|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | *	Routines having to do with the 'struct sk_buff' memory handlers. | 
|  | * | 
|  | *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk> | 
|  | *			Florian La Roche <rzsfl@rz.uni-sb.de> | 
|  | * | 
|  | *	Fixes: | 
|  | *		Alan Cox	:	Fixed the worst of the load | 
|  | *					balancer bugs. | 
|  | *		Dave Platt	:	Interrupt stacking fix. | 
|  | *	Richard Kooijman	:	Timestamp fixes. | 
|  | *		Alan Cox	:	Changed buffer format. | 
|  | *		Alan Cox	:	destructor hook for AF_UNIX etc. | 
|  | *		Linus Torvalds	:	Better skb_clone. | 
|  | *		Alan Cox	:	Added skb_copy. | 
|  | *		Alan Cox	:	Added all the changed routines Linus | 
|  | *					only put in the headers | 
|  | *		Ray VanTassle	:	Fixed --skb->lock in free | 
|  | *		Alan Cox	:	skb_copy copy arp field | 
|  | *		Andi Kleen	:	slabified it. | 
|  | *		Robert Olsson	:	Removed skb_head_pool | 
|  | * | 
|  | *	NOTE: | 
|  | *		The __skb_ routines should be called with interrupts | 
|  | *	disabled, or you better be *real* sure that the operation is atomic | 
|  | *	with respect to whatever list is being frobbed (e.g. via lock_sock() | 
|  | *	or via disabling bottom half handlers, etc). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	The functions in this file will not compile correctly with gcc 2.4.x | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/sctp.h> | 
|  | #include <linux/netdevice.h> | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | #include <net/pkt_sched.h> | 
|  | #endif | 
|  | #include <linux/string.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/splice.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/errqueue.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/mpls.h> | 
|  | #include <linux/kcov.h> | 
|  |  | 
|  | #include <net/protocol.h> | 
|  | #include <net/dst.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <net/xfrm.h> | 
|  | #include <net/mpls.h> | 
|  | #include <net/mptcp.h> | 
|  | #include <net/mctp.h> | 
|  | #include <net/page_pool.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <trace/events/skb.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/indirect_call_wrapper.h> | 
|  |  | 
|  | #include "dev.h" | 
|  | #include "sock_destructor.h" | 
|  |  | 
|  | struct kmem_cache *skbuff_head_cache __ro_after_init; | 
|  | static struct kmem_cache *skbuff_fclone_cache __ro_after_init; | 
|  | #ifdef CONFIG_SKB_EXTENSIONS | 
|  | static struct kmem_cache *skbuff_ext_cache __ro_after_init; | 
|  | #endif | 
|  | int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; | 
|  | EXPORT_SYMBOL(sysctl_max_skb_frags); | 
|  |  | 
|  | #undef FN | 
|  | #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, | 
|  | const char * const drop_reasons[] = { | 
|  | DEFINE_DROP_REASON(FN, FN) | 
|  | }; | 
|  | EXPORT_SYMBOL(drop_reasons); | 
|  |  | 
|  | /** | 
|  | *	skb_panic - private function for out-of-line support | 
|  | *	@skb:	buffer | 
|  | *	@sz:	size | 
|  | *	@addr:	address | 
|  | *	@msg:	skb_over_panic or skb_under_panic | 
|  | * | 
|  | *	Out-of-line support for skb_put() and skb_push(). | 
|  | *	Called via the wrapper skb_over_panic() or skb_under_panic(). | 
|  | *	Keep out of line to prevent kernel bloat. | 
|  | *	__builtin_return_address is not used because it is not always reliable. | 
|  | */ | 
|  | static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, | 
|  | const char msg[]) | 
|  | { | 
|  | pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", | 
|  | msg, addr, skb->len, sz, skb->head, skb->data, | 
|  | (unsigned long)skb->tail, (unsigned long)skb->end, | 
|  | skb->dev ? skb->dev->name : "<NULL>"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) | 
|  | { | 
|  | skb_panic(skb, sz, addr, __func__); | 
|  | } | 
|  |  | 
|  | static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) | 
|  | { | 
|  | skb_panic(skb, sz, addr, __func__); | 
|  | } | 
|  |  | 
|  | #define NAPI_SKB_CACHE_SIZE	64 | 
|  | #define NAPI_SKB_CACHE_BULK	16 | 
|  | #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2) | 
|  |  | 
|  | #if PAGE_SIZE == SZ_4K | 
|  |  | 
|  | #define NAPI_HAS_SMALL_PAGE_FRAG	1 | 
|  | #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc) | 
|  |  | 
|  | /* specialized page frag allocator using a single order 0 page | 
|  | * and slicing it into 1K sized fragment. Constrained to systems | 
|  | * with a very limited amount of 1K fragments fitting a single | 
|  | * page - to avoid excessive truesize underestimation | 
|  | */ | 
|  |  | 
|  | struct page_frag_1k { | 
|  | void *va; | 
|  | u16 offset; | 
|  | bool pfmemalloc; | 
|  | }; | 
|  |  | 
|  | static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) | 
|  | { | 
|  | struct page *page; | 
|  | int offset; | 
|  |  | 
|  | offset = nc->offset - SZ_1K; | 
|  | if (likely(offset >= 0)) | 
|  | goto use_frag; | 
|  |  | 
|  | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | nc->va = page_address(page); | 
|  | nc->pfmemalloc = page_is_pfmemalloc(page); | 
|  | offset = PAGE_SIZE - SZ_1K; | 
|  | page_ref_add(page, offset / SZ_1K); | 
|  |  | 
|  | use_frag: | 
|  | nc->offset = offset; | 
|  | return nc->va + offset; | 
|  | } | 
|  | #else | 
|  |  | 
|  | /* the small page is actually unused in this build; add dummy helpers | 
|  | * to please the compiler and avoid later preprocessor's conditionals | 
|  | */ | 
|  | #define NAPI_HAS_SMALL_PAGE_FRAG	0 | 
|  | #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false | 
|  |  | 
|  | struct page_frag_1k { | 
|  | }; | 
|  |  | 
|  | static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | struct napi_alloc_cache { | 
|  | struct page_frag_cache page; | 
|  | struct page_frag_1k page_small; | 
|  | unsigned int skb_count; | 
|  | void *skb_cache[NAPI_SKB_CACHE_SIZE]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); | 
|  | static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); | 
|  |  | 
|  | /* Double check that napi_get_frags() allocates skbs with | 
|  | * skb->head being backed by slab, not a page fragment. | 
|  | * This is to make sure bug fixed in 3226b158e67c | 
|  | * ("net: avoid 32 x truesize under-estimation for tiny skbs") | 
|  | * does not accidentally come back. | 
|  | */ | 
|  | void napi_get_frags_check(struct napi_struct *napi) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | local_bh_disable(); | 
|  | skb = napi_get_frags(napi); | 
|  | WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); | 
|  | napi_free_frags(napi); | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) | 
|  | { | 
|  | struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); | 
|  |  | 
|  | fragsz = SKB_DATA_ALIGN(fragsz); | 
|  |  | 
|  | return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); | 
|  | } | 
|  | EXPORT_SYMBOL(__napi_alloc_frag_align); | 
|  |  | 
|  | void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) | 
|  | { | 
|  | void *data; | 
|  |  | 
|  | fragsz = SKB_DATA_ALIGN(fragsz); | 
|  | if (in_hardirq() || irqs_disabled()) { | 
|  | struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); | 
|  |  | 
|  | data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); | 
|  | } else { | 
|  | struct napi_alloc_cache *nc; | 
|  |  | 
|  | local_bh_disable(); | 
|  | nc = this_cpu_ptr(&napi_alloc_cache); | 
|  | data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); | 
|  | local_bh_enable(); | 
|  | } | 
|  | return data; | 
|  | } | 
|  | EXPORT_SYMBOL(__netdev_alloc_frag_align); | 
|  |  | 
|  | static struct sk_buff *napi_skb_cache_get(void) | 
|  | { | 
|  | struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (unlikely(!nc->skb_count)) { | 
|  | nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, | 
|  | GFP_ATOMIC, | 
|  | NAPI_SKB_CACHE_BULK, | 
|  | nc->skb_cache); | 
|  | if (unlikely(!nc->skb_count)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | skb = nc->skb_cache[--nc->skb_count]; | 
|  | kasan_unpoison_object_data(skbuff_head_cache, skb); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* Caller must provide SKB that is memset cleared */ | 
|  | static void __build_skb_around(struct sk_buff *skb, void *data, | 
|  | unsigned int frag_size) | 
|  | { | 
|  | struct skb_shared_info *shinfo; | 
|  | unsigned int size = frag_size ? : ksize(data); | 
|  |  | 
|  | size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  |  | 
|  | /* Assumes caller memset cleared SKB */ | 
|  | skb->truesize = SKB_TRUESIZE(size); | 
|  | refcount_set(&skb->users, 1); | 
|  | skb->head = data; | 
|  | skb->data = data; | 
|  | skb_reset_tail_pointer(skb); | 
|  | skb_set_end_offset(skb, size); | 
|  | skb->mac_header = (typeof(skb->mac_header))~0U; | 
|  | skb->transport_header = (typeof(skb->transport_header))~0U; | 
|  | skb->alloc_cpu = raw_smp_processor_id(); | 
|  | /* make sure we initialize shinfo sequentially */ | 
|  | shinfo = skb_shinfo(skb); | 
|  | memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); | 
|  | atomic_set(&shinfo->dataref, 1); | 
|  |  | 
|  | skb_set_kcov_handle(skb, kcov_common_handle()); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __build_skb - build a network buffer | 
|  | * @data: data buffer provided by caller | 
|  | * @frag_size: size of data, or 0 if head was kmalloced | 
|  | * | 
|  | * Allocate a new &sk_buff. Caller provides space holding head and | 
|  | * skb_shared_info. @data must have been allocated by kmalloc() only if | 
|  | * @frag_size is 0, otherwise data should come from the page allocator | 
|  | *  or vmalloc() | 
|  | * The return is the new skb buffer. | 
|  | * On a failure the return is %NULL, and @data is not freed. | 
|  | * Notes : | 
|  | *  Before IO, driver allocates only data buffer where NIC put incoming frame | 
|  | *  Driver should add room at head (NET_SKB_PAD) and | 
|  | *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) | 
|  | *  After IO, driver calls build_skb(), to allocate sk_buff and populate it | 
|  | *  before giving packet to stack. | 
|  | *  RX rings only contains data buffers, not full skbs. | 
|  | */ | 
|  | struct sk_buff *__build_skb(void *data, unsigned int frag_size) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | memset(skb, 0, offsetof(struct sk_buff, tail)); | 
|  | __build_skb_around(skb, data, frag_size); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* build_skb() is wrapper over __build_skb(), that specifically | 
|  | * takes care of skb->head and skb->pfmemalloc | 
|  | * This means that if @frag_size is not zero, then @data must be backed | 
|  | * by a page fragment, not kmalloc() or vmalloc() | 
|  | */ | 
|  | struct sk_buff *build_skb(void *data, unsigned int frag_size) | 
|  | { | 
|  | struct sk_buff *skb = __build_skb(data, frag_size); | 
|  |  | 
|  | if (skb && frag_size) { | 
|  | skb->head_frag = 1; | 
|  | if (page_is_pfmemalloc(virt_to_head_page(data))) | 
|  | skb->pfmemalloc = 1; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(build_skb); | 
|  |  | 
|  | /** | 
|  | * build_skb_around - build a network buffer around provided skb | 
|  | * @skb: sk_buff provide by caller, must be memset cleared | 
|  | * @data: data buffer provided by caller | 
|  | * @frag_size: size of data, or 0 if head was kmalloced | 
|  | */ | 
|  | struct sk_buff *build_skb_around(struct sk_buff *skb, | 
|  | void *data, unsigned int frag_size) | 
|  | { | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | __build_skb_around(skb, data, frag_size); | 
|  |  | 
|  | if (frag_size) { | 
|  | skb->head_frag = 1; | 
|  | if (page_is_pfmemalloc(virt_to_head_page(data))) | 
|  | skb->pfmemalloc = 1; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(build_skb_around); | 
|  |  | 
|  | /** | 
|  | * __napi_build_skb - build a network buffer | 
|  | * @data: data buffer provided by caller | 
|  | * @frag_size: size of data, or 0 if head was kmalloced | 
|  | * | 
|  | * Version of __build_skb() that uses NAPI percpu caches to obtain | 
|  | * skbuff_head instead of inplace allocation. | 
|  | * | 
|  | * Returns a new &sk_buff on success, %NULL on allocation failure. | 
|  | */ | 
|  | static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = napi_skb_cache_get(); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | memset(skb, 0, offsetof(struct sk_buff, tail)); | 
|  | __build_skb_around(skb, data, frag_size); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * napi_build_skb - build a network buffer | 
|  | * @data: data buffer provided by caller | 
|  | * @frag_size: size of data, or 0 if head was kmalloced | 
|  | * | 
|  | * Version of __napi_build_skb() that takes care of skb->head_frag | 
|  | * and skb->pfmemalloc when the data is a page or page fragment. | 
|  | * | 
|  | * Returns a new &sk_buff on success, %NULL on allocation failure. | 
|  | */ | 
|  | struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) | 
|  | { | 
|  | struct sk_buff *skb = __napi_build_skb(data, frag_size); | 
|  |  | 
|  | if (likely(skb) && frag_size) { | 
|  | skb->head_frag = 1; | 
|  | skb_propagate_pfmemalloc(virt_to_head_page(data), skb); | 
|  | } | 
|  |  | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(napi_build_skb); | 
|  |  | 
|  | /* | 
|  | * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells | 
|  | * the caller if emergency pfmemalloc reserves are being used. If it is and | 
|  | * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves | 
|  | * may be used. Otherwise, the packet data may be discarded until enough | 
|  | * memory is free | 
|  | */ | 
|  | static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, | 
|  | bool *pfmemalloc) | 
|  | { | 
|  | bool ret_pfmemalloc = false; | 
|  | size_t obj_size; | 
|  | void *obj; | 
|  |  | 
|  | obj_size = SKB_HEAD_ALIGN(*size); | 
|  |  | 
|  | obj_size = kmalloc_size_roundup(obj_size); | 
|  | /* The following cast might truncate high-order bits of obj_size, this | 
|  | * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. | 
|  | */ | 
|  | *size = (unsigned int)obj_size; | 
|  |  | 
|  | /* | 
|  | * Try a regular allocation, when that fails and we're not entitled | 
|  | * to the reserves, fail. | 
|  | */ | 
|  | obj = kmalloc_node_track_caller(obj_size, | 
|  | flags | __GFP_NOMEMALLOC | __GFP_NOWARN, | 
|  | node); | 
|  | if (obj || !(gfp_pfmemalloc_allowed(flags))) | 
|  | goto out; | 
|  |  | 
|  | /* Try again but now we are using pfmemalloc reserves */ | 
|  | ret_pfmemalloc = true; | 
|  | obj = kmalloc_node_track_caller(obj_size, flags, node); | 
|  |  | 
|  | out: | 
|  | if (pfmemalloc) | 
|  | *pfmemalloc = ret_pfmemalloc; | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few | 
|  | *	'private' fields and also do memory statistics to find all the | 
|  | *	[BEEP] leaks. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	__alloc_skb	-	allocate a network buffer | 
|  | *	@size: size to allocate | 
|  | *	@gfp_mask: allocation mask | 
|  | *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache | 
|  | *		instead of head cache and allocate a cloned (child) skb. | 
|  | *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for | 
|  | *		allocations in case the data is required for writeback | 
|  | *	@node: numa node to allocate memory on | 
|  | * | 
|  | *	Allocate a new &sk_buff. The returned buffer has no headroom and a | 
|  | *	tail room of at least size bytes. The object has a reference count | 
|  | *	of one. The return is the buffer. On a failure the return is %NULL. | 
|  | * | 
|  | *	Buffers may only be allocated from interrupts using a @gfp_mask of | 
|  | *	%GFP_ATOMIC. | 
|  | */ | 
|  | struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, | 
|  | int flags, int node) | 
|  | { | 
|  | struct kmem_cache *cache; | 
|  | struct sk_buff *skb; | 
|  | bool pfmemalloc; | 
|  | u8 *data; | 
|  |  | 
|  | cache = (flags & SKB_ALLOC_FCLONE) | 
|  | ? skbuff_fclone_cache : skbuff_head_cache; | 
|  |  | 
|  | if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | /* Get the HEAD */ | 
|  | if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && | 
|  | likely(node == NUMA_NO_NODE || node == numa_mem_id())) | 
|  | skb = napi_skb_cache_get(); | 
|  | else | 
|  | skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  | prefetchw(skb); | 
|  |  | 
|  | /* We do our best to align skb_shared_info on a separate cache | 
|  | * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives | 
|  | * aligned memory blocks, unless SLUB/SLAB debug is enabled. | 
|  | * Both skb->head and skb_shared_info are cache line aligned. | 
|  | */ | 
|  | data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); | 
|  | if (unlikely(!data)) | 
|  | goto nodata; | 
|  | /* kmalloc_size_roundup() might give us more room than requested. | 
|  | * Put skb_shared_info exactly at the end of allocated zone, | 
|  | * to allow max possible filling before reallocation. | 
|  | */ | 
|  | prefetchw(data + SKB_WITH_OVERHEAD(size)); | 
|  |  | 
|  | /* | 
|  | * Only clear those fields we need to clear, not those that we will | 
|  | * actually initialise below. Hence, don't put any more fields after | 
|  | * the tail pointer in struct sk_buff! | 
|  | */ | 
|  | memset(skb, 0, offsetof(struct sk_buff, tail)); | 
|  | __build_skb_around(skb, data, size); | 
|  | skb->pfmemalloc = pfmemalloc; | 
|  |  | 
|  | if (flags & SKB_ALLOC_FCLONE) { | 
|  | struct sk_buff_fclones *fclones; | 
|  |  | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb1); | 
|  |  | 
|  | skb->fclone = SKB_FCLONE_ORIG; | 
|  | refcount_set(&fclones->fclone_ref, 1); | 
|  | } | 
|  |  | 
|  | return skb; | 
|  |  | 
|  | nodata: | 
|  | kmem_cache_free(cache, skb); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(__alloc_skb); | 
|  |  | 
|  | /** | 
|  | *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device | 
|  | *	@dev: network device to receive on | 
|  | *	@len: length to allocate | 
|  | *	@gfp_mask: get_free_pages mask, passed to alloc_skb | 
|  | * | 
|  | *	Allocate a new &sk_buff and assign it a usage count of one. The | 
|  | *	buffer has NET_SKB_PAD headroom built in. Users should allocate | 
|  | *	the headroom they think they need without accounting for the | 
|  | *	built in space. The built in space is used for optimisations. | 
|  | * | 
|  | *	%NULL is returned if there is no free memory. | 
|  | */ | 
|  | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct page_frag_cache *nc; | 
|  | struct sk_buff *skb; | 
|  | bool pfmemalloc; | 
|  | void *data; | 
|  |  | 
|  | len += NET_SKB_PAD; | 
|  |  | 
|  | /* If requested length is either too small or too big, | 
|  | * we use kmalloc() for skb->head allocation. | 
|  | */ | 
|  | if (len <= SKB_WITH_OVERHEAD(1024) || | 
|  | len > SKB_WITH_OVERHEAD(PAGE_SIZE) || | 
|  | (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { | 
|  | skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); | 
|  | if (!skb) | 
|  | goto skb_fail; | 
|  | goto skb_success; | 
|  | } | 
|  |  | 
|  | len = SKB_HEAD_ALIGN(len); | 
|  |  | 
|  | if (sk_memalloc_socks()) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | if (in_hardirq() || irqs_disabled()) { | 
|  | nc = this_cpu_ptr(&netdev_alloc_cache); | 
|  | data = page_frag_alloc(nc, len, gfp_mask); | 
|  | pfmemalloc = nc->pfmemalloc; | 
|  | } else { | 
|  | local_bh_disable(); | 
|  | nc = this_cpu_ptr(&napi_alloc_cache.page); | 
|  | data = page_frag_alloc(nc, len, gfp_mask); | 
|  | pfmemalloc = nc->pfmemalloc; | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | if (unlikely(!data)) | 
|  | return NULL; | 
|  |  | 
|  | skb = __build_skb(data, len); | 
|  | if (unlikely(!skb)) { | 
|  | skb_free_frag(data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (pfmemalloc) | 
|  | skb->pfmemalloc = 1; | 
|  | skb->head_frag = 1; | 
|  |  | 
|  | skb_success: | 
|  | skb_reserve(skb, NET_SKB_PAD); | 
|  | skb->dev = dev; | 
|  |  | 
|  | skb_fail: | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(__netdev_alloc_skb); | 
|  |  | 
|  | /** | 
|  | *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance | 
|  | *	@napi: napi instance this buffer was allocated for | 
|  | *	@len: length to allocate | 
|  | *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages | 
|  | * | 
|  | *	Allocate a new sk_buff for use in NAPI receive.  This buffer will | 
|  | *	attempt to allocate the head from a special reserved region used | 
|  | *	only for NAPI Rx allocation.  By doing this we can save several | 
|  | *	CPU cycles by avoiding having to disable and re-enable IRQs. | 
|  | * | 
|  | *	%NULL is returned if there is no free memory. | 
|  | */ | 
|  | struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct napi_alloc_cache *nc; | 
|  | struct sk_buff *skb; | 
|  | bool pfmemalloc; | 
|  | void *data; | 
|  |  | 
|  | DEBUG_NET_WARN_ON_ONCE(!in_softirq()); | 
|  | len += NET_SKB_PAD + NET_IP_ALIGN; | 
|  |  | 
|  | /* If requested length is either too small or too big, | 
|  | * we use kmalloc() for skb->head allocation. | 
|  | * When the small frag allocator is available, prefer it over kmalloc | 
|  | * for small fragments | 
|  | */ | 
|  | if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || | 
|  | len > SKB_WITH_OVERHEAD(PAGE_SIZE) || | 
|  | (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { | 
|  | skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, | 
|  | NUMA_NO_NODE); | 
|  | if (!skb) | 
|  | goto skb_fail; | 
|  | goto skb_success; | 
|  | } | 
|  |  | 
|  | nc = this_cpu_ptr(&napi_alloc_cache); | 
|  |  | 
|  | if (sk_memalloc_socks()) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { | 
|  | /* we are artificially inflating the allocation size, but | 
|  | * that is not as bad as it may look like, as: | 
|  | * - 'len' less than GRO_MAX_HEAD makes little sense | 
|  | * - On most systems, larger 'len' values lead to fragment | 
|  | *   size above 512 bytes | 
|  | * - kmalloc would use the kmalloc-1k slab for such values | 
|  | * - Builds with smaller GRO_MAX_HEAD will very likely do | 
|  | *   little networking, as that implies no WiFi and no | 
|  | *   tunnels support, and 32 bits arches. | 
|  | */ | 
|  | len = SZ_1K; | 
|  |  | 
|  | data = page_frag_alloc_1k(&nc->page_small, gfp_mask); | 
|  | pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); | 
|  | } else { | 
|  | len = SKB_HEAD_ALIGN(len); | 
|  |  | 
|  | data = page_frag_alloc(&nc->page, len, gfp_mask); | 
|  | pfmemalloc = nc->page.pfmemalloc; | 
|  | } | 
|  |  | 
|  | if (unlikely(!data)) | 
|  | return NULL; | 
|  |  | 
|  | skb = __napi_build_skb(data, len); | 
|  | if (unlikely(!skb)) { | 
|  | skb_free_frag(data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (pfmemalloc) | 
|  | skb->pfmemalloc = 1; | 
|  | skb->head_frag = 1; | 
|  |  | 
|  | skb_success: | 
|  | skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); | 
|  | skb->dev = napi->dev; | 
|  |  | 
|  | skb_fail: | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(__napi_alloc_skb); | 
|  |  | 
|  | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, | 
|  | int size, unsigned int truesize) | 
|  | { | 
|  | skb_fill_page_desc(skb, i, page, off, size); | 
|  | skb->len += size; | 
|  | skb->data_len += size; | 
|  | skb->truesize += truesize; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_add_rx_frag); | 
|  |  | 
|  | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, | 
|  | unsigned int truesize) | 
|  | { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | skb_frag_size_add(frag, size); | 
|  | skb->len += size; | 
|  | skb->data_len += size; | 
|  | skb->truesize += truesize; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_coalesce_rx_frag); | 
|  |  | 
|  | static void skb_drop_list(struct sk_buff **listp) | 
|  | { | 
|  | kfree_skb_list(*listp); | 
|  | *listp = NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_drop_fraglist(struct sk_buff *skb) | 
|  | { | 
|  | skb_drop_list(&skb_shinfo(skb)->frag_list); | 
|  | } | 
|  |  | 
|  | static void skb_clone_fraglist(struct sk_buff *skb) | 
|  | { | 
|  | struct sk_buff *list; | 
|  |  | 
|  | skb_walk_frags(skb, list) | 
|  | skb_get(list); | 
|  | } | 
|  |  | 
|  | static void skb_free_head(struct sk_buff *skb) | 
|  | { | 
|  | unsigned char *head = skb->head; | 
|  |  | 
|  | if (skb->head_frag) { | 
|  | if (skb_pp_recycle(skb, head)) | 
|  | return; | 
|  | skb_free_frag(head); | 
|  | } else { | 
|  | kfree(head); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void skb_release_data(struct sk_buff *skb) | 
|  | { | 
|  | struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  | int i; | 
|  |  | 
|  | if (skb->cloned && | 
|  | atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, | 
|  | &shinfo->dataref)) | 
|  | goto exit; | 
|  |  | 
|  | if (skb_zcopy(skb)) { | 
|  | bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; | 
|  |  | 
|  | skb_zcopy_clear(skb, true); | 
|  | if (skip_unref) | 
|  | goto free_head; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < shinfo->nr_frags; i++) | 
|  | __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); | 
|  |  | 
|  | free_head: | 
|  | if (shinfo->frag_list) | 
|  | kfree_skb_list(shinfo->frag_list); | 
|  |  | 
|  | skb_free_head(skb); | 
|  | exit: | 
|  | /* When we clone an SKB we copy the reycling bit. The pp_recycle | 
|  | * bit is only set on the head though, so in order to avoid races | 
|  | * while trying to recycle fragments on __skb_frag_unref() we need | 
