|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "extent_io.h" | 
|  | #include "disk-io.h" | 
|  | #include "compression.h" | 
|  | #include "delalloc-space.h" | 
|  | #include "qgroup.h" | 
|  | #include "subpage.h" | 
|  |  | 
|  | static struct kmem_cache *btrfs_ordered_extent_cache; | 
|  |  | 
|  | static u64 entry_end(struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | if (entry->file_offset + entry->num_bytes < entry->file_offset) | 
|  | return (u64)-1; | 
|  | return entry->file_offset + entry->num_bytes; | 
|  | } | 
|  |  | 
|  | /* returns NULL if the insertion worked, or it returns the node it did find | 
|  | * in the tree | 
|  | */ | 
|  | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | 
|  | struct rb_node *node) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | 
|  |  | 
|  | if (file_offset < entry->file_offset) | 
|  | p = &(*p)->rb_left; | 
|  | else if (file_offset >= entry_end(entry)) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return parent; | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for a given offset in the tree, and if it can't be found return the | 
|  | * first lesser offset | 
|  | */ | 
|  | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | 
|  | struct rb_node **prev_ret) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *test; | 
|  | struct btrfs_ordered_extent *entry; | 
|  | struct btrfs_ordered_extent *prev_entry = NULL; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
|  | prev = n; | 
|  | prev_entry = entry; | 
|  |  | 
|  | if (file_offset < entry->file_offset) | 
|  | n = n->rb_left; | 
|  | else if (file_offset >= entry_end(entry)) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return n; | 
|  | } | 
|  | if (!prev_ret) | 
|  | return NULL; | 
|  |  | 
|  | while (prev && file_offset >= entry_end(prev_entry)) { | 
|  | test = rb_next(prev); | 
|  | if (!test) | 
|  | break; | 
|  | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | if (file_offset < entry_end(prev_entry)) | 
|  | break; | 
|  |  | 
|  | prev = test; | 
|  | } | 
|  | if (prev) | 
|  | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | while (prev && file_offset < entry_end(prev_entry)) { | 
|  | test = rb_prev(prev); | 
|  | if (!test) | 
|  | break; | 
|  | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | prev = test; | 
|  | } | 
|  | *prev_ret = prev; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, | 
|  | u64 len) | 
|  | { | 
|  | if (file_offset + len <= entry->file_offset || | 
|  | entry->file_offset + entry->num_bytes <= file_offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look find the first ordered struct that has this offset, otherwise | 
|  | * the first one less than this offset | 
|  | */ | 
|  | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct rb_root *root = &tree->tree; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *ret; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | if (tree->last) { | 
|  | entry = rb_entry(tree->last, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | if (in_range(file_offset, entry->file_offset, entry->num_bytes)) | 
|  | return tree->last; | 
|  | } | 
|  | ret = __tree_search(root, file_offset, &prev); | 
|  | if (!ret) | 
|  | ret = prev; | 
|  | if (ret) | 
|  | tree->last = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Add an ordered extent to the per-inode tree. | 
|  | * | 
|  | * @inode:           Inode that this extent is for. | 
|  | * @file_offset:     Logical offset in file where the extent starts. | 
|  | * @num_bytes:       Logical length of extent in file. | 
|  | * @ram_bytes:       Full length of unencoded data. | 
|  | * @disk_bytenr:     Offset of extent on disk. | 
|  | * @disk_num_bytes:  Size of extent on disk. | 
|  | * @offset:          Offset into unencoded data where file data starts. | 
|  | * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*). | 
|  | * @compress_type:   Compression algorithm used for data. | 
|  | * | 
|  | * Most of these parameters correspond to &struct btrfs_file_extent_item. The | 
|  | * tree is given a single reference on the ordered extent that was inserted. | 
|  | * | 
|  | * Return: 0 or -ENOMEM. | 
|  | */ | 
|  | int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, | 
|  | u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, | 
|  | u64 disk_num_bytes, u64 offset, unsigned flags, | 
|  | int compress_type) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry; | 
