | 		new_desc = &dr->func[child_no]; | 
 |  | 
 | 		spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 		list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && | 
 | 			    (hpdev->desc.v_id == new_desc->v_id) && | 
 | 			    (hpdev->desc.d_id == new_desc->d_id) && | 
 | 			    (hpdev->desc.ser == new_desc->ser)) { | 
 | 				hpdev->reported_missing = false; | 
 | 				found = true; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 		if (!found) { | 
 | 			hpdev = new_pcichild_device(hbus, new_desc); | 
 | 			if (!hpdev) | 
 | 				dev_err(&hbus->hdev->device, | 
 | 					"couldn't record a child device.\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Move missing children to a list on the stack. */ | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 	do { | 
 | 		found = false; | 
 | 		list_for_each_entry(hpdev, &hbus->children, list_entry) { | 
 | 			if (hpdev->reported_missing) { | 
 | 				found = true; | 
 | 				put_pcichild(hpdev); | 
 | 				list_move_tail(&hpdev->list_entry, &removed); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} while (found); | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 	/* Delete everything that should no longer exist. */ | 
 | 	while (!list_empty(&removed)) { | 
 | 		hpdev = list_first_entry(&removed, struct hv_pci_dev, | 
 | 					 list_entry); | 
 | 		list_del(&hpdev->list_entry); | 
 |  | 
 | 		if (hpdev->pci_slot) | 
 | 			pci_destroy_slot(hpdev->pci_slot); | 
 |  | 
 | 		put_pcichild(hpdev); | 
 | 	} | 
 |  | 
 | 	switch (hbus->state) { | 
 | 	case hv_pcibus_installed: | 
 | 		/* | 
 | 		 * Tell the core to rescan bus | 
 | 		 * because there may have been changes. | 
 | 		 */ | 
 | 		pci_lock_rescan_remove(); | 
 | 		pci_scan_child_bus(hbus->bridge->bus); | 
 | 		hv_pci_assign_numa_node(hbus); | 
 | 		hv_pci_assign_slots(hbus); | 
 | 		pci_unlock_rescan_remove(); | 
 | 		break; | 
 |  | 
 | 	case hv_pcibus_init: | 
 | 	case hv_pcibus_probed: | 
 | 		survey_child_resources(hbus); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&hbus->state_lock); | 
 |  | 
 | 	kfree(dr); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_start_relations_work() - Queue work to start device discovery | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * @dr:		The list of children returned from host | 
 |  * | 
 |  * Return:  0 on success, -errno on failure | 
 |  */ | 
 | static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, | 
 | 				       struct hv_dr_state *dr) | 
 | { | 
 | 	struct hv_dr_work *dr_wrk; | 
 | 	unsigned long flags; | 
 | 	bool pending_dr; | 
 |  | 
 | 	if (hbus->state == hv_pcibus_removing) { | 
 | 		dev_info(&hbus->hdev->device, | 
 | 			 "PCI VMBus BUS_RELATIONS: ignored\n"); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); | 
 | 	if (!dr_wrk) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); | 
 | 	dr_wrk->bus = hbus; | 
 |  | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 	/* | 
 | 	 * If pending_dr is true, we have already queued a work, | 
 | 	 * which will see the new dr. Otherwise, we need to | 
 | 	 * queue a new work. | 
 | 	 */ | 
 | 	pending_dr = !list_empty(&hbus->dr_list); | 
 | 	list_add_tail(&dr->list_entry, &hbus->dr_list); | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 	if (pending_dr) | 
 | 		kfree(dr_wrk); | 
 | 	else | 
 | 		queue_work(hbus->wq, &dr_wrk->wrk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_devices_present() - Handle list of new children | 
 |  * @hbus:      Root PCI bus, as understood by this driver | 
 |  * @relations: Packet from host listing children | 
 |  * | 
 |  * Process a new list of devices on the bus. The list of devices is | 
 |  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, | 
 |  * whenever a new list of devices for this bus appears. | 
 |  */ | 
 | static void hv_pci_devices_present(struct hv_pcibus_device *hbus, | 
 | 				   struct pci_bus_relations *relations) | 
 | { | 
 | 	struct hv_dr_state *dr; | 
 | 	int i; | 
 |  | 
 | 	dr = kzalloc(struct_size(dr, func, relations->device_count), | 
 | 		     GFP_NOWAIT); | 
 | 	if (!dr) | 
 | 		return; | 
 |  | 
 | 	dr->device_count = relations->device_count; | 
 | 	for (i = 0; i < dr->device_count; i++) { | 
 | 		dr->func[i].v_id = relations->func[i].v_id; | 
 | 		dr->func[i].d_id = relations->func[i].d_id; | 
 | 		dr->func[i].rev = relations->func[i].rev; | 
 | 		dr->func[i].prog_intf = relations->func[i].prog_intf; | 
 | 		dr->func[i].subclass = relations->func[i].subclass; | 
 | 		dr->func[i].base_class = relations->func[i].base_class; | 
 | 		dr->func[i].subsystem_id = relations->func[i].subsystem_id; | 
 | 		dr->func[i].win_slot = relations->func[i].win_slot; | 
 | 		dr->func[i].ser = relations->func[i].ser; | 
 | 	} | 
 |  | 
 | 	if (hv_pci_start_relations_work(hbus, dr)) | 
 | 		kfree(dr); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_devices_present2() - Handle list of new children | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * @relations:	Packet from host listing children | 
 |  * | 
 |  * This function is the v2 version of hv_pci_devices_present() | 
 |  */ | 
 | static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, | 
 | 				    struct pci_bus_relations2 *relations) | 
 | { | 
 | 	struct hv_dr_state *dr; | 
 | 	int i; | 
 |  | 
 | 	dr = kzalloc(struct_size(dr, func, relations->device_count), | 
 | 		     GFP_NOWAIT); | 
 | 	if (!dr) | 
 | 		return; | 
 |  | 
 | 	dr->device_count = relations->device_count; | 
 | 	for (i = 0; i < dr->device_count; i++) { | 
 | 		dr->func[i].v_id = relations->func[i].v_id; | 
 | 		dr->func[i].d_id = relations->func[i].d_id; | 
 | 		dr->func[i].rev = relations->func[i].rev; | 
 | 		dr->func[i].prog_intf = relations->func[i].prog_intf; | 
 | 		dr->func[i].subclass = relations->func[i].subclass; | 
 | 		dr->func[i].base_class = relations->func[i].base_class; | 
 | 		dr->func[i].subsystem_id = relations->func[i].subsystem_id; | 
 | 		dr->func[i].win_slot = relations->func[i].win_slot; | 
 | 		dr->func[i].ser = relations->func[i].ser; | 
 | 		dr->func[i].flags = relations->func[i].flags; | 