|  | * to make one SKB responsible for triggering the recycle path. | 
|  | * So disable the recycling bit if an SKB is cloned and we have | 
|  | * additional references to the fragmented part of the SKB. | 
|  | * Eventually the last SKB will have the recycling bit set and it's | 
|  | * dataref set to 0, which will trigger the recycling | 
|  | */ | 
|  | skb->pp_recycle = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Free an skbuff by memory without cleaning the state. | 
|  | */ | 
|  | static void kfree_skbmem(struct sk_buff *skb) | 
|  | { | 
|  | struct sk_buff_fclones *fclones; | 
|  |  | 
|  | switch (skb->fclone) { | 
|  | case SKB_FCLONE_UNAVAILABLE: | 
|  | kmem_cache_free(skbuff_head_cache, skb); | 
|  | return; | 
|  |  | 
|  | case SKB_FCLONE_ORIG: | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb1); | 
|  |  | 
|  | /* We usually free the clone (TX completion) before original skb | 
|  | * This test would have no chance to be true for the clone, | 
|  | * while here, branch prediction will be good. | 
|  | */ | 
|  | if (refcount_read(&fclones->fclone_ref) == 1) | 
|  | goto fastpath; | 
|  | break; | 
|  |  | 
|  | default: /* SKB_FCLONE_CLONE */ | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb2); | 
|  | break; | 
|  | } | 
|  | if (!refcount_dec_and_test(&fclones->fclone_ref)) | 
|  | return; | 
|  | fastpath: | 
|  | kmem_cache_free(skbuff_fclone_cache, fclones); | 
|  | } | 
|  |  | 
|  | void skb_release_head_state(struct sk_buff *skb) | 
|  | { | 
|  | skb_dst_drop(skb); | 
|  | if (skb->destructor) { | 
|  | DEBUG_NET_WARN_ON_ONCE(in_hardirq()); | 
|  | skb->destructor(skb); | 
|  | } | 
|  | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | 
|  | nf_conntrack_put(skb_nfct(skb)); | 
|  | #endif | 
|  | skb_ext_put(skb); | 
|  | } | 
|  |  | 
|  | /* Free everything but the sk_buff shell. */ | 
|  | static void skb_release_all(struct sk_buff *skb) | 
|  | { | 
|  | skb_release_head_state(skb); | 
|  | if (likely(skb->head)) | 
|  | skb_release_data(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__kfree_skb - private function | 
|  | *	@skb: buffer | 
|  | * | 
|  | *	Free an sk_buff. Release anything attached to the buffer. | 
|  | *	Clean the state. This is an internal helper function. Users should | 
|  | *	always call kfree_skb | 
|  | */ | 
|  |  | 
|  | void __kfree_skb(struct sk_buff *skb) | 
|  | { | 
|  | skb_release_all(skb); | 
|  | kfree_skbmem(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(__kfree_skb); | 
|  |  | 
|  | /** | 
|  | *	kfree_skb_reason - free an sk_buff with special reason | 
|  | *	@skb: buffer to free | 
|  | *	@reason: reason why this skb is dropped | 
|  | * | 
|  | *	Drop a reference to the buffer and free it if the usage count has | 
|  | *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb' | 
|  | *	tracepoint. | 
|  | */ | 
|  | void __fix_address | 
|  | kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) | 
|  | { | 
|  | if (unlikely(!skb_unref(skb))) | 
|  | return; | 
|  |  | 
|  | DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); | 
|  |  | 
|  | trace_kfree_skb(skb, __builtin_return_address(0), reason); | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_skb_reason); | 
|  |  | 
|  | void kfree_skb_list_reason(struct sk_buff *segs, | 
|  | enum skb_drop_reason reason) | 
|  | { | 
|  | while (segs) { | 
|  | struct sk_buff *next = segs->next; | 
|  |  | 
|  | kfree_skb_reason(segs, reason); | 
|  | segs = next; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_skb_list_reason); | 
|  |  | 
|  | /* Dump skb information and contents. | 
|  | * | 
|  | * Must only be called from net_ratelimit()-ed paths. | 
|  | * | 
|  | * Dumps whole packets if full_pkt, only headers otherwise. | 
|  | */ | 
|  | void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) | 
|  | { | 
|  | struct skb_shared_info *sh = skb_shinfo(skb); | 
|  | struct net_device *dev = skb->dev; | 
|  | struct sock *sk = skb->sk; | 
|  | struct sk_buff *list_skb; | 
|  | bool has_mac, has_trans; | 
|  | int headroom, tailroom; | 
|  | int i, len, seg_len; | 
|  |  | 
|  | if (full_pkt) | 
|  | len = skb->len; | 
|  | else | 
|  | len = min_t(int, skb->len, MAX_HEADER + 128); | 
|  |  | 
|  | headroom = skb_headroom(skb); | 
|  | tailroom = skb_tailroom(skb); | 
|  |  | 
|  | has_mac = skb_mac_header_was_set(skb); | 
|  | has_trans = skb_transport_header_was_set(skb); | 
|  |  | 
|  | printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" | 
|  | "mac=(%d,%d) net=(%d,%d) trans=%d\n" | 
|  | "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" | 
|  | "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" | 
|  | "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", | 
|  | level, skb->len, headroom, skb_headlen(skb), tailroom, | 
|  | has_mac ? skb->mac_header : -1, | 
|  | has_mac ? skb_mac_header_len(skb) : -1, | 
|  | skb->network_header, | 
|  | has_trans ? skb_network_header_len(skb) : -1, | 
|  | has_trans ? skb->transport_header : -1, | 
|  | sh->tx_flags, sh->nr_frags, | 
|  | sh->gso_size, sh->gso_type, sh->gso_segs, | 
|  | skb->csum, skb->ip_summed, skb->csum_complete_sw, | 
|  | skb->csum_valid, skb->csum_level, | 
|  | skb->hash, skb->sw_hash, skb->l4_hash, | 
|  | ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); | 
|  |  | 
|  | if (dev) | 
|  | printk("%sdev name=%s feat=%pNF\n", | 
|  | level, dev->name, &dev->features); | 
|  | if (sk) | 
|  | printk("%ssk family=%hu type=%u proto=%u\n", | 
|  | level, sk->sk_family, sk->sk_type, sk->sk_protocol); | 
|  |  | 
|  | if (full_pkt && headroom) | 
|  | print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, | 
|  | 16, 1, skb->head, headroom, false); | 
|  |  | 
|  | seg_len = min_t(int, skb_headlen(skb), len); | 
|  | if (seg_len) | 
|  | print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET, | 
|  | 16, 1, skb->data, seg_len, false); | 
|  | len -= seg_len; | 
|  |  | 
|  | if (full_pkt && tailroom) | 
|  | print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, | 
|  | 16, 1, skb_tail_pointer(skb), tailroom, false); | 
|  |  | 
|  | for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | u32 p_off, p_len, copied; | 
|  | struct page *p; | 
|  | u8 *vaddr; | 
|  |  | 
|  | skb_frag_foreach_page(frag, skb_frag_off(frag), | 
|  | skb_frag_size(frag), p, p_off, p_len, | 
|  | copied) { | 
|  | seg_len = min_t(int, p_len, len); | 
|  | if (!is_dma_buf_page(p)) { | 
|  | vaddr = kmap_atomic(p); | 
|  | print_hex_dump(level, "skb frag:     ", | 
|  | DUMP_PREFIX_OFFSET, 16, 1, | 
|  | vaddr + p_off, seg_len, false); | 
|  | kunmap_atomic(vaddr); | 
|  | } else { | 
|  | printk("%sskb frag: devmem", level); | 
|  | } | 
|  |  | 
|  | len -= seg_len; | 
|  | if (!len) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (full_pkt && skb_has_frag_list(skb)) { | 
|  | printk("skb fraglist:\n"); | 
|  | skb_walk_frags(skb, list_skb) | 
|  | skb_dump(level, list_skb, true); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(skb_dump); | 
|  |  | 
|  | /** | 
|  | *	skb_tx_error - report an sk_buff xmit error | 
|  | *	@skb: buffer that triggered an error | 
|  | * | 
|  | *	Report xmit error if a device callback is tracking this skb. | 
|  | *	skb must be freed afterwards. | 
|  | */ | 
|  | void skb_tx_error(struct sk_buff *skb) | 
|  | { | 
|  | if (skb) { | 
|  | skb_zcopy_downgrade_managed(skb); | 
|  | skb_zcopy_clear(skb, true); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(skb_tx_error); | 
|  |  | 
|  | #ifdef CONFIG_TRACEPOINTS | 
|  | /** | 
|  | *	consume_skb - free an skbuff | 
|  | *	@skb: buffer to free | 
|  | * | 
|  | *	Drop a ref to the buffer and free it if the usage count has hit zero | 
|  | *	Functions identically to kfree_skb, but kfree_skb assumes that the frame | 
|  | *	is being dropped after a failure and notes that | 
|  | */ | 
|  | void consume_skb(struct sk_buff *skb) | 
|  | { | 
|  | if (!skb_unref(skb)) | 
|  | return; | 
|  |  | 
|  | trace_consume_skb(skb); | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(consume_skb); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *	__consume_stateless_skb - free an skbuff, assuming it is stateless | 
|  | *	@skb: buffer to free | 
|  | * | 
|  | *	Alike consume_skb(), but this variant assumes that this is the last | 
|  | *	skb reference and all the head states have been already dropped | 
|  | */ | 
|  | void __consume_stateless_skb(struct sk_buff *skb) | 
|  | { | 
|  | trace_consume_skb(skb); | 
|  | skb_release_data(skb); | 
|  | kfree_skbmem(skb); | 
|  | } | 
|  |  | 
|  | static void napi_skb_cache_put(struct sk_buff *skb) | 
|  | { | 
|  | struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); | 
|  | u32 i; | 
|  |  | 
|  | kasan_poison_object_data(skbuff_head_cache, skb); | 
|  | nc->skb_cache[nc->skb_count++] = skb; | 
|  |  | 
|  | if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { | 
|  | for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) | 
|  | kasan_unpoison_object_data(skbuff_head_cache, | 
|  | nc->skb_cache[i]); | 
|  |  | 
|  | kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, | 
|  | nc->skb_cache + NAPI_SKB_CACHE_HALF); | 
|  | nc->skb_count = NAPI_SKB_CACHE_HALF; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kfree_skb_defer(struct sk_buff *skb) | 
|  | { | 
|  | skb_release_all(skb); | 
|  | napi_skb_cache_put(skb); | 
|  | } | 
|  |  | 
|  | void napi_skb_free_stolen_head(struct sk_buff *skb) | 
|  | { | 
|  | if (unlikely(skb->slow_gro)) { | 
|  | nf_reset_ct(skb); | 
|  | skb_dst_drop(skb); | 
|  | skb_ext_put(skb); | 
|  | skb_orphan(skb); | 
|  | skb->slow_gro = 0; | 
|  | } | 
|  | napi_skb_cache_put(skb); | 
|  | } | 
|  |  | 
|  | void napi_consume_skb(struct sk_buff *skb, int budget) | 
|  | { | 
|  | /* Zero budget indicate non-NAPI context called us, like netpoll */ | 
|  | if (unlikely(!budget)) { | 
|  | dev_consume_skb_any(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG_NET_WARN_ON_ONCE(!in_softirq()); | 
|  |  | 
|  | if (!skb_unref(skb)) | 
|  | return; | 
|  |  | 
|  | /* if reaching here SKB is ready to free */ | 
|  | trace_consume_skb(skb); | 
|  |  | 
|  | /* if SKB is a clone, don't handle this case */ | 
|  | if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { | 
|  | __kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | skb_release_all(skb); | 
|  | napi_skb_cache_put(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(napi_consume_skb); | 
|  |  | 
|  | /* Make sure a field is contained by headers group */ | 
|  | #define CHECK_SKB_FIELD(field) \ | 
|  | BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\ | 
|  | offsetof(struct sk_buff, headers.field));	\ | 
|  |  | 
|  | static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) | 
|  | { | 
|  | new->tstamp		= old->tstamp; | 
|  | /* We do not copy old->sk */ | 
|  | new->dev		= old->dev; | 
|  | memcpy(new->cb, old->cb, sizeof(old->cb)); | 
|  | skb_dst_copy(new, old); | 
|  | __skb_ext_copy(new, old); | 
|  | __nf_copy(new, old, false); | 
|  |  | 
|  | /* Note : this field could be in the headers group. | 
|  | * It is not yet because we do not want to have a 16 bit hole | 
|  | */ | 
|  | new->queue_mapping = old->queue_mapping; | 
|  |  | 
|  | memcpy(&new->headers, &old->headers, sizeof(new->headers)); | 
|  | CHECK_SKB_FIELD(protocol); | 
|  | CHECK_SKB_FIELD(csum); | 
|  | CHECK_SKB_FIELD(hash); | 
|  | CHECK_SKB_FIELD(priority); | 
|  | CHECK_SKB_FIELD(skb_iif); | 
|  | CHECK_SKB_FIELD(vlan_proto); | 
|  | CHECK_SKB_FIELD(vlan_tci); | 
|  | CHECK_SKB_FIELD(transport_header); | 
|  | CHECK_SKB_FIELD(network_header); | 
|  | CHECK_SKB_FIELD(mac_header); | 
|  | CHECK_SKB_FIELD(inner_protocol); | 
|  | CHECK_SKB_FIELD(inner_transport_header); | 
|  | CHECK_SKB_FIELD(inner_network_header); | 
|  | CHECK_SKB_FIELD(inner_mac_header); | 
|  | CHECK_SKB_FIELD(mark); | 
|  | #ifdef CONFIG_NETWORK_SECMARK | 
|  | CHECK_SKB_FIELD(secmark); | 
|  | #endif | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | CHECK_SKB_FIELD(napi_id); | 
|  | #endif | 
|  | CHECK_SKB_FIELD(alloc_cpu); | 
|  | #ifdef CONFIG_XPS | 
|  | CHECK_SKB_FIELD(sender_cpu); | 
|  | #endif | 
|  | #ifdef CONFIG_NET_SCHED | 
|  | CHECK_SKB_FIELD(tc_index); | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * You should not add any new code to this function.  Add it to | 
|  | * __copy_skb_header above instead. | 
|  | */ | 
|  | static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) | 
|  | { | 
|  | #define C(x) n->x = skb->x | 
|  |  | 
|  | n->next = n->prev = NULL; | 
|  | n->sk = NULL; | 
|  | __copy_skb_header(n, skb); | 
|  |  | 
|  | C(len); | 
|  | C(data_len); | 
|  | C(mac_len); | 
|  | n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; | 
|  | n->cloned = 1; | 
|  | n->nohdr = 0; | 
|  | n->peeked = 0; | 
|  | C(pfmemalloc); | 
|  | C(pp_recycle); | 
|  | n->destructor = NULL; | 
|  | C(tail); | 
|  | C(end); | 
|  | C(head); | 
|  | C(head_frag); | 
|  | C(data); | 
|  | C(truesize); | 
|  | refcount_set(&n->users, 1); | 
|  |  | 
|  | atomic_inc(&(skb_shinfo(skb)->dataref)); | 
|  | skb->cloned = 1; | 
|  |  | 
|  | return n; | 
|  | #undef C | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg | 
|  | * @first: first sk_buff of the msg | 
|  | */ | 
|  | struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) | 
|  | { | 
|  | struct sk_buff *n; | 
|  |  | 
|  | n = alloc_skb(0, GFP_ATOMIC); | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | n->len = first->len; | 
|  | n->data_len = first->len; | 
|  | n->truesize = first->truesize; | 
|  |  | 
|  | skb_shinfo(n)->frag_list = first; | 
|  |  | 
|  | __copy_skb_header(n, first); | 
|  | n->destructor = NULL; | 
|  |  | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(alloc_skb_for_msg); | 
|  |  | 
|  | /** | 
|  | *	skb_morph	-	morph one skb into another | 
|  | *	@dst: the skb to receive the contents | 
|  | *	@src: the skb to supply the contents | 
|  | * | 
|  | *	This is identical to skb_clone except that the target skb is | 
|  | *	supplied by the user. | 
|  | * | 
|  | *	The target skb is returned upon exit. | 
|  | */ | 
|  | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) | 
|  | { | 
|  | skb_release_all(dst); | 
|  | return __skb_clone(dst, src); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_morph); | 
|  |  | 
|  | int mm_account_pinned_pages(struct mmpin *mmp, size_t size) | 
|  | { | 
|  | unsigned long max_pg, num_pg, new_pg, old_pg; | 
|  | struct user_struct *user; | 
|  |  | 
|  | if (capable(CAP_IPC_LOCK) || !size) | 
|  | return 0; | 
|  |  | 
|  | num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */ | 
|  | max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; | 
|  | user = mmp->user ? : current_user(); | 
|  |  | 
|  | do { | 
|  | old_pg = atomic_long_read(&user->locked_vm); | 
|  | new_pg = old_pg + num_pg; | 
|  | if (new_pg > max_pg) | 
|  | return -ENOBUFS; | 
|  | } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != | 
|  | old_pg); | 
|  |  | 
|  | if (!mmp->user) { | 
|  | mmp->user = get_uid(user); | 
|  | mmp->num_pg = num_pg; | 
|  | } else { | 
|  | mmp->num_pg += num_pg; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mm_account_pinned_pages); | 
|  |  | 
|  | void mm_unaccount_pinned_pages(struct mmpin *mmp) | 
|  | { | 
|  | if (mmp->user) { | 
|  | atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); | 
|  | free_uid(mmp->user); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); | 
|  |  | 
|  | static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) | 
|  | { | 
|  | struct ubuf_info_msgzc *uarg; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | WARN_ON_ONCE(!in_task()); | 
|  |  | 
|  | skb = sock_omalloc(sk, 0, GFP_KERNEL); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); | 
|  | uarg = (void *)skb->cb; | 
|  | uarg->mmp.user = NULL; | 
|  |  | 
|  | if (mm_account_pinned_pages(&uarg->mmp, size)) { | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | uarg->ubuf.callback = msg_zerocopy_callback; | 
|  | uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; | 
|  | uarg->len = 1; | 
|  | uarg->bytelen = size; | 
|  | uarg->zerocopy = 1; | 
|  | uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; | 
|  | refcount_set(&uarg->ubuf.refcnt, 1); | 
|  | sock_hold(sk); | 
|  |  | 
|  | return &uarg->ubuf; | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) | 
|  | { | 
|  | return container_of((void *)uarg, struct sk_buff, cb); | 
|  | } | 
|  |  | 
|  | struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, | 
|  | struct ubuf_info *uarg) | 
|  | { | 
|  | if (uarg) { | 
|  | struct ubuf_info_msgzc *uarg_zc; | 
|  | const u32 byte_limit = 1 << 19;		/* limit to a few TSO */ | 
|  | u32 bytelen, next; | 
|  |  | 
|  | /* there might be non MSG_ZEROCOPY users */ | 
|  | if (uarg->callback != msg_zerocopy_callback) | 
|  | return NULL; | 
|  |  | 
|  | /* realloc only when socket is locked (TCP, UDP cork), | 
|  | * so uarg->len and sk_zckey access is serialized | 
|  | */ | 
|  | if (!sock_owned_by_user(sk)) { | 
|  | WARN_ON_ONCE(1); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | uarg_zc = uarg_to_msgzc(uarg); | 
|  | bytelen = uarg_zc->bytelen + size; | 
|  | if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { | 
|  | /* TCP can create new skb to attach new uarg */ | 
|  | if (sk->sk_type == SOCK_STREAM) | 
|  | goto new_alloc; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | next = (u32)atomic_read(&sk->sk_zckey); | 
|  | if ((u32)(uarg_zc->id + uarg_zc->len) == next) { | 
|  | if (mm_account_pinned_pages(&uarg_zc->mmp, size)) | 
|  | return NULL; | 
|  | uarg_zc->len++; | 
|  | uarg_zc->bytelen = bytelen; | 
|  | atomic_set(&sk->sk_zckey, ++next); | 
|  |  | 
|  | /* no extra ref when appending to datagram (MSG_MORE) */ | 
|  | if (sk->sk_type == SOCK_STREAM) | 
|  | net_zcopy_get(uarg); | 
|  |  | 
|  | return uarg; | 
|  | } | 
|  | } | 
|  |  | 
|  | new_alloc: | 
|  | return msg_zerocopy_alloc(sk, size); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); | 
|  |  | 
|  | static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) | 
|  | { | 
|  | struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); | 
|  | u32 old_lo, old_hi; | 
|  | u64 sum_len; | 
|  |  | 
|  | old_lo = serr->ee.ee_info; | 
|  | old_hi = serr->ee.ee_data; | 
|  | sum_len = old_hi - old_lo + 1ULL + len; | 
|  |  | 
|  | if (sum_len >= (1ULL << 32)) | 
|  | return false; | 
|  |  | 
|  | if (lo != old_hi + 1) | 
|  | return false; | 
|  |  | 
|  | serr->ee.ee_data += len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) | 
|  | { | 
|  | struct sk_buff *tail, *skb = skb_from_uarg(uarg); | 
|  | struct sock_exterr_skb *serr; | 
|  | struct sock *sk = skb->sk; | 
|  | struct sk_buff_head *q; | 
|  | unsigned long flags; | 
|  | bool is_zerocopy; | 
|  | u32 lo, hi; | 
|  | u16 len; | 
|  |  | 
|  | mm_unaccount_pinned_pages(&uarg->mmp); | 
|  |  | 
|  | /* if !len, there was only 1 call, and it was aborted | 
|  | * so do not queue a completion notification | 
|  | */ | 
|  | if (!uarg->len || sock_flag(sk, SOCK_DEAD)) | 
|  | goto release; | 
|  |  | 
|  | len = uarg->len; | 
|  | lo = uarg->id; | 
|  | hi = uarg->id + len - 1; | 
|  | is_zerocopy = uarg->zerocopy; | 
|  |  | 
|  | serr = SKB_EXT_ERR(skb); | 
|  | memset(serr, 0, sizeof(*serr)); | 
|  | serr->ee.ee_errno = 0; | 
|  | serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; | 
|  | serr->ee.ee_data = hi; | 
|  | serr->ee.ee_info = lo; | 
|  | if (!is_zerocopy) | 
|  | serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; | 
|  |  | 
|  | q = &sk->sk_error_queue; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | tail = skb_peek_tail(q); | 
|  | if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || | 
|  | !skb_zerocopy_notify_extend(tail, lo, len)) { | 
|  | __skb_queue_tail(q, skb); | 
|  | skb = NULL; | 
|  | } | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | sk_error_report(sk); | 
|  |  | 
|  | release: | 
|  | consume_skb(skb); | 
|  | sock_put(sk); | 
|  | } | 
|  |  | 
|  | void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, | 
|  | bool success) | 
|  | { | 
|  | struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); | 
|  |  | 
|  | uarg_zc->zerocopy = uarg_zc->zerocopy & success; | 
|  |  | 
|  | if (refcount_dec_and_test(&uarg->refcnt)) | 
|  | __msg_zerocopy_callback(uarg_zc); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(msg_zerocopy_callback); | 
|  |  | 
|  | void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) | 
|  | { | 
|  | struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; | 
|  |  | 
|  | atomic_dec(&sk->sk_zckey); | 
|  | uarg_to_msgzc(uarg)->len--; | 
|  |  | 
|  | if (have_uref) | 
|  | msg_zerocopy_callback(NULL, uarg, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); | 
|  |  | 
|  | int skb_devmem_iter_stream(struct sock *sk, struct sk_buff *skb, | 
|  | struct msghdr *msg, struct iov_iter *iov_iter, int len, | 
|  | struct ubuf_info *uarg) | 
|  | { | 
|  | struct ubuf_info *orig_uarg = skb_zcopy(skb); | 
|  | int err, orig_len = skb->len; | 
|  |  | 
|  | /* An skb can only point to one uarg. This edge case happens when | 
|  | * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. | 
|  | */ | 
|  | if (orig_uarg && uarg != orig_uarg) | 
|  | return -EEXIST; | 
|  |  | 
|  | err = __zerocopy_sg_from_iter(msg, sk, skb, iov_iter, len); | 
|  | if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { | 
|  | struct sock *save_sk = skb->sk; | 
|  |  | 
|  | /* Streams do not free skb on error. Reset to prev state. */ | 
|  | iov_iter_revert(iov_iter, skb->len - orig_len); | 
|  | skb->sk = sk; | 
|  | ___pskb_trim(skb, orig_len); | 
|  | skb->sk = save_sk; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | skb_zcopy_set(skb, uarg, NULL); | 
|  | return skb->len - orig_len; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_devmem_iter_stream); | 
|  |  | 
|  | int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, | 
|  | struct msghdr *msg, int len, | 
|  | struct ubuf_info *uarg) | 
|  | { | 
|  | struct ubuf_info *orig_uarg = skb_zcopy(skb); | 
|  | struct iov_iter orig_iter = msg->msg_iter; | 
|  | int err, orig_len = skb->len; | 
|  |  | 
|  | /* An skb can only point to one uarg. This edge case happens when | 
|  | * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. | 
|  | */ | 
|  | if (orig_uarg && uarg != orig_uarg) | 
|  | return -EEXIST; | 
|  |  | 
|  | err = __zerocopy_sg_from_iter(NULL, sk, skb, &msg->msg_iter, len); | 
|  | if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { | 
|  | struct sock *save_sk = skb->sk; | 
|  |  | 
|  | /* Streams do not free skb on error. Reset to prev state. */ | 
|  | msg->msg_iter = orig_iter; | 
|  | skb->sk = sk; | 
|  | ___pskb_trim(skb, orig_len); | 
|  | skb->sk = save_sk; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | skb_zcopy_set(skb, uarg, NULL); | 
|  | return skb->len - orig_len; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); | 
|  |  | 
|  | void __skb_zcopy_downgrade_managed(struct sk_buff *skb) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) | 
|  | skb_frag_ref(skb, i); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); | 
|  |  | 
|  | static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | if (skb_zcopy(orig)) { | 
|  | if (skb_zcopy(nskb)) { | 
|  | /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ | 
|  | if (!gfp_mask) { | 
|  | WARN_ON_ONCE(1); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (skb_uarg(nskb) == skb_uarg(orig)) | 
|  | return 0; | 
|  | if (skb_copy_ubufs(nskb, GFP_ATOMIC)) | 
|  | return -EIO; | 
|  | } | 
|  | skb_zcopy_set(nskb, skb_uarg(orig), NULL); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel | 
|  | *	@skb: the skb to modify | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE. | 
|  | *	It will copy all frags into kernel and drop the reference | 
|  | *	to userspace pages. | 
|  | * | 
|  | *	If this function is called from an interrupt gfp_mask() must be | 
|  | *	%GFP_ATOMIC. | 
|  | * | 
|  | *	Returns 0 on success or a negative error code on failure | 
|  | *	to allocate kernel memory to copy to. | 
|  | */ | 
|  | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | int num_frags = skb_shinfo(skb)->nr_frags; | 
|  | struct page *page, *head = NULL; | 
|  | int i, order, psize, new_frags; | 
|  | u32 d_off; | 
|  |  | 
|  | if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (skb_frags_not_readable(skb)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!num_frags) | 
|  | goto release; | 
|  |  | 
|  | /* We might have to allocate high order pages, so compute what minimum | 
|  | * page order is needed. | 
|  | */ | 
|  | order = 0; | 
|  | while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) | 
|  | order++; | 
|  | psize = (PAGE_SIZE << order); | 
|  |  | 
|  | new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); | 
|  | for (i = 0; i < new_frags; i++) { | 
|  | page = alloc_pages(gfp_mask | __GFP_COMP, order); | 
|  | if (!page) { | 
|  | while (head) { | 
|  | struct page *next = (struct page *)page_private(head); | 
|  | put_page(head); | 
|  | head = next; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  | set_page_private(page, (unsigned long)head); | 
|  | head = page; | 
|  | } | 
|  |  | 
|  | page = head; | 
|  | d_off = 0; | 
|  | for (i = 0; i < num_frags; i++) { | 
|  | skb_frag_t *f = &skb_shinfo(skb)->frags[i]; | 
