|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include "misc.h" | 
|  | #include "extent_io.h" | 
|  | #include "extent-io-tree.h" | 
|  | #include "extent_map.h" | 
|  | #include "ctree.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "volumes.h" | 
|  | #include "check-integrity.h" | 
|  | #include "locking.h" | 
|  | #include "rcu-string.h" | 
|  | #include "backref.h" | 
|  | #include "disk-io.h" | 
|  | #include "subpage.h" | 
|  | #include "zoned.h" | 
|  | #include "block-group.h" | 
|  | #include "compression.h" | 
|  |  | 
|  | static struct kmem_cache *extent_buffer_cache; | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
|  | list_add(&eb->leak_list, &fs_info->allocated_ebs); | 
|  | spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
|  | list_del(&eb->leak_list); | 
|  | spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
|  | } | 
|  |  | 
|  | void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * If we didn't get into open_ctree our allocated_ebs will not be | 
|  | * initialized, so just skip this. | 
|  | */ | 
|  | if (!fs_info->allocated_ebs.next) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!list_empty(&fs_info->allocated_ebs)); | 
|  | spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
|  | while (!list_empty(&fs_info->allocated_ebs)) { | 
|  | eb = list_first_entry(&fs_info->allocated_ebs, | 
|  | struct extent_buffer, leak_list); | 
|  | pr_err( | 
|  | "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", | 
|  | eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, | 
|  | btrfs_header_owner(eb)); | 
|  | list_del(&eb->leak_list); | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  | spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
|  | } | 
|  | #else | 
|  | #define btrfs_leak_debug_add_eb(eb)			do {} while (0) | 
|  | #define btrfs_leak_debug_del_eb(eb)			do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Structure to record info about the bio being assembled, and other info like | 
|  | * how many bytes are there before stripe/ordered extent boundary. | 
|  | */ | 
|  | struct btrfs_bio_ctrl { | 
|  | struct bio *bio; | 
|  | int mirror_num; | 
|  | enum btrfs_compression_type compress_type; | 
|  | u32 len_to_stripe_boundary; | 
|  | u32 len_to_oe_boundary; | 
|  | btrfs_bio_end_io_t end_io_func; | 
|  | }; | 
|  |  | 
|  | struct extent_page_data { | 
|  | struct btrfs_bio_ctrl bio_ctrl; | 
|  | /* tells writepage not to lock the state bits for this range | 
|  | * it still does the unlocking | 
|  | */ | 
|  | unsigned int extent_locked:1; | 
|  |  | 
|  | /* tells the submit_bio code to use REQ_SYNC */ | 
|  | unsigned int sync_io:1; | 
|  | }; | 
|  |  | 
|  | static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_vec *bv; | 
|  | struct inode *inode; | 
|  | int mirror_num; | 
|  |  | 
|  | if (!bio_ctrl->bio) | 
|  | return; | 
|  |  | 
|  | bio = bio_ctrl->bio; | 
|  | bv = bio_first_bvec_all(bio); | 
|  | inode = bv->bv_page->mapping->host; | 
|  | mirror_num = bio_ctrl->mirror_num; | 
|  |  | 
|  | /* Caller should ensure the bio has at least some range added */ | 
|  | ASSERT(bio->bi_iter.bi_size); | 
|  |  | 
|  | btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset; | 
|  |  | 
|  | if (!is_data_inode(inode)) | 
|  | btrfs_submit_metadata_bio(inode, bio, mirror_num); | 
|  | else if (btrfs_op(bio) == BTRFS_MAP_WRITE) | 
|  | btrfs_submit_data_write_bio(inode, bio, mirror_num); | 
|  | else | 
|  | btrfs_submit_data_read_bio(inode, bio, mirror_num, | 
|  | bio_ctrl->compress_type); | 
|  |  | 
|  | /* The bio is owned by the end_io handler now */ | 
|  | bio_ctrl->bio = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit or fail the current bio in an extent_page_data structure. | 
|  | */ | 
|  | static void submit_write_bio(struct extent_page_data *epd, int ret) | 
|  | { | 
|  | struct bio *bio = epd->bio_ctrl.bio; | 
|  |  | 
|  | if (!bio) | 
|  | return; | 
|  |  | 
|  | if (ret) { | 
|  | ASSERT(ret < 0); | 