|  | int ret; | 
|  | u64 qgroup_rsv = 0; | 
|  |  | 
|  | if (flags & | 
|  | ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { | 
|  | /* For nocow write, we can release the qgroup rsv right now */ | 
|  | ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = 0; | 
|  | } else { | 
|  | /* | 
|  | * The ordered extent has reserved qgroup space, release now | 
|  | * and pass the reserved number for qgroup_record to free. | 
|  | */ | 
|  | ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); | 
|  | if (!entry) | 
|  | return -ENOMEM; | 
|  |  | 
|  | entry->file_offset = file_offset; | 
|  | entry->num_bytes = num_bytes; | 
|  | entry->ram_bytes = ram_bytes; | 
|  | entry->disk_bytenr = disk_bytenr; | 
|  | entry->disk_num_bytes = disk_num_bytes; | 
|  | entry->offset = offset; | 
|  | entry->bytes_left = num_bytes; | 
|  | entry->inode = igrab(&inode->vfs_inode); | 
|  | entry->compress_type = compress_type; | 
|  | entry->truncated_len = (u64)-1; | 
|  | entry->qgroup_rsv = qgroup_rsv; | 
|  | entry->physical = (u64)-1; | 
|  |  | 
|  | ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); | 
|  | entry->flags = flags; | 
|  |  | 
|  | percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, | 
|  | fs_info->delalloc_batch); | 
|  |  | 
|  | /* one ref for the tree */ | 
|  | refcount_set(&entry->refs, 1); | 
|  | init_waitqueue_head(&entry->wait); | 
|  | INIT_LIST_HEAD(&entry->list); | 
|  | INIT_LIST_HEAD(&entry->log_list); | 
|  | INIT_LIST_HEAD(&entry->root_extent_list); | 
|  | INIT_LIST_HEAD(&entry->work_list); | 
|  | init_completion(&entry->completion); | 
|  |  | 
|  | trace_btrfs_ordered_extent_add(inode, entry); | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_insert(&tree->tree, file_offset, | 
|  | &entry->rb_node); | 
|  | if (node) | 
|  | btrfs_panic(fs_info, -EEXIST, | 
|  | "inconsistency in ordered tree at offset %llu", | 
|  | file_offset); | 
|  | spin_unlock_irq(&tree->lock); | 
|  |  | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | list_add_tail(&entry->root_extent_list, | 
|  | &root->ordered_extents); | 
|  | root->nr_ordered_extents++; | 
|  | if (root->nr_ordered_extents == 1) { | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | BUG_ON(!list_empty(&root->ordered_root)); | 
|  | list_add_tail(&root->ordered_root, &fs_info->ordered_roots); | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  | } | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  |  | 
|  | /* | 
|  | * We don't need the count_max_extents here, we can assume that all of | 
|  | * that work has been done at higher layers, so this is truly the | 
|  | * smallest the extent is going to get. | 
|  | */ | 
|  | spin_lock(&inode->lock); | 
|  | btrfs_mod_outstanding_extents(inode, 1); | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | 
|  | * when an ordered extent is finished.  If the list covers more than one | 
|  | * ordered extent, it is split across multiples. | 
|  | */ | 
|  | void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, | 
|  | struct btrfs_ordered_sum *sum) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  |  | 
|  | tree = &BTRFS_I(entry->inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | list_add_tail(&sum->list, &entry->list); | 
|  | spin_unlock_irq(&tree->lock); | 
|  | } | 
|  |  | 
|  | static void finish_ordered_fn(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered_extent; | 
|  |  | 
|  | ordered_extent = container_of(work, struct btrfs_ordered_extent, work); | 
|  | btrfs_finish_ordered_io(ordered_extent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark all ordered extents io inside the specified range finished. | 
|  | * | 
|  | * @page:	 The involved page for the operation. | 
|  | *		 For uncompressed buffered IO, the page status also needs to be | 
|  | *		 updated to indicate whether the pending ordered io is finished. | 
|  | *		 Can be NULL for direct IO and compressed write. | 
|  | *		 For these cases, callers are ensured they won't execute the | 
|  | *		 endio function twice. | 
|  | * | 
|  | * This function is called for endio, thus the range must have ordered | 
|  | * extent(s) covering it. | 
|  | */ | 
|  | void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, | 
|  | struct page *page, u64 file_offset, | 
|  | u64 num_bytes, bool uptodate) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_workqueue *wq; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  | unsigned long flags; | 