|  | u32 p_off, p_len, copied; | 
|  | struct page *p; | 
|  | u8 *vaddr; | 
|  |  | 
|  | skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), | 
|  | p, p_off, p_len, copied) { | 
|  | u32 copy, done = 0; | 
|  | vaddr = kmap_atomic(p); | 
|  |  | 
|  | while (done < p_len) { | 
|  | if (d_off == psize) { | 
|  | d_off = 0; | 
|  | page = (struct page *)page_private(page); | 
|  | } | 
|  | copy = min_t(u32, psize - d_off, p_len - done); | 
|  | memcpy(page_address(page) + d_off, | 
|  | vaddr + p_off + done, copy); | 
|  | done += copy; | 
|  | d_off += copy; | 
|  | } | 
|  | kunmap_atomic(vaddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* skb frags release userspace buffers */ | 
|  | for (i = 0; i < num_frags; i++) | 
|  | skb_frag_unref(skb, i); | 
|  |  | 
|  | /* skb frags point to kernel buffers */ | 
|  | for (i = 0; i < new_frags - 1; i++) { | 
|  | __skb_fill_page_desc(skb, i, head, 0, psize); | 
|  | head = (struct page *)page_private(head); | 
|  | } | 
|  | __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); | 
|  | skb_shinfo(skb)->nr_frags = new_frags; | 
|  |  | 
|  | release: | 
|  | skb_zcopy_clear(skb, false); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_copy_ubufs); | 
|  |  | 
|  | /** | 
|  | *	skb_clone	-	duplicate an sk_buff | 
|  | *	@skb: buffer to clone | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Duplicate an &sk_buff. The new one is not owned by a socket. Both | 
|  | *	copies share the same packet data but not structure. The new | 
|  | *	buffer has a reference count of 1. If the allocation fails the | 
|  | *	function returns %NULL otherwise the new buffer is returned. | 
|  | * | 
|  | *	If this function is called from an interrupt gfp_mask() must be | 
|  | *	%GFP_ATOMIC. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | struct sk_buff_fclones *fclones = container_of(skb, | 
|  | struct sk_buff_fclones, | 
|  | skb1); | 
|  | struct sk_buff *n; | 
|  |  | 
|  | if (skb_orphan_frags(skb, gfp_mask)) | 
|  | return NULL; | 
|  |  | 
|  | if (skb->fclone == SKB_FCLONE_ORIG && | 
|  | refcount_read(&fclones->fclone_ref) == 1) { | 
|  | n = &fclones->skb2; | 
|  | refcount_set(&fclones->fclone_ref, 2); | 
|  | n->fclone = SKB_FCLONE_CLONE; | 
|  | } else { | 
|  | if (skb_pfmemalloc(skb)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | n->fclone = SKB_FCLONE_UNAVAILABLE; | 
|  | } | 
|  |  | 
|  | return __skb_clone(n, skb); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_clone); | 
|  |  | 
|  | void skb_headers_offset_update(struct sk_buff *skb, int off) | 
|  | { | 
|  | /* Only adjust this if it actually is csum_start rather than csum */ | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) | 
|  | skb->csum_start += off; | 
|  | /* {transport,network,mac}_header and tail are relative to skb->head */ | 
|  | skb->transport_header += off; | 
|  | skb->network_header   += off; | 
|  | if (skb_mac_header_was_set(skb)) | 
|  | skb->mac_header += off; | 
|  | skb->inner_transport_header += off; | 
|  | skb->inner_network_header += off; | 
|  | skb->inner_mac_header += off; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_headers_offset_update); | 
|  |  | 
|  | void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) | 
|  | { | 
|  | __copy_skb_header(new, old); | 
|  |  | 
|  | skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; | 
|  | skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; | 
|  | skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_header); | 
|  |  | 
|  | static inline int skb_alloc_rx_flag(const struct sk_buff *skb) | 
|  | { | 
|  | if (skb_pfmemalloc(skb)) | 
|  | return SKB_ALLOC_RX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_copy	-	create private copy of an sk_buff | 
|  | *	@skb: buffer to copy | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Make a copy of both an &sk_buff and its data. This is used when the | 
|  | *	caller wishes to modify the data and needs a private copy of the | 
|  | *	data to alter. Returns %NULL on failure or the pointer to the buffer | 
|  | *	on success. The returned buffer has a reference count of 1. | 
|  | * | 
|  | *	As by-product this function converts non-linear &sk_buff to linear | 
|  | *	one, so that &sk_buff becomes completely private and caller is allowed | 
|  | *	to modify all the data of returned buffer. This means that this | 
|  | *	function is not recommended for use in circumstances when only | 
|  | *	header is going to be modified. Use pskb_copy() instead. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | int headerlen = skb_headroom(skb); | 
|  | unsigned int size = skb_end_offset(skb) + skb->data_len; | 
|  | struct sk_buff *n = skb_frags_not_readable(skb) ? NULL : | 
|  | __alloc_skb(size, gfp_mask, | 
|  | skb_alloc_rx_flag(skb), | 
|  | NUMA_NO_NODE); | 
|  |  | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | /* Set the data pointer */ | 
|  | skb_reserve(n, headerlen); | 
|  | /* Set the tail pointer and length */ | 
|  | skb_put(n, skb->len); | 
|  |  | 
|  | BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); | 
|  |  | 
|  | skb_copy_header(n, skb); | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy); | 
|  |  | 
|  | /** | 
|  | *	__pskb_copy_fclone	-  create copy of an sk_buff with private head. | 
|  | *	@skb: buffer to copy | 
|  | *	@headroom: headroom of new skb | 
|  | *	@gfp_mask: allocation priority | 
|  | *	@fclone: if true allocate the copy of the skb from the fclone | 
|  | *	cache instead of the head cache; it is recommended to set this | 
|  | *	to true for the cases where the copy will likely be cloned | 
|  | * | 
|  | *	Make a copy of both an &sk_buff and part of its data, located | 
|  | *	in header. Fragmented data remain shared. This is used when | 
|  | *	the caller wishes to modify only header of &sk_buff and needs | 
|  | *	private copy of the header to alter. Returns %NULL on failure | 
|  | *	or the pointer to the buffer on success. | 
|  | *	The returned buffer has a reference count of 1. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, | 
|  | gfp_t gfp_mask, bool fclone) | 
|  | { | 
|  | unsigned int size = skb_headlen(skb) + headroom; | 
|  | int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); | 
|  | struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); | 
|  |  | 
|  | if (!n) | 
|  | goto out; | 
|  |  | 
|  | /* Set the data pointer */ | 
|  | skb_reserve(n, headroom); | 
|  | /* Set the tail pointer and length */ | 
|  | skb_put(n, skb_headlen(skb)); | 
|  | /* Copy the bytes */ | 
|  | skb_copy_from_linear_data(skb, n->data, n->len); | 
|  |  | 
|  | n->truesize += skb->data_len; | 
|  | n->data_len  = skb->data_len; | 
|  | n->len	     = skb->len; | 
|  |  | 
|  | if (skb_shinfo(skb)->nr_frags) { | 
|  | int i; | 
|  |  | 
|  | if (skb_orphan_frags(skb, gfp_mask) || | 
|  | skb_zerocopy_clone(n, skb, gfp_mask)) { | 
|  | kfree_skb(n); | 
|  | n = NULL; | 
|  | goto out; | 
|  | } | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; | 
|  | skb_frag_ref(skb, i); | 
|  | } | 
|  | skb_shinfo(n)->nr_frags = i; | 
|  | } | 
|  |  | 
|  | if (skb_has_frag_list(skb)) { | 
|  | skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; | 
|  | skb_clone_fraglist(n); | 
|  | } | 
|  |  | 
|  | skb_copy_header(n, skb); | 
|  | out: | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(__pskb_copy_fclone); | 
|  |  | 
|  | /** | 
|  | *	pskb_expand_head - reallocate header of &sk_buff | 
|  | *	@skb: buffer to reallocate | 
|  | *	@nhead: room to add at head | 
|  | *	@ntail: room to add at tail | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Expands (or creates identical copy, if @nhead and @ntail are zero) | 
|  | *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have | 
|  | *	reference count of 1. Returns zero in the case of success or error, | 
|  | *	if expansion failed. In the last case, &sk_buff is not changed. | 
|  | * | 
|  | *	All the pointers pointing into skb header may change and must be | 
|  | *	reloaded after call to this function. | 
|  | */ | 
|  |  | 
|  | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | unsigned int osize = skb_end_offset(skb); | 
|  | unsigned int size = osize + nhead + ntail; | 
|  | long off; | 
|  | u8 *data; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(nhead < 0); | 
|  |  | 
|  | BUG_ON(skb_shared(skb)); | 
|  |  | 
|  | skb_zcopy_downgrade_managed(skb); | 
|  |  | 
|  | if (skb_pfmemalloc(skb)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); | 
|  | if (!data) | 
|  | goto nodata; | 
|  | size = SKB_WITH_OVERHEAD(size); | 
|  |  | 
|  | /* Copy only real data... and, alas, header. This should be | 
|  | * optimized for the cases when header is void. | 
|  | */ | 
|  | memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); | 
|  |  | 
|  | memcpy((struct skb_shared_info *)(data + size), | 
|  | skb_shinfo(skb), | 
|  | offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); | 
|  |  | 
|  | /* | 
|  | * if shinfo is shared we must drop the old head gracefully, but if it | 
|  | * is not we can just drop the old head and let the existing refcount | 
|  | * be since all we did is relocate the values | 
|  | */ | 
|  | if (skb_cloned(skb)) { | 
|  | if (skb_orphan_frags(skb, gfp_mask)) | 
|  | goto nofrags; | 
|  | if (skb_zcopy(skb)) | 
|  | refcount_inc(&skb_uarg(skb)->refcnt); | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) | 
|  | skb_frag_ref(skb, i); | 
|  |  | 
|  | if (skb_has_frag_list(skb)) | 
|  | skb_clone_fraglist(skb); | 
|  |  | 
|  | skb_release_data(skb); | 
|  | } else { | 
|  | skb_free_head(skb); | 
|  | } | 
|  | off = (data + nhead) - skb->head; | 
|  |  | 
|  | skb->head     = data; | 
|  | skb->head_frag = 0; | 
|  | skb->data    += off; | 
|  |  | 
|  | skb_set_end_offset(skb, size); | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | off           = nhead; | 
|  | #endif | 
|  | skb->tail	      += off; | 
|  | skb_headers_offset_update(skb, nhead); | 
|  | skb->cloned   = 0; | 
|  | skb->hdr_len  = 0; | 
|  | skb->nohdr    = 0; | 
|  | atomic_set(&skb_shinfo(skb)->dataref, 1); | 
|  |  | 
|  | skb_metadata_clear(skb); | 
|  |  | 
|  | /* It is not generally safe to change skb->truesize. | 
|  | * For the moment, we really care of rx path, or | 
|  | * when skb is orphaned (not attached to a socket). | 
|  | */ | 
|  | if (!skb->sk || skb->destructor == sock_edemux) | 
|  | skb->truesize += size - osize; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nofrags: | 
|  | kfree(data); | 
|  | nodata: | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL(pskb_expand_head); | 
|  |  | 
|  | /* Make private copy of skb with writable head and some headroom */ | 
|  |  | 
|  | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | struct sk_buff *skb2; | 
|  | int delta = headroom - skb_headroom(skb); | 
|  |  | 
|  | if (delta <= 0) | 
|  | skb2 = pskb_copy(skb, GFP_ATOMIC); | 
|  | else { | 
|  | skb2 = skb_clone(skb, GFP_ATOMIC); | 
|  | if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, | 
|  | GFP_ATOMIC)) { | 
|  | kfree_skb(skb2); | 
|  | skb2 = NULL; | 
|  | } | 
|  | } | 
|  | return skb2; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_realloc_headroom); | 
|  |  | 
|  | int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | unsigned int saved_end_offset, saved_truesize; | 
|  | struct skb_shared_info *shinfo; | 
|  | int res; | 
|  |  | 
|  | saved_end_offset = skb_end_offset(skb); | 
|  | saved_truesize = skb->truesize; | 
|  |  | 
|  | res = pskb_expand_head(skb, 0, 0, pri); | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | skb->truesize = saved_truesize; | 
|  |  | 
|  | if (likely(skb_end_offset(skb) == saved_end_offset)) | 
|  | return 0; | 
|  |  | 
|  | shinfo = skb_shinfo(skb); | 
|  |  | 
|  | /* We are about to change back skb->end, | 
|  | * we need to move skb_shinfo() to its new location. | 
|  | */ | 
|  | memmove(skb->head + saved_end_offset, | 
|  | shinfo, | 
|  | offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); | 
|  |  | 
|  | skb_set_end_offset(skb, saved_end_offset); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_expand_head - reallocate header of &sk_buff | 
|  | *	@skb: buffer to reallocate | 
|  | *	@headroom: needed headroom | 
|  | * | 
|  | *	Unlike skb_realloc_headroom, this one does not allocate a new skb | 
|  | *	if possible; copies skb->sk to new skb as needed | 
|  | *	and frees original skb in case of failures. | 
|  | * | 
|  | *	It expect increased headroom and generates warning otherwise. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | int delta = headroom - skb_headroom(skb); | 
|  | int osize = skb_end_offset(skb); | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | if (WARN_ONCE(delta <= 0, | 
|  | "%s is expecting an increase in the headroom", __func__)) | 
|  | return skb; | 
|  |  | 
|  | delta = SKB_DATA_ALIGN(delta); | 
|  | /* pskb_expand_head() might crash, if skb is shared. */ | 
|  | if (skb_shared(skb) || !is_skb_wmem(skb)) { | 
|  | struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); | 
|  |  | 
|  | if (unlikely(!nskb)) | 
|  | goto fail; | 
|  |  | 
|  | if (sk) | 
|  | skb_set_owner_w(nskb, sk); | 
|  | consume_skb(skb); | 
|  | skb = nskb; | 
|  | } | 
|  | if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) | 
|  | goto fail; | 
|  |  | 
|  | if (sk && is_skb_wmem(skb)) { | 
|  | delta = skb_end_offset(skb) - osize; | 
|  | refcount_add(delta, &sk->sk_wmem_alloc); | 
|  | skb->truesize += delta; | 
|  | } | 
|  | return skb; | 
|  |  | 
|  | fail: | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_expand_head); | 
|  |  | 
|  | /** | 
|  | *	skb_copy_expand	-	copy and expand sk_buff | 
|  | *	@skb: buffer to copy | 
|  | *	@newheadroom: new free bytes at head | 
|  | *	@newtailroom: new free bytes at tail | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | *	Make a copy of both an &sk_buff and its data and while doing so | 
|  | *	allocate additional space. | 
|  | * | 
|  | *	This is used when the caller wishes to modify the data and needs a | 
|  | *	private copy of the data to alter as well as more space for new fields. | 
|  | *	Returns %NULL on failure or the pointer to the buffer | 
|  | *	on success. The returned buffer has a reference count of 1. | 
|  | * | 
|  | *	You must pass %GFP_ATOMIC as the allocation priority if this function | 
|  | *	is called from an interrupt. | 
|  | */ | 
|  | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, | 
|  | int newheadroom, int newtailroom, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | /* | 
|  | *	Allocate the copy buffer | 
|  | */ | 
|  | struct sk_buff *n = skb_frags_not_readable(skb) ? NULL : | 
|  | __alloc_skb(newheadroom + skb->len + newtailroom, | 
|  | gfp_mask, skb_alloc_rx_flag(skb), | 
|  | NUMA_NO_NODE); | 
|  | int oldheadroom = skb_headroom(skb); | 
|  | int head_copy_len, head_copy_off; | 
|  |  | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | skb_reserve(n, newheadroom); | 
|  |  | 
|  | /* Set the tail pointer and length */ | 
|  | skb_put(n, skb->len); | 
|  |  | 
|  | head_copy_len = oldheadroom; | 
|  | head_copy_off = 0; | 
|  | if (newheadroom <= head_copy_len) | 
|  | head_copy_len = newheadroom; | 
|  | else | 
|  | head_copy_off = newheadroom - head_copy_len; | 
|  |  | 
|  | /* Copy the linear header and data. */ | 
|  | BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, | 
|  | skb->len + head_copy_len)); | 
|  |  | 
|  | skb_copy_header(n, skb); | 
|  |  | 
|  | skb_headers_offset_update(n, newheadroom - oldheadroom); | 
|  |  | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_expand); | 
|  |  | 
|  | /** | 
|  | *	__skb_pad		-	zero pad the tail of an skb | 
|  | *	@skb: buffer to pad | 
|  | *	@pad: space to pad | 
|  | *	@free_on_error: free buffer on error | 
|  | * | 
|  | *	Ensure that a buffer is followed by a padding area that is zero | 
|  | *	filled. Used by network drivers which may DMA or transfer data | 
|  | *	beyond the buffer end onto the wire. | 
|  | * | 
|  | *	May return error in out of memory cases. The skb is freed on error | 
|  | *	if @free_on_error is true. | 
|  | */ | 
|  |  | 
|  | int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) | 
|  | { | 
|  | int err; | 
|  | int ntail; | 
|  |  | 
|  | /* If the skbuff is non linear tailroom is always zero.. */ | 
|  | if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { | 
|  | memset(skb->data+skb->len, 0, pad); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ntail = skb->data_len + pad - (skb->end - skb->tail); | 
|  | if (likely(skb_cloned(skb) || ntail > 0)) { | 
|  | err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); | 
|  | if (unlikely(err)) | 
|  | goto free_skb; | 
|  | } | 
|  |  | 
|  | /* FIXME: The use of this function with non-linear skb's really needs | 
|  | * to be audited. | 
|  | */ | 
|  | err = skb_linearize(skb); | 
|  | if (unlikely(err)) | 
|  | goto free_skb; | 
|  |  | 
|  | memset(skb->data + skb->len, 0, pad); | 
|  | return 0; | 
|  |  | 
|  | free_skb: | 
|  | if (free_on_error) | 
|  | kfree_skb(skb); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_pad); | 
|  |  | 
|  | /** | 
|  | *	pskb_put - add data to the tail of a potentially fragmented buffer | 
|  | *	@skb: start of the buffer to use | 
|  | *	@tail: tail fragment of the buffer to use | 
|  | *	@len: amount of data to add | 
|  | * | 
|  | *	This function extends the used data area of the potentially | 
|  | *	fragmented buffer. @tail must be the last fragment of @skb -- or | 
|  | *	@skb itself. If this would exceed the total buffer size the kernel | 
|  | *	will panic. A pointer to the first byte of the extra data is | 
|  | *	returned. | 
|  | */ | 
|  |  | 
|  | void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) | 
|  | { | 
|  | if (tail != skb) { | 
|  | skb->data_len += len; | 
|  | skb->len += len; | 
|  | } | 
|  | return skb_put(tail, len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pskb_put); | 
|  |  | 
|  | /** | 
|  | *	skb_put - add data to a buffer | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to add | 
|  | * | 
|  | *	This function extends the used data area of the buffer. If this would | 
|  | *	exceed the total buffer size the kernel will panic. A pointer to the | 
|  | *	first byte of the extra data is returned. | 
|  | */ | 
|  | void *skb_put(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | void *tmp = skb_tail_pointer(skb); | 
|  | SKB_LINEAR_ASSERT(skb); | 
|  | skb->tail += len; | 
|  | skb->len  += len; | 
|  | if (unlikely(skb->tail > skb->end)) | 
|  | skb_over_panic(skb, len, __builtin_return_address(0)); | 
|  | return tmp; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_put); | 
|  |  | 
|  | /** | 
|  | *	skb_push - add data to the start of a buffer | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to add | 
|  | * | 
|  | *	This function extends the used data area of the buffer at the buffer | 
|  | *	start. If this would exceed the total buffer headroom the kernel will | 
|  | *	panic. A pointer to the first byte of the extra data is returned. | 
|  | */ | 
|  | void *skb_push(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb->data -= len; | 
|  | skb->len  += len; | 
|  | if (unlikely(skb->data < skb->head)) | 
|  | skb_under_panic(skb, len, __builtin_return_address(0)); | 
|  | return skb->data; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_push); | 
|  |  | 
|  | /** | 
|  | *	skb_pull - remove data from the start of a buffer | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to remove | 
|  | * | 
|  | *	This function removes data from the start of a buffer, returning | 
|  | *	the memory to the headroom. A pointer to the next data in the buffer | 
|  | *	is returned. Once the data has been pulled future pushes will overwrite | 
|  | *	the old data. | 
|  | */ | 
|  | void *skb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return skb_pull_inline(skb, len); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_pull); | 
|  |  | 
|  | /** | 
|  | *	skb_pull_data - remove data from the start of a buffer returning its | 
|  | *	original position. | 
|  | *	@skb: buffer to use | 
|  | *	@len: amount of data to remove | 
|  | * | 
|  | *	This function removes data from the start of a buffer, returning | 
|  | *	the memory to the headroom. A pointer to the original data in the buffer | 
|  | *	is returned after checking if there is enough data to pull. Once the | 
|  | *	data has been pulled future pushes will overwrite the old data. | 
|  | */ | 
|  | void *skb_pull_data(struct sk_buff *skb, size_t len) | 
|  | { | 
|  | void *data = skb->data; | 
|  |  | 
|  | if (skb->len < len) | 
|  | return NULL; | 
|  |  | 
|  | skb_pull(skb, len); | 
|  |  | 
|  | return data; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_pull_data); | 
|  |  | 
|  | /** | 
|  | *	skb_trim - remove end from a buffer | 
|  | *	@skb: buffer to alter | 
|  | *	@len: new length | 
|  | * | 
|  | *	Cut the length of a buffer down by removing data from the tail. If | 
|  | *	the buffer is already under the length specified it is not modified. | 
|  | *	The skb must be linear. | 
|  | */ | 
|  | void skb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->len > len) | 
|  | __skb_trim(skb, len); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_trim); | 
|  |  | 
|  | /* Trims skb to length len. It can change skb pointers. | 
|  | */ | 
|  |  | 
|  | int ___pskb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | struct sk_buff **fragp; | 
|  | struct sk_buff *frag; | 
|  | int offset = skb_headlen(skb); | 
|  | int nfrags = skb_shinfo(skb)->nr_frags; | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | if (skb_cloned(skb) && | 
|  | unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) | 
|  | return err; | 
|  |  | 
|  | i = 0; | 
|  | if (offset >= len) | 
|  | goto drop_pages; | 
|  |  | 
|  | for (; i < nfrags; i++) { | 
|  | int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (end < len) { | 
|  | offset = end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); | 
|  |  | 
|  | drop_pages: | 
|  | skb_shinfo(skb)->nr_frags = i; | 
|  |  | 
|  | for (; i < nfrags; i++) | 
|  | skb_frag_unref(skb, i); | 
|  |  | 
|  | if (skb_has_frag_list(skb)) | 
|  | skb_drop_fraglist(skb); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); | 
|  | fragp = &frag->next) { | 
|  | int end = offset + frag->len; | 
|  |  | 
|  | if (skb_shared(frag)) { | 
|  | struct sk_buff *nfrag; | 
|  |  | 
|  | nfrag = skb_clone(frag, GFP_ATOMIC); | 
|  | if (unlikely(!nfrag)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nfrag->next = frag->next; | 
|  | consume_skb(frag); | 
|  | frag = nfrag; | 
|  | *fragp = frag; | 
|  | } | 
|  |  | 
|  | if (end < len) { | 
|  | offset = end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (end > len && | 
|  | unlikely((err = pskb_trim(frag, len - offset)))) | 
|  | return err; | 
|  |  | 
|  | if (frag->next) | 
|  | skb_drop_list(&frag->next); | 
|  | break; | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (len > skb_headlen(skb)) { | 
|  | skb->data_len -= skb->len - len; | 
|  | skb->len       = len; | 
|  | } else { | 
|  | skb->len       = len; | 
|  | skb->data_len  = 0; | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  |  | 
|  | if (!skb->sk || skb->destructor == sock_edemux) | 
|  | skb_condense(skb); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(___pskb_trim); | 
|  |  | 
|  | /* Note : use pskb_trim_rcsum() instead of calling this directly | 
|  | */ | 
|  | int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | int delta = skb->len - len; | 
|  |  | 
|  | skb->csum = csum_block_sub(skb->csum, | 
|  | skb_checksum(skb, len, delta, 0), | 
|  | len); | 
|  | } else if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; | 
|  | int offset = skb_checksum_start_offset(skb) + skb->csum_offset; | 
|  |  | 
|  | if (offset + sizeof(__sum16) > hdlen) | 
|  | return -EINVAL; | 
|  | } | 
|  | return __pskb_trim(skb, len); | 
|  | } | 
|  | EXPORT_SYMBOL(pskb_trim_rcsum_slow); | 
|  |  | 
|  | /** | 
|  | *	__pskb_pull_tail - advance tail of skb header | 
|  | *	@skb: buffer to reallocate | 
|  | *	@delta: number of bytes to advance tail | 
|  | * | 
|  | *	The function makes a sense only on a fragmented &sk_buff, | 
|  | *	it expands header moving its tail forward and copying necessary | 
|  | *	data from fragmented part. | 
|  | * | 
|  | *	&sk_buff MUST have reference count of 1. | 
|  | * | 
|  | *	Returns %NULL (and &sk_buff does not change) if pull failed | 
|  | *	or value of new tail of skb in the case of success. | 
|  | * | 
|  | *	All the pointers pointing into skb header may change and must be | 
|  | *	reloaded after call to this function. | 
|  | */ | 
|  |  | 
|  | /* Moves tail of skb head forward, copying data from fragmented part, | 
|  | * when it is necessary. | 
|  | * 1. It may fail due to malloc failure. | 
|  | * 2. It may change skb pointers. | 
|  | * | 
|  | * It is pretty complicated. Luckily, it is called only in exceptional cases. | 
|  | */ | 
|  | void *__pskb_pull_tail(struct sk_buff *skb, int delta) | 
|  | { | 
|  | /* If skb has not enough free space at tail, get new one | 
|  | * plus 128 bytes for future expansions. If we have enough | 
|  | * room at tail, reallocate without expansion only if skb is cloned. | 
|  | */ | 
|  | int i, k, eat = (skb->tail + delta) - skb->end; | 
|  |  | 