 | 		dr->func[i].virtual_numa_node = | 
 | 			relations->func[i].virtual_numa_node; | 
 | 	} | 
 |  | 
 | 	if (hv_pci_start_relations_work(hbus, dr)) | 
 | 		kfree(dr); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_eject_device_work() - Asynchronously handles ejection | 
 |  * @work:	Work struct embedded in internal device struct | 
 |  * | 
 |  * This function handles ejecting a device.  Windows will | 
 |  * attempt to gracefully eject a device, waiting 60 seconds to | 
 |  * hear back from the guest OS that this completed successfully. | 
 |  * If this timer expires, the device will be forcibly removed. | 
 |  */ | 
 | static void hv_eject_device_work(struct work_struct *work) | 
 | { | 
 | 	struct pci_eject_response *ejct_pkt; | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	struct pci_dev *pdev; | 
 | 	unsigned long flags; | 
 | 	int wslot; | 
 | 	struct { | 
 | 		struct pci_packet pkt; | 
 | 		u8 buffer[sizeof(struct pci_eject_response)]; | 
 | 	} ctxt; | 
 |  | 
 | 	hpdev = container_of(work, struct hv_pci_dev, wrk); | 
 | 	hbus = hpdev->hbus; | 
 |  | 
 | 	mutex_lock(&hbus->state_lock); | 
 |  | 
 | 	/* | 
 | 	 * Ejection can come before or after the PCI bus has been set up, so | 
 | 	 * attempt to find it and tear down the bus state, if it exists.  This | 
 | 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) | 
 | 	 * because hbus->bridge->bus may not exist yet. | 
 | 	 */ | 
 | 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); | 
 | 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); | 
 | 	if (pdev) { | 
 | 		pci_lock_rescan_remove(); | 
 | 		pci_stop_and_remove_bus_device(pdev); | 
 | 		pci_dev_put(pdev); | 
 | 		pci_unlock_rescan_remove(); | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 	list_del(&hpdev->list_entry); | 
 | 	spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 	if (hpdev->pci_slot) | 
 | 		pci_destroy_slot(hpdev->pci_slot); | 
 |  | 
 | 	memset(&ctxt, 0, sizeof(ctxt)); | 
 | 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; | 
 | 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; | 
 | 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; | 
 | 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, | 
 | 			 sizeof(*ejct_pkt), 0, | 
 | 			 VM_PKT_DATA_INBAND, 0); | 
 |  | 
 | 	/* For the get_pcichild() in hv_pci_eject_device() */ | 
 | 	put_pcichild(hpdev); | 
 | 	/* For the two refs got in new_pcichild_device() */ | 
 | 	put_pcichild(hpdev); | 
 | 	put_pcichild(hpdev); | 
 | 	/* hpdev has been freed. Do not use it any more. */ | 
 |  | 
 | 	mutex_unlock(&hbus->state_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_eject_device() - Handles device ejection | 
 |  * @hpdev:	Internal device tracking struct | 
 |  * | 
 |  * This function is invoked when an ejection packet arrives.  It | 
 |  * just schedules work so that we don't re-enter the packet | 
 |  * delivery code handling the ejection. | 
 |  */ | 
 | static void hv_pci_eject_device(struct hv_pci_dev *hpdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hpdev->hbus; | 
 | 	struct hv_device *hdev = hbus->hdev; | 
 |  | 
 | 	if (hbus->state == hv_pcibus_removing) { | 
 | 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	get_pcichild(hpdev); | 
 | 	INIT_WORK(&hpdev->wrk, hv_eject_device_work); | 
 | 	queue_work(hbus->wq, &hpdev->wrk); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_onchannelcallback() - Handles incoming packets | 
 |  * @context:	Internal bus tracking struct | 
 |  * | 
 |  * This function is invoked whenever the host sends a packet to | 
 |  * this channel (which is private to this root PCI bus). | 
 |  */ | 
 | static void hv_pci_onchannelcallback(void *context) | 
 | { | 
 | 	const int packet_size = 0x100; | 
 | 	int ret; | 
 | 	struct hv_pcibus_device *hbus = context; | 
 | 	struct vmbus_channel *chan = hbus->hdev->channel; | 
 | 	u32 bytes_recvd; | 
 | 	u64 req_id, req_addr; | 
 | 	struct vmpacket_descriptor *desc; | 
 | 	unsigned char *buffer; | 
 | 	int bufferlen = packet_size; | 
 | 	struct pci_packet *comp_packet; | 
 | 	struct pci_response *response; | 
 | 	struct pci_incoming_message *new_message; | 
 | 	struct pci_bus_relations *bus_rel; | 
 | 	struct pci_bus_relations2 *bus_rel2; | 
 | 	struct pci_dev_inval_block *inval; | 
 | 	struct pci_dev_incoming *dev_message; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	buffer = kmalloc(bufferlen, GFP_ATOMIC); | 
 | 	if (!buffer) | 
 | 		return; | 
 |  | 
 | 	while (1) { | 
 | 		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, | 
 | 					   &bytes_recvd, &req_id); | 
 |  | 
 | 		if (ret == -ENOBUFS) { | 
 | 			kfree(buffer); | 
 | 			/* Handle large packet */ | 
 | 			bufferlen = bytes_recvd; | 
 | 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC); | 
 | 			if (!buffer) | 
 | 				return; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Zero length indicates there are no more packets. */ | 
 | 		if (ret || !bytes_recvd) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * All incoming packets must be at least as large as a | 
 | 		 * response. | 
 | 		 */ | 
 | 		if (bytes_recvd <= sizeof(struct pci_response)) | 
 | 			continue; | 
 | 		desc = (struct vmpacket_descriptor *)buffer; | 
 |  | 
 | 		switch (desc->type) { | 
 | 		case VM_PKT_COMP: | 
 |  | 
 | 			lock_requestor(chan, flags); | 
 | 			req_addr = __vmbus_request_addr_match(chan, req_id, | 
 | 							      VMBUS_RQST_ADDR_ANY); | 
 | 			if (req_addr == VMBUS_RQST_ERROR) { | 
 | 				unlock_requestor(chan, flags); | 
 | 				dev_err(&hbus->hdev->device, | 
 | 					"Invalid transaction ID %llx\n", | 
 | 					req_id); | 
 | 				break; | 
 | 			} | 
 | 			comp_packet = (struct pci_packet *)req_addr; | 
 | 			response = (struct pci_response *)buffer; | 
 | 			/* | 
 | 			 * Call ->completion_func() within the critical section to make | 
 | 			 * sure that the packet pointer is still valid during the call: | 
 | 			 * here 'valid' means that there's a task still waiting for the | 
 | 			 * completion, and that the packet data is still on the waiting | 