|  | u64 cur = file_offset; | 
|  |  | 
|  | if (btrfs_is_free_space_inode(inode)) | 
|  | wq = fs_info->endio_freespace_worker; | 
|  | else | 
|  | wq = fs_info->endio_write_workers; | 
|  |  | 
|  | if (page) | 
|  | ASSERT(page->mapping && page_offset(page) <= file_offset && | 
|  | file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); | 
|  |  | 
|  | spin_lock_irqsave(&tree->lock, flags); | 
|  | while (cur < file_offset + num_bytes) { | 
|  | u64 entry_end; | 
|  | u64 end; | 
|  | u32 len; | 
|  |  | 
|  | node = tree_search(tree, cur); | 
|  | /* No ordered extents at all */ | 
|  | if (!node) | 
|  | break; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | entry_end = entry->file_offset + entry->num_bytes; | 
|  | /* | 
|  | * |<-- OE --->|  | | 
|  | *		  cur | 
|  | * Go to next OE. | 
|  | */ | 
|  | if (cur >= entry_end) { | 
|  | node = rb_next(node); | 
|  | /* No more ordered extents, exit */ | 
|  | if (!node) | 
|  | break; | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  |  | 
|  | /* Go to next ordered extent and continue */ | 
|  | cur = entry->file_offset; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * |	|<--- OE --->| | 
|  | * cur | 
|  | * Go to the start of OE. | 
|  | */ | 
|  | if (cur < entry->file_offset) { | 
|  | cur = entry->file_offset; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are definitely inside one ordered extent. | 
|  | * | 
|  | * |<--- OE --->| | 
|  | *	| | 
|  | *	cur | 
|  | */ | 
|  | end = min(entry->file_offset + entry->num_bytes, | 
|  | file_offset + num_bytes) - 1; | 
|  | ASSERT(end + 1 - cur < U32_MAX); | 
|  | len = end + 1 - cur; | 
|  |  | 
|  | if (page) { | 
|  | /* | 
|  | * Ordered (Private2) bit indicates whether we still | 
|  | * have pending io unfinished for the ordered extent. | 
|  | * | 
|  | * If there's no such bit, we need to skip to next range. | 
|  | */ | 
|  | if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { | 
|  | cur += len; | 
|  | continue; | 
|  | } | 
|  | btrfs_page_clear_ordered(fs_info, page, cur, len); | 
|  | } | 
|  |  | 
|  | /* Now we're fine to update the accounting */ | 
|  | if (unlikely(len > entry->bytes_left)) { | 
|  | WARN_ON(1); | 
|  | btrfs_crit(fs_info, | 
|  | "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", | 
|  | inode->root->root_key.objectid, | 
|  | btrfs_ino(inode), | 
|  | entry->file_offset, | 
|  | entry->num_bytes, | 
|  | len, entry->bytes_left); | 
|  | entry->bytes_left = 0; | 
|  | } else { | 
|  | entry->bytes_left -= len; | 
|  | } | 
|  |  | 
|  | if (!uptodate) | 
|  | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); | 
|  |  | 
|  | /* | 
|  | * All the IO of the ordered extent is finished, we need to queue | 
|  | * the finish_func to be executed. | 
|  | */ | 
|  | if (entry->bytes_left == 0) { | 
|  | set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
|  | cond_wake_up(&entry->wait); | 
|  | refcount_inc(&entry->refs); | 
|  | trace_btrfs_ordered_extent_mark_finished(inode, entry); | 
|  | spin_unlock_irqrestore(&tree->lock, flags); | 
|  | btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL); | 
|  | btrfs_queue_work(wq, &entry->work); | 
|  | spin_lock_irqsave(&tree->lock, flags); | 
|  | } | 
|  | cur += len; | 
|  | } | 
|  | spin_unlock_irqrestore(&tree->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish IO for one ordered extent across a given range.  The range can only | 
|  | * contain one ordered extent. | 
|  | * | 
|  | * @cached:	 The cached ordered extent. If not NULL, we can skip the tree | 
|  | *               search and use the ordered extent directly. | 
|  | * 		 Will be also used to store the finished ordered extent. | 
|  | * @file_offset: File offset for the finished IO | 
|  | * @io_size:	 Length of the finish IO range | 
|  | * | 
|  | * Return true if the ordered extent is finished in the range, and update | 
|  | * @cached. | 
|  | * Return false otherwise. | 
|  | * | 
|  | * NOTE: The range can NOT cross multiple ordered extents. | 
|  | * Thus caller should ensure the range doesn't cross ordered extents. | 
|  | */ | 
|  | bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, | 
|  | struct btrfs_ordered_extent **cached, | 
|  | u64 file_offset, u64 io_size) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  | unsigned long flags; | 
|  | bool finished = false; | 
|  |  | 
|  | spin_lock_irqsave(&tree->lock, flags); | 
|  | if (cached && *cached) { | 