|  | if (skb_frags_not_readable(skb)) | 
|  | return NULL; | 
|  |  | 
|  | if (eat > 0 || skb_cloned(skb)) { | 
|  | if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, | 
|  | GFP_ATOMIC)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | BUG_ON(skb_copy_bits(skb, skb_headlen(skb), | 
|  | skb_tail_pointer(skb), delta)); | 
|  |  | 
|  | /* Optimization: no fragments, no reasons to preestimate | 
|  | * size of pulled pages. Superb. | 
|  | */ | 
|  | if (!skb_has_frag_list(skb)) | 
|  | goto pull_pages; | 
|  |  | 
|  | /* Estimate size of pulled pages. */ | 
|  | eat = delta; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (size >= eat) | 
|  | goto pull_pages; | 
|  | eat -= size; | 
|  | } | 
|  |  | 
|  | /* If we need update frag list, we are in troubles. | 
|  | * Certainly, it is possible to add an offset to skb data, | 
|  | * but taking into account that pulling is expected to | 
|  | * be very rare operation, it is worth to fight against | 
|  | * further bloating skb head and crucify ourselves here instead. | 
|  | * Pure masohism, indeed. 8)8) | 
|  | */ | 
|  | if (eat) { | 
|  | struct sk_buff *list = skb_shinfo(skb)->frag_list; | 
|  | struct sk_buff *clone = NULL; | 
|  | struct sk_buff *insp = NULL; | 
|  |  | 
|  | do { | 
|  | if (list->len <= eat) { | 
|  | /* Eaten as whole. */ | 
|  | eat -= list->len; | 
|  | list = list->next; | 
|  | insp = list; | 
|  | } else { | 
|  | /* Eaten partially. */ | 
|  | if (skb_is_gso(skb) && !list->head_frag && | 
|  | skb_headlen(list)) | 
|  | skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; | 
|  |  | 
|  | if (skb_shared(list)) { | 
|  | /* Sucks! We need to fork list. :-( */ | 
|  | clone = skb_clone(list, GFP_ATOMIC); | 
|  | if (!clone) | 
|  | return NULL; | 
|  | insp = list->next; | 
|  | list = clone; | 
|  | } else { | 
|  | /* This may be pulled without | 
|  | * problems. */ | 
|  | insp = list; | 
|  | } | 
|  | if (!pskb_pull(list, eat)) { | 
|  | kfree_skb(clone); | 
|  | return NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } while (eat); | 
|  |  | 
|  | /* Free pulled out fragments. */ | 
|  | while ((list = skb_shinfo(skb)->frag_list) != insp) { | 
|  | skb_shinfo(skb)->frag_list = list->next; | 
|  | consume_skb(list); | 
|  | } | 
|  | /* And insert new clone at head. */ | 
|  | if (clone) { | 
|  | clone->next = list; | 
|  | skb_shinfo(skb)->frag_list = clone; | 
|  | } | 
|  | } | 
|  | /* Success! Now we may commit changes to skb data. */ | 
|  |  | 
|  | pull_pages: | 
|  | eat = delta; | 
|  | k = 0; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (size <= eat) { | 
|  | skb_frag_unref(skb, i); | 
|  | eat -= size; | 
|  | } else { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; | 
|  |  | 
|  | *frag = skb_shinfo(skb)->frags[i]; | 
|  | if (eat) { | 
|  | skb_frag_off_add(frag, eat); | 
|  | skb_frag_size_sub(frag, eat); | 
|  | if (!i) | 
|  | goto end; | 
|  | eat = 0; | 
|  | } | 
|  | k++; | 
|  | } | 
|  | } | 
|  | skb_shinfo(skb)->nr_frags = k; | 
|  |  | 
|  | end: | 
|  | skb->tail     += delta; | 
|  | skb->data_len -= delta; | 
|  |  | 
|  | if (!skb->data_len) | 
|  | skb_zcopy_clear(skb, false); | 
|  |  | 
|  | return skb_tail_pointer(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(__pskb_pull_tail); | 
|  |  | 
|  | /** | 
|  | *	skb_copy_bits - copy bits from skb to kernel buffer | 
|  | *	@skb: source skb | 
|  | *	@offset: offset in source | 
|  | *	@to: destination buffer | 
|  | *	@len: number of bytes to copy | 
|  | * | 
|  | *	Copy the specified number of bytes from the source skb to the | 
|  | *	destination buffer. | 
|  | * | 
|  | *	CAUTION ! : | 
|  | *		If its prototype is ever changed, | 
|  | *		check arch/{*}/net/{*}.S files, | 
|  | *		since it is called from BPF assembly code. | 
|  | */ | 
|  | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | struct sk_buff *frag_iter; | 
|  | int i, copy; | 
|  |  | 
|  | if (offset > (int)skb->len - len) | 
|  | goto fault; | 
|  |  | 
|  | /* Copy header. */ | 
|  | if ((copy = start - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | skb_copy_from_linear_data_offset(skb, offset, to, copy); | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  |  | 
|  | if (skb_frags_not_readable(skb)) | 
|  | goto fault; | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  | skb_frag_t *f = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(f); | 
|  | if ((copy = end - offset) > 0) { | 
|  | u32 p_off, p_len, copied; | 
|  | struct page *p; | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  |  | 
|  | skb_frag_foreach_page(f, | 
|  | skb_frag_off(f) + offset - start, | 
|  | copy, p, p_off, p_len, copied) { | 
|  | vaddr = kmap_atomic(p); | 
|  | memcpy(to + copied, vaddr + p_off, p_len); | 
|  | kunmap_atomic(vaddr); | 
|  | } | 
|  |  | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | if (skb_copy_bits(frag_iter, offset - start, to, copy)) | 
|  | goto fault; | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | fault: | 
|  | return -EFAULT; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_bits); | 
|  |  | 
|  | /* | 
|  | * Callback from splice_to_pipe(), if we need to release some pages | 
|  | * at the end of the spd in case we error'ed out in filling the pipe. | 
|  | */ | 
|  | static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) | 
|  | { | 
|  | put_page(spd->pages[i]); | 
|  | } | 
|  |  | 
|  | static struct page *linear_to_page(struct page *page, unsigned int *len, | 
|  | unsigned int *offset, | 
|  | struct sock *sk) | 
|  | { | 
|  | struct page_frag *pfrag = sk_page_frag(sk); | 
|  |  | 
|  | if (!sk_page_frag_refill(sk, pfrag) || is_dma_buf_page(pfrag->page)) | 
|  | return NULL; | 
|  |  | 
|  | *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); | 
|  |  | 
|  | memcpy(page_address(pfrag->page) + pfrag->offset, | 
|  | page_address(page) + *offset, *len); | 
|  | *offset = pfrag->offset; | 
|  | pfrag->offset += *len; | 
|  |  | 
|  | return pfrag->page; | 
|  | } | 
|  |  | 
|  | static bool spd_can_coalesce(const struct splice_pipe_desc *spd, | 
|  | struct page *page, | 
|  | unsigned int offset) | 
|  | { | 
|  | return	spd->nr_pages && | 
|  | spd->pages[spd->nr_pages - 1] == page && | 
|  | (spd->partial[spd->nr_pages - 1].offset + | 
|  | spd->partial[spd->nr_pages - 1].len == offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill page/offset/length into spd, if it can hold more pages. | 
|  | */ | 
|  | static bool spd_fill_page(struct splice_pipe_desc *spd, | 
|  | struct pipe_inode_info *pipe, struct page *page, | 
|  | unsigned int *len, unsigned int offset, | 
|  | bool linear, | 
|  | struct sock *sk) | 
|  | { | 
|  | if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) | 
|  | return true; | 
|  |  | 
|  | if (linear) { | 
|  | page = linear_to_page(page, len, &offset, sk); | 
|  | if (!page) | 
|  | return true; | 
|  | } | 
|  | if (spd_can_coalesce(spd, page, offset)) { | 
|  | spd->partial[spd->nr_pages - 1].len += *len; | 
|  | return false; | 
|  | } | 
|  | get_page(page); | 
|  | spd->pages[spd->nr_pages] = page; | 
|  | spd->partial[spd->nr_pages].len = *len; | 
|  | spd->partial[spd->nr_pages].offset = offset; | 
|  | spd->nr_pages++; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool __splice_segment(struct page *page, unsigned int poff, | 
|  | unsigned int plen, unsigned int *off, | 
|  | unsigned int *len, | 
|  | struct splice_pipe_desc *spd, bool linear, | 
|  | struct sock *sk, | 
|  | struct pipe_inode_info *pipe) | 
|  | { | 
|  | if (!*len) | 
|  | return true; | 
|  |  | 
|  | /* skip this segment if already processed */ | 
|  | if (*off >= plen) { | 
|  | *off -= plen; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* ignore any bits we already processed */ | 
|  | poff += *off; | 
|  | plen -= *off; | 
|  | *off = 0; | 
|  |  | 
|  | do { | 
|  | unsigned int flen = min(*len, plen); | 
|  |  | 
|  | if (spd_fill_page(spd, pipe, page, &flen, poff, | 
|  | linear, sk)) | 
|  | return true; | 
|  | poff += flen; | 
|  | plen -= flen; | 
|  | *len -= flen; | 
|  | } while (*len && plen); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map linear and fragment data from the skb to spd. It reports true if the | 
|  | * pipe is full or if we already spliced the requested length. | 
|  | */ | 
|  | static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, | 
|  | unsigned int *offset, unsigned int *len, | 
|  | struct splice_pipe_desc *spd, struct sock *sk) | 
|  | { | 
|  | int seg; | 
|  | struct sk_buff *iter; | 
|  |  | 
|  | /* map the linear part : | 
|  | * If skb->head_frag is set, this 'linear' part is backed by a | 
|  | * fragment, and if the head is not shared with any clones then | 
|  | * we can avoid a copy since we own the head portion of this page. | 
|  | */ | 
|  | if (__splice_segment(virt_to_page(skb->data), | 
|  | (unsigned long) skb->data & (PAGE_SIZE - 1), | 
|  | skb_headlen(skb), | 
|  | offset, len, spd, | 
|  | skb_head_is_locked(skb), | 
|  | sk, pipe)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * then map the fragments | 
|  | */ | 
|  | for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { | 
|  | const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; | 
|  |  | 
|  | if (__splice_segment(skb_frag_page(f), | 
|  | skb_frag_off(f), skb_frag_size(f), | 
|  | offset, len, spd, false, sk, pipe)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, iter) { | 
|  | if (*offset >= iter->len) { | 
|  | *offset -= iter->len; | 
|  | continue; | 
|  | } | 
|  | /* __skb_splice_bits() only fails if the output has no room | 
|  | * left, so no point in going over the frag_list for the error | 
|  | * case. | 
|  | */ | 
|  | if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map data from the skb to a pipe. Should handle both the linear part, | 
|  | * the fragments, and the frag list. | 
|  | */ | 
|  | int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, | 
|  | struct pipe_inode_info *pipe, unsigned int tlen, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct partial_page partial[MAX_SKB_FRAGS]; | 
|  | struct page *pages[MAX_SKB_FRAGS]; | 
|  | struct splice_pipe_desc spd = { | 
|  | .pages = pages, | 
|  | .partial = partial, | 
|  | .nr_pages_max = MAX_SKB_FRAGS, | 
|  | .ops = &nosteal_pipe_buf_ops, | 
|  | .spd_release = sock_spd_release, | 
|  | }; | 
|  | int ret = 0; | 
|  |  | 
|  | __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); | 
|  |  | 
|  | if (spd.nr_pages) | 
|  | ret = splice_to_pipe(pipe, &spd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_splice_bits); | 
|  |  | 
|  | static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, | 
|  | struct kvec *vec, size_t num, size_t size) | 
|  | { | 
|  | struct socket *sock = sk->sk_socket; | 
|  |  | 
|  | if (!sock) | 
|  | return -EINVAL; | 
|  | return kernel_sendmsg(sock, msg, vec, num, size); | 
|  | } | 
|  |  | 
|  | static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, | 
|  | size_t size, int flags) | 
|  | { | 
|  | struct socket *sock = sk->sk_socket; | 
|  |  | 
|  | if (!sock) | 
|  | return -EINVAL; | 
|  | return kernel_sendpage(sock, page, offset, size, flags); | 
|  | } | 
|  |  | 
|  | typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, | 
|  | struct kvec *vec, size_t num, size_t size); | 
|  | typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, | 
|  | size_t size, int flags); | 
|  | static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, | 
|  | int len, sendmsg_func sendmsg, sendpage_func sendpage) | 
|  | { | 
|  | unsigned int orig_len = len; | 
|  | struct sk_buff *head = skb; | 
|  | unsigned short fragidx; | 
|  | int slen, ret; | 
|  |  | 
|  | do_frag_list: | 
|  |  | 
|  | /* Deal with head data */ | 
|  | while (offset < skb_headlen(skb) && len) { | 
|  | struct kvec kv; | 
|  | struct msghdr msg; | 
|  |  | 
|  | slen = min_t(int, len, skb_headlen(skb) - offset); | 
|  | kv.iov_base = skb->data + offset; | 
|  | kv.iov_len = slen; | 
|  | memset(&msg, 0, sizeof(msg)); | 
|  | msg.msg_flags = MSG_DONTWAIT; | 
|  |  | 
|  | ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, | 
|  | sendmsg_unlocked, sk, &msg, &kv, 1, slen); | 
|  | if (ret <= 0) | 
|  | goto error; | 
|  |  | 
|  | offset += ret; | 
|  | len -= ret; | 
|  | } | 
|  |  | 
|  | /* All the data was skb head? */ | 
|  | if (!len) | 
|  | goto out; | 
|  |  | 
|  | /* Make offset relative to start of frags */ | 
|  | offset -= skb_headlen(skb); | 
|  |  | 
|  | /* Find where we are in frag list */ | 
|  | for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { | 
|  | skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx]; | 
|  |  | 
|  | if (offset < skb_frag_size(frag)) | 
|  | break; | 
|  |  | 
|  | offset -= skb_frag_size(frag); | 
|  | } | 
|  |  | 
|  | for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { | 
|  | skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx]; | 
|  |  | 
|  | slen = min_t(size_t, len, skb_frag_size(frag) - offset); | 
|  |  | 
|  | while (slen) { | 
|  | ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, | 
|  | sendpage_unlocked, sk, | 
|  | skb_frag_page(frag), | 
|  | skb_frag_off(frag) + offset, | 
|  | slen, MSG_DONTWAIT); | 
|  | if (ret <= 0) | 
|  | goto error; | 
|  |  | 
|  | len -= ret; | 
|  | offset += ret; | 
|  | slen -= ret; | 
|  | } | 
|  |  | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | if (len) { | 
|  | /* Process any frag lists */ | 
|  |  | 
|  | if (skb == head) { | 
|  | if (skb_has_frag_list(skb)) { | 
|  | skb = skb_shinfo(skb)->frag_list; | 
|  | goto do_frag_list; | 
|  | } | 
|  | } else if (skb->next) { | 
|  | skb = skb->next; | 
|  | goto do_frag_list; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return orig_len - len; | 
|  |  | 
|  | error: | 
|  | return orig_len == len ? ret : orig_len - len; | 
|  | } | 
|  |  | 
|  | /* Send skb data on a socket. Socket must be locked. */ | 
|  | int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, | 
|  | int len) | 
|  | { | 
|  | return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, | 
|  | kernel_sendpage_locked); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_send_sock_locked); | 
|  |  | 
|  | /* Send skb data on a socket. Socket must be unlocked. */ | 
|  | int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) | 
|  | { | 
|  | return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, | 
|  | sendpage_unlocked); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_store_bits - store bits from kernel buffer to skb | 
|  | *	@skb: destination buffer | 
|  | *	@offset: offset in destination | 
|  | *	@from: source buffer | 
|  | *	@len: number of bytes to copy | 
|  | * | 
|  | *	Copy the specified number of bytes from the source buffer to the | 
|  | *	destination skb.  This function handles all the messy bits of | 
|  | *	traversing fragment lists and such. | 
|  | */ | 
|  |  | 
|  | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | struct sk_buff *frag_iter; | 
|  | int i, copy; | 
|  |  | 
|  | if (offset > (int)skb->len - len) | 
|  | goto fault; | 
|  |  | 
|  | if ((copy = start - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | skb_copy_to_linear_data_offset(skb, offset, from, copy); | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | from += copy; | 
|  | } | 
|  |  | 
|  | if (skb_frags_not_readable(skb)) | 
|  | goto fault; | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(frag); | 
|  | if ((copy = end - offset) > 0) { | 
|  | u32 p_off, p_len, copied; | 
|  | struct page *p; | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  |  | 
|  | skb_frag_foreach_page(frag, | 
|  | skb_frag_off(frag) + offset - start, | 
|  | copy, p, p_off, p_len, copied) { | 
|  | vaddr = kmap_atomic(p); | 
|  | memcpy(vaddr + p_off, from + copied, p_len); | 
|  | kunmap_atomic(vaddr); | 
|  | } | 
|  |  | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | from += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | if (skb_store_bits(frag_iter, offset - start, | 
|  | from, copy)) | 
|  | goto fault; | 
|  | if ((len -= copy) == 0) | 
|  | return 0; | 
|  | offset += copy; | 
|  | from += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | fault: | 
|  | return -EFAULT; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_store_bits); | 
|  |  | 
|  | /* Checksum skb data. */ | 
|  | __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, | 
|  | __wsum csum, const struct skb_checksum_ops *ops) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | int i, copy = start - offset; | 
|  | struct sk_buff *frag_iter; | 
|  | int pos = 0; | 
|  |  | 
|  | /* Checksum header. */ | 
|  | if (copy > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, | 
|  | skb->data + offset, copy, csum); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | pos	= copy; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(skb_frags_not_readable(skb))) | 
|  | return -EFAULT; | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(frag); | 
|  | if ((copy = end - offset) > 0) { | 
|  | u32 p_off, p_len, copied; | 
|  | struct page *p; | 
|  | __wsum csum2; | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  |  | 
|  | skb_frag_foreach_page(frag, | 
|  | skb_frag_off(frag) + offset - start, | 
|  | copy, p, p_off, p_len, copied) { | 
|  | vaddr = kmap_atomic(p); | 
|  | csum2 = INDIRECT_CALL_1(ops->update, | 
|  | csum_partial_ext, | 
|  | vaddr + p_off, p_len, 0); | 
|  | kunmap_atomic(vaddr); | 
|  | csum = INDIRECT_CALL_1(ops->combine, | 
|  | csum_block_add_ext, csum, | 
|  | csum2, pos, p_len); | 
|  | pos += p_len; | 
|  | } | 
|  |  | 
|  | if (!(len -= copy)) | 
|  | return csum; | 
|  | offset += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | __wsum csum2; | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum2 = __skb_checksum(frag_iter, offset - start, | 
|  | copy, 0, ops); | 
|  | csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, | 
|  | csum, csum2, pos, copy); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | pos    += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | BUG_ON(len); | 
|  |  | 
|  | return csum; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_checksum); | 
|  |  | 
|  | __wsum skb_checksum(const struct sk_buff *skb, int offset, | 
|  | int len, __wsum csum) | 
|  | { | 
|  | const struct skb_checksum_ops ops = { | 
|  | .update  = csum_partial_ext, | 
|  | .combine = csum_block_add_ext, | 
|  | }; | 
|  |  | 
|  | return __skb_checksum(skb, offset, len, csum, &ops); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_checksum); | 
|  |  | 
|  | /* Both of above in one bottle. */ | 
|  |  | 
|  | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, | 
|  | u8 *to, int len) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | int i, copy = start - offset; | 
|  | struct sk_buff *frag_iter; | 
|  | int pos = 0; | 
|  | __wsum csum = 0; | 
|  |  | 
|  | /* Copy header. */ | 
|  | if (copy > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum = csum_partial_copy_nocheck(skb->data + offset, to, | 
|  | copy); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | pos	= copy; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(skb_frags_not_readable(skb))) | 
|  | return -EFAULT; | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  | if ((copy = end - offset) > 0) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | u32 p_off, p_len, copied; | 
|  | struct page *p; | 
|  | __wsum csum2; | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  |  | 
|  | skb_frag_foreach_page(frag, | 
|  | skb_frag_off(frag) + offset - start, | 
|  | copy, p, p_off, p_len, copied) { | 
|  | vaddr = kmap_atomic(p); | 
|  | csum2 = csum_partial_copy_nocheck(vaddr + p_off, | 
|  | to + copied, | 
|  | p_len); | 
|  | kunmap_atomic(vaddr); | 
|  | csum = csum_block_add(csum, csum2, pos); | 
|  | pos += p_len; | 
|  | } | 
|  |  | 
|  | if (!(len -= copy)) | 
|  | return csum; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | __wsum csum2; | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | csum2 = skb_copy_and_csum_bits(frag_iter, | 
|  | offset - start, | 
|  | to, copy); | 
|  | csum = csum_block_add(csum, csum2, pos); | 
|  | if ((len -= copy) == 0) | 
|  | return csum; | 
|  | offset += copy; | 
|  | to     += copy; | 
|  | pos    += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | BUG_ON(len); | 
|  | return csum; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_and_csum_bits); | 
|  |  | 
|  | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) | 
|  | { | 
|  | __sum16 sum; | 
|  |  | 
|  | sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); | 
|  | /* See comments in __skb_checksum_complete(). */ | 
|  | if (likely(!sum)) { | 
|  | if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && | 
|  | !skb->csum_complete_sw) | 
|  | netdev_rx_csum_fault(skb->dev, skb); | 
|  | } | 
|  | if (!skb_shared(skb)) | 
|  | skb->csum_valid = !sum; | 
|  | return sum; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_checksum_complete_head); | 
|  |  | 
|  | /* This function assumes skb->csum already holds pseudo header's checksum, | 
|  | * which has been changed from the hardware checksum, for example, by | 
|  | * __skb_checksum_validate_complete(). And, the original skb->csum must | 
|  | * have been validated unsuccessfully for CHECKSUM_COMPLETE case. | 
|  | * | 
|  | * It returns non-zero if the recomputed checksum is still invalid, otherwise | 
|  | * zero. The new checksum is stored back into skb->csum unless the skb is | 
|  | * shared. | 
|  | */ | 
|  | __sum16 __skb_checksum_complete(struct sk_buff *skb) | 
|  | { | 
|  | __wsum csum; | 
|  | __sum16 sum; | 
|  |  | 
|  | csum = skb_checksum(skb, 0, skb->len, 0); | 
|  |  | 
|  | sum = csum_fold(csum_add(skb->csum, csum)); | 
|  | /* This check is inverted, because we already knew the hardware | 
|  | * checksum is invalid before calling this function. So, if the | 
|  | * re-computed checksum is valid instead, then we have a mismatch | 
|  | * between the original skb->csum and skb_checksum(). This means either | 
|  | * the original hardware checksum is incorrect or we screw up skb->csum | 
|  | * when moving skb->data around. | 
|  | */ | 
|  | if (likely(!sum)) { | 
|  | if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && | 
|  | !skb->csum_complete_sw) | 
|  | netdev_rx_csum_fault(skb->dev, skb); | 
|  | } | 
|  |  | 
|  | if (!skb_shared(skb)) { | 
|  | /* Save full packet checksum */ | 
|  | skb->csum = csum; | 
|  | skb->ip_summed = CHECKSUM_COMPLETE; | 
|  | skb->csum_complete_sw = 1; | 
|  | skb->csum_valid = !sum; | 
|  | } | 
|  |  | 
|  | return sum; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_checksum_complete); | 
|  |  | 
|  | static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) | 
|  | { | 
|  | net_warn_ratelimited( | 
|  | "%s: attempt to compute crc32c without libcrc32c.ko\n", | 
|  | __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, | 
|  | int offset, int len) | 
|  | { | 
|  | net_warn_ratelimited( | 
|  | "%s: attempt to compute crc32c without libcrc32c.ko\n", | 
|  | __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct skb_checksum_ops default_crc32c_ops = { | 
|  | .update  = warn_crc32c_csum_update, | 
|  | .combine = warn_crc32c_csum_combine, | 
|  | }; | 
|  |  | 
|  | const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = | 
|  | &default_crc32c_ops; | 
|  | EXPORT_SYMBOL(crc32c_csum_stub); | 
|  |  | 
|  | /** | 
|  | *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() | 
|  | *	@from: source buffer | 
|  | * | 
|  | *	Calculates the amount of linear headroom needed in the 'to' skb passed | 
|  | *	into skb_zerocopy(). | 
|  | */ | 
|  | unsigned int | 
|  | skb_zerocopy_headlen(const struct sk_buff *from) | 
|  | { | 
|  | unsigned int hlen = 0; | 
|  |  | 
|  | if (!from->head_frag || | 
|  | skb_headlen(from) < L1_CACHE_BYTES || | 
|  | skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { | 
|  | hlen = skb_headlen(from); | 
|  | if (!hlen) | 
|  | hlen = from->len; | 
|  | } | 
|  |  | 
|  | if (skb_has_frag_list(from)) | 
|  | hlen = from->len; | 
|  |  | 
|  | return hlen; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); | 
|  |  | 
|  | /** | 
|  | *	skb_zerocopy - Zero copy skb to skb | 
|  | *	@to: destination buffer | 
|  | *	@from: source buffer | 
|  | *	@len: number of bytes to copy from source buffer | 
|  | *	@hlen: size of linear headroom in destination buffer | 
|  | * | 
|  | *	Copies up to `len` bytes from `from` to `to` by creating references | 
|  | *	to the frags in the source buffer. | 
|  | * | 
|  | *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the | 
|  | *	headroom in the `to` buffer. | 
|  | * | 
|  | *	Return value: | 
|  | *	0: everything is OK | 
|  | *	-ENOMEM: couldn't orphan frags of @from due to lack of memory | 
|  | *	-EFAULT: skb_copy_bits() found some problem with skb geometry | 
|  | */ | 
|  | int | 
|  | skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) | 
|  | { | 
|  | int i, j = 0; | 
|  | int plen = 0; /* length of skb->head fragment */ | 
|  | int ret; | 
|  | struct page *page; | 
|  | unsigned int offset; | 
|  |  | 
|  | BUG_ON(!from->head_frag && !hlen); | 
|  |  | 
|  | /* dont bother with small payloads */ | 
|  | if (len <= skb_tailroom(to)) | 
|  | return skb_copy_bits(from, 0, skb_put(to, len), len); | 
|  |  | 
|  | if (hlen) { | 