|  | btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); | 
|  | /* The bio is owned by the end_io handler now */ | 
|  | epd->bio_ctrl.bio = NULL; | 
|  | } else { | 
|  | submit_one_bio(&epd->bio_ctrl); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init extent_buffer_init_cachep(void) | 
|  | { | 
|  | extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", | 
|  | sizeof(struct extent_buffer), 0, | 
|  | SLAB_MEM_SPREAD, NULL); | 
|  | if (!extent_buffer_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cold extent_buffer_free_cachep(void) | 
|  | { | 
|  | /* | 
|  | * Make sure all delayed rcu free are flushed before we | 
|  | * destroy caches. | 
|  | */ | 
|  | rcu_barrier(); | 
|  | kmem_cache_destroy(extent_buffer_cache); | 
|  | } | 
|  |  | 
|  | void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) | 
|  | { | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  |  | 
|  | while (index <= end_index) { | 
|  | page = find_get_page(inode->i_mapping, index); | 
|  | BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
|  | clear_page_dirty_for_io(page); | 
|  | put_page(page); | 
|  | index++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  | struct folio *folio; | 
|  |  | 
|  | while (index <= end_index) { | 
|  | folio = filemap_get_folio(mapping, index); | 
|  | filemap_dirty_folio(mapping, folio); | 
|  | folio_account_redirty(folio); | 
|  | index += folio_nr_pages(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process one page for __process_pages_contig(). | 
|  | * | 
|  | * Return >0 if we hit @page == @locked_page. | 
|  | * Return 0 if we updated the page status. | 
|  | * Return -EGAIN if the we need to try again. | 
|  | * (For PAGE_LOCK case but got dirty page or page not belong to mapping) | 
|  | */ | 
|  | static int process_one_page(struct btrfs_fs_info *fs_info, | 
|  | struct address_space *mapping, | 
|  | struct page *page, struct page *locked_page, | 
|  | unsigned long page_ops, u64 start, u64 end) | 
|  | { | 
|  | u32 len; | 
|  |  | 
|  | ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); | 
|  | len = end + 1 - start; | 
|  |  | 
|  | if (page_ops & PAGE_SET_ORDERED) | 
|  | btrfs_page_clamp_set_ordered(fs_info, page, start, len); | 
|  | if (page_ops & PAGE_SET_ERROR) | 
|  | btrfs_page_clamp_set_error(fs_info, page, start, len); | 
|  | if (page_ops & PAGE_START_WRITEBACK) { | 
|  | btrfs_page_clamp_clear_dirty(fs_info, page, start, len); | 
|  | btrfs_page_clamp_set_writeback(fs_info, page, start, len); | 
|  | } | 
|  | if (page_ops & PAGE_END_WRITEBACK) | 
|  | btrfs_page_clamp_clear_writeback(fs_info, page, start, len); | 
|  |  | 
|  | if (page == locked_page) | 
|  | return 1; | 
|  |  | 
|  | if (page_ops & PAGE_LOCK) { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_page_start_writer_lock(fs_info, page, start, len); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (!PageDirty(page) || page->mapping != mapping) { | 
|  | btrfs_page_end_writer_lock(fs_info, page, start, len); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | if (page_ops & PAGE_UNLOCK) | 
|  | btrfs_page_end_writer_lock(fs_info, page, start, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __process_pages_contig(struct address_space *mapping, | 
|  | struct page *locked_page, | 
|  | u64 start, u64 end, unsigned long page_ops, | 
|  | u64 *processed_end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); | 
|  | pgoff_t start_index = start >> PAGE_SHIFT; | 
|  | pgoff_t end_index = end >> PAGE_SHIFT; | 
|  | pgoff_t index = start_index; | 
|  | unsigned long pages_processed = 0; | 
|  | struct folio_batch fbatch; | 
|  | int err = 0; | 
|  | int i; | 
|  |  | 
|  | if (page_ops & PAGE_LOCK) { | 
|  | ASSERT(page_ops == PAGE_LOCK); | 
|  | ASSERT(processed_end && *processed_end == start); | 
|  | } | 
|  |  | 
|  | if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) | 
|  | mapping_set_error(mapping, -EIO); | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | while (index <= end_index) { | 