|  | entry = *cached; | 
|  | goto have_entry; | 
|  | } | 
|  |  | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | have_entry: | 
|  | if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) | 
|  | goto out; | 
|  |  | 
|  | if (io_size > entry->bytes_left) | 
|  | btrfs_crit(inode->root->fs_info, | 
|  | "bad ordered accounting left %llu size %llu", | 
|  | entry->bytes_left, io_size); | 
|  |  | 
|  | entry->bytes_left -= io_size; | 
|  |  | 
|  | if (entry->bytes_left == 0) { | 
|  | /* | 
|  | * Ensure only one caller can set the flag and finished_ret | 
|  | * accordingly | 
|  | */ | 
|  | finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
|  | /* test_and_set_bit implies a barrier */ | 
|  | cond_wake_up_nomb(&entry->wait); | 
|  | } | 
|  | out: | 
|  | if (finished && cached && entry) { | 
|  | *cached = entry; | 
|  | refcount_inc(&entry->refs); | 
|  | trace_btrfs_ordered_extent_dec_test_pending(inode, entry); | 
|  | } | 
|  | spin_unlock_irqrestore(&tree->lock, flags); | 
|  | return finished; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to drop a reference on an ordered extent.  This will free | 
|  | * the extent if the last reference is dropped | 
|  | */ | 
|  | void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | struct list_head *cur; | 
|  | struct btrfs_ordered_sum *sum; | 
|  |  | 
|  | trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); | 
|  |  | 
|  | if (refcount_dec_and_test(&entry->refs)) { | 
|  | ASSERT(list_empty(&entry->root_extent_list)); | 
|  | ASSERT(list_empty(&entry->log_list)); | 
|  | ASSERT(RB_EMPTY_NODE(&entry->rb_node)); | 
|  | if (entry->inode) | 
|  | btrfs_add_delayed_iput(entry->inode); | 
|  | while (!list_empty(&entry->list)) { | 
|  | cur = entry->list.next; | 
|  | sum = list_entry(cur, struct btrfs_ordered_sum, list); | 
|  | list_del(&sum->list); | 
|  | kvfree(sum); | 
|  | } | 
|  | kmem_cache_free(btrfs_ordered_extent_cache, entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove an ordered extent from the tree.  No references are dropped | 
|  | * and waiters are woken up. | 
|  | */ | 
|  | void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, | 
|  | struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct btrfs_root *root = btrfs_inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct rb_node *node; | 
|  | bool pending; | 
|  | bool freespace_inode; | 
|  |  | 
|  | /* | 
|  | * If this is a free space inode the thread has not acquired the ordered | 
|  | * extents lockdep map. | 
|  | */ | 
|  | freespace_inode = btrfs_is_free_space_inode(btrfs_inode); | 
|  |  | 
|  | btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); | 
|  | /* This is paired with btrfs_add_ordered_extent. */ | 
|  | spin_lock(&btrfs_inode->lock); | 
|  | btrfs_mod_outstanding_extents(btrfs_inode, -1); | 
|  | spin_unlock(&btrfs_inode->lock); | 
|  | if (root != fs_info->tree_root) { | 
|  | u64 release; | 
|  |  | 
|  | if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) | 
|  | release = entry->disk_num_bytes; | 
|  | else | 
|  | release = entry->num_bytes; | 
|  | btrfs_delalloc_release_metadata(btrfs_inode, release, | 
|  | test_bit(BTRFS_ORDERED_IOERR, | 
|  | &entry->flags)); | 
|  | } | 
|  |  | 
|  | percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, | 
|  | fs_info->delalloc_batch); | 
|  |  | 
|  | tree = &btrfs_inode->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = &entry->rb_node; | 
|  | rb_erase(node, &tree->tree); | 
|  | RB_CLEAR_NODE(node); | 
|  | if (tree->last == node) | 
|  | tree->last = NULL; | 
|  | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | 
|  | pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); | 
|  | spin_unlock_irq(&tree->lock); | 
|  |  | 
|  | /* | 
|  | * The current running transaction is waiting on us, we need to let it | 
|  | * know that we're complete and wake it up. | 
|  | */ | 
|  | if (pending) { | 
|  | struct btrfs_transaction *trans; | 
|  |  | 
|  | /* | 
|  | * The checks for trans are just a formality, it should be set, | 
|  | * but if it isn't we don't want to deref/assert under the spin | 
|  | * lock, so be nice and check if trans is set, but ASSERT() so | 
|  | * if it isn't set a developer will notice. | 
|  | */ | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | trans = fs_info->running_transaction; | 
|  | if (trans) | 
|  | refcount_inc(&trans->use_count); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | ASSERT(trans || BTRFS_FS_ERROR(fs_info)); | 