|  | ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | len -= hlen; | 
|  | } else { | 
|  | plen = min_t(int, skb_headlen(from), len); | 
|  | if (plen) { | 
|  | page = virt_to_head_page(from->head); | 
|  | offset = from->data - (unsigned char *)page_address(page); | 
|  | __skb_fill_page_desc(to, 0, page, offset, plen); | 
|  | get_page(page); | 
|  | j = 1; | 
|  | len -= plen; | 
|  | } | 
|  | } | 
|  |  | 
|  | skb_len_add(to, len + plen); | 
|  |  | 
|  | if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { | 
|  | skb_tx_error(from); | 
|  | return -ENOMEM; | 
|  | } | 
|  | skb_zerocopy_clone(to, from, GFP_ATOMIC); | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { | 
|  | int size; | 
|  |  | 
|  | if (!len) | 
|  | break; | 
|  | skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; | 
|  | size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), | 
|  | len); | 
|  | skb_frag_size_set(&skb_shinfo(to)->frags[j], size); | 
|  | len -= size; | 
|  | skb_frag_ref(to, j); | 
|  | j++; | 
|  | } | 
|  | skb_shinfo(to)->nr_frags = j; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_zerocopy); | 
|  |  | 
|  | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) | 
|  | { | 
|  | __wsum csum; | 
|  | long csstart; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) | 
|  | csstart = skb_checksum_start_offset(skb); | 
|  | else | 
|  | csstart = skb_headlen(skb); | 
|  |  | 
|  | BUG_ON(csstart > skb_headlen(skb)); | 
|  |  | 
|  | skb_copy_from_linear_data(skb, to, csstart); | 
|  |  | 
|  | csum = 0; | 
|  | if (csstart != skb->len) | 
|  | csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, | 
|  | skb->len - csstart); | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | long csstuff = csstart + skb->csum_offset; | 
|  |  | 
|  | *((__sum16 *)(to + csstuff)) = csum_fold(csum); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(skb_copy_and_csum_dev); | 
|  |  | 
|  | /** | 
|  | *	skb_dequeue - remove from the head of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the head of the list. The list lock is taken so the function | 
|  | *	may be used safely with other locking list functions. The head item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  |  | 
|  | struct sk_buff *skb_dequeue(struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sk_buff *result; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | result = __skb_dequeue(list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_dequeue); | 
|  |  | 
|  | /** | 
|  | *	skb_dequeue_tail - remove from the tail of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the tail of the list. The list lock is taken so the function | 
|  | *	may be used safely with other locking list functions. The tail item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sk_buff *result; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | result = __skb_dequeue_tail(list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_dequeue_tail); | 
|  |  | 
|  | /** | 
|  | *	skb_queue_purge - empty a list | 
|  | *	@list: list to empty | 
|  | * | 
|  | *	Delete all buffers on an &sk_buff list. Each buffer is removed from | 
|  | *	the list and one reference dropped. This function takes the list | 
|  | *	lock and is atomic with respect to other list locking functions. | 
|  | */ | 
|  | void skb_queue_purge(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | while ((skb = skb_dequeue(list)) != NULL) | 
|  | kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_queue_purge); | 
|  |  | 
|  | /** | 
|  | *	skb_rbtree_purge - empty a skb rbtree | 
|  | *	@root: root of the rbtree to empty | 
|  | *	Return value: the sum of truesizes of all purged skbs. | 
|  | * | 
|  | *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from | 
|  | *	the list and one reference dropped. This function does not take | 
|  | *	any lock. Synchronization should be handled by the caller (e.g., TCP | 
|  | *	out-of-order queue is protected by the socket lock). | 
|  | */ | 
|  | unsigned int skb_rbtree_purge(struct rb_root *root) | 
|  | { | 
|  | struct rb_node *p = rb_first(root); | 
|  | unsigned int sum = 0; | 
|  |  | 
|  | while (p) { | 
|  | struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); | 
|  |  | 
|  | p = rb_next(p); | 
|  | rb_erase(&skb->rbnode, root); | 
|  | sum += skb->truesize; | 
|  | kfree_skb(skb); | 
|  | } | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_head - queue a buffer at the list head | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the start of the list. This function takes the | 
|  | *	list lock and can be used safely with other locking &sk_buff functions | 
|  | *	safely. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_queue_head(list, newsk); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_queue_head); | 
|  |  | 
|  | /** | 
|  | *	skb_queue_tail - queue a buffer at the list tail | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the tail of the list. This function takes the | 
|  | *	list lock and can be used safely with other locking &sk_buff functions | 
|  | *	safely. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_queue_tail(list, newsk); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_queue_tail); | 
|  |  | 
|  | /** | 
|  | *	skb_unlink	-	remove a buffer from a list | 
|  | *	@skb: buffer to remove | 
|  | *	@list: list to use | 
|  | * | 
|  | *	Remove a packet from a list. The list locks are taken and this | 
|  | *	function is atomic with respect to other list locked calls | 
|  | * | 
|  | *	You must know what list the SKB is on. | 
|  | */ | 
|  | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_unlink(skb, list); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_unlink); | 
|  |  | 
|  | /** | 
|  | *	skb_append	-	append a buffer | 
|  | *	@old: buffer to insert after | 
|  | *	@newsk: buffer to insert | 
|  | *	@list: list to use | 
|  | * | 
|  | *	Place a packet after a given packet in a list. The list locks are taken | 
|  | *	and this function is atomic with respect to other list locked calls. | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | __skb_queue_after(list, old, newsk); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_append); | 
|  |  | 
|  | static inline void skb_split_inside_header(struct sk_buff *skb, | 
|  | struct sk_buff* skb1, | 
|  | const u32 len, const int pos) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), | 
|  | pos - len); | 
|  | /* And move data appendix as is. */ | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) | 
|  | skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | skb1->devmem		   = skb->devmem; | 
|  | skb_shinfo(skb)->nr_frags  = 0; | 
|  | skb->devmem		   = 0; | 
|  | skb1->data_len		   = skb->data_len; | 
|  | skb1->len		   += skb1->data_len; | 
|  | skb->data_len		   = 0; | 
|  | skb->len		   = len; | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_split_no_header(struct sk_buff *skb, | 
|  | struct sk_buff* skb1, | 
|  | const u32 len, int pos) | 
|  | { | 
|  | int i, k = 0; | 
|  | const int nfrags = skb_shinfo(skb)->nr_frags; | 
|  | const bool devmem = skb->devmem; | 
|  |  | 
|  | skb_shinfo(skb)->nr_frags = 0; | 
|  | skb1->len		  = skb1->data_len = skb->len - len; | 
|  | skb->len		  = len; | 
|  | skb->data_len		  = len - pos; | 
|  | skb->devmem		  = skb1->devmem = 0; | 
|  |  | 
|  | for (i = 0; i < nfrags; i++) { | 
|  | int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (pos + size > len) { | 
|  | skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | if (pos < len) { | 
|  | /* Split frag. | 
|  | * We have two variants in this case: | 
|  | * 1. Move all the frag to the second | 
|  | *    part, if it is possible. F.e. | 
|  | *    this approach is mandatory for TUX, | 
|  | *    where splitting is expensive. | 
|  | * 2. Split is accurately. We make this. | 
|  | */ | 
|  | skb_frag_ref(skb, i); | 
|  | skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); | 
|  | skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); | 
|  | skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); | 
|  | skb_shinfo(skb)->nr_frags++; | 
|  | } | 
|  | k++; | 
|  | } else | 
|  | skb_shinfo(skb)->nr_frags++; | 
|  | pos += size; | 
|  | } | 
|  | skb_shinfo(skb1)->nr_frags = k; | 
|  |  | 
|  | if (skb_shinfo(skb)->nr_frags) | 
|  | skb->devmem = devmem; | 
|  |  | 
|  | if (skb_shinfo(skb1)->nr_frags) | 
|  | skb1->devmem = devmem; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_split - Split fragmented skb to two parts at length len. | 
|  | * @skb: the buffer to split | 
|  | * @skb1: the buffer to receive the second part | 
|  | * @len: new length for skb | 
|  | */ | 
|  | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) | 
|  | { | 
|  | int pos = skb_headlen(skb); | 
|  | const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; | 
|  |  | 
|  | skb_zcopy_downgrade_managed(skb); | 
|  |  | 
|  | skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; | 
|  | skb_zerocopy_clone(skb1, skb, 0); | 
|  | if (len < pos)	/* Split line is inside header. */ | 
|  | skb_split_inside_header(skb, skb1, len, pos); | 
|  | else		/* Second chunk has no header, nothing to copy. */ | 
|  | skb_split_no_header(skb, skb1, len, pos); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_split); | 
|  |  | 
|  | /* Shifting from/to a cloned skb is a no-go. | 
|  | * | 
|  | * Caller cannot keep skb_shinfo related pointers past calling here! | 
|  | */ | 
|  | static int skb_prepare_for_shift(struct sk_buff *skb) | 
|  | { | 
|  | return skb_unclone_keeptruesize(skb, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_shift - Shifts paged data partially from skb to another | 
|  | * @tgt: buffer into which tail data gets added | 
|  | * @skb: buffer from which the paged data comes from | 
|  | * @shiftlen: shift up to this many bytes | 
|  | * | 
|  | * Attempts to shift up to shiftlen worth of bytes, which may be less than | 
|  | * the length of the skb, from skb to tgt. Returns number bytes shifted. | 
|  | * It's up to caller to free skb if everything was shifted. | 
|  | * | 
|  | * If @tgt runs out of frags, the whole operation is aborted. | 
|  | * | 
|  | * Skb cannot include anything else but paged data while tgt is allowed | 
|  | * to have non-paged data as well. | 
|  | * | 
|  | * TODO: full sized shift could be optimized but that would need | 
|  | * specialized skb free'er to handle frags without up-to-date nr_frags. | 
|  | */ | 
|  | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) | 
|  | { | 
|  | int from, to, merge, todo; | 
|  | skb_frag_t *fragfrom, *fragto; | 
|  |  | 
|  | BUG_ON(shiftlen > skb->len); | 
|  |  | 
|  | if (skb_headlen(skb)) | 
|  | return 0; | 
|  | if (skb_zcopy(tgt) || skb_zcopy(skb)) | 
|  | return 0; | 
|  |  | 
|  | todo = shiftlen; | 
|  | from = 0; | 
|  | to = skb_shinfo(tgt)->nr_frags; | 
|  | fragfrom = &skb_shinfo(skb)->frags[from]; | 
|  |  | 
|  | /* Actual merge is delayed until the point when we know we can | 
|  | * commit all, so that we don't have to undo partial changes | 
|  | */ | 
|  | if (!to || | 
|  | !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), | 
|  | skb_frag_off(fragfrom))) { | 
|  | merge = -1; | 
|  | } else { | 
|  | merge = to - 1; | 
|  |  | 
|  | todo -= skb_frag_size(fragfrom); | 
|  | if (todo < 0) { | 
|  | if (skb_prepare_for_shift(skb) || | 
|  | skb_prepare_for_shift(tgt)) | 
|  | return 0; | 
|  |  | 
|  | /* All previous frag pointers might be stale! */ | 
|  | fragfrom = &skb_shinfo(skb)->frags[from]; | 
|  | fragto = &skb_shinfo(tgt)->frags[merge]; | 
|  |  | 
|  | skb_frag_size_add(fragto, shiftlen); | 
|  | skb_frag_size_sub(fragfrom, shiftlen); | 
|  | skb_frag_off_add(fragfrom, shiftlen); | 
|  |  | 
|  | goto onlymerged; | 
|  | } | 
|  |  | 
|  | from++; | 
|  | } | 
|  |  | 
|  | /* Skip full, not-fitting skb to avoid expensive operations */ | 
|  | if ((shiftlen == skb->len) && | 
|  | (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) | 
|  | return 0; | 
|  |  | 
|  | if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) | 
|  | return 0; | 
|  |  | 
|  | while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { | 
|  | if (to == MAX_SKB_FRAGS) | 
|  | return 0; | 
|  |  | 
|  | fragfrom = &skb_shinfo(skb)->frags[from]; | 
|  | fragto = &skb_shinfo(tgt)->frags[to]; | 
|  |  | 
|  | if (todo >= skb_frag_size(fragfrom)) { | 
|  | *fragto = *fragfrom; | 
|  | todo -= skb_frag_size(fragfrom); | 
|  | from++; | 
|  | to++; | 
|  |  | 
|  | } else { | 
|  | __skb_frag_ref(fragfrom); | 
|  | skb_frag_page_copy(fragto, fragfrom); | 
|  | skb_frag_off_copy(fragto, fragfrom); | 
|  | skb_frag_size_set(fragto, todo); | 
|  |  | 
|  | skb_frag_off_add(fragfrom, todo); | 
|  | skb_frag_size_sub(fragfrom, todo); | 
|  | todo = 0; | 
|  |  | 
|  | to++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ready to "commit" this state change to tgt */ | 
|  | skb_shinfo(tgt)->nr_frags = to; | 
|  |  | 
|  | if (merge >= 0) { | 
|  | fragfrom = &skb_shinfo(skb)->frags[0]; | 
|  | fragto = &skb_shinfo(tgt)->frags[merge]; | 
|  |  | 
|  | skb_frag_size_add(fragto, skb_frag_size(fragfrom)); | 
|  | __skb_frag_unref(fragfrom, skb->pp_recycle); | 
|  | } | 
|  |  | 
|  | /* Reposition in the original skb */ | 
|  | to = 0; | 
|  | while (from < skb_shinfo(skb)->nr_frags) | 
|  | skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; | 
|  | skb_shinfo(skb)->nr_frags = to; | 
|  |  | 
|  | BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); | 
|  |  | 
|  | onlymerged: | 
|  | /* Most likely the tgt won't ever need its checksum anymore, skb on | 
|  | * the other hand might need it if it needs to be resent | 
|  | */ | 
|  | tgt->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  |  | 
|  | skb_len_add(skb, -shiftlen); | 
|  | skb_len_add(tgt, shiftlen); | 
|  |  | 
|  | return shiftlen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_prepare_seq_read - Prepare a sequential read of skb data | 
|  | * @skb: the buffer to read | 
|  | * @from: lower offset of data to be read | 
|  | * @to: upper offset of data to be read | 
|  | * @st: state variable | 
|  | * | 
|  | * Initializes the specified state variable. Must be called before | 
|  | * invoking skb_seq_read() for the first time. | 
|  | */ | 
|  | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct skb_seq_state *st) | 
|  | { | 
|  | st->lower_offset = from; | 
|  | st->upper_offset = to; | 
|  | st->root_skb = st->cur_skb = skb; | 
|  | st->frag_idx = st->stepped_offset = 0; | 
|  | st->frag_data = NULL; | 
|  | st->frag_off = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_prepare_seq_read); | 
|  |  | 
|  | /** | 
|  | * skb_seq_read - Sequentially read skb data | 
|  | * @consumed: number of bytes consumed by the caller so far | 
|  | * @data: destination pointer for data to be returned | 
|  | * @st: state variable | 
|  | * | 
|  | * Reads a block of skb data at @consumed relative to the | 
|  | * lower offset specified to skb_prepare_seq_read(). Assigns | 
|  | * the head of the data block to @data and returns the length | 
|  | * of the block or 0 if the end of the skb data or the upper | 
|  | * offset has been reached. | 
|  | * | 
|  | * The caller is not required to consume all of the data | 
|  | * returned, i.e. @consumed is typically set to the number | 
|  | * of bytes already consumed and the next call to | 
|  | * skb_seq_read() will return the remaining part of the block. | 
|  | * | 
|  | * Note 1: The size of each block of data returned can be arbitrary, | 
|  | *       this limitation is the cost for zerocopy sequential | 
|  | *       reads of potentially non linear data. | 
|  | * | 
|  | * Note 2: Fragment lists within fragments are not implemented | 
|  | *       at the moment, state->root_skb could be replaced with | 
|  | *       a stack for this purpose. | 
|  | */ | 
|  | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, | 
|  | struct skb_seq_state *st) | 
|  | { | 
|  | unsigned int block_limit, abs_offset = consumed + st->lower_offset; | 
|  | skb_frag_t *frag; | 
|  |  | 
|  | if (unlikely(abs_offset >= st->upper_offset)) { | 
|  | if (st->frag_data) { | 
|  | kunmap_atomic(st->frag_data); | 
|  | st->frag_data = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | next_skb: | 
|  | block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; | 
|  |  | 
|  | if (abs_offset < block_limit && !st->frag_data) { | 
|  | *data = st->cur_skb->data + (abs_offset - st->stepped_offset); | 
|  | return block_limit - abs_offset; | 
|  | } | 
|  |  | 
|  | if (skb_frags_not_readable(st->cur_skb)) | 
|  | return 0; | 
|  |  | 
|  | if (st->frag_idx == 0 && !st->frag_data) | 
|  | st->stepped_offset += skb_headlen(st->cur_skb); | 
|  |  | 
|  | while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { | 
|  | unsigned int pg_idx, pg_off, pg_sz; | 
|  |  | 
|  | frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; | 
|  |  | 
|  | pg_idx = 0; | 
|  | pg_off = skb_frag_off(frag); | 
|  | pg_sz = skb_frag_size(frag); | 
|  |  | 
|  | if (skb_frag_must_loop(skb_frag_page(frag))) { | 
|  | pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; | 
|  | pg_off = offset_in_page(pg_off + st->frag_off); | 
|  | pg_sz = min_t(unsigned int, pg_sz - st->frag_off, | 
|  | PAGE_SIZE - pg_off); | 
|  | } | 
|  |  | 
|  | block_limit = pg_sz + st->stepped_offset; | 
|  | if (abs_offset < block_limit) { | 
|  | if (!st->frag_data) | 
|  | st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); | 
|  |  | 
|  | *data = (u8 *)st->frag_data + pg_off + | 
|  | (abs_offset - st->stepped_offset); | 
|  |  | 
|  | return block_limit - abs_offset; | 
|  | } | 
|  |  | 
|  | if (st->frag_data) { | 
|  | kunmap_atomic(st->frag_data); | 
|  | st->frag_data = NULL; | 
|  | } | 
|  |  | 
|  | st->stepped_offset += pg_sz; | 
|  | st->frag_off += pg_sz; | 
|  | if (st->frag_off == skb_frag_size(frag)) { | 
|  | st->frag_off = 0; | 
|  | st->frag_idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (st->frag_data) { | 
|  | kunmap_atomic(st->frag_data); | 
|  | st->frag_data = NULL; | 
|  | } | 
|  |  | 
|  | if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { | 
|  | st->cur_skb = skb_shinfo(st->root_skb)->frag_list; | 
|  | st->frag_idx = 0; | 
|  | goto next_skb; | 
|  | } else if (st->cur_skb->next) { | 
|  | st->cur_skb = st->cur_skb->next; | 
|  | st->frag_idx = 0; | 
|  | goto next_skb; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_seq_read); | 
|  |  | 
|  | /** | 
|  | * skb_abort_seq_read - Abort a sequential read of skb data | 
|  | * @st: state variable | 
|  | * | 
|  | * Must be called if skb_seq_read() was not called until it | 
|  | * returned 0. | 
|  | */ | 
|  | void skb_abort_seq_read(struct skb_seq_state *st) | 
|  | { | 
|  | if (st->frag_data) | 
|  | kunmap_atomic(st->frag_data); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_abort_seq_read); | 
|  |  | 
|  | #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb)) | 
|  |  | 
|  | static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, | 
|  | struct ts_config *conf, | 
|  | struct ts_state *state) | 
|  | { | 
|  | return skb_seq_read(offset, text, TS_SKB_CB(state)); | 
|  | } | 
|  |  | 
|  | static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) | 
|  | { | 
|  | skb_abort_seq_read(TS_SKB_CB(state)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_find_text - Find a text pattern in skb data | 
|  | * @skb: the buffer to look in | 
|  | * @from: search offset | 
|  | * @to: search limit | 
|  | * @config: textsearch configuration | 
|  | * | 
|  | * Finds a pattern in the skb data according to the specified | 
|  | * textsearch configuration. Use textsearch_next() to retrieve | 
|  | * subsequent occurrences of the pattern. Returns the offset | 
|  | * to the first occurrence or UINT_MAX if no match was found. | 
|  | */ | 
|  | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct ts_config *config) | 
|  | { | 
|  | unsigned int patlen = config->ops->get_pattern_len(config); | 
|  | struct ts_state state; | 
|  | unsigned int ret; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); | 
|  |  | 
|  | config->get_next_block = skb_ts_get_next_block; | 
|  | config->finish = skb_ts_finish; | 
|  |  | 
|  | skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); | 
|  |  | 
|  | ret = textsearch_find(config, &state); | 
|  | return (ret + patlen <= to - from ? ret : UINT_MAX); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_find_text); | 
|  |  | 
|  | int skb_append_pagefrags(struct sk_buff *skb, struct page *page, | 
|  | int offset, size_t size) | 
|  | { | 
|  | int i = skb_shinfo(skb)->nr_frags; | 
|  |  | 
|  | if (skb_can_coalesce(skb, i, page, offset)) { | 
|  | skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); | 
|  | } else if (i < MAX_SKB_FRAGS) { | 
|  | skb_zcopy_downgrade_managed(skb); | 
|  | get_page(page); | 
|  | skb_fill_page_desc_noacc(skb, i, page, offset, size); | 
|  | } else { | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_append_pagefrags); | 
|  |  | 
|  | /** | 
|  | *	skb_pull_rcsum - pull skb and update receive checksum | 
|  | *	@skb: buffer to update | 
|  | *	@len: length of data pulled | 
|  | * | 
|  | *	This function performs an skb_pull on the packet and updates | 
|  | *	the CHECKSUM_COMPLETE checksum.  It should be used on | 
|  | *	receive path processing instead of skb_pull unless you know | 
|  | *	that the checksum difference is zero (e.g., a valid IP header) | 
|  | *	or you are setting ip_summed to CHECKSUM_NONE. | 
|  | */ | 
|  | void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | unsigned char *data = skb->data; | 
|  |  | 
|  | BUG_ON(len > skb->len); | 
|  | __skb_pull(skb, len); | 
|  | skb_postpull_rcsum(skb, data, len); | 
|  | return skb->data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_pull_rcsum); | 
|  |  | 
|  | static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) | 
|  | { | 
|  | skb_frag_t head_frag; | 
|  | struct page *page; | 
|  |  | 
|  | page = virt_to_head_page(frag_skb->head); | 
|  | __skb_frag_set_page(&head_frag, page); | 
|  | skb_frag_off_set(&head_frag, frag_skb->data - | 
|  | (unsigned char *)page_address(page)); | 
|  | skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); | 
|  | return head_frag; | 
|  | } | 
|  |  | 
|  | struct sk_buff *skb_segment_list(struct sk_buff *skb, | 
|  | netdev_features_t features, | 
|  | unsigned int offset) | 
|  | { | 
|  | struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; | 
|  | unsigned int tnl_hlen = skb_tnl_header_len(skb); | 
|  | unsigned int delta_truesize = 0; | 
|  | unsigned int delta_len = 0; | 
|  | struct sk_buff *tail = NULL; | 
|  | struct sk_buff *nskb, *tmp; | 
|  | int len_diff, err; | 
|  |  | 
|  | skb_push(skb, -skb_network_offset(skb) + offset); | 
|  |  | 
|  | /* Ensure the head is writeable before touching the shared info */ | 
|  | err = skb_unclone(skb, GFP_ATOMIC); | 
|  | if (err) | 
|  | goto err_linearize; | 
|  |  | 
|  | skb_shinfo(skb)->frag_list = NULL; | 
|  |  | 
|  | while (list_skb) { | 
|  | nskb = list_skb; | 
|  | list_skb = list_skb->next; | 
|  |  | 
|  | err = 0; | 
|  | delta_truesize += nskb->truesize; | 
|  | if (skb_shared(nskb)) { | 
|  | tmp = skb_clone(nskb, GFP_ATOMIC); | 
|  | if (tmp) { | 
|  | consume_skb(nskb); | 
|  | nskb = tmp; | 
|  | err = skb_unclone(nskb, GFP_ATOMIC); | 
|  | } else { | 
|  | err = -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!tail) | 
|  | skb->next = nskb; | 
|  | else | 
|  | tail->next = nskb; | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | nskb->next = list_skb; | 
|  | goto err_linearize; | 
|  | } | 
|  |  | 
|  | tail = nskb; | 
|  |  | 
|  | delta_len += nskb->len; | 
|  |  | 
|  | skb_push(nskb, -skb_network_offset(nskb) + offset); | 
|  |  | 
|  | skb_release_head_state(nskb); | 
|  | len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); | 
|  | __copy_skb_header(nskb, skb); | 
|  |  | 
|  | skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); | 
|  | nskb->transport_header += len_diff; | 
|  | skb_copy_from_linear_data_offset(skb, -tnl_hlen, | 
|  | nskb->data - tnl_hlen, | 
|  | offset + tnl_hlen); | 
|  |  | 
|  | if (skb_needs_linearize(nskb, features) && | 
|  | __skb_linearize(nskb)) | 
|  | goto err_linearize; | 
|  | } | 
|  |  | 
|  | skb->truesize = skb->truesize - delta_truesize; | 
|  | skb->data_len = skb->data_len - delta_len; | 
|  | skb->len = skb->len - delta_len; | 
|  |  | 
|  | skb_gso_reset(skb); | 
|  |  | 
|  | skb->prev = tail; | 
|  |  | 
|  | if (skb_needs_linearize(skb, features) && | 
|  | __skb_linearize(skb)) | 
|  | goto err_linearize; | 
|  |  | 
|  | skb_get(skb); | 
|  |  | 
|  | return skb; | 
|  |  | 
|  | err_linearize: | 
|  | kfree_skb_list(skb->next); | 
|  | skb->next = NULL; | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_segment_list); | 
|  |  | 
|  | /** | 
|  | *	skb_segment - Perform protocol segmentation on skb. | 
|  | *	@head_skb: buffer to segment | 
|  | *	@features: features for the output path (see dev->features) | 
|  | * | 
|  | *	This function performs segmentation on the given skb.  It returns | 
|  | *	a pointer to the first in a list of new skbs for the segments. | 
|  | *	In case of error it returns ERR_PTR(err). | 
|  | */ | 
|  | struct sk_buff *skb_segment(struct sk_buff *head_skb, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct sk_buff *segs = NULL; | 