|  | int found_folios; | 
|  |  | 
|  | found_folios = filemap_get_folios_contig(mapping, &index, | 
|  | end_index, &fbatch); | 
|  |  | 
|  | if (found_folios == 0) { | 
|  | /* | 
|  | * Only if we're going to lock these pages, we can find | 
|  | * nothing at @index. | 
|  | */ | 
|  | ASSERT(page_ops & PAGE_LOCK); | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < found_folios; i++) { | 
|  | int process_ret; | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  | process_ret = process_one_page(fs_info, mapping, | 
|  | &folio->page, locked_page, page_ops, | 
|  | start, end); | 
|  | if (process_ret < 0) { | 
|  | err = -EAGAIN; | 
|  | folio_batch_release(&fbatch); | 
|  | goto out; | 
|  | } | 
|  | pages_processed += folio_nr_pages(folio); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | if (err && processed_end) { | 
|  | /* | 
|  | * Update @processed_end. I know this is awful since it has | 
|  | * two different return value patterns (inclusive vs exclusive). | 
|  | * | 
|  | * But the exclusive pattern is necessary if @start is 0, or we | 
|  | * underflow and check against processed_end won't work as | 
|  | * expected. | 
|  | */ | 
|  | if (pages_processed) | 
|  | *processed_end = min(end, | 
|  | ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); | 
|  | else | 
|  | *processed_end = start; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline void __unlock_for_delalloc(struct inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | unsigned long end_index = end >> PAGE_SHIFT; | 
|  |  | 
|  | ASSERT(locked_page); | 
|  | if (index == locked_page->index && end_index == index) | 
|  | return; | 
|  |  | 
|  | __process_pages_contig(inode->i_mapping, locked_page, start, end, | 
|  | PAGE_UNLOCK, NULL); | 
|  | } | 
|  |  | 
|  | static noinline int lock_delalloc_pages(struct inode *inode, | 
|  | struct page *locked_page, | 
|  | u64 delalloc_start, | 
|  | u64 delalloc_end) | 
|  | { | 
|  | unsigned long index = delalloc_start >> PAGE_SHIFT; | 
|  | unsigned long end_index = delalloc_end >> PAGE_SHIFT; | 
|  | u64 processed_end = delalloc_start; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(locked_page); | 
|  | if (index == locked_page->index && index == end_index) | 
|  | return 0; | 
|  |  | 
|  | ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, | 
|  | delalloc_end, PAGE_LOCK, &processed_end); | 
|  | if (ret == -EAGAIN && processed_end > delalloc_start) | 
|  | __unlock_for_delalloc(inode, locked_page, delalloc_start, | 
|  | processed_end); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and lock a contiguous range of bytes in the file marked as delalloc, no | 
|  | * more than @max_bytes. | 
|  | * | 
|  | * @start:	The original start bytenr to search. | 
|  | *		Will store the extent range start bytenr. | 
|  | * @end:	The original end bytenr of the search range | 
|  | *		Will store the extent range end bytenr. | 
|  | * | 
|  | * Return true if we find a delalloc range which starts inside the original | 
|  | * range, and @start/@end will store the delalloc range start/end. | 
|  | * | 
|  | * Return false if we can't find any delalloc range which starts inside the | 
|  | * original range, and @start/@end will be the non-delalloc range start/end. | 
|  | */ | 
|  | EXPORT_FOR_TESTS | 
|  | noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, | 
|  | struct page *locked_page, u64 *start, | 
|  | u64 *end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  | const u64 orig_start = *start; | 
|  | const u64 orig_end = *end; | 
|  | /* The sanity tests may not set a valid fs_info. */ | 
|  | u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | bool found; | 
|  | struct extent_state *cached_state = NULL; | 
|  | int ret; | 
|  | int loops = 0; | 
|  |  | 
|  | /* Caller should pass a valid @end to indicate the search range end */ | 
|  | ASSERT(orig_end > orig_start); | 
|  |  | 