|  | if (trans) { | 
|  | if (atomic_dec_and_test(&trans->pending_ordered)) | 
|  | wake_up(&trans->pending_wait); | 
|  | btrfs_put_transaction(trans); | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); | 
|  |  | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | list_del_init(&entry->root_extent_list); | 
|  | root->nr_ordered_extents--; | 
|  |  | 
|  | trace_btrfs_ordered_extent_remove(btrfs_inode, entry); | 
|  |  | 
|  | if (!root->nr_ordered_extents) { | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | BUG_ON(list_empty(&root->ordered_root)); | 
|  | list_del_init(&root->ordered_root); | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  | } | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  | wake_up(&entry->wait); | 
|  | if (!freespace_inode) | 
|  | btrfs_lockdep_release(fs_info, btrfs_ordered_extent); | 
|  | } | 
|  |  | 
|  | static void btrfs_run_ordered_extent_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | ordered = container_of(work, struct btrfs_ordered_extent, flush_work); | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | complete(&ordered->completion); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait for all the ordered extents in a root.  This is done when balancing | 
|  | * space between drives. | 
|  | */ | 
|  | u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, | 
|  | const u64 range_start, const u64 range_len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | LIST_HEAD(splice); | 
|  | LIST_HEAD(skipped); | 
|  | LIST_HEAD(works); | 
|  | struct btrfs_ordered_extent *ordered, *next; | 
|  | u64 count = 0; | 
|  | const u64 range_end = range_start + range_len; | 
|  |  | 
|  | mutex_lock(&root->ordered_extent_mutex); | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | list_splice_init(&root->ordered_extents, &splice); | 
|  | while (!list_empty(&splice) && nr) { | 
|  | ordered = list_first_entry(&splice, struct btrfs_ordered_extent, | 
|  | root_extent_list); | 
|  |  | 
|  | if (range_end <= ordered->disk_bytenr || | 
|  | ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { | 
|  | list_move_tail(&ordered->root_extent_list, &skipped); | 
|  | cond_resched_lock(&root->ordered_extent_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_move_tail(&ordered->root_extent_list, | 
|  | &root->ordered_extents); | 
|  | refcount_inc(&ordered->refs); | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  |  | 
|  | btrfs_init_work(&ordered->flush_work, | 
|  | btrfs_run_ordered_extent_work, NULL, NULL); | 
|  | list_add_tail(&ordered->work_list, &works); | 
|  | btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | if (nr != U64_MAX) | 
|  | nr--; | 
|  | count++; | 
|  | } | 
|  | list_splice_tail(&skipped, &root->ordered_extents); | 
|  | list_splice_tail(&splice, &root->ordered_extents); | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ordered, next, &works, work_list) { | 
|  | list_del_init(&ordered->work_list); | 
|  | wait_for_completion(&ordered->completion); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | cond_resched(); | 
|  | } | 
|  | mutex_unlock(&root->ordered_extent_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, | 
|  | const u64 range_start, const u64 range_len) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct list_head splice; | 
|  | u64 done; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | mutex_lock(&fs_info->ordered_operations_mutex); | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | list_splice_init(&fs_info->ordered_roots, &splice); | 
|  | while (!list_empty(&splice) && nr) { | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | ordered_root); | 
|  | root = btrfs_grab_root(root); | 
|  | BUG_ON(!root); | 
|  | list_move_tail(&root->ordered_root, | 
|  | &fs_info->ordered_roots); | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  |  | 
|  | done = btrfs_wait_ordered_extents(root, nr, | 
|  | range_start, range_len); | 
|  | btrfs_put_root(root); | 
|  |  | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | if (nr != U64_MAX) { | 
|  | nr -= done; | 
|  | } | 
|  | } | 
|  | list_splice_tail(&splice, &fs_info->ordered_roots); | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  | mutex_unlock(&fs_info->ordered_operations_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to start IO or wait for a given ordered extent to finish. | 
|  | * | 