 | 			 * task's stack.  Cf. hv_compose_msi_msg(). | 
 | 			 */ | 
 | 			comp_packet->completion_func(comp_packet->compl_ctxt, | 
 | 						     response, | 
 | 						     bytes_recvd); | 
 | 			unlock_requestor(chan, flags); | 
 | 			break; | 
 |  | 
 | 		case VM_PKT_DATA_INBAND: | 
 |  | 
 | 			new_message = (struct pci_incoming_message *)buffer; | 
 | 			switch (new_message->message_type.type) { | 
 | 			case PCI_BUS_RELATIONS: | 
 |  | 
 | 				bus_rel = (struct pci_bus_relations *)buffer; | 
 | 				if (bytes_recvd < sizeof(*bus_rel) || | 
 | 				    bytes_recvd < | 
 | 					struct_size(bus_rel, func, | 
 | 						    bus_rel->device_count)) { | 
 | 					dev_err(&hbus->hdev->device, | 
 | 						"bus relations too small\n"); | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				hv_pci_devices_present(hbus, bus_rel); | 
 | 				break; | 
 |  | 
 | 			case PCI_BUS_RELATIONS2: | 
 |  | 
 | 				bus_rel2 = (struct pci_bus_relations2 *)buffer; | 
 | 				if (bytes_recvd < sizeof(*bus_rel2) || | 
 | 				    bytes_recvd < | 
 | 					struct_size(bus_rel2, func, | 
 | 						    bus_rel2->device_count)) { | 
 | 					dev_err(&hbus->hdev->device, | 
 | 						"bus relations v2 too small\n"); | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				hv_pci_devices_present2(hbus, bus_rel2); | 
 | 				break; | 
 |  | 
 | 			case PCI_EJECT: | 
 |  | 
 | 				dev_message = (struct pci_dev_incoming *)buffer; | 
 | 				if (bytes_recvd < sizeof(*dev_message)) { | 
 | 					dev_err(&hbus->hdev->device, | 
 | 						"eject message too small\n"); | 
 | 					break; | 
 | 				} | 
 | 				hpdev = get_pcichild_wslot(hbus, | 
 | 						      dev_message->wslot.slot); | 
 | 				if (hpdev) { | 
 | 					hv_pci_eject_device(hpdev); | 
 | 					put_pcichild(hpdev); | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			case PCI_INVALIDATE_BLOCK: | 
 |  | 
 | 				inval = (struct pci_dev_inval_block *)buffer; | 
 | 				if (bytes_recvd < sizeof(*inval)) { | 
 | 					dev_err(&hbus->hdev->device, | 
 | 						"invalidate message too small\n"); | 
 | 					break; | 
 | 				} | 
 | 				hpdev = get_pcichild_wslot(hbus, | 
 | 							   inval->wslot.slot); | 
 | 				if (hpdev) { | 
 | 					if (hpdev->block_invalidate) { | 
 | 						hpdev->block_invalidate( | 
 | 						    hpdev->invalidate_context, | 
 | 						    inval->block_mask); | 
 | 					} | 
 | 					put_pcichild(hpdev); | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			default: | 
 | 				dev_warn(&hbus->hdev->device, | 
 | 					"Unimplemented protocol message %x\n", | 
 | 					new_message->message_type.type); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			dev_err(&hbus->hdev->device, | 
 | 				"unhandled packet type %d, tid %llx len %d\n", | 
 | 				desc->type, req_id, bytes_recvd); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(buffer); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_protocol_negotiation() - Set up protocol | 
 |  * @hdev:		VMBus's tracking struct for this root PCI bus. | 
 |  * @version:		Array of supported channel protocol versions in | 
 |  *			the order of probing - highest go first. | 
 |  * @num_version:	Number of elements in the version array. | 
 |  * | 
 |  * This driver is intended to support running on Windows 10 | 
 |  * (server) and later versions. It will not run on earlier | 
 |  * versions, as they assume that many of the operations which | 
 |  * Linux needs accomplished with a spinlock held were done via | 
 |  * asynchronous messaging via VMBus.  Windows 10 increases the | 
 |  * surface area of PCI emulation so that these actions can take | 
 |  * place by suspending a virtual processor for their duration. | 
 |  * | 
 |  * This function negotiates the channel protocol version, | 
 |  * failing if the host doesn't support the necessary protocol | 
 |  * level. | 
 |  */ | 
 | static int hv_pci_protocol_negotiation(struct hv_device *hdev, | 
 | 				       enum pci_protocol_version_t version[], | 
 | 				       int num_version) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	struct pci_version_request *version_req; | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	struct pci_packet *pkt; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Initiate the handshake with the host and negotiate | 
 | 	 * a version that the host can support. We start with the | 
 | 	 * highest version number and go down if the host cannot | 
 | 	 * support it. | 
 | 	 */ | 
 | 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); | 
 | 	if (!pkt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	init_completion(&comp_pkt.host_event); | 
 | 	pkt->completion_func = hv_pci_generic_compl; | 
 | 	pkt->compl_ctxt = &comp_pkt; | 
 | 	version_req = (struct pci_version_request *)&pkt->message; | 
 | 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; | 
 |  | 
 | 	for (i = 0; i < num_version; i++) { | 
 | 		version_req->protocol_version = version[i]; | 
 | 		ret = vmbus_sendpacket(hdev->channel, version_req, | 
 | 				sizeof(struct pci_version_request), | 
 | 				(unsigned long)pkt, VM_PKT_DATA_INBAND, | 
 | 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 		if (!ret) | 
 | 			ret = wait_for_response(hdev, &comp_pkt.host_event); | 
 |  | 
 | 		if (ret) { | 
 | 			dev_err(&hdev->device, | 
 | 				"PCI Pass-through VSP failed to request version: %d", | 
 | 				ret); | 
 | 			goto exit; | 
 | 		} | 
 |  | 
 | 		if (comp_pkt.completion_status >= 0) { | 
 | 			hbus->protocol_version = version[i]; | 
 | 			dev_info(&hdev->device, | 
 | 				"PCI VMBus probing: Using version %#x\n", | 
 | 				hbus->protocol_version); | 
 | 			goto exit; | 
 | 		} | 
 |  | 
 | 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { | 
 | 			dev_err(&hdev->device, | 
 | 				"PCI Pass-through VSP failed version request: %#x", | 
 | 				comp_pkt.completion_status); | 
 | 			ret = -EPROTO; | 
 | 			goto exit; | 
 | 		} | 
 |  | 
 | 		reinit_completion(&comp_pkt.host_event); | 
 | 	} | 
 |  | 
 | 	dev_err(&hdev->device, | 
 | 		"PCI pass-through VSP failed to find supported version"); | 
 | 	ret = -EPROTO; | 