|  | struct sk_buff *tail = NULL; | 
|  | struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; | 
|  | unsigned int mss = skb_shinfo(head_skb)->gso_size; | 
|  | unsigned int doffset = head_skb->data - skb_mac_header(head_skb); | 
|  | unsigned int offset = doffset; | 
|  | unsigned int tnl_hlen = skb_tnl_header_len(head_skb); | 
|  | unsigned int partial_segs = 0; | 
|  | unsigned int headroom; | 
|  | unsigned int len = head_skb->len; | 
|  | struct sk_buff *frag_skb; | 
|  | skb_frag_t *frag; | 
|  | __be16 proto; | 
|  | bool csum, sg; | 
|  | int err = -ENOMEM; | 
|  | int i = 0; | 
|  | int nfrags, pos; | 
|  |  | 
|  | if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && | 
|  | mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { | 
|  | struct sk_buff *check_skb; | 
|  |  | 
|  | for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { | 
|  | if (skb_headlen(check_skb) && !check_skb->head_frag) { | 
|  | /* gso_size is untrusted, and we have a frag_list with | 
|  | * a linear non head_frag item. | 
|  | * | 
|  | * If head_skb's headlen does not fit requested gso_size, | 
|  | * it means that the frag_list members do NOT terminate | 
|  | * on exact gso_size boundaries. Hence we cannot perform | 
|  | * skb_frag_t page sharing. Therefore we must fallback to | 
|  | * copying the frag_list skbs; we do so by disabling SG. | 
|  | */ | 
|  | features &= ~NETIF_F_SG; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | __skb_push(head_skb, doffset); | 
|  | proto = skb_network_protocol(head_skb, NULL); | 
|  | if (unlikely(!proto)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | sg = !!(features & NETIF_F_SG); | 
|  | csum = !!can_checksum_protocol(features, proto); | 
|  |  | 
|  | if (sg && csum && (mss != GSO_BY_FRAGS))  { | 
|  | if (!(features & NETIF_F_GSO_PARTIAL)) { | 
|  | struct sk_buff *iter; | 
|  | unsigned int frag_len; | 
|  |  | 
|  | if (!list_skb || | 
|  | !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) | 
|  | goto normal; | 
|  |  | 
|  | /* If we get here then all the required | 
|  | * GSO features except frag_list are supported. | 
|  | * Try to split the SKB to multiple GSO SKBs | 
|  | * with no frag_list. | 
|  | * Currently we can do that only when the buffers don't | 
|  | * have a linear part and all the buffers except | 
|  | * the last are of the same length. | 
|  | */ | 
|  | frag_len = list_skb->len; | 
|  | skb_walk_frags(head_skb, iter) { | 
|  | if (frag_len != iter->len && iter->next) | 
|  | goto normal; | 
|  | if (skb_headlen(iter) && !iter->head_frag) | 
|  | goto normal; | 
|  |  | 
|  | len -= iter->len; | 
|  | } | 
|  |  | 
|  | if (len != frag_len) | 
|  | goto normal; | 
|  | } | 
|  |  | 
|  | /* GSO partial only requires that we trim off any excess that | 
|  | * doesn't fit into an MSS sized block, so take care of that | 
|  | * now. | 
|  | * Cap len to not accidentally hit GSO_BY_FRAGS. | 
|  | */ | 
|  | partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss; | 
|  | if (partial_segs > 1) | 
|  | mss *= partial_segs; | 
|  | else | 
|  | partial_segs = 0; | 
|  | } | 
|  |  | 
|  | normal: | 
|  | headroom = skb_headroom(head_skb); | 
|  | pos = skb_headlen(head_skb); | 
|  |  | 
|  | if (skb_orphan_frags(head_skb, GFP_ATOMIC)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | nfrags = skb_shinfo(head_skb)->nr_frags; | 
|  | frag = skb_shinfo(head_skb)->frags; | 
|  | frag_skb = head_skb; | 
|  |  | 
|  | do { | 
|  | struct sk_buff *nskb; | 
|  | skb_frag_t *nskb_frag; | 
|  | int hsize; | 
|  | int size; | 
|  |  | 
|  | if (unlikely(mss == GSO_BY_FRAGS)) { | 
|  | len = list_skb->len; | 
|  | } else { | 
|  | len = head_skb->len - offset; | 
|  | if (len > mss) | 
|  | len = mss; | 
|  | } | 
|  |  | 
|  | hsize = skb_headlen(head_skb) - offset; | 
|  |  | 
|  | if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && | 
|  | (skb_headlen(list_skb) == len || sg)) { | 
|  | BUG_ON(skb_headlen(list_skb) > len); | 
|  |  | 
|  | nskb = skb_clone(list_skb, GFP_ATOMIC); | 
|  | if (unlikely(!nskb)) | 
|  | goto err; | 
|  |  | 
|  | i = 0; | 
|  | nfrags = skb_shinfo(list_skb)->nr_frags; | 
|  | frag = skb_shinfo(list_skb)->frags; | 
|  | frag_skb = list_skb; | 
|  | pos += skb_headlen(list_skb); | 
|  |  | 
|  | while (pos < offset + len) { | 
|  | BUG_ON(i >= nfrags); | 
|  |  | 
|  | size = skb_frag_size(frag); | 
|  | if (pos + size > offset + len) | 
|  | break; | 
|  |  | 
|  | i++; | 
|  | pos += size; | 
|  | frag++; | 
|  | } | 
|  |  | 
|  | list_skb = list_skb->next; | 
|  |  | 
|  | if (unlikely(pskb_trim(nskb, len))) { | 
|  | kfree_skb(nskb); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | hsize = skb_end_offset(nskb); | 
|  | if (skb_cow_head(nskb, doffset + headroom)) { | 
|  | kfree_skb(nskb); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | nskb->truesize += skb_end_offset(nskb) - hsize; | 
|  | skb_release_head_state(nskb); | 
|  | __skb_push(nskb, doffset); | 
|  | } else { | 
|  | if (hsize < 0) | 
|  | hsize = 0; | 
|  | if (hsize > len || !sg) | 
|  | hsize = len; | 
|  |  | 
|  | nskb = __alloc_skb(hsize + doffset + headroom, | 
|  | GFP_ATOMIC, skb_alloc_rx_flag(head_skb), | 
|  | NUMA_NO_NODE); | 
|  |  | 
|  | if (unlikely(!nskb)) | 
|  | goto err; | 
|  |  | 
|  | skb_reserve(nskb, headroom); | 
|  | __skb_put(nskb, doffset); | 
|  | } | 
|  |  | 
|  | if (segs) | 
|  | tail->next = nskb; | 
|  | else | 
|  | segs = nskb; | 
|  | tail = nskb; | 
|  |  | 
|  | __copy_skb_header(nskb, head_skb); | 
|  |  | 
|  | skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); | 
|  | skb_reset_mac_len(nskb); | 
|  |  | 
|  | skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, | 
|  | nskb->data - tnl_hlen, | 
|  | doffset + tnl_hlen); | 
|  |  | 
|  | if (nskb->len == len + doffset) | 
|  | goto perform_csum_check; | 
|  |  | 
|  | if (!sg) { | 
|  | if (!csum) { | 
|  | if (!nskb->remcsum_offload) | 
|  | nskb->ip_summed = CHECKSUM_NONE; | 
|  | SKB_GSO_CB(nskb)->csum = | 
|  | skb_copy_and_csum_bits(head_skb, offset, | 
|  | skb_put(nskb, | 
|  | len), | 
|  | len); | 
|  | SKB_GSO_CB(nskb)->csum_start = | 
|  | skb_headroom(nskb) + doffset; | 
|  | } else { | 
|  | if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) | 
|  | goto err; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nskb_frag = skb_shinfo(nskb)->frags; | 
|  |  | 
|  | skb_copy_from_linear_data_offset(head_skb, offset, | 
|  | skb_put(nskb, hsize), hsize); | 
|  |  | 
|  | skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & | 
|  | SKBFL_SHARED_FRAG; | 
|  |  | 
|  | if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) | 
|  | goto err; | 
|  |  | 
|  | while (pos < offset + len) { | 
|  | if (i >= nfrags) { | 
|  | if (skb_orphan_frags(list_skb, GFP_ATOMIC) || | 
|  | skb_zerocopy_clone(nskb, list_skb, | 
|  | GFP_ATOMIC)) | 
|  | goto err; | 
|  |  | 
|  | i = 0; | 
|  | nfrags = skb_shinfo(list_skb)->nr_frags; | 
|  | frag = skb_shinfo(list_skb)->frags; | 
|  | frag_skb = list_skb; | 
|  | if (!skb_headlen(list_skb)) { | 
|  | BUG_ON(!nfrags); | 
|  | } else { | 
|  | BUG_ON(!list_skb->head_frag); | 
|  |  | 
|  | /* to make room for head_frag. */ | 
|  | i--; | 
|  | frag--; | 
|  | } | 
|  |  | 
|  | list_skb = list_skb->next; | 
|  | } | 
|  |  | 
|  | if (unlikely(skb_shinfo(nskb)->nr_frags >= | 
|  | MAX_SKB_FRAGS)) { | 
|  | net_warn_ratelimited( | 
|  | "skb_segment: too many frags: %u %u\n", | 
|  | pos, mss); | 
|  | err = -EINVAL; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; | 
|  | __skb_frag_ref(nskb_frag); | 
|  | size = skb_frag_size(nskb_frag); | 
|  |  | 
|  | if (pos < offset) { | 
|  | skb_frag_off_add(nskb_frag, offset - pos); | 
|  | skb_frag_size_sub(nskb_frag, offset - pos); | 
|  | } | 
|  |  | 
|  | skb_shinfo(nskb)->nr_frags++; | 
|  |  | 
|  | if (pos + size <= offset + len) { | 
|  | i++; | 
|  | frag++; | 
|  | pos += size; | 
|  | } else { | 
|  | skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); | 
|  | goto skip_fraglist; | 
|  | } | 
|  |  | 
|  | nskb_frag++; | 
|  | } | 
|  |  | 
|  | skip_fraglist: | 
|  | nskb->data_len = len - hsize; | 
|  | nskb->len += nskb->data_len; | 
|  | nskb->truesize += nskb->data_len; | 
|  |  | 
|  | perform_csum_check: | 
|  | if (!csum) { | 
|  | if (skb_has_shared_frag(nskb) && | 
|  | __skb_linearize(nskb)) | 
|  | goto err; | 
|  |  | 
|  | if (!nskb->remcsum_offload) | 
|  | nskb->ip_summed = CHECKSUM_NONE; | 
|  | SKB_GSO_CB(nskb)->csum = | 
|  | skb_checksum(nskb, doffset, | 
|  | nskb->len - doffset, 0); | 
|  | SKB_GSO_CB(nskb)->csum_start = | 
|  | skb_headroom(nskb) + doffset; | 
|  | } | 
|  | } while ((offset += len) < head_skb->len); | 
|  |  | 
|  | /* Some callers want to get the end of the list. | 
|  | * Put it in segs->prev to avoid walking the list. | 
|  | * (see validate_xmit_skb_list() for example) | 
|  | */ | 
|  | segs->prev = tail; | 
|  |  | 
|  | if (partial_segs) { | 
|  | struct sk_buff *iter; | 
|  | int type = skb_shinfo(head_skb)->gso_type; | 
|  | unsigned short gso_size = skb_shinfo(head_skb)->gso_size; | 
|  |  | 
|  | /* Update type to add partial and then remove dodgy if set */ | 
|  | type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; | 
|  | type &= ~SKB_GSO_DODGY; | 
|  |  | 
|  | /* Update GSO info and prepare to start updating headers on | 
|  | * our way back down the stack of protocols. | 
|  | */ | 
|  | for (iter = segs; iter; iter = iter->next) { | 
|  | skb_shinfo(iter)->gso_size = gso_size; | 
|  | skb_shinfo(iter)->gso_segs = partial_segs; | 
|  | skb_shinfo(iter)->gso_type = type; | 
|  | SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; | 
|  | } | 
|  |  | 
|  | if (tail->len - doffset <= gso_size) | 
|  | skb_shinfo(tail)->gso_size = 0; | 
|  | else if (tail != segs) | 
|  | skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); | 
|  | } | 
|  |  | 
|  | /* Following permits correct backpressure, for protocols | 
|  | * using skb_set_owner_w(). | 
|  | * Idea is to tranfert ownership from head_skb to last segment. | 
|  | */ | 
|  | if (head_skb->destructor == sock_wfree) { | 
|  | swap(tail->truesize, head_skb->truesize); | 
|  | swap(tail->destructor, head_skb->destructor); | 
|  | swap(tail->sk, head_skb->sk); | 
|  | } | 
|  | return segs; | 
|  |  | 
|  | err: | 
|  | kfree_skb_list(segs); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_segment); | 
|  |  | 
|  | #ifdef CONFIG_SKB_EXTENSIONS | 
|  | #define SKB_EXT_ALIGN_VALUE	8 | 
|  | #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) | 
|  |  | 
|  | static const u8 skb_ext_type_len[] = { | 
|  | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) | 
|  | [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), | 
|  | #endif | 
|  | #ifdef CONFIG_XFRM | 
|  | [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) | 
|  | [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_MPTCP) | 
|  | [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_MCTP_FLOWS) | 
|  | [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static __always_inline unsigned int skb_ext_total_length(void) | 
|  | { | 
|  | return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + | 
|  | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) | 
|  | skb_ext_type_len[SKB_EXT_BRIDGE_NF] + | 
|  | #endif | 
|  | #ifdef CONFIG_XFRM | 
|  | skb_ext_type_len[SKB_EXT_SEC_PATH] + | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) | 
|  | skb_ext_type_len[TC_SKB_EXT] + | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_MPTCP) | 
|  | skb_ext_type_len[SKB_EXT_MPTCP] + | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_MCTP_FLOWS) | 
|  | skb_ext_type_len[SKB_EXT_MCTP] + | 
|  | #endif | 
|  | 0; | 
|  | } | 
|  |  | 
|  | static void skb_extensions_init(void) | 
|  | { | 
|  | BUILD_BUG_ON(SKB_EXT_NUM >= 8); | 
|  | BUILD_BUG_ON(skb_ext_total_length() > 255); | 
|  |  | 
|  | skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", | 
|  | SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
|  | NULL); | 
|  | } | 
|  | #else | 
|  | static void skb_extensions_init(void) {} | 
|  | #endif | 
|  |  | 
|  | void __init skb_init(void) | 
|  | { | 
|  | skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", | 
|  | sizeof(struct sk_buff), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
|  | offsetof(struct sk_buff, cb), | 
|  | sizeof_field(struct sk_buff, cb), | 
|  | NULL); | 
|  | skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", | 
|  | sizeof(struct sk_buff_fclones), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
|  | NULL); | 
|  | skb_extensions_init(); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, | 
|  | unsigned int recursion_level) | 
|  | { | 
|  | int start = skb_headlen(skb); | 
|  | int i, copy = start - offset; | 
|  | struct sk_buff *frag_iter; | 
|  | int elt = 0; | 
|  |  | 
|  | if (unlikely(recursion_level >= 24)) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | if (copy > 0) { | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | sg_set_buf(sg, skb->data + offset, copy); | 
|  | elt++; | 
|  | if ((len -= copy) == 0) | 
|  | return elt; | 
|  | offset += copy; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | int end; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  | if ((copy = end - offset) > 0) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | if (unlikely(elt && sg_is_last(&sg[elt - 1]))) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | sg_set_page(&sg[elt], skb_frag_page(frag), copy, | 
|  | skb_frag_off(frag) + offset - start); | 
|  | elt++; | 
|  | if (!(len -= copy)) | 
|  | return elt; | 
|  | offset += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | skb_walk_frags(skb, frag_iter) { | 
|  | int end, ret; | 
|  |  | 
|  | WARN_ON(start > offset + len); | 
|  |  | 
|  | end = start + frag_iter->len; | 
|  | if ((copy = end - offset) > 0) { | 
|  | if (unlikely(elt && sg_is_last(&sg[elt - 1]))) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | if (copy > len) | 
|  | copy = len; | 
|  | ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, | 
|  | copy, recursion_level + 1); | 
|  | if (unlikely(ret < 0)) | 
|  | return ret; | 
|  | elt += ret; | 
|  | if ((len -= copy) == 0) | 
|  | return elt; | 
|  | offset += copy; | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | BUG_ON(len); | 
|  | return elt; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer | 
|  | *	@skb: Socket buffer containing the buffers to be mapped | 
|  | *	@sg: The scatter-gather list to map into | 
|  | *	@offset: The offset into the buffer's contents to start mapping | 
|  | *	@len: Length of buffer space to be mapped | 
|  | * | 
|  | *	Fill the specified scatter-gather list with mappings/pointers into a | 
|  | *	region of the buffer space attached to a socket buffer. Returns either | 
|  | *	the number of scatterlist items used, or -EMSGSIZE if the contents | 
|  | *	could not fit. | 
|  | */ | 
|  | int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) | 
|  | { | 
|  | int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); | 
|  |  | 
|  | if (nsg <= 0) | 
|  | return nsg; | 
|  |  | 
|  | sg_mark_end(&sg[nsg - 1]); | 
|  |  | 
|  | return nsg; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_to_sgvec); | 
|  |  | 
|  | /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given | 
|  | * sglist without mark the sg which contain last skb data as the end. | 
|  | * So the caller can mannipulate sg list as will when padding new data after | 
|  | * the first call without calling sg_unmark_end to expend sg list. | 
|  | * | 
|  | * Scenario to use skb_to_sgvec_nomark: | 
|  | * 1. sg_init_table | 
|  | * 2. skb_to_sgvec_nomark(payload1) | 
|  | * 3. skb_to_sgvec_nomark(payload2) | 
|  | * | 
|  | * This is equivalent to: | 
|  | * 1. sg_init_table | 
|  | * 2. skb_to_sgvec(payload1) | 
|  | * 3. sg_unmark_end | 
|  | * 4. skb_to_sgvec(payload2) | 
|  | * | 
|  | * When mapping mutilple payload conditionally, skb_to_sgvec_nomark | 
|  | * is more preferable. | 
|  | */ | 
|  | int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, | 
|  | int offset, int len) | 
|  | { | 
|  | return __skb_to_sgvec(skb, sg, offset, len, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); | 
|  |  | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	skb_cow_data - Check that a socket buffer's data buffers are writable | 
|  | *	@skb: The socket buffer to check. | 
|  | *	@tailbits: Amount of trailing space to be added | 
|  | *	@trailer: Returned pointer to the skb where the @tailbits space begins | 
|  | * | 
|  | *	Make sure that the data buffers attached to a socket buffer are | 
|  | *	writable. If they are not, private copies are made of the data buffers | 
|  | *	and the socket buffer is set to use these instead. | 
|  | * | 
|  | *	If @tailbits is given, make sure that there is space to write @tailbits | 
|  | *	bytes of data beyond current end of socket buffer.  @trailer will be | 
|  | *	set to point to the skb in which this space begins. | 
|  | * | 
|  | *	The number of scatterlist elements required to completely map the | 
|  | *	COW'd and extended socket buffer will be returned. | 
|  | */ | 
|  | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) | 
|  | { | 
|  | int copyflag; | 
|  | int elt; | 
|  | struct sk_buff *skb1, **skb_p; | 
|  |  | 
|  | /* If skb is cloned or its head is paged, reallocate | 
|  | * head pulling out all the pages (pages are considered not writable | 
|  | * at the moment even if they are anonymous). | 
|  | */ | 
|  | if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && | 
|  | !__pskb_pull_tail(skb, __skb_pagelen(skb))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Easy case. Most of packets will go this way. */ | 
|  | if (!skb_has_frag_list(skb)) { | 
|  | /* A little of trouble, not enough of space for trailer. | 
|  | * This should not happen, when stack is tuned to generate | 
|  | * good frames. OK, on miss we reallocate and reserve even more | 
|  | * space, 128 bytes is fair. */ | 
|  |  | 
|  | if (skb_tailroom(skb) < tailbits && | 
|  | pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Voila! */ | 
|  | *trailer = skb; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Misery. We are in troubles, going to mincer fragments... */ | 
|  |  | 
|  | elt = 1; | 
|  | skb_p = &skb_shinfo(skb)->frag_list; | 
|  | copyflag = 0; | 
|  |  | 
|  | while ((skb1 = *skb_p) != NULL) { | 
|  | int ntail = 0; | 
|  |  | 
|  | /* The fragment is partially pulled by someone, | 
|  | * this can happen on input. Copy it and everything | 
|  | * after it. */ | 
|  |  | 
|  | if (skb_shared(skb1)) | 
|  | copyflag = 1; | 
|  |  | 
|  | /* If the skb is the last, worry about trailer. */ | 
|  |  | 
|  | if (skb1->next == NULL && tailbits) { | 
|  | if (skb_shinfo(skb1)->nr_frags || | 
|  | skb_has_frag_list(skb1) || | 
|  | skb_tailroom(skb1) < tailbits) | 
|  | ntail = tailbits + 128; | 
|  | } | 
|  |  | 
|  | if (copyflag || | 
|  | skb_cloned(skb1) || | 
|  | ntail || | 
|  | skb_shinfo(skb1)->nr_frags || | 
|  | skb_has_frag_list(skb1)) { | 
|  | struct sk_buff *skb2; | 
|  |  | 
|  | /* Fuck, we are miserable poor guys... */ | 
|  | if (ntail == 0) | 
|  | skb2 = skb_copy(skb1, GFP_ATOMIC); | 
|  | else | 
|  | skb2 = skb_copy_expand(skb1, | 
|  | skb_headroom(skb1), | 
|  | ntail, | 
|  | GFP_ATOMIC); | 
|  | if (unlikely(skb2 == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (skb1->sk) | 
|  | skb_set_owner_w(skb2, skb1->sk); | 
|  |  | 
|  | /* Looking around. Are we still alive? | 
|  | * OK, link new skb, drop old one */ | 
|  |  | 
|  | skb2->next = skb1->next; | 
|  | *skb_p = skb2; | 
|  | kfree_skb(skb1); | 
|  | skb1 = skb2; | 
|  | } | 
|  | elt++; | 
|  | *trailer = skb1; | 
|  | skb_p = &skb1->next; | 
|  | } | 
|  |  | 
|  | return elt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_cow_data); | 
|  |  | 
|  | static void sock_rmem_free(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | atomic_sub(skb->truesize, &sk->sk_rmem_alloc); | 
|  | } | 
|  |  | 
|  | static void skb_set_err_queue(struct sk_buff *skb) | 
|  | { | 
|  | /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. | 
|  | * So, it is safe to (mis)use it to mark skbs on the error queue. | 
|  | */ | 
|  | skb->pkt_type = PACKET_OUTGOING; | 
|  | BUILD_BUG_ON(PACKET_OUTGOING == 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: We dont mem charge error packets (no sk_forward_alloc changes) | 
|  | */ | 
|  | int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= | 
|  | (unsigned int)READ_ONCE(sk->sk_rcvbuf)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | skb_orphan(skb); | 
|  | skb->sk = sk; | 
|  | skb->destructor = sock_rmem_free; | 
|  | atomic_add(skb->truesize, &sk->sk_rmem_alloc); | 
|  | skb_set_err_queue(skb); | 
|  |  | 
|  | /* before exiting rcu section, make sure dst is refcounted */ | 
|  | skb_dst_force(skb); | 
|  |  | 
|  | skb_queue_tail(&sk->sk_error_queue, skb); | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | sk_error_report(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_queue_err_skb); | 
|  |  | 
|  | static bool is_icmp_err_skb(const struct sk_buff *skb) | 
|  | { | 
|  | return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || | 
|  | SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); | 
|  | } | 
|  |  | 
|  | struct sk_buff *sock_dequeue_err_skb(struct sock *sk) | 
|  | { | 
|  | struct sk_buff_head *q = &sk->sk_error_queue; | 
|  | struct sk_buff *skb, *skb_next = NULL; | 
|  | bool icmp_next = false; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (skb_queue_empty_lockless(q)) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | skb = __skb_dequeue(q); | 
|  | if (skb && (skb_next = skb_peek(q))) { | 
|  | icmp_next = is_icmp_err_skb(skb_next); | 
|  | if (icmp_next) | 
|  | sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; | 
|  | } | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | if (is_icmp_err_skb(skb) && !icmp_next) | 
|  | sk->sk_err = 0; | 
|  |  | 
|  | if (skb_next) | 
|  | sk_error_report(sk); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_dequeue_err_skb); | 
|  |  | 
|  | /** | 
|  | * skb_clone_sk - create clone of skb, and take reference to socket | 
|  | * @skb: the skb to clone | 
|  | * | 
|  | * This function creates a clone of a buffer that holds a reference on | 
|  | * sk_refcnt.  Buffers created via this function are meant to be | 
|  | * returned using sock_queue_err_skb, or free via kfree_skb. | 
|  | * | 
|  | * When passing buffers allocated with this function to sock_queue_err_skb | 
|  | * it is necessary to wrap the call with sock_hold/sock_put in order to | 
|  | * prevent the socket from being released prior to being enqueued on | 
|  | * the sk_error_queue. | 
|  | */ | 
|  | struct sk_buff *skb_clone_sk(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | struct sk_buff *clone; | 
|  |  | 
|  | if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) | 
|  | return NULL; | 
|  |  | 
|  | clone = skb_clone(skb, GFP_ATOMIC); | 
|  | if (!clone) { | 
|  | sock_put(sk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | clone->sk = sk; | 
|  | clone->destructor = sock_efree; | 
|  |  | 
|  | return clone; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_clone_sk); | 
|  |  | 
|  | static void __skb_complete_tx_timestamp(struct sk_buff *skb, | 
|  | struct sock *sk, | 
|  | int tstype, | 
|  | bool opt_stats) | 
|  | { | 
|  | struct sock_exterr_skb *serr; | 
|  | int err; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); | 
|  |  | 
|  | serr = SKB_EXT_ERR(skb); | 
|  | memset(serr, 0, sizeof(*serr)); | 
|  | serr->ee.ee_errno = ENOMSG; | 
|  | serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; | 
|  | serr->ee.ee_info = tstype; | 
|  | serr->opt_stats = opt_stats; | 
|  | serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; | 
|  | if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { | 
|  | serr->ee.ee_data = skb_shinfo(skb)->tskey; | 
|  | if (sk_is_tcp(sk)) | 
|  | serr->ee.ee_data -= atomic_read(&sk->sk_tskey); | 
|  | } | 
|  |  | 
|  | err = sock_queue_err_skb(sk, skb); | 
|  |  | 
|  | if (err) | 
|  | kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) | 
|  | return true; | 
|  |  | 
|  | read_lock_bh(&sk->sk_callback_lock); | 
|  | ret = sk->sk_socket && sk->sk_socket->file && | 
|  | file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); | 
|  | read_unlock_bh(&sk->sk_callback_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void skb_complete_tx_timestamp(struct sk_buff *skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | if (!skb_may_tx_timestamp(sk, false)) | 
|  | goto err; | 
|  |  | 
|  | /* Take a reference to prevent skb_orphan() from freeing the socket, | 
|  | * but only if the socket refcount is not zero. | 
|  | */ | 
|  | if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { | 
|  | *skb_hwtstamps(skb) = *hwtstamps; | 
|  | __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); | 
|  | sock_put(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | err: | 
|  | kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); | 
|  |  | 
|  | void __skb_tstamp_tx(struct sk_buff *orig_skb, | 
|  | const struct sk_buff *ack_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps, | 
|  | struct sock *sk, int tstype) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | bool tsonly, opt_stats = false; | 
|  | u32 tsflags; | 