|  | * If wait is one, this effectively waits on page writeback for all the pages | 
|  | * in the extent, and it waits on the io completion code to insert | 
|  | * metadata into the btree corresponding to the extent | 
|  | */ | 
|  | void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) | 
|  | { | 
|  | u64 start = entry->file_offset; | 
|  | u64 end = start + entry->num_bytes - 1; | 
|  | struct btrfs_inode *inode = BTRFS_I(entry->inode); | 
|  | bool freespace_inode; | 
|  |  | 
|  | trace_btrfs_ordered_extent_start(inode, entry); | 
|  |  | 
|  | /* | 
|  | * If this is a free space inode do not take the ordered extents lockdep | 
|  | * map. | 
|  | */ | 
|  | freespace_inode = btrfs_is_free_space_inode(inode); | 
|  |  | 
|  | /* | 
|  | * pages in the range can be dirty, clean or writeback.  We | 
|  | * start IO on any dirty ones so the wait doesn't stall waiting | 
|  | * for the flusher thread to find them | 
|  | */ | 
|  | if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) | 
|  | filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); | 
|  | if (wait) { | 
|  | if (!freespace_inode) | 
|  | btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); | 
|  | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | 
|  | &entry->flags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to wait on ordered extents across a large range of bytes. | 
|  | */ | 
|  | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | 
|  | { | 
|  | int ret = 0; | 
|  | int ret_wb = 0; | 
|  | u64 end; | 
|  | u64 orig_end; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | if (start + len < start) { | 
|  | orig_end = INT_LIMIT(loff_t); | 
|  | } else { | 
|  | orig_end = start + len - 1; | 
|  | if (orig_end > INT_LIMIT(loff_t)) | 
|  | orig_end = INT_LIMIT(loff_t); | 
|  | } | 
|  |  | 
|  | /* start IO across the range first to instantiate any delalloc | 
|  | * extents | 
|  | */ | 
|  | ret = btrfs_fdatawrite_range(inode, start, orig_end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If we have a writeback error don't return immediately. Wait first | 
|  | * for any ordered extents that haven't completed yet. This is to make | 
|  | * sure no one can dirty the same page ranges and call writepages() | 
|  | * before the ordered extents complete - to avoid failures (-EEXIST) | 
|  | * when adding the new ordered extents to the ordered tree. | 
|  | */ | 
|  | ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); | 
|  |  | 
|  | end = orig_end; | 
|  | while (1) { | 
|  | ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); | 
|  | if (!ordered) | 
|  | break; | 
|  | if (ordered->file_offset > orig_end) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | if (ordered->file_offset + ordered->num_bytes <= start) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | end = ordered->file_offset; | 
|  | /* | 
|  | * If the ordered extent had an error save the error but don't | 
|  | * exit without waiting first for all other ordered extents in | 
|  | * the range to complete. | 
|  | */ | 
|  | if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) | 
|  | ret = -EIO; | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | if (end == 0 || end == start) | 
|  | break; | 
|  | end--; | 
|  | } | 
|  | return ret_wb ? ret_wb : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find an ordered extent corresponding to file_offset.  return NULL if | 
|  | * nothing is found, otherwise take a reference on the extent and return it | 
|  | */ | 
|  | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | tree = &inode->ordered_tree; | 
|  | spin_lock_irqsave(&tree->lock, flags); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) | 
|  | entry = NULL; | 
|  | if (entry) { | 
|  | refcount_inc(&entry->refs); | 
|  | trace_btrfs_ordered_extent_lookup(inode, entry); | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&tree->lock, flags); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Since the DIO code tries to lock a wide area we need to look for any ordered | 
|  | * extents that exist in the range, rather than just the start of the range. | 
|  | */ | 
|  | struct btrfs_ordered_extent *btrfs_lookup_ordered_range( | 
|  | struct btrfs_inode *inode, u64 file_offset, u64 len) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &inode->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) { | 
|  | node = tree_search(tree, file_offset + len); | 
|  | if (!node) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (range_overlaps(entry, file_offset, len)) | 