 |  | 
 | exit: | 
 | 	kfree(pkt); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_free_bridge_windows() - Release memory regions for the | 
 |  * bus | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  */ | 
 | static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	/* | 
 | 	 * Set the resources back to the way they looked when they | 
 | 	 * were allocated by setting IORESOURCE_BUSY again. | 
 | 	 */ | 
 |  | 
 | 	if (hbus->low_mmio_space && hbus->low_mmio_res) { | 
 | 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY; | 
 | 		vmbus_free_mmio(hbus->low_mmio_res->start, | 
 | 				resource_size(hbus->low_mmio_res)); | 
 | 	} | 
 |  | 
 | 	if (hbus->high_mmio_space && hbus->high_mmio_res) { | 
 | 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY; | 
 | 		vmbus_free_mmio(hbus->high_mmio_res->start, | 
 | 				resource_size(hbus->high_mmio_res)); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_allocate_bridge_windows() - Allocate memory regions | 
 |  * for the bus | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * | 
 |  * This function calls vmbus_allocate_mmio(), which is itself a | 
 |  * bit of a compromise.  Ideally, we might change the pnp layer | 
 |  * in the kernel such that it comprehends either PCI devices | 
 |  * which are "grandchildren of ACPI," with some intermediate bus | 
 |  * node (in this case, VMBus) or change it such that it | 
 |  * understands VMBus.  The pnp layer, however, has been declared | 
 |  * deprecated, and not subject to change. | 
 |  * | 
 |  * The workaround, implemented here, is to ask VMBus to allocate | 
 |  * MMIO space for this bus.  VMBus itself knows which ranges are | 
 |  * appropriate by looking at its own ACPI objects.  Then, after | 
 |  * these ranges are claimed, they're modified to look like they | 
 |  * would have looked if the ACPI and pnp code had allocated | 
 |  * bridge windows.  These descriptors have to exist in this form | 
 |  * in order to satisfy the code which will get invoked when the | 
 |  * endpoint PCI function driver calls request_mem_region() or | 
 |  * request_mem_region_exclusive(). | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	resource_size_t align; | 
 | 	int ret; | 
 |  | 
 | 	if (hbus->low_mmio_space) { | 
 | 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); | 
 | 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, | 
 | 					  (u64)(u32)0xffffffff, | 
 | 					  hbus->low_mmio_space, | 
 | 					  align, false); | 
 | 		if (ret) { | 
 | 			dev_err(&hbus->hdev->device, | 
 | 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", | 
 | 				hbus->low_mmio_space); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		/* Modify this resource to become a bridge window. */ | 
 | 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; | 
 | 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; | 
 | 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); | 
 | 	} | 
 |  | 
 | 	if (hbus->high_mmio_space) { | 
 | 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); | 
 | 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, | 
 | 					  0x100000000, -1, | 
 | 					  hbus->high_mmio_space, align, | 
 | 					  false); | 
 | 		if (ret) { | 
 | 			dev_err(&hbus->hdev->device, | 
 | 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", | 
 | 				hbus->high_mmio_space); | 
 | 			goto release_low_mmio; | 
 | 		} | 
 |  | 
 | 		/* Modify this resource to become a bridge window. */ | 
 | 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; | 
 | 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; | 
 | 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | release_low_mmio: | 
 | 	if (hbus->low_mmio_res) { | 
 | 		vmbus_free_mmio(hbus->low_mmio_res->start, | 
 | 				resource_size(hbus->low_mmio_res)); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_allocate_config_window() - Find MMIO space for PCI Config | 
 |  * @hbus:	Root PCI bus, as understood by this driver | 
 |  * | 
 |  * This function claims memory-mapped I/O space for accessing | 
 |  * configuration space for the functions on this bus. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_allocate_config_window(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Set up a region of MMIO space to use for accessing configuration | 
 | 	 * space. | 
 | 	 */ | 
 | 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, | 
 | 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint | 
 | 	 * resource claims (those which cannot be overlapped) and the ranges | 
 | 	 * which are valid for the children of this bus, which are intended | 
 | 	 * to be overlapped by those children.  Set the flag on this claim | 
 | 	 * meaning that this region can't be overlapped. | 
 | 	 */ | 
 |  | 
 | 	hbus->mem_config->flags |= IORESOURCE_BUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hv_free_config_window(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); | 
 | } | 
 |  | 
 | static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); | 
 |  | 
 | /** | 
 |  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state | 
 |  * @hdev:	VMBus's tracking struct for this root PCI bus | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_pci_enter_d0(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	struct pci_bus_d0_entry *d0_entry; | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	struct pci_packet *pkt; | 
 | 	bool retry = true; | 
 | 	int ret; | 
 |  | 
 | enter_d0_retry: | 
 | 	/* | 
 | 	 * Tell the host that the bus is ready to use, and moved into the | 
 | 	 * powered-on state.  This includes telling the host which region | 
 | 	 * of memory-mapped I/O space has been chosen for configuration space | 
 | 	 * access. | 
 | 	 */ | 
 | 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); | 
 | 	if (!pkt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	init_completion(&comp_pkt.host_event); | 
 | 	pkt->completion_func = hv_pci_generic_compl; | 
 | 	pkt->compl_ctxt = &comp_pkt; | 
 | 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message; | 