|  |  | 
|  | if (!sk) | 
|  | return; | 
|  |  | 
|  | tsflags = READ_ONCE(sk->sk_tsflags); | 
|  | if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && | 
|  | skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) | 
|  | return; | 
|  |  | 
|  | tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; | 
|  | if (!skb_may_tx_timestamp(sk, tsonly)) | 
|  | return; | 
|  |  | 
|  | if (tsonly) { | 
|  | #ifdef CONFIG_INET | 
|  | if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && | 
|  | sk_is_tcp(sk)) { | 
|  | skb = tcp_get_timestamping_opt_stats(sk, orig_skb, | 
|  | ack_skb); | 
|  | opt_stats = true; | 
|  | } else | 
|  | #endif | 
|  | skb = alloc_skb(0, GFP_ATOMIC); | 
|  | } else { | 
|  | skb = skb_clone(orig_skb, GFP_ATOMIC); | 
|  |  | 
|  | if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { | 
|  | kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | if (tsonly) { | 
|  | skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & | 
|  | SKBTX_ANY_TSTAMP; | 
|  | skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; | 
|  | } | 
|  |  | 
|  | if (hwtstamps) | 
|  | *skb_hwtstamps(skb) = *hwtstamps; | 
|  | else | 
|  | __net_timestamp(skb); | 
|  |  | 
|  | __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__skb_tstamp_tx); | 
|  |  | 
|  | void skb_tstamp_tx(struct sk_buff *orig_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps) | 
|  | { | 
|  | return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, | 
|  | SCM_TSTAMP_SND); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_tstamp_tx); | 
|  |  | 
|  | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | struct sock_exterr_skb *serr; | 
|  | int err = 1; | 
|  |  | 
|  | skb->wifi_acked_valid = 1; | 
|  | skb->wifi_acked = acked; | 
|  |  | 
|  | serr = SKB_EXT_ERR(skb); | 
|  | memset(serr, 0, sizeof(*serr)); | 
|  | serr->ee.ee_errno = ENOMSG; | 
|  | serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; | 
|  |  | 
|  | /* Take a reference to prevent skb_orphan() from freeing the socket, | 
|  | * but only if the socket refcount is not zero. | 
|  | */ | 
|  | if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { | 
|  | err = sock_queue_err_skb(sk, skb); | 
|  | sock_put(sk); | 
|  | } | 
|  | if (err) | 
|  | kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); | 
|  |  | 
|  | /** | 
|  | * skb_partial_csum_set - set up and verify partial csum values for packet | 
|  | * @skb: the skb to set | 
|  | * @start: the number of bytes after skb->data to start checksumming. | 
|  | * @off: the offset from start to place the checksum. | 
|  | * | 
|  | * For untrusted partially-checksummed packets, we need to make sure the values | 
|  | * for skb->csum_start and skb->csum_offset are valid so we don't oops. | 
|  | * | 
|  | * This function checks and sets those values and skb->ip_summed: if this | 
|  | * returns false you should drop the packet. | 
|  | */ | 
|  | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) | 
|  | { | 
|  | u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); | 
|  | u32 csum_start = skb_headroom(skb) + (u32)start; | 
|  |  | 
|  | if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { | 
|  | net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", | 
|  | start, off, skb_headroom(skb), skb_headlen(skb)); | 
|  | return false; | 
|  | } | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb->csum_start = csum_start; | 
|  | skb->csum_offset = off; | 
|  | skb->transport_header = csum_start; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_partial_csum_set); | 
|  |  | 
|  | static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, | 
|  | unsigned int max) | 
|  | { | 
|  | if (skb_headlen(skb) >= len) | 
|  | return 0; | 
|  |  | 
|  | /* If we need to pullup then pullup to the max, so we | 
|  | * won't need to do it again. | 
|  | */ | 
|  | if (max > skb->len) | 
|  | max = skb->len; | 
|  |  | 
|  | if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (skb_headlen(skb) < len) | 
|  | return -EPROTO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MAX_TCP_HDR_LEN (15 * 4) | 
|  |  | 
|  | static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, | 
|  | typeof(IPPROTO_IP) proto, | 
|  | unsigned int off) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | switch (proto) { | 
|  | case IPPROTO_TCP: | 
|  | err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), | 
|  | off + MAX_TCP_HDR_LEN); | 
|  | if (!err && !skb_partial_csum_set(skb, off, | 
|  | offsetof(struct tcphdr, | 
|  | check))) | 
|  | err = -EPROTO; | 
|  | return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; | 
|  |  | 
|  | case IPPROTO_UDP: | 
|  | err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), | 
|  | off + sizeof(struct udphdr)); | 
|  | if (!err && !skb_partial_csum_set(skb, off, | 
|  | offsetof(struct udphdr, | 
|  | check))) | 
|  | err = -EPROTO; | 
|  | return err ? ERR_PTR(err) : &udp_hdr(skb)->check; | 
|  | } | 
|  |  | 
|  | return ERR_PTR(-EPROTO); | 
|  | } | 
|  |  | 
|  | /* This value should be large enough to cover a tagged ethernet header plus | 
|  | * maximally sized IP and TCP or UDP headers. | 
|  | */ | 
|  | #define MAX_IP_HDR_LEN 128 | 
|  |  | 
|  | static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) | 
|  | { | 
|  | unsigned int off; | 
|  | bool fragment; | 
|  | __sum16 *csum; | 
|  | int err; | 
|  |  | 
|  | fragment = false; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | sizeof(struct iphdr), | 
|  | MAX_IP_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ip_is_fragment(ip_hdr(skb))) | 
|  | fragment = true; | 
|  |  | 
|  | off = ip_hdrlen(skb); | 
|  |  | 
|  | err = -EPROTO; | 
|  |  | 
|  | if (fragment) | 
|  | goto out; | 
|  |  | 
|  | csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); | 
|  | if (IS_ERR(csum)) | 
|  | return PTR_ERR(csum); | 
|  |  | 
|  | if (recalculate) | 
|  | *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, | 
|  | ip_hdr(skb)->daddr, | 
|  | skb->len - off, | 
|  | ip_hdr(skb)->protocol, 0); | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* This value should be large enough to cover a tagged ethernet header plus | 
|  | * an IPv6 header, all options, and a maximal TCP or UDP header. | 
|  | */ | 
|  | #define MAX_IPV6_HDR_LEN 256 | 
|  |  | 
|  | #define OPT_HDR(type, skb, off) \ | 
|  | (type *)(skb_network_header(skb) + (off)) | 
|  |  | 
|  | static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) | 
|  | { | 
|  | int err; | 
|  | u8 nexthdr; | 
|  | unsigned int off; | 
|  | unsigned int len; | 
|  | bool fragment; | 
|  | bool done; | 
|  | __sum16 *csum; | 
|  |  | 
|  | fragment = false; | 
|  | done = false; | 
|  |  | 
|  | off = sizeof(struct ipv6hdr); | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | nexthdr = ipv6_hdr(skb)->nexthdr; | 
|  |  | 
|  | len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); | 
|  | while (off <= len && !done) { | 
|  | switch (nexthdr) { | 
|  | case IPPROTO_DSTOPTS: | 
|  | case IPPROTO_HOPOPTS: | 
|  | case IPPROTO_ROUTING: { | 
|  | struct ipv6_opt_hdr *hp; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | off + | 
|  | sizeof(struct ipv6_opt_hdr), | 
|  | MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); | 
|  | nexthdr = hp->nexthdr; | 
|  | off += ipv6_optlen(hp); | 
|  | break; | 
|  | } | 
|  | case IPPROTO_AH: { | 
|  | struct ip_auth_hdr *hp; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | off + | 
|  | sizeof(struct ip_auth_hdr), | 
|  | MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | hp = OPT_HDR(struct ip_auth_hdr, skb, off); | 
|  | nexthdr = hp->nexthdr; | 
|  | off += ipv6_authlen(hp); | 
|  | break; | 
|  | } | 
|  | case IPPROTO_FRAGMENT: { | 
|  | struct frag_hdr *hp; | 
|  |  | 
|  | err = skb_maybe_pull_tail(skb, | 
|  | off + | 
|  | sizeof(struct frag_hdr), | 
|  | MAX_IPV6_HDR_LEN); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | hp = OPT_HDR(struct frag_hdr, skb, off); | 
|  |  | 
|  | if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) | 
|  | fragment = true; | 
|  |  | 
|  | nexthdr = hp->nexthdr; | 
|  | off += sizeof(struct frag_hdr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = -EPROTO; | 
|  |  | 
|  | if (!done || fragment) | 
|  | goto out; | 
|  |  | 
|  | csum = skb_checksum_setup_ip(skb, nexthdr, off); | 
|  | if (IS_ERR(csum)) | 
|  | return PTR_ERR(csum); | 
|  |  | 
|  | if (recalculate) | 
|  | *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | skb->len - off, nexthdr, 0); | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_checksum_setup - set up partial checksum offset | 
|  | * @skb: the skb to set up | 
|  | * @recalculate: if true the pseudo-header checksum will be recalculated | 
|  | */ | 
|  | int skb_checksum_setup(struct sk_buff *skb, bool recalculate) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | switch (skb->protocol) { | 
|  | case htons(ETH_P_IP): | 
|  | err = skb_checksum_setup_ipv4(skb, recalculate); | 
|  | break; | 
|  |  | 
|  | case htons(ETH_P_IPV6): | 
|  | err = skb_checksum_setup_ipv6(skb, recalculate); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -EPROTO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_checksum_setup); | 
|  |  | 
|  | /** | 
|  | * skb_checksum_maybe_trim - maybe trims the given skb | 
|  | * @skb: the skb to check | 
|  | * @transport_len: the data length beyond the network header | 
|  | * | 
|  | * Checks whether the given skb has data beyond the given transport length. | 
|  | * If so, returns a cloned skb trimmed to this transport length. | 
|  | * Otherwise returns the provided skb. Returns NULL in error cases | 
|  | * (e.g. transport_len exceeds skb length or out-of-memory). | 
|  | * | 
|  | * Caller needs to set the skb transport header and free any returned skb if it | 
|  | * differs from the provided skb. | 
|  | */ | 
|  | static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, | 
|  | unsigned int transport_len) | 
|  | { | 
|  | struct sk_buff *skb_chk; | 
|  | unsigned int len = skb_transport_offset(skb) + transport_len; | 
|  | int ret; | 
|  |  | 
|  | if (skb->len < len) | 
|  | return NULL; | 
|  | else if (skb->len == len) | 
|  | return skb; | 
|  |  | 
|  | skb_chk = skb_clone(skb, GFP_ATOMIC); | 
|  | if (!skb_chk) | 
|  | return NULL; | 
|  |  | 
|  | ret = pskb_trim_rcsum(skb_chk, len); | 
|  | if (ret) { | 
|  | kfree_skb(skb_chk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return skb_chk; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_checksum_trimmed - validate checksum of an skb | 
|  | * @skb: the skb to check | 
|  | * @transport_len: the data length beyond the network header | 
|  | * @skb_chkf: checksum function to use | 
|  | * | 
|  | * Applies the given checksum function skb_chkf to the provided skb. | 
|  | * Returns a checked and maybe trimmed skb. Returns NULL on error. | 
|  | * | 
|  | * If the skb has data beyond the given transport length, then a | 
|  | * trimmed & cloned skb is checked and returned. | 
|  | * | 
|  | * Caller needs to set the skb transport header and free any returned skb if it | 
|  | * differs from the provided skb. | 
|  | */ | 
|  | struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, | 
|  | unsigned int transport_len, | 
|  | __sum16(*skb_chkf)(struct sk_buff *skb)) | 
|  | { | 
|  | struct sk_buff *skb_chk; | 
|  | unsigned int offset = skb_transport_offset(skb); | 
|  | __sum16 ret; | 
|  |  | 
|  | skb_chk = skb_checksum_maybe_trim(skb, transport_len); | 
|  | if (!skb_chk) | 
|  | goto err; | 
|  |  | 
|  | if (!pskb_may_pull(skb_chk, offset)) | 
|  | goto err; | 
|  |  | 
|  | skb_pull_rcsum(skb_chk, offset); | 
|  | ret = skb_chkf(skb_chk); | 
|  | skb_push_rcsum(skb_chk, offset); | 
|  |  | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | return skb_chk; | 
|  |  | 
|  | err: | 
|  | if (skb_chk && skb_chk != skb) | 
|  | kfree_skb(skb_chk); | 
|  |  | 
|  | return NULL; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(skb_checksum_trimmed); | 
|  |  | 
|  | void __skb_warn_lro_forwarding(const struct sk_buff *skb) | 
|  | { | 
|  | net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", | 
|  | skb->dev->name); | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_warn_lro_forwarding); | 
|  |  | 
|  | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) | 
|  | { | 
|  | if (head_stolen) { | 
|  | skb_release_head_state(skb); | 
|  | kmem_cache_free(skbuff_head_cache, skb); | 
|  | } else { | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_skb_partial); | 
|  |  | 
|  | /** | 
|  | * skb_try_coalesce - try to merge skb to prior one | 
|  | * @to: prior buffer | 
|  | * @from: buffer to add | 
|  | * @fragstolen: pointer to boolean | 
|  | * @delta_truesize: how much more was allocated than was requested | 
|  | */ | 
|  | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, | 
|  | bool *fragstolen, int *delta_truesize) | 
|  | { | 
|  | struct skb_shared_info *to_shinfo, *from_shinfo; | 
|  | int i, delta, len = from->len; | 
|  |  | 
|  | *fragstolen = false; | 
|  |  | 
|  | if (skb_cloned(to)) | 
|  | return false; | 
|  |  | 
|  | /* In general, avoid mixing page_pool and non-page_pool allocated | 
|  | * pages within the same SKB. Additionally avoid dealing with clones | 
|  | * with page_pool pages, in case the SKB is using page_pool fragment | 
|  | * references (PP_FLAG_PAGE_FRAG). Since we only take full page | 
|  | * references for cloned SKBs at the moment that would result in | 
|  | * inconsistent reference counts. | 
|  | * In theory we could take full references if @from is cloned and | 
|  | * !@to->pp_recycle but its tricky (due to potential race with | 
|  | * the clone disappearing) and rare, so not worth dealing with. | 
|  | */ | 
|  | if (to->pp_recycle != from->pp_recycle || | 
|  | (from->pp_recycle && skb_cloned(from))) | 
|  | return false; | 
|  |  | 
|  | if (skb_frags_not_readable(from) != skb_frags_not_readable(to)) | 
|  | return false; | 
|  |  | 
|  | if (len <= skb_tailroom(to) && !skb_frags_not_readable(from)) { | 
|  | if (len) | 
|  | BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); | 
|  | *delta_truesize = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | to_shinfo = skb_shinfo(to); | 
|  | from_shinfo = skb_shinfo(from); | 
|  | if (to_shinfo->frag_list || from_shinfo->frag_list) | 
|  | return false; | 
|  | if (skb_zcopy(to) || skb_zcopy(from)) | 
|  | return false; | 
|  |  | 
|  | if (skb_headlen(from) != 0) { | 
|  | struct page *page; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (to_shinfo->nr_frags + | 
|  | from_shinfo->nr_frags >= MAX_SKB_FRAGS) | 
|  | return false; | 
|  |  | 
|  | if (skb_head_is_locked(from)) | 
|  | return false; | 
|  |  | 
|  | delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); | 
|  |  | 
|  | page = virt_to_head_page(from->head); | 
|  | offset = from->data - (unsigned char *)page_address(page); | 
|  |  | 
|  | skb_fill_page_desc(to, to_shinfo->nr_frags, | 
|  | page, offset, skb_headlen(from)); | 
|  | *fragstolen = true; | 
|  | } else { | 
|  | if (to_shinfo->nr_frags + | 
|  | from_shinfo->nr_frags > MAX_SKB_FRAGS) | 
|  | return false; | 
|  |  | 
|  | delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(delta < len); | 
|  |  | 
|  | memcpy(to_shinfo->frags + to_shinfo->nr_frags, | 
|  | from_shinfo->frags, | 
|  | from_shinfo->nr_frags * sizeof(skb_frag_t)); | 
|  | to_shinfo->nr_frags += from_shinfo->nr_frags; | 
|  |  | 
|  | if (!skb_cloned(from)) | 
|  | from_shinfo->nr_frags = 0; | 
|  |  | 
|  | /* if the skb is not cloned this does nothing | 
|  | * since we set nr_frags to 0. | 
|  | */ | 
|  | for (i = 0; i < from_shinfo->nr_frags; i++) | 
|  | __skb_frag_ref(&from_shinfo->frags[i]); | 
|  |  | 
|  | to->truesize += delta; | 
|  | to->len += len; | 
|  | to->data_len += len; | 
|  |  | 
|  | *delta_truesize = delta; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_try_coalesce); | 
|  |  | 
|  | /** | 
|  | * skb_scrub_packet - scrub an skb | 
|  | * | 
|  | * @skb: buffer to clean | 
|  | * @xnet: packet is crossing netns | 
|  | * | 
|  | * skb_scrub_packet can be used after encapsulating or decapsulting a packet | 
|  | * into/from a tunnel. Some information have to be cleared during these | 
|  | * operations. | 
|  | * skb_scrub_packet can also be used to clean a skb before injecting it in | 
|  | * another namespace (@xnet == true). We have to clear all information in the | 
|  | * skb that could impact namespace isolation. | 
|  | */ | 
|  | void skb_scrub_packet(struct sk_buff *skb, bool xnet) | 
|  | { | 
|  | skb->pkt_type = PACKET_HOST; | 
|  | skb->skb_iif = 0; | 
|  | skb->ignore_df = 0; | 
|  | skb_dst_drop(skb); | 
|  | skb_ext_reset(skb); | 
|  | nf_reset_ct(skb); | 
|  | nf_reset_trace(skb); | 
|  |  | 
|  | #ifdef CONFIG_NET_SWITCHDEV | 
|  | skb->offload_fwd_mark = 0; | 
|  | skb->offload_l3_fwd_mark = 0; | 
|  | #endif | 
|  |  | 
|  | if (!xnet) | 
|  | return; | 
|  |  | 
|  | ipvs_reset(skb); | 
|  | skb->mark = 0; | 
|  | skb_clear_tstamp(skb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_scrub_packet); | 
|  |  | 
|  | /** | 
|  | * skb_gso_transport_seglen - Return length of individual segments of a gso packet | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * | 
|  | * skb_gso_transport_seglen is used to determine the real size of the | 
|  | * individual segments, including Layer4 headers (TCP/UDP). | 
|  | * | 
|  | * The MAC/L2 or network (IP, IPv6) headers are not accounted for. | 
|  | */ | 
|  | static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | const struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  | unsigned int thlen = 0; | 
|  |  | 
|  | if (skb->encapsulation) { | 
|  | thlen = skb_inner_transport_header(skb) - | 
|  | skb_transport_header(skb); | 
|  |  | 
|  | if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) | 
|  | thlen += inner_tcp_hdrlen(skb); | 
|  | } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { | 
|  | thlen = tcp_hdrlen(skb); | 
|  | } else if (unlikely(skb_is_gso_sctp(skb))) { | 
|  | thlen = sizeof(struct sctphdr); | 
|  | } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { | 
|  | thlen = sizeof(struct udphdr); | 
|  | } | 
|  | /* UFO sets gso_size to the size of the fragmentation | 
|  | * payload, i.e. the size of the L4 (UDP) header is already | 
|  | * accounted for. | 
|  | */ | 
|  | return thlen + shinfo->gso_size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_gso_network_seglen - Return length of individual segments of a gso packet | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * | 
|  | * skb_gso_network_seglen is used to determine the real size of the | 
|  | * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). | 
|  | * | 
|  | * The MAC/L2 header is not accounted for. | 
|  | */ | 
|  | static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int hdr_len = skb_transport_header(skb) - | 
|  | skb_network_header(skb); | 
|  |  | 
|  | return hdr_len + skb_gso_transport_seglen(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_gso_mac_seglen - Return length of individual segments of a gso packet | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * | 
|  | * skb_gso_mac_seglen is used to determine the real size of the | 
|  | * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 | 
|  | * headers (TCP/UDP). | 
|  | */ | 
|  | static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); | 
|  |  | 
|  | return hdr_len + skb_gso_transport_seglen(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS | 
|  | * | 
|  | * There are a couple of instances where we have a GSO skb, and we | 
|  | * want to determine what size it would be after it is segmented. | 
|  | * | 
|  | * We might want to check: | 
|  | * -    L3+L4+payload size (e.g. IP forwarding) | 
|  | * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) | 
|  | * | 
|  | * This is a helper to do that correctly considering GSO_BY_FRAGS. | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * | 
|  | * @seg_len: The segmented length (from skb_gso_*_seglen). In the | 
|  | *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. | 
|  | * | 
|  | * @max_len: The maximum permissible length. | 
|  | * | 
|  | * Returns true if the segmented length <= max length. | 
|  | */ | 
|  | static inline bool skb_gso_size_check(const struct sk_buff *skb, | 
|  | unsigned int seg_len, | 
|  | unsigned int max_len) { | 
|  | const struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  | const struct sk_buff *iter; | 
|  |  | 
|  | if (shinfo->gso_size != GSO_BY_FRAGS) | 
|  | return seg_len <= max_len; | 
|  |  | 
|  | /* Undo this so we can re-use header sizes */ | 
|  | seg_len -= GSO_BY_FRAGS; | 
|  |  | 
|  | skb_walk_frags(skb, iter) { | 
|  | if (seg_len + skb_headlen(iter) > max_len) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * @mtu: MTU to validate against | 
|  | * | 
|  | * skb_gso_validate_network_len validates if a given skb will fit a | 
|  | * wanted MTU once split. It considers L3 headers, L4 headers, and the | 
|  | * payload. | 
|  | */ | 
|  | bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) | 
|  | { | 
|  | return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); | 
|  |  | 
|  | /** | 
|  | * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? | 
|  | * | 
|  | * @skb: GSO skb | 
|  | * @len: length to validate against | 
|  | * | 
|  | * skb_gso_validate_mac_len validates if a given skb will fit a wanted | 
|  | * length once split, including L2, L3 and L4 headers and the payload. | 
|  | */ | 
|  | bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); | 
|  |  | 
|  | static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) | 
|  | { | 
|  | int mac_len, meta_len; | 
|  | void *meta; | 
|  |  | 
|  | if (skb_cow(skb, skb_headroom(skb)) < 0) { | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mac_len = skb->data - skb_mac_header(skb); | 
|  | if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { | 
|  | memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), | 
|  | mac_len - VLAN_HLEN - ETH_TLEN); | 
|  | } | 
|  |  | 
|  | meta_len = skb_metadata_len(skb); | 
|  | if (meta_len) { | 
|  | meta = skb_metadata_end(skb) - meta_len; | 
|  | memmove(meta + VLAN_HLEN, meta, meta_len); | 
|  | } | 
|  |  | 
|  | skb->mac_header += VLAN_HLEN; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | struct sk_buff *skb_vlan_untag(struct sk_buff *skb) | 
|  | { | 
|  | struct vlan_hdr *vhdr; | 
|  | u16 vlan_tci; | 
|  |  | 
|  | if (unlikely(skb_vlan_tag_present(skb))) { | 
|  | /* vlan_tci is already set-up so leave this for another time */ | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | skb = skb_share_check(skb, GFP_ATOMIC); | 
|  | if (unlikely(!skb)) | 
|  | goto err_free; | 
|  | /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ | 
|  | if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) | 
|  | goto err_free; | 
|  |  | 
|  | vhdr = (struct vlan_hdr *)skb->data; | 
|  | vlan_tci = ntohs(vhdr->h_vlan_TCI); | 
|  | __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); | 
|  |  | 
|  | skb_pull_rcsum(skb, VLAN_HLEN); | 
|  | vlan_set_encap_proto(skb, vhdr); | 
|  |  | 
|  | skb = skb_reorder_vlan_header(skb); | 
|  | if (unlikely(!skb)) | 
|  | goto err_free; | 
|  |  | 
|  | skb_reset_network_header(skb); | 
|  | if (!skb_transport_header_was_set(skb)) | 
|  | skb_reset_transport_header(skb); | 
|  | skb_reset_mac_len(skb); | 
|  |  | 
|  | return skb; | 
|  |  | 
|  | err_free: | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_vlan_untag); | 
|  |  | 
|  | int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) | 
|  | { | 
|  | if (!pskb_may_pull(skb, write_len)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (skb_frags_not_readable(skb)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) | 
|  | return 0; | 
|  |  | 
|  | return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_ensure_writable); | 
|  |  | 
|  | /* remove VLAN header from packet and update csum accordingly. | 
|  | * expects a non skb_vlan_tag_present skb with a vlan tag payload | 
|  | */ | 
|  | int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) | 
|  | { | 
|  | struct vlan_hdr *vhdr; | 
|  | int offset = skb->data - skb_mac_header(skb); | 
|  | int err; | 
|  |  | 
|  | if (WARN_ONCE(offset, | 
|  | "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", | 
|  | offset)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = skb_ensure_writable(skb, VLAN_ETH_HLEN); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); | 
|  |  | 
|  | vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); | 
|  | *vlan_tci = ntohs(vhdr->h_vlan_TCI); | 
|  |  | 
|  | memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); | 
|  | __skb_pull(skb, VLAN_HLEN); | 
|  |  | 
|  | vlan_set_encap_proto(skb, vhdr); | 
|  | skb->mac_header += VLAN_HLEN; | 
|  |  | 
|  | if (skb_network_offset(skb) < ETH_HLEN) | 
|  | skb_set_network_header(skb, ETH_HLEN); | 
|  |  | 
|  | skb_reset_mac_len(skb); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_vlan_pop); | 
|  |  | 
|  | /* Pop a vlan tag either from hwaccel or from payload. | 
|  | * Expects skb->data at mac header. | 
|  | */ | 
|  | int skb_vlan_pop(struct sk_buff *skb) | 
|  | { | 
|  | u16 vlan_tci; | 
|  | __be16 vlan_proto; | 
|  | int err; | 
|  |  | 
|  | if (likely(skb_vlan_tag_present(skb))) { | 