|  | break; | 
|  |  | 
|  | if (entry->file_offset >= file_offset + len) { | 
|  | entry = NULL; | 
|  | break; | 
|  | } | 
|  | entry = NULL; | 
|  | node = rb_next(node); | 
|  | if (!node) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | if (entry) { | 
|  | refcount_inc(&entry->refs); | 
|  | trace_btrfs_ordered_extent_lookup_range(inode, entry); | 
|  | } | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adds all ordered extents to the given list. The list ends up sorted by the | 
|  | * file_offset of the ordered extents. | 
|  | */ | 
|  | void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, | 
|  | struct list_head *list) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; | 
|  | struct rb_node *n; | 
|  |  | 
|  | ASSERT(inode_is_locked(&inode->vfs_inode)); | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | for (n = rb_first(&tree->tree); n; n = rb_next(n)) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
|  |  | 
|  | if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) | 
|  | continue; | 
|  |  | 
|  | ASSERT(list_empty(&ordered->log_list)); | 
|  | list_add_tail(&ordered->log_list, list); | 
|  | refcount_inc(&ordered->refs); | 
|  | trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); | 
|  | } | 
|  | spin_unlock_irq(&tree->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookup and return any extent before 'file_offset'.  NULL is returned | 
|  | * if none is found | 
|  | */ | 
|  | struct btrfs_ordered_extent * | 
|  | btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &inode->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | refcount_inc(&entry->refs); | 
|  | trace_btrfs_ordered_extent_lookup_first(inode, entry); | 
|  | out: | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the first ordered extent that overlaps the range | 
|  | * [@file_offset, @file_offset + @len). | 
|  | * | 
|  | * The difference between this and btrfs_lookup_first_ordered_extent() is | 
|  | * that this one won't return any ordered extent that does not overlap the range. | 
|  | * And the difference against btrfs_lookup_ordered_extent() is, this function | 
|  | * ensures the first ordered extent gets returned. | 
|  | */ | 
|  | struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( | 
|  | struct btrfs_inode *inode, u64 file_offset, u64 len) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; | 
|  | struct rb_node *node; | 
|  | struct rb_node *cur; | 
|  | struct rb_node *prev; | 
|  | struct rb_node *next; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree->tree.rb_node; | 
|  | /* | 
|  | * Here we don't want to use tree_search() which will use tree->last | 
|  | * and screw up the search order. | 
|  | * And __tree_search() can't return the adjacent ordered extents | 
|  | * either, thus here we do our own search. | 
|  | */ | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  |  | 
|  | if (file_offset < entry->file_offset) { | 
|  | node = node->rb_left; | 
|  | } else if (file_offset >= entry_end(entry)) { | 
|  | node = node->rb_right; | 
|  | } else { | 
|  | /* | 
|  | * Direct hit, got an ordered extent that starts at | 
|  | * @file_offset | 
|  | */ | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (!entry) { | 
|  | /* Empty tree */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cur = &entry->rb_node; | 
|  | /* We got an entry around @file_offset, check adjacent entries */ | 
|  | if (entry->file_offset < file_offset) { | 
|  | prev = cur; | 
|  | next = rb_next(cur); | 
|  | } else { | 
|  | prev = rb_prev(cur); | 
|  | next = cur; | 
|  | } | 
|  | if (prev) { | 
|  | entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); | 
|  | if (range_overlaps(entry, file_offset, len)) | 
|  | goto out; | 
|  | } | 
|  | if (next) { | 
|  | entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); | 
|  | if (range_overlaps(entry, file_offset, len)) | 
|  | goto out; | 
|  | } | 
|  | /* No ordered extent in the range */ | 
|  | entry = NULL; | 
|  | out: | 
|  | if (entry) { | 
|  | refcount_inc(&entry->refs); | 
|  | trace_btrfs_ordered_extent_lookup_first_range(inode, entry); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_flush_ordered_range - Lock the passed range and ensures all pending | 
|  | * ordered extents in it are run to completion. | 
|  | * | 
|  | * @inode:        Inode whose ordered tree is to be searched | 