|  | /* The range should at least cover part of the page */ | 
|  | ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || | 
|  | orig_end <= page_offset(locked_page))); | 
|  | again: | 
|  | /* step one, find a bunch of delalloc bytes starting at start */ | 
|  | delalloc_start = *start; | 
|  | delalloc_end = 0; | 
|  | found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, | 
|  | max_bytes, &cached_state); | 
|  | if (!found || delalloc_end <= *start || delalloc_start > orig_end) { | 
|  | *start = delalloc_start; | 
|  |  | 
|  | /* @delalloc_end can be -1, never go beyond @orig_end */ | 
|  | *end = min(delalloc_end, orig_end); | 
|  | free_extent_state(cached_state); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start comes from the offset of locked_page.  We have to lock | 
|  | * pages in order, so we can't process delalloc bytes before | 
|  | * locked_page | 
|  | */ | 
|  | if (delalloc_start < *start) | 
|  | delalloc_start = *start; | 
|  |  | 
|  | /* | 
|  | * make sure to limit the number of pages we try to lock down | 
|  | */ | 
|  | if (delalloc_end + 1 - delalloc_start > max_bytes) | 
|  | delalloc_end = delalloc_start + max_bytes - 1; | 
|  |  | 
|  | /* step two, lock all the pages after the page that has start */ | 
|  | ret = lock_delalloc_pages(inode, locked_page, | 
|  | delalloc_start, delalloc_end); | 
|  | ASSERT(!ret || ret == -EAGAIN); | 
|  | if (ret == -EAGAIN) { | 
|  | /* some of the pages are gone, lets avoid looping by | 
|  | * shortening the size of the delalloc range we're searching | 
|  | */ | 
|  | free_extent_state(cached_state); | 
|  | cached_state = NULL; | 
|  | if (!loops) { | 
|  | max_bytes = PAGE_SIZE; | 
|  | loops = 1; | 
|  | goto again; | 
|  | } else { | 
|  | found = false; | 
|  | goto out_failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* step three, lock the state bits for the whole range */ | 
|  | lock_extent(tree, delalloc_start, delalloc_end, &cached_state); | 
|  |  | 
|  | /* then test to make sure it is all still delalloc */ | 
|  | ret = test_range_bit(tree, delalloc_start, delalloc_end, | 
|  | EXTENT_DELALLOC, 1, cached_state); | 
|  | if (!ret) { | 
|  | unlock_extent(tree, delalloc_start, delalloc_end, | 
|  | &cached_state); | 
|  | __unlock_for_delalloc(inode, locked_page, | 
|  | delalloc_start, delalloc_end); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | free_extent_state(cached_state); | 
|  | *start = delalloc_start; | 
|  | *end = delalloc_end; | 
|  | out_failed: | 
|  | return found; | 
|  | } | 
|  |  | 
|  | void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, | 
|  | struct page *locked_page, | 
|  | u32 clear_bits, unsigned long page_ops) | 
|  | { | 
|  | clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); | 
|  |  | 
|  | __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, | 
|  | start, end, page_ops, NULL); | 
|  | } | 
|  |  | 
|  | static int insert_failrec(struct btrfs_inode *inode, | 
|  | struct io_failure_record *failrec) | 
|  | { | 
|  | struct rb_node *exist; | 
|  |  | 
|  | spin_lock(&inode->io_failure_lock); | 
|  | exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr, | 
|  | &failrec->rb_node); | 
|  | spin_unlock(&inode->io_failure_lock); | 
|  |  | 
|  | return (exist == NULL) ? 0 : -EEXIST; | 
|  | } | 
|  |  | 
|  | static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct io_failure_record *failrec = ERR_PTR(-ENOENT); | 
|  |  | 
|  | spin_lock(&inode->io_failure_lock); | 
|  | node = rb_simple_search(&inode->io_failure_tree, start); | 
|  | if (node) | 
|  | failrec = rb_entry(node, struct io_failure_record, rb_node); | 
|  | spin_unlock(&inode->io_failure_lock); | 
|  | return failrec; | 
|  | } | 
|  |  | 
|  | static void free_io_failure(struct btrfs_inode *inode, | 
|  | struct io_failure_record *rec) | 
|  | { | 
|  | spin_lock(&inode->io_failure_lock); | 
|  | rb_erase(&rec->rb_node, &inode->io_failure_tree); | 
|  | spin_unlock(&inode->io_failure_lock); | 
|  |  | 