|  | __vlan_hwaccel_clear_tag(skb); | 
|  | } else { | 
|  | if (unlikely(!eth_type_vlan(skb->protocol))) | 
|  | return 0; | 
|  |  | 
|  | err = __skb_vlan_pop(skb, &vlan_tci); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* move next vlan tag to hw accel tag */ | 
|  | if (likely(!eth_type_vlan(skb->protocol))) | 
|  | return 0; | 
|  |  | 
|  | vlan_proto = skb->protocol; | 
|  | err = __skb_vlan_pop(skb, &vlan_tci); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_vlan_pop); | 
|  |  | 
|  | /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). | 
|  | * Expects skb->data at mac header. | 
|  | */ | 
|  | int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) | 
|  | { | 
|  | if (skb_vlan_tag_present(skb)) { | 
|  | int offset = skb->data - skb_mac_header(skb); | 
|  | int err; | 
|  |  | 
|  | if (WARN_ONCE(offset, | 
|  | "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", | 
|  | offset)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = __vlan_insert_tag(skb, skb->vlan_proto, | 
|  | skb_vlan_tag_get(skb)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | skb->protocol = skb->vlan_proto; | 
|  | skb->mac_len += VLAN_HLEN; | 
|  |  | 
|  | skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); | 
|  | } | 
|  | __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_vlan_push); | 
|  |  | 
|  | /** | 
|  | * skb_eth_pop() - Drop the Ethernet header at the head of a packet | 
|  | * | 
|  | * @skb: Socket buffer to modify | 
|  | * | 
|  | * Drop the Ethernet header of @skb. | 
|  | * | 
|  | * Expects that skb->data points to the mac header and that no VLAN tags are | 
|  | * present. | 
|  | * | 
|  | * Returns 0 on success, -errno otherwise. | 
|  | */ | 
|  | int skb_eth_pop(struct sk_buff *skb) | 
|  | { | 
|  | if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || | 
|  | skb_network_offset(skb) < ETH_HLEN) | 
|  | return -EPROTO; | 
|  |  | 
|  | skb_pull_rcsum(skb, ETH_HLEN); | 
|  | skb_reset_mac_header(skb); | 
|  | skb_reset_mac_len(skb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_eth_pop); | 
|  |  | 
|  | /** | 
|  | * skb_eth_push() - Add a new Ethernet header at the head of a packet | 
|  | * | 
|  | * @skb: Socket buffer to modify | 
|  | * @dst: Destination MAC address of the new header | 
|  | * @src: Source MAC address of the new header | 
|  | * | 
|  | * Prepend @skb with a new Ethernet header. | 
|  | * | 
|  | * Expects that skb->data points to the mac header, which must be empty. | 
|  | * | 
|  | * Returns 0 on success, -errno otherwise. | 
|  | */ | 
|  | int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, | 
|  | const unsigned char *src) | 
|  | { | 
|  | struct ethhdr *eth; | 
|  | int err; | 
|  |  | 
|  | if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) | 
|  | return -EPROTO; | 
|  |  | 
|  | err = skb_cow_head(skb, sizeof(*eth)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | skb_push(skb, sizeof(*eth)); | 
|  | skb_reset_mac_header(skb); | 
|  | skb_reset_mac_len(skb); | 
|  |  | 
|  | eth = eth_hdr(skb); | 
|  | ether_addr_copy(eth->h_dest, dst); | 
|  | ether_addr_copy(eth->h_source, src); | 
|  | eth->h_proto = skb->protocol; | 
|  |  | 
|  | skb_postpush_rcsum(skb, eth, sizeof(*eth)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_eth_push); | 
|  |  | 
|  | /* Update the ethertype of hdr and the skb csum value if required. */ | 
|  | static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, | 
|  | __be16 ethertype) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | __be16 diff[] = { ~hdr->h_proto, ethertype }; | 
|  |  | 
|  | skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); | 
|  | } | 
|  |  | 
|  | hdr->h_proto = ethertype; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of | 
|  | *                   the packet | 
|  | * | 
|  | * @skb: buffer | 
|  | * @mpls_lse: MPLS label stack entry to push | 
|  | * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) | 
|  | * @mac_len: length of the MAC header | 
|  | * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is | 
|  | *            ethernet | 
|  | * | 
|  | * Expects skb->data at mac header. | 
|  | * | 
|  | * Returns 0 on success, -errno otherwise. | 
|  | */ | 
|  | int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, | 
|  | int mac_len, bool ethernet) | 
|  | { | 
|  | struct mpls_shim_hdr *lse; | 
|  | int err; | 
|  |  | 
|  | if (unlikely(!eth_p_mpls(mpls_proto))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ | 
|  | if (skb->encapsulation) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = skb_cow_head(skb, MPLS_HLEN); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | if (!skb->inner_protocol) { | 
|  | skb_set_inner_network_header(skb, skb_network_offset(skb)); | 
|  | skb_set_inner_protocol(skb, skb->protocol); | 
|  | } | 
|  |  | 
|  | skb_push(skb, MPLS_HLEN); | 
|  | memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), | 
|  | mac_len); | 
|  | skb_reset_mac_header(skb); | 
|  | skb_set_network_header(skb, mac_len); | 
|  | skb_reset_mac_len(skb); | 
|  |  | 
|  | lse = mpls_hdr(skb); | 
|  | lse->label_stack_entry = mpls_lse; | 
|  | skb_postpush_rcsum(skb, lse, MPLS_HLEN); | 
|  |  | 
|  | if (ethernet && mac_len >= ETH_HLEN) | 
|  | skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); | 
|  | skb->protocol = mpls_proto; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_mpls_push); | 
|  |  | 
|  | /** | 
|  | * skb_mpls_pop() - pop the outermost MPLS header | 
|  | * | 
|  | * @skb: buffer | 
|  | * @next_proto: ethertype of header after popped MPLS header | 
|  | * @mac_len: length of the MAC header | 
|  | * @ethernet: flag to indicate if the packet is ethernet | 
|  | * | 
|  | * Expects skb->data at mac header. | 
|  | * | 
|  | * Returns 0 on success, -errno otherwise. | 
|  | */ | 
|  | int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, | 
|  | bool ethernet) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (unlikely(!eth_p_mpls(skb->protocol))) | 
|  | return 0; | 
|  |  | 
|  | err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); | 
|  | memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), | 
|  | mac_len); | 
|  |  | 
|  | __skb_pull(skb, MPLS_HLEN); | 
|  | skb_reset_mac_header(skb); | 
|  | skb_set_network_header(skb, mac_len); | 
|  |  | 
|  | if (ethernet && mac_len >= ETH_HLEN) { | 
|  | struct ethhdr *hdr; | 
|  |  | 
|  | /* use mpls_hdr() to get ethertype to account for VLANs. */ | 
|  | hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); | 
|  | skb_mod_eth_type(skb, hdr, next_proto); | 
|  | } | 
|  | skb->protocol = next_proto; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_mpls_pop); | 
|  |  | 
|  | /** | 
|  | * skb_mpls_update_lse() - modify outermost MPLS header and update csum | 
|  | * | 
|  | * @skb: buffer | 
|  | * @mpls_lse: new MPLS label stack entry to update to | 
|  | * | 
|  | * Expects skb->data at mac header. | 
|  | * | 
|  | * Returns 0 on success, -errno otherwise. | 
|  | */ | 
|  | int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (unlikely(!eth_p_mpls(skb->protocol))) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; | 
|  |  | 
|  | skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); | 
|  | } | 
|  |  | 
|  | mpls_hdr(skb)->label_stack_entry = mpls_lse; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_mpls_update_lse); | 
|  |  | 
|  | /** | 
|  | * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header | 
|  | * | 
|  | * @skb: buffer | 
|  | * | 
|  | * Expects skb->data at mac header. | 
|  | * | 
|  | * Returns 0 on success, -errno otherwise. | 
|  | */ | 
|  | int skb_mpls_dec_ttl(struct sk_buff *skb) | 
|  | { | 
|  | u32 lse; | 
|  | u8 ttl; | 
|  |  | 
|  | if (unlikely(!eth_p_mpls(skb->protocol))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); | 
|  | ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; | 
|  | if (!--ttl) | 
|  | return -EINVAL; | 
|  |  | 
|  | lse &= ~MPLS_LS_TTL_MASK; | 
|  | lse |= ttl << MPLS_LS_TTL_SHIFT; | 
|  |  | 
|  | return skb_mpls_update_lse(skb, cpu_to_be32(lse)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); | 
|  |  | 
|  | /** | 
|  | * alloc_skb_with_frags - allocate skb with page frags | 
|  | * | 
|  | * @header_len: size of linear part | 
|  | * @data_len: needed length in frags | 
|  | * @max_page_order: max page order desired. | 
|  | * @errcode: pointer to error code if any | 
|  | * @gfp_mask: allocation mask | 
|  | * | 
|  | * This can be used to allocate a paged skb, given a maximal order for frags. | 
|  | */ | 
|  | struct sk_buff *alloc_skb_with_frags(unsigned long header_len, | 
|  | unsigned long data_len, | 
|  | int max_page_order, | 
|  | int *errcode, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; | 
|  | unsigned long chunk; | 
|  | struct sk_buff *skb; | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | *errcode = -EMSGSIZE; | 
|  | /* Note this test could be relaxed, if we succeed to allocate | 
|  | * high order pages... | 
|  | */ | 
|  | if (npages > MAX_SKB_FRAGS) | 
|  | return NULL; | 
|  |  | 
|  | *errcode = -ENOBUFS; | 
|  | skb = alloc_skb(header_len, gfp_mask); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | skb->truesize += npages << PAGE_SHIFT; | 
|  |  | 
|  | for (i = 0; npages > 0; i++) { | 
|  | int order = max_page_order; | 
|  |  | 
|  | while (order) { | 
|  | if (npages >= 1 << order) { | 
|  | page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | | 
|  | __GFP_COMP | | 
|  | __GFP_NOWARN, | 
|  | order); | 
|  | if (page) | 
|  | goto fill_page; | 
|  | /* Do not retry other high order allocations */ | 
|  | order = 1; | 
|  | max_page_order = 0; | 
|  | } | 
|  | order--; | 
|  | } | 
|  | page = alloc_page(gfp_mask); | 
|  | if (!page) | 
|  | goto failure; | 
|  | fill_page: | 
|  | chunk = min_t(unsigned long, data_len, | 
|  | PAGE_SIZE << order); | 
|  | skb_fill_page_desc(skb, i, page, 0, chunk); | 
|  | data_len -= chunk; | 
|  | npages -= 1 << order; | 
|  | } | 
|  | return skb; | 
|  |  | 
|  | failure: | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_skb_with_frags); | 
|  |  | 
|  | /* carve out the first off bytes from skb when off < headlen */ | 
|  | static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, | 
|  | const int headlen, gfp_t gfp_mask) | 
|  | { | 
|  | int i; | 
|  | unsigned int size = skb_end_offset(skb); | 
|  | int new_hlen = headlen - off; | 
|  | u8 *data; | 
|  |  | 
|  | if (skb_pfmemalloc(skb)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  | size = SKB_WITH_OVERHEAD(size); | 
|  |  | 
|  | /* Copy real data, and all frags */ | 
|  | skb_copy_from_linear_data_offset(skb, off, data, new_hlen); | 
|  | skb->len -= off; | 
|  |  | 
|  | memcpy((struct skb_shared_info *)(data + size), | 
|  | skb_shinfo(skb), | 
|  | offsetof(struct skb_shared_info, | 
|  | frags[skb_shinfo(skb)->nr_frags])); | 
|  | if (skb_cloned(skb)) { | 
|  | /* drop the old head gracefully */ | 
|  | if (skb_orphan_frags(skb, gfp_mask)) { | 
|  | kfree(data); | 
|  | return -ENOMEM; | 
|  | } | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) | 
|  | skb_frag_ref(skb, i); | 
|  | if (skb_has_frag_list(skb)) | 
|  | skb_clone_fraglist(skb); | 
|  | skb_release_data(skb); | 
|  | } else { | 
|  | /* we can reuse existing recount- all we did was | 
|  | * relocate values | 
|  | */ | 
|  | skb_free_head(skb); | 
|  | } | 
|  |  | 
|  | skb->head = data; | 
|  | skb->data = data; | 
|  | skb->head_frag = 0; | 
|  | skb_set_end_offset(skb, size); | 
|  | skb_set_tail_pointer(skb, skb_headlen(skb)); | 
|  | skb_headers_offset_update(skb, 0); | 
|  | skb->cloned = 0; | 
|  | skb->hdr_len = 0; | 
|  | skb->nohdr = 0; | 
|  | atomic_set(&skb_shinfo(skb)->dataref, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); | 
|  |  | 
|  | /* carve out the first eat bytes from skb's frag_list. May recurse into | 
|  | * pskb_carve() | 
|  | */ | 
|  | static int pskb_carve_frag_list(struct sk_buff *skb, | 
|  | struct skb_shared_info *shinfo, int eat, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct sk_buff *list = shinfo->frag_list; | 
|  | struct sk_buff *clone = NULL; | 
|  | struct sk_buff *insp = NULL; | 
|  |  | 
|  | do { | 
|  | if (!list) { | 
|  | pr_err("Not enough bytes to eat. Want %d\n", eat); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (list->len <= eat) { | 
|  | /* Eaten as whole. */ | 
|  | eat -= list->len; | 
|  | list = list->next; | 
|  | insp = list; | 
|  | } else { | 
|  | /* Eaten partially. */ | 
|  | if (skb_shared(list)) { | 
|  | clone = skb_clone(list, gfp_mask); | 
|  | if (!clone) | 
|  | return -ENOMEM; | 
|  | insp = list->next; | 
|  | list = clone; | 
|  | } else { | 
|  | /* This may be pulled without problems. */ | 
|  | insp = list; | 
|  | } | 
|  | if (pskb_carve(list, eat, gfp_mask) < 0) { | 
|  | kfree_skb(clone); | 
|  | return -ENOMEM; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } while (eat); | 
|  |  | 
|  | /* Free pulled out fragments. */ | 
|  | while ((list = shinfo->frag_list) != insp) { | 
|  | shinfo->frag_list = list->next; | 
|  | consume_skb(list); | 
|  | } | 
|  | /* And insert new clone at head. */ | 
|  | if (clone) { | 
|  | clone->next = list; | 
|  | shinfo->frag_list = clone; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* carve off first len bytes from skb. Split line (off) is in the | 
|  | * non-linear part of skb | 
|  | */ | 
|  | static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, | 
|  | int pos, gfp_t gfp_mask) | 
|  | { | 
|  | int i, k = 0; | 
|  | unsigned int size = skb_end_offset(skb); | 
|  | u8 *data; | 
|  | const int nfrags = skb_shinfo(skb)->nr_frags; | 
|  | struct skb_shared_info *shinfo; | 
|  |  | 
|  | if (skb_pfmemalloc(skb)) | 
|  | gfp_mask |= __GFP_MEMALLOC; | 
|  |  | 
|  | data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  | size = SKB_WITH_OVERHEAD(size); | 
|  |  | 
|  | memcpy((struct skb_shared_info *)(data + size), | 
|  | skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); | 
|  | if (skb_orphan_frags(skb, gfp_mask)) { | 
|  | kfree(data); | 
|  | return -ENOMEM; | 
|  | } | 
|  | shinfo = (struct skb_shared_info *)(data + size); | 
|  | for (i = 0; i < nfrags; i++) { | 
|  | int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  |  | 
|  | if (pos + fsize > off) { | 
|  | shinfo->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | if (pos < off) { | 
|  | /* Split frag. | 
|  | * We have two variants in this case: | 
|  | * 1. Move all the frag to the second | 
|  | *    part, if it is possible. F.e. | 
|  | *    this approach is mandatory for TUX, | 
|  | *    where splitting is expensive. | 
|  | * 2. Split is accurately. We make this. | 
|  | */ | 
|  | skb_frag_off_add(&shinfo->frags[0], off - pos); | 
|  | skb_frag_size_sub(&shinfo->frags[0], off - pos); | 
|  | } | 
|  | skb_frag_ref(skb, i); | 
|  | k++; | 
|  | } | 
|  | pos += fsize; | 
|  | } | 
|  | shinfo->nr_frags = k; | 
|  | if (skb_has_frag_list(skb)) | 
|  | skb_clone_fraglist(skb); | 
|  |  | 
|  | /* split line is in frag list */ | 
|  | if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { | 
|  | /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ | 
|  | if (skb_has_frag_list(skb)) | 
|  | kfree_skb_list(skb_shinfo(skb)->frag_list); | 
|  | kfree(data); | 
|  | return -ENOMEM; | 
|  | } | 
|  | skb_release_data(skb); | 
|  |  | 
|  | skb->head = data; | 
|  | skb->head_frag = 0; | 
|  | skb->data = data; | 
|  | skb_set_end_offset(skb, size); | 
|  | skb_reset_tail_pointer(skb); | 
|  | skb_headers_offset_update(skb, 0); | 
|  | skb->cloned   = 0; | 
|  | skb->hdr_len  = 0; | 
|  | skb->nohdr    = 0; | 
|  | skb->len -= off; | 
|  | skb->data_len = skb->len; | 
|  | atomic_set(&skb_shinfo(skb)->dataref, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* remove len bytes from the beginning of the skb */ | 
|  | static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) | 
|  | { | 
|  | int headlen = skb_headlen(skb); | 
|  |  | 
|  | if (len < headlen) | 
|  | return pskb_carve_inside_header(skb, len, headlen, gfp); | 
|  | else | 
|  | return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); | 
|  | } | 
|  |  | 
|  | /* Extract to_copy bytes starting at off from skb, and return this in | 
|  | * a new skb | 
|  | */ | 
|  | struct sk_buff *pskb_extract(struct sk_buff *skb, int off, | 
|  | int to_copy, gfp_t gfp) | 
|  | { | 
|  | struct sk_buff  *clone = skb_clone(skb, gfp); | 
|  |  | 
|  | if (!clone) | 
|  | return NULL; | 
|  |  | 
|  | if (pskb_carve(clone, off, gfp) < 0 || | 
|  | pskb_trim(clone, to_copy)) { | 
|  | kfree_skb(clone); | 
|  | return NULL; | 
|  | } | 
|  | return clone; | 
|  | } | 
|  | EXPORT_SYMBOL(pskb_extract); | 
|  |  | 
|  | /** | 
|  | * skb_condense - try to get rid of fragments/frag_list if possible | 
|  | * @skb: buffer | 
|  | * | 
|  | * Can be used to save memory before skb is added to a busy queue. | 
|  | * If packet has bytes in frags and enough tail room in skb->head, | 
|  | * pull all of them, so that we can free the frags right now and adjust | 
|  | * truesize. | 
|  | * Notes: | 
|  | *	We do not reallocate skb->head thus can not fail. | 
|  | *	Caller must re-evaluate skb->truesize if needed. | 
|  | */ | 
|  | void skb_condense(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->data_len) { | 
|  | if (skb->data_len > skb->end - skb->tail || | 
|  | skb_cloned(skb) || skb_frags_not_readable(skb)) | 
|  | return; | 
|  |  | 
|  | /* Nice, we can free page frag(s) right now */ | 
|  | __pskb_pull_tail(skb, skb->data_len); | 
|  | } | 
|  | /* At this point, skb->truesize might be over estimated, | 
|  | * because skb had a fragment, and fragments do not tell | 
|  | * their truesize. | 
|  | * When we pulled its content into skb->head, fragment | 
|  | * was freed, but __pskb_pull_tail() could not possibly | 
|  | * adjust skb->truesize, not knowing the frag truesize. | 
|  | */ | 
|  | skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SKB_EXTENSIONS | 
|  | static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) | 
|  | { | 
|  | return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_ext_alloc - allocate a new skb extensions storage | 
|  | * | 
|  | * @flags: See kmalloc(). | 
|  | * | 
|  | * Returns the newly allocated pointer. The pointer can later attached to a | 
|  | * skb via __skb_ext_set(). | 
|  | * Note: caller must handle the skb_ext as an opaque data. | 
|  | */ | 
|  | struct skb_ext *__skb_ext_alloc(gfp_t flags) | 
|  | { | 
|  | struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); | 
|  |  | 
|  | if (new) { | 
|  | memset(new->offset, 0, sizeof(new->offset)); | 
|  | refcount_set(&new->refcnt, 1); | 
|  | } | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  | static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, | 
|  | unsigned int old_active) | 
|  | { | 
|  | struct skb_ext *new; | 
|  |  | 
|  | if (refcount_read(&old->refcnt) == 1) | 
|  | return old; | 
|  |  | 
|  | new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); | 
|  | refcount_set(&new->refcnt, 1); | 
|  |  | 
|  | #ifdef CONFIG_XFRM | 
|  | if (old_active & (1 << SKB_EXT_SEC_PATH)) { | 
|  | struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < sp->len; i++) | 
|  | xfrm_state_hold(sp->xvec[i]); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_MCTP_FLOWS | 
|  | if (old_active & (1 << SKB_EXT_MCTP)) { | 
|  | struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); | 
|  |  | 
|  | if (flow->key) | 
|  | refcount_inc(&flow->key->refs); | 
|  | } | 
|  | #endif | 
|  | __skb_ext_put(old); | 
|  | return new; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_ext_set - attach the specified extension storage to this skb | 
|  | * @skb: buffer | 
|  | * @id: extension id | 
|  | * @ext: extension storage previously allocated via __skb_ext_alloc() | 
|  | * | 
|  | * Existing extensions, if any, are cleared. | 
|  | * | 
|  | * Returns the pointer to the extension. | 
|  | */ | 
|  | void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, | 
|  | struct skb_ext *ext) | 
|  | { | 
|  | unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); | 
|  |  | 
|  | skb_ext_put(skb); | 
|  | newlen = newoff + skb_ext_type_len[id]; | 
|  | ext->chunks = newlen; | 
|  | ext->offset[id] = newoff; | 
|  | skb->extensions = ext; | 
|  | skb->active_extensions = 1 << id; | 
|  | return skb_ext_get_ptr(ext, id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_ext_add - allocate space for given extension, COW if needed | 
|  | * @skb: buffer | 
|  | * @id: extension to allocate space for | 
|  | * | 
|  | * Allocates enough space for the given extension. | 
|  | * If the extension is already present, a pointer to that extension | 
|  | * is returned. | 
|  | * | 
|  | * If the skb was cloned, COW applies and the returned memory can be | 
|  | * modified without changing the extension space of clones buffers. | 
|  | * | 
|  | * Returns pointer to the extension or NULL on allocation failure. | 
|  | */ | 
|  | void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) | 
|  | { | 
|  | struct skb_ext *new, *old = NULL; | 
|  | unsigned int newlen, newoff; | 
|  |  | 
|  | if (skb->active_extensions) { | 
|  | old = skb->extensions; | 
|  |  | 
|  | new = skb_ext_maybe_cow(old, skb->active_extensions); | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | if (__skb_ext_exist(new, id)) | 
|  | goto set_active; | 
|  |  | 
|  | newoff = new->chunks; | 
|  | } else { | 
|  | newoff = SKB_EXT_CHUNKSIZEOF(*new); | 
|  |  | 
|  | new = __skb_ext_alloc(GFP_ATOMIC); | 
|  | if (!new) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | newlen = newoff + skb_ext_type_len[id]; | 
|  | new->chunks = newlen; | 
|  | new->offset[id] = newoff; | 
|  | set_active: | 
|  | skb->slow_gro = 1; | 
|  | skb->extensions = new; | 
|  | skb->active_extensions |= 1 << id; | 
|  | return skb_ext_get_ptr(new, id); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_ext_add); | 
|  |  | 
|  | #ifdef CONFIG_XFRM | 
|  | static void skb_ext_put_sp(struct sec_path *sp) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < sp->len; i++) | 
|  | xfrm_state_put(sp->xvec[i]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MCTP_FLOWS | 
|  | static void skb_ext_put_mctp(struct mctp_flow *flow) | 
|  | { | 
|  | if (flow->key) | 
|  | mctp_key_unref(flow->key); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) | 
|  | { | 
|  | struct skb_ext *ext = skb->extensions; | 
|  |  | 
|  | skb->active_extensions &= ~(1 << id); | 
|  | if (skb->active_extensions == 0) { | 
|  | skb->extensions = NULL; | 
|  | __skb_ext_put(ext); | 
|  | #ifdef CONFIG_XFRM | 
|  | } else if (id == SKB_EXT_SEC_PATH && | 
|  | refcount_read(&ext->refcnt) == 1) { | 
|  | struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); | 
|  |  | 
|  | skb_ext_put_sp(sp); | 
|  | sp->len = 0; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_ext_del); | 
|  |  | 
|  | void __skb_ext_put(struct skb_ext *ext) | 
|  | { | 
|  | /* If this is last clone, nothing can increment | 
|  | * it after check passes.  Avoids one atomic op. | 
|  | */ | 
|  | if (refcount_read(&ext->refcnt) == 1) | 
|  | goto free_now; | 
|  |  | 
|  | if (!refcount_dec_and_test(&ext->refcnt)) | 
|  | return; | 
|  | free_now: | 
|  | #ifdef CONFIG_XFRM | 
|  | if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) | 
|  | skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); | 
|  | #endif | 
|  | #ifdef CONFIG_MCTP_FLOWS | 
|  | if (__skb_ext_exist(ext, SKB_EXT_MCTP)) | 
|  | skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); | 
|  | #endif | 
|  |  | 
|  | kmem_cache_free(skbuff_ext_cache, ext); | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_ext_put); | 
|  | #endif /* CONFIG_SKB_EXTENSIONS */ | 
|  |  | 
|  | /** | 
|  | * skb_attempt_defer_free - queue skb for remote freeing | 
|  | * @skb: buffer | 
|  | * | 
|  | * Put @skb in a per-cpu list, using the cpu which | 
|  | * allocated the skb/pages to reduce false sharing | 
|  | * and memory zone spinlock contention. | 
|  | */ | 
|  | void skb_attempt_defer_free(struct sk_buff *skb) | 
|  | { | 
|  | int cpu = skb->alloc_cpu; | 
|  | struct softnet_data *sd; | 
|  | unsigned long flags; | 
|  | unsigned int defer_max; | 
|  | bool kick; | 
|  |  | 
|  | if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || | 
|  | !cpu_online(cpu) || | 
|  | cpu == raw_smp_processor_id()) { | 
|  | nodefer:	__kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sd = &per_cpu(softnet_data, cpu); | 
|  | defer_max = READ_ONCE(sysctl_skb_defer_max); | 
|  | if (READ_ONCE(sd->defer_count) >= defer_max) | 
|  | goto nodefer; | 
|  |  | 
|  | spin_lock_irqsave(&sd->defer_lock, flags); | 
|  | /* Send an IPI every time queue reaches half capacity. */ | 
|  | kick = sd->defer_count == (defer_max >> 1); | 
|  | /* Paired with the READ_ONCE() few lines above */ | 
|  | WRITE_ONCE(sd->defer_count, sd->defer_count + 1); | 
|  |  | 
|  | skb->next = sd->defer_list; | 
|  | /* Paired with READ_ONCE() in skb_defer_free_flush() */ | 
|  | WRITE_ONCE(sd->defer_list, skb); | 
|  | spin_unlock_irqrestore(&sd->defer_lock, flags); | 
|  |  | 
|  | /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU | 
|  | * if we are unlucky enough (this seems very unlikely). | 
|  | */ | 
|  | if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) | 
|  | smp_call_function_single_async(cpu, &sd->defer_csd); | 
|  | } |