|  | * @start:        Beginning of range to flush | 
|  | * @end:          Last byte of range to lock | 
|  | * @cached_state: If passed, will return the extent state responsible for the | 
|  | * locked range. It's the caller's responsibility to free the cached state. | 
|  | * | 
|  | * This function always returns with the given range locked, ensuring after it's | 
|  | * called no order extent can be pending. | 
|  | */ | 
|  | void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, | 
|  | u64 end, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct extent_state *cache = NULL; | 
|  | struct extent_state **cachedp = &cache; | 
|  |  | 
|  | if (cached_state) | 
|  | cachedp = cached_state; | 
|  |  | 
|  | while (1) { | 
|  | lock_extent(&inode->io_tree, start, end, cachedp); | 
|  | ordered = btrfs_lookup_ordered_range(inode, start, | 
|  | end - start + 1); | 
|  | if (!ordered) { | 
|  | /* | 
|  | * If no external cached_state has been passed then | 
|  | * decrement the extra ref taken for cachedp since we | 
|  | * aren't exposing it outside of this function | 
|  | */ | 
|  | if (!cached_state) | 
|  | refcount_dec(&cache->refs); | 
|  | break; | 
|  | } | 
|  | unlock_extent(&inode->io_tree, start, end, cachedp); | 
|  | btrfs_start_ordered_extent(ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock the passed range and ensure all pending ordered extents in it are run | 
|  | * to completion in nowait mode. | 
|  | * | 
|  | * Return true if btrfs_lock_ordered_range does not return any extents, | 
|  | * otherwise false. | 
|  | */ | 
|  | bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | if (!try_lock_extent(&inode->io_tree, start, end)) | 
|  | return false; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); | 
|  | if (!ordered) | 
|  | return true; | 
|  |  | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | unlock_extent(&inode->io_tree, start, end, NULL); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, | 
|  | u64 len) | 
|  | { | 
|  | struct inode *inode = ordered->inode; | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; | 
|  | u64 file_offset = ordered->file_offset + pos; | 
|  | u64 disk_bytenr = ordered->disk_bytenr + pos; | 
|  | unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS; | 
|  |  | 
|  | /* | 
|  | * The splitting extent is already counted and will be added again in | 
|  | * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting. | 
|  | */ | 
|  | percpu_counter_add_batch(&fs_info->ordered_bytes, -len, | 
|  | fs_info->delalloc_batch); | 
|  | WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED)); | 
|  | return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len, | 
|  | disk_bytenr, len, 0, flags, | 
|  | ordered->compress_type); | 
|  | } | 
|  |  | 
|  | int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, | 
|  | u64 post) | 
|  | { | 
|  | struct inode *inode = ordered->inode; | 
|  | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | int ret = 0; | 
|  |  | 
|  | trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered); | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | /* Remove from tree once */ | 
|  | node = &ordered->rb_node; | 
|  | rb_erase(node, &tree->tree); | 
|  | RB_CLEAR_NODE(node); | 
|  | if (tree->last == node) | 
|  | tree->last = NULL; | 
|  |  | 
|  | ordered->file_offset += pre; | 
|  | ordered->disk_bytenr += pre; | 
|  | ordered->num_bytes -= (pre + post); | 
|  | ordered->disk_num_bytes -= (pre + post); | 
|  | ordered->bytes_left -= (pre + post); | 
|  |  | 
|  | /* Re-insert the node */ | 
|  | node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); | 
|  | if (node) | 
|  | btrfs_panic(fs_info, -EEXIST, | 
|  | "zoned: inconsistency in ordered tree at offset %llu", | 
|  | ordered->file_offset); | 
|  |  | 
|  | spin_unlock_irq(&tree->lock); | 
|  |  | 
|  | if (pre) | 
|  | ret = clone_ordered_extent(ordered, 0, pre); | 
|  | if (ret == 0 && post) | 
|  | ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, | 
|  | post); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __init ordered_data_init(void) | 
|  | { | 
|  | btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", | 
|  | sizeof(struct btrfs_ordered_extent), 0, | 
|  | SLAB_MEM_SPREAD, | 
|  | NULL); | 
|  | if (!btrfs_ordered_extent_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cold ordered_data_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(btrfs_ordered_extent_cache); | 
|  | } |