 | 	d0_entry->message_type.type = PCI_BUS_D0ENTRY; | 
 | 	d0_entry->mmio_base = hbus->mem_config->start; | 
 |  | 
 | 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), | 
 | 			       (unsigned long)pkt, VM_PKT_DATA_INBAND, | 
 | 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 	if (!ret) | 
 | 		ret = wait_for_response(hdev, &comp_pkt.host_event); | 
 |  | 
 | 	if (ret) | 
 | 		goto exit; | 
 |  | 
 | 	/* | 
 | 	 * In certain case (Kdump) the pci device of interest was | 
 | 	 * not cleanly shut down and resource is still held on host | 
 | 	 * side, the host could return invalid device status. | 
 | 	 * We need to explicitly request host to release the resource | 
 | 	 * and try to enter D0 again. | 
 | 	 */ | 
 | 	if (comp_pkt.completion_status < 0 && retry) { | 
 | 		retry = false; | 
 |  | 
 | 		dev_err(&hdev->device, "Retrying D0 Entry\n"); | 
 |  | 
 | 		/* | 
 | 		 * Hv_pci_bus_exit() calls hv_send_resource_released() | 
 | 		 * to free up resources of its child devices. | 
 | 		 * In the kdump kernel we need to set the | 
 | 		 * wslot_res_allocated to 255 so it scans all child | 
 | 		 * devices to release resources allocated in the | 
 | 		 * normal kernel before panic happened. | 
 | 		 */ | 
 | 		hbus->wslot_res_allocated = 255; | 
 |  | 
 | 		ret = hv_pci_bus_exit(hdev, true); | 
 |  | 
 | 		if (ret == 0) { | 
 | 			kfree(pkt); | 
 | 			goto enter_d0_retry; | 
 | 		} | 
 | 		dev_err(&hdev->device, | 
 | 			"Retrying D0 failed with ret %d\n", ret); | 
 | 	} | 
 |  | 
 | 	if (comp_pkt.completion_status < 0) { | 
 | 		dev_err(&hdev->device, | 
 | 			"PCI Pass-through VSP failed D0 Entry with status %x\n", | 
 | 			comp_pkt.completion_status); | 
 | 		ret = -EPROTO; | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | exit: | 
 | 	kfree(pkt); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_query_relations() - Ask host to send list of child | 
 |  * devices | 
 |  * @hdev:	VMBus's tracking struct for this root PCI bus | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_pci_query_relations(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	struct pci_message message; | 
 | 	struct completion comp; | 
 | 	int ret; | 
 |  | 
 | 	/* Ask the host to send along the list of child devices */ | 
 | 	init_completion(&comp); | 
 | 	if (cmpxchg(&hbus->survey_event, NULL, &comp)) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 | 	memset(&message, 0, sizeof(message)); | 
 | 	message.type = PCI_QUERY_BUS_RELATIONS; | 
 |  | 
 | 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), | 
 | 			       0, VM_PKT_DATA_INBAND, 0); | 
 | 	if (!ret) | 
 | 		ret = wait_for_response(hdev, &comp); | 
 |  | 
 | 	/* | 
 | 	 * In the case of fast device addition/removal, it's possible that | 
 | 	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we | 
 | 	 * already got a PCI_BUS_RELATIONS* message from the host and the | 
 | 	 * channel callback already scheduled a work to hbus->wq, which can be | 
 | 	 * running pci_devices_present_work() -> survey_child_resources() -> | 
 | 	 * complete(&hbus->survey_event), even after hv_pci_query_relations() | 
 | 	 * exits and the stack variable 'comp' is no longer valid; as a result, | 
 | 	 * a hang or a page fault may happen when the complete() calls | 
 | 	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from | 
 | 	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is | 
 | 	 * -ENODEV, there can't be any more work item scheduled to hbus->wq | 
 | 	 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> | 
 | 	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> | 
 | 	 * channel->rescind = true. | 
 | 	 */ | 
 | 	flush_workqueue(hbus->wq); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_send_resources_allocated() - Report local resource choices | 
 |  * @hdev:	VMBus's tracking struct for this root PCI bus | 
 |  * | 
 |  * The host OS is expecting to be sent a request as a message | 
 |  * which contains all the resources that the device will use. | 
 |  * The response contains those same resources, "translated" | 
 |  * which is to say, the values which should be used by the | 
 |  * hardware, when it delivers an interrupt.  (MMIO resources are | 
 |  * used in local terms.)  This is nice for Windows, and lines up | 
 |  * with the FDO/PDO split, which doesn't exist in Linux.  Linux | 
 |  * is deeply expecting to scan an emulated PCI configuration | 
 |  * space.  So this message is sent here only to drive the state | 
 |  * machine on the host forward. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_send_resources_allocated(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	struct pci_resources_assigned *res_assigned; | 
 | 	struct pci_resources_assigned2 *res_assigned2; | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	struct pci_packet *pkt; | 
 | 	size_t size_res; | 
 | 	int wslot; | 
 | 	int ret; | 
 |  | 
 | 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) | 
 | 			? sizeof(*res_assigned) : sizeof(*res_assigned2); | 
 |  | 
 | 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); | 
 | 	if (!pkt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	for (wslot = 0; wslot < 256; wslot++) { | 
 | 		hpdev = get_pcichild_wslot(hbus, wslot); | 
 | 		if (!hpdev) | 
 | 			continue; | 
 |  | 
 | 		memset(pkt, 0, sizeof(*pkt) + size_res); | 
 | 		init_completion(&comp_pkt.host_event); | 
 | 		pkt->completion_func = hv_pci_generic_compl; | 
 | 		pkt->compl_ctxt = &comp_pkt; | 
 |  | 
 | 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { | 
 | 			res_assigned = | 
 | 				(struct pci_resources_assigned *)&pkt->message; | 
 | 			res_assigned->message_type.type = | 
 | 				PCI_RESOURCES_ASSIGNED; | 
 | 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot; | 
 | 		} else { | 
 | 			res_assigned2 = | 
 | 				(struct pci_resources_assigned2 *)&pkt->message; | 
 | 			res_assigned2->message_type.type = | 
 | 				PCI_RESOURCES_ASSIGNED2; | 
 | 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; | 
 | 		} | 
 | 		put_pcichild(hpdev); | 
 |  | 
 | 		ret = vmbus_sendpacket(hdev->channel, &pkt->message, | 
 | 				size_res, (unsigned long)pkt, | 
 | 				VM_PKT_DATA_INBAND, | 
 | 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 		if (!ret) | 
 | 			ret = wait_for_response(hdev, &comp_pkt.host_event); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		if (comp_pkt.completion_status < 0) { | 
 | 			ret = -EPROTO; | 
 | 			dev_err(&hdev->device, | 
 | 				"resource allocated returned 0x%x", | 
 | 				comp_pkt.completion_status); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		hbus->wslot_res_allocated = wslot; | 
 | 	} | 
 |  | 
 | 	kfree(pkt); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_send_resources_released() - Report local resources | 
 |  * released | 
 |  * @hdev:	VMBus's tracking struct for this root PCI bus | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_send_resources_released(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	struct pci_child_message pkt; | 
 | 	struct hv_pci_dev *hpdev; | 
 | 	int wslot; | 
 | 	int ret; | 
 |  | 
 | 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { | 
 | 		hpdev = get_pcichild_wslot(hbus, wslot); | 
 | 		if (!hpdev) | 
 | 			continue; | 
 |  | 
 | 		memset(&pkt, 0, sizeof(pkt)); | 
 | 		pkt.message_type.type = PCI_RESOURCES_RELEASED; | 
 | 		pkt.wslot.slot = hpdev->desc.win_slot.slot; | 
 |  | 
 | 		put_pcichild(hpdev); | 
 |  | 
 | 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, | 
 | 				       VM_PKT_DATA_INBAND, 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		hbus->wslot_res_allocated = wslot - 1; | 
 | 	} | 
 |  | 
 | 	hbus->wslot_res_allocated = -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define HVPCI_DOM_MAP_SIZE (64 * 1024) | 
 | static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); | 
 |  | 
 | /* | 
 |  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 | 
 |  * as invalid for passthrough PCI devices of this driver. | 
 |  */ | 
 | #define HVPCI_DOM_INVALID 0 | 
 |  | 
 | /** | 
 |  * hv_get_dom_num() - Get a valid PCI domain number | 
 |  * Check if the PCI domain number is in use, and return another number if | 
 |  * it is in use. | 
 |  * | 
 |  * @dom: Requested domain number | 
 |  * | 
 |  * return: domain number on success, HVPCI_DOM_INVALID on failure | 
 |  */ | 
 | static u16 hv_get_dom_num(u16 dom) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (test_and_set_bit(dom, hvpci_dom_map) == 0) | 
 | 		return dom; | 
 |  | 
 | 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { | 
 | 		if (test_and_set_bit(i, hvpci_dom_map) == 0) | 
 | 			return i; | 
 | 	} | 
 |  | 
 | 	return HVPCI_DOM_INVALID; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_put_dom_num() - Mark the PCI domain number as free | 
 |  * @dom: Domain number to be freed | 
 |  */ | 
 | static void hv_put_dom_num(u16 dom) | 
 | { | 
 | 	clear_bit(dom, hvpci_dom_map); | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus | 
 |  * @hdev:	VMBus's tracking struct for this root PCI bus | 
 |  * @dev_id:	Identifies the device itself | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | static int hv_pci_probe(struct hv_device *hdev, | 
 | 			const struct hv_vmbus_device_id *dev_id) | 
 | { | 
 | 	struct pci_host_bridge *bridge; | 
 | 	struct hv_pcibus_device *hbus; | 
 | 	u16 dom_req, dom; | 
 | 	char *name; | 
 | 	int ret; | 
 |  | 
 | 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); | 
 | 	if (!bridge) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); | 
 | 	if (!hbus) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	hbus->bridge = bridge; | 
 | 	mutex_init(&hbus->state_lock); | 
 | 	hbus->state = hv_pcibus_init; | 
 | 	hbus->wslot_res_allocated = -1; | 
 |  | 
 | 	/* | 
 | 	 * The PCI bus "domain" is what is called "segment" in ACPI and other | 
 | 	 * specs. Pull it from the instance ID, to get something usually | 
 | 	 * unique. In rare cases of collision, we will find out another number | 
 | 	 * not in use. | 
 | 	 * | 
 | 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V | 
 | 	 * together with this guest driver can guarantee that (1) The only | 
 | 	 * domain used by Gen1 VMs for something that looks like a physical | 
 | 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0. | 
 | 	 * (2) There will be no overlap between domains (after fixing possible | 
 | 	 * collisions) in the same VM. | 
 | 	 */ | 
 | 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; | 
 | 	dom = hv_get_dom_num(dom_req); | 
 |  | 
 | 	if (dom == HVPCI_DOM_INVALID) { | 
 | 		dev_err(&hdev->device, | 
 | 			"Unable to use dom# 0x%x or other numbers", dom_req); | 
 | 		ret = -EINVAL; | 
 | 		goto free_bus; | 
 | 	} | 
 |  | 
 | 	if (dom != dom_req) | 
 | 		dev_info(&hdev->device, | 
 | 			 "PCI dom# 0x%x has collision, using 0x%x", | 
 | 			 dom_req, dom); | 
 |  | 
 | 	hbus->bridge->domain_nr = dom; | 
 | #ifdef CONFIG_X86 | 
 | 	hbus->sysdata.domain = dom; | 
 | 	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); | 
 | #elif defined(CONFIG_ARM64) | 
 | 	/* | 
 | 	 * Set the PCI bus parent to be the corresponding VMbus | 
 | 	 * device. Then the VMbus device will be assigned as the | 
 | 	 * ACPI companion in pcibios_root_bridge_prepare() and | 
 | 	 * pci_dma_configure() will propagate device coherence | 
 | 	 * information to devices created on the bus. | 
 | 	 */ | 
 | 	hbus->sysdata.parent = hdev->device.parent; | 
 | 	hbus->use_calls = false; | 
 | #endif | 
 |  | 
 | 	hbus->hdev = hdev; | 
 | 	INIT_LIST_HEAD(&hbus->children); | 
 | 	INIT_LIST_HEAD(&hbus->dr_list); | 
 | 	spin_lock_init(&hbus->config_lock); | 
 | 	spin_lock_init(&hbus->device_list_lock); | 
 | 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, | 
 | 					   hbus->bridge->domain_nr); | 
 | 	if (!hbus->wq) { | 
 | 		ret = -ENOMEM; | 
 | 		goto free_dom; | 
 | 	} | 
 |  | 
 | 	hdev->channel->next_request_id_callback = vmbus_next_request_id; | 
 | 	hdev->channel->request_addr_callback = vmbus_request_addr; | 
 | 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; | 
 |  | 
 | 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, | 
 | 			 hv_pci_onchannelcallback, hbus); | 
 | 	if (ret) | 
 | 		goto destroy_wq; | 
 |  | 
 | 	hv_set_drvdata(hdev, hbus); | 
 |  | 
 | 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, | 
 | 					  ARRAY_SIZE(pci_protocol_versions)); | 
 | 	if (ret) | 
 | 		goto close; | 
 |  | 
 | 	ret = hv_allocate_config_window(hbus); | 
 | 	if (ret) | 
 | 		goto close; | 
 |  | 
 | 	hbus->cfg_addr = ioremap(hbus->mem_config->start, | 
 | 				 PCI_CONFIG_MMIO_LENGTH); | 
 | 	if (!hbus->cfg_addr) { | 
 | 		dev_err(&hdev->device, | 
 | 			"Unable to map a virtual address for config space\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto free_config; | 
 | 	} | 
 |  | 
 | 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); | 
 | 	if (!name) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unmap; | 
 | 	} | 
 |  | 
 | 	hbus->fwnode = irq_domain_alloc_named_fwnode(name); | 
 | 	kfree(name); | 
 | 	if (!hbus->fwnode) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unmap; | 
 | 	} | 
 |  | 
 | 	ret = hv_pcie_init_irq_domain(hbus); | 
 | 	if (ret) | 
 | 		goto free_fwnode; | 
 |  | 
 | 	ret = hv_pci_query_relations(hdev); | 
 | 	if (ret) | 
 | 		goto free_irq_domain; | 
 |  | 
 | 	mutex_lock(&hbus->state_lock); | 
 |  | 
 | 	ret = hv_pci_enter_d0(hdev); | 
 | 	if (ret) | 
 | 		goto release_state_lock; | 
 |  | 
 | 	ret = hv_pci_allocate_bridge_windows(hbus); | 
 | 	if (ret) | 
 | 		goto exit_d0; | 
 |  | 
 | 	ret = hv_send_resources_allocated(hdev); | 
 | 	if (ret) | 
 | 		goto free_windows; | 
 |  | 
 | 	prepopulate_bars(hbus); | 
 |  | 
 | 	hbus->state = hv_pcibus_probed; | 
 |  | 
 | 	ret = create_root_hv_pci_bus(hbus); | 
 | 	if (ret) | 
 | 		goto free_windows; | 
 |  | 
 | 	mutex_unlock(&hbus->state_lock); | 
 | 	return 0; | 
 |  | 
 | free_windows: | 
 | 	hv_pci_free_bridge_windows(hbus); | 
 | exit_d0: | 
 | 	(void) hv_pci_bus_exit(hdev, true); | 
 | release_state_lock: | 
 | 	mutex_unlock(&hbus->state_lock); | 
 | free_irq_domain: | 
 | 	irq_domain_remove(hbus->irq_domain); | 
 | free_fwnode: | 
 | 	irq_domain_free_fwnode(hbus->fwnode); | 
 | unmap: | 
 | 	iounmap(hbus->cfg_addr); | 
 | free_config: | 
 | 	hv_free_config_window(hbus); | 
 | close: | 
 | 	vmbus_close(hdev->channel); | 
 | destroy_wq: | 
 | 	destroy_workqueue(hbus->wq); | 
 | free_dom: | 
 | 	hv_put_dom_num(hbus->bridge->domain_nr); | 
 | free_bus: | 
 | 	kfree(hbus); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	struct vmbus_channel *chan = hdev->channel; | 
 | 	struct { | 
 | 		struct pci_packet teardown_packet; | 
 | 		u8 buffer[sizeof(struct pci_message)]; | 
 | 	} pkt; | 
 | 	struct hv_pci_compl comp_pkt; | 
 | 	struct hv_pci_dev *hpdev, *tmp; | 
 | 	unsigned long flags; | 
 | 	u64 trans_id; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * After the host sends the RESCIND_CHANNEL message, it doesn't | 
 | 	 * access the per-channel ringbuffer any longer. | 
 | 	 */ | 
 | 	if (chan->rescind) | 
 | 		return 0; | 
 |  | 
 | 	if (!keep_devs) { | 
 | 		struct list_head removed; | 
 |  | 
 | 		/* Move all present children to the list on stack */ | 
 | 		INIT_LIST_HEAD(&removed); | 
 | 		spin_lock_irqsave(&hbus->device_list_lock, flags); | 
 | 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) | 
 | 			list_move_tail(&hpdev->list_entry, &removed); | 
 | 		spin_unlock_irqrestore(&hbus->device_list_lock, flags); | 
 |  | 
 | 		/* Remove all children in the list */ | 
 | 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { | 
 | 			list_del(&hpdev->list_entry); | 
 | 			if (hpdev->pci_slot) | 
 | 				pci_destroy_slot(hpdev->pci_slot); | 
 | 			/* For the two refs got in new_pcichild_device() */ | 
 | 			put_pcichild(hpdev); | 
 | 			put_pcichild(hpdev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = hv_send_resources_released(hdev); | 
 | 	if (ret) { | 
 | 		dev_err(&hdev->device, | 
 | 			"Couldn't send resources released packet(s)\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); | 
 | 	init_completion(&comp_pkt.host_event); | 
 | 	pkt.teardown_packet.completion_func = hv_pci_generic_compl; | 
 | 	pkt.teardown_packet.compl_ctxt = &comp_pkt; | 
 | 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; | 
 |  | 
 | 	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, | 
 | 				     sizeof(struct pci_message), | 
 | 				     (unsigned long)&pkt.teardown_packet, | 
 | 				     &trans_id, VM_PKT_DATA_INBAND, | 
 | 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { | 
 | 		/* | 
 | 		 * The completion packet on the stack becomes invalid after | 
 | 		 * 'return'; remove the ID from the VMbus requestor if the | 
 | 		 * identifier is still mapped to/associated with the packet. | 
 | 		 * | 
 | 		 * Cf. hv_pci_onchannelcallback(). | 
 | 		 */ | 
 | 		vmbus_request_addr_match(chan, trans_id, | 
 | 					 (unsigned long)&pkt.teardown_packet); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hv_pci_remove() - Remove routine for this VMBus channel | 
 |  * @hdev:	VMBus's tracking struct for this root PCI bus | 
 |  */ | 
 | static void hv_pci_remove(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus; | 
 |  | 
 | 	hbus = hv_get_drvdata(hdev); | 
 | 	if (hbus->state == hv_pcibus_installed) { | 
 | 		tasklet_disable(&hdev->channel->callback_event); | 
 | 		hbus->state = hv_pcibus_removing; | 
 | 		tasklet_enable(&hdev->channel->callback_event); | 
 | 		destroy_workqueue(hbus->wq); | 
 | 		hbus->wq = NULL; | 
 | 		/* | 
 | 		 * At this point, no work is running or can be scheduled | 
 | 		 * on hbus-wq. We can't race with hv_pci_devices_present() | 
 | 		 * or hv_pci_eject_device(), it's safe to proceed. | 
 | 		 */ | 
 |  | 
 | 		/* Remove the bus from PCI's point of view. */ | 
 | 		pci_lock_rescan_remove(); | 
 | 		pci_stop_root_bus(hbus->bridge->bus); | 
 | 		hv_pci_remove_slots(hbus); | 
 | 		pci_remove_root_bus(hbus->bridge->bus); | 
 | 		pci_unlock_rescan_remove(); | 
 | 	} | 
 |  | 
 | 	hv_pci_bus_exit(hdev, false); | 
 |  | 
 | 	vmbus_close(hdev->channel); | 
 |  | 
 | 	iounmap(hbus->cfg_addr); | 
 | 	hv_free_config_window(hbus); | 
 | 	hv_pci_free_bridge_windows(hbus); | 
 | 	irq_domain_remove(hbus->irq_domain); | 
 | 	irq_domain_free_fwnode(hbus->fwnode); | 
 |  | 
 | 	hv_put_dom_num(hbus->bridge->domain_nr); | 
 |  | 
 | 	kfree(hbus); | 
 | } | 
 |  | 
 | static int hv_pci_suspend(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	enum hv_pcibus_state old_state; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * hv_pci_suspend() must make sure there are no pending work items | 
 | 	 * before calling vmbus_close(), since it runs in a process context | 
 | 	 * as a callback in dpm_suspend().  When it starts to run, the channel | 
 | 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet | 
 | 	 * context, can be still running concurrently and scheduling new work | 
 | 	 * items onto hbus->wq in hv_pci_devices_present() and | 
 | 	 * hv_pci_eject_device(), and the work item handlers can access the | 
 | 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. | 
 | 	 * the work item handler pci_devices_present_work() -> | 
 | 	 * new_pcichild_device() writes to the vmbus channel. | 
 | 	 * | 
 | 	 * To eliminate the race, hv_pci_suspend() disables the channel | 
 | 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and | 
 | 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, | 
 | 	 * it knows that no new work item can be scheduled, and then it flushes | 
 | 	 * hbus->wq and safely closes the vmbus channel. | 
 | 	 */ | 
 | 	tasklet_disable(&hdev->channel->callback_event); | 
 |  | 
 | 	/* Change the hbus state to prevent new work items. */ | 
 | 	old_state = hbus->state; | 
 | 	if (hbus->state == hv_pcibus_installed) | 
 | 		hbus->state = hv_pcibus_removing; | 
 |  | 
 | 	tasklet_enable(&hdev->channel->callback_event); | 
 |  | 
 | 	if (old_state != hv_pcibus_installed) | 
 | 		return -EINVAL; | 
 |  | 
 | 	flush_workqueue(hbus->wq); | 
 |  | 
 | 	ret = hv_pci_bus_exit(hdev, true); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	vmbus_close(hdev->channel); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) | 
 | { | 
 | 	struct irq_data *irq_data; | 
 | 	struct msi_desc *entry; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!pdev->msi_enabled && !pdev->msix_enabled) | 
 | 		return 0; | 
 |  | 
 | 	msi_lock_descs(&pdev->dev); | 
 | 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { | 
 | 		irq_data = irq_get_irq_data(entry->irq); | 
 | 		if (WARN_ON_ONCE(!irq_data)) { | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		hv_compose_msi_msg(irq_data, &entry->msg); | 
 | 	} | 
 | 	msi_unlock_descs(&pdev->dev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg() | 
 |  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V | 
 |  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() | 
 |  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping | 
 |  * Table entries. | 
 |  */ | 
 | static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) | 
 | { | 
 | 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); | 
 | } | 
 |  | 
 | static int hv_pci_resume(struct hv_device *hdev) | 
 | { | 
 | 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); | 
 | 	enum pci_protocol_version_t version[1]; | 
 | 	int ret; | 
 |  | 
 | 	hbus->state = hv_pcibus_init; | 
 |  | 
 | 	hdev->channel->next_request_id_callback = vmbus_next_request_id; | 
 | 	hdev->channel->request_addr_callback = vmbus_request_addr; | 
 | 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; | 
 |  | 
 | 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, | 
 | 			 hv_pci_onchannelcallback, hbus); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Only use the version that was in use before hibernation. */ | 
 | 	version[0] = hbus->protocol_version; | 
 | 	ret = hv_pci_protocol_negotiation(hdev, version, 1); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = hv_pci_query_relations(hdev); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	mutex_lock(&hbus->state_lock); | 
 |  | 
 | 	ret = hv_pci_enter_d0(hdev); | 
 | 	if (ret) | 
 | 		goto release_state_lock; | 
 |  | 
 | 	ret = hv_send_resources_allocated(hdev); | 
 | 	if (ret) | 
 | 		goto release_state_lock; | 
 |  | 
 | 	prepopulate_bars(hbus); | 
 |  | 
 | 	hv_pci_restore_msi_state(hbus); | 
 |  | 
 | 	hbus->state = hv_pcibus_installed; | 
 | 	mutex_unlock(&hbus->state_lock); | 
 | 	return 0; | 
 |  | 
 | release_state_lock: | 
 | 	mutex_unlock(&hbus->state_lock); | 
 | out: | 
 | 	vmbus_close(hdev->channel); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct hv_vmbus_device_id hv_pci_id_table[] = { | 
 | 	/* PCI Pass-through Class ID */ | 
 | 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */ | 
 | 	{ HV_PCIE_GUID, }, | 
 | 	{ }, | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); | 
 |  | 
 | static struct hv_driver hv_pci_drv = { | 
 | 	.name		= "hv_pci", | 
 | 	.id_table	= hv_pci_id_table, | 
 | 	.probe		= hv_pci_probe, | 
 | 	.remove		= hv_pci_remove, | 
 | 	.suspend	= hv_pci_suspend, | 
 | 	.resume		= hv_pci_resume, | 
 | }; | 
 |  | 
 | static void __exit exit_hv_pci_drv(void) | 
 | { | 
 | 	vmbus_driver_unregister(&hv_pci_drv); | 
 |  | 
 | 	hvpci_block_ops.read_block = NULL; | 
 | 	hvpci_block_ops.write_block = NULL; | 
 | 	hvpci_block_ops.reg_blk_invalidate = NULL; | 
 | } | 
 |  | 
 | static int __init init_hv_pci_drv(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!hv_is_hyperv_initialized()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = hv_pci_irqchip_init(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Set the invalid domain number's bit, so it will not be used */ | 
 | 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); | 
 |  | 
 | 	/* Initialize PCI block r/w interface */ | 
 | 	hvpci_block_ops.read_block = hv_read_config_block; | 
 | 	hvpci_block_ops.write_block = hv_write_config_block; | 
 | 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; | 
 |  | 
 | 	return vmbus_driver_register(&hv_pci_drv); | 
 | } | 
 |  | 
 | module_init(init_hv_pci_drv); | 
 | module_exit(exit_hv_pci_drv); | 
 |  | 
 | MODULE_DESCRIPTION("Hyper-V PCI"); | 
 | MODULE_LICENSE("GPL v2"); |