|  | kfree(rec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this bypasses the standard btrfs submit functions deliberately, as | 
|  | * the standard behavior is to write all copies in a raid setup. here we only | 
|  | * want to write the one bad copy. so we do the mapping for ourselves and issue | 
|  | * submit_bio directly. | 
|  | * to avoid any synchronization issues, wait for the data after writing, which | 
|  | * actually prevents the read that triggered the error from finishing. | 
|  | * currently, there can be no more than two copies of every data bit. thus, | 
|  | * exactly one rewrite is required. | 
|  | */ | 
|  | static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, | 
|  | u64 length, u64 logical, struct page *page, | 
|  | unsigned int pg_offset, int mirror_num) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | struct bio_vec bvec; | 
|  | struct bio bio; | 
|  | u64 map_length = 0; | 
|  | u64 sector; | 
|  | struct btrfs_io_context *bioc = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); | 
|  | BUG_ON(!mirror_num); | 
|  |  | 
|  | if (btrfs_repair_one_zone(fs_info, logical)) | 
|  | return 0; | 
|  |  | 
|  | map_length = length; | 
|  |  | 
|  | /* | 
|  | * Avoid races with device replace and make sure our bioc has devices | 
|  | * associated to its stripes that don't go away while we are doing the | 
|  | * read repair operation. | 
|  | */ | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | if (btrfs_is_parity_mirror(fs_info, logical, length)) { | 
|  | /* | 
|  | * Note that we don't use BTRFS_MAP_WRITE because it's supposed | 
|  | * to update all raid stripes, but here we just want to correct | 
|  | * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad | 
|  | * stripe's dev and sector. | 
|  | */ | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, | 
|  | &map_length, &bioc, 0); | 
|  | if (ret) | 
|  | goto out_counter_dec; | 
|  | ASSERT(bioc->mirror_num == 1); | 
|  | } else { | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, | 
|  | &map_length, &bioc, mirror_num); | 
|  | if (ret) | 
|  | goto out_counter_dec; | 
|  | /* | 
|  | * This happens when dev-replace is also running, and the | 
|  | * mirror_num indicates the dev-replace target. | 
|  | * | 
|  | * In this case, we don't need to do anything, as the read | 
|  | * error just means the replace progress hasn't reached our | 
|  | * read range, and later replace routine would handle it well. | 
|  | */ | 
|  | if (mirror_num != bioc->mirror_num) | 
|  | goto out_counter_dec; | 
|  | } | 
|  |  | 
|  | sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; | 
|  | dev = bioc->stripes[bioc->mirror_num - 1].dev; | 
|  | btrfs_put_bioc(bioc); | 
|  |  | 
|  | if (!dev || !dev->bdev || | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { | 
|  | ret = -EIO; | 
|  | goto out_counter_dec; | 
|  | } | 
|  |  | 
|  | bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); | 
|  | bio.bi_iter.bi_sector = sector; | 
|  | __bio_add_page(&bio, page, length, pg_offset); | 
|  |  | 
|  | btrfsic_check_bio(&bio); | 
|  | ret = submit_bio_wait(&bio); | 
|  | if (ret) { | 
|  | /* try to remap that extent elsewhere? */ | 
|  | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | goto out_bio_uninit; | 
|  | } | 
|  |  | 
|  | btrfs_info_rl_in_rcu(fs_info, | 
|  | "read error corrected: ino %llu off %llu (dev %s sector %llu)", | 
|  | ino, start, | 
|  | rcu_str_deref(dev->name), sector); | 
|  | ret = 0; | 
|  |  | 
|  | out_bio_uninit: | 
|  | bio_uninit(&bio); | 
|  | out_counter_dec: | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | u64 start = eb->start; | 
|  | int i, num_pages = num_extent_pages(eb); | 
|  | int ret = 0; | 
|  |  | 
|  | if (sb_rdonly(fs_info->sb)) | 
|  | return -EROFS; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, | 
|  | start - page_offset(p), mirror_num); | 
|  | if (ret) | 
|  | break; | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int next_mirror(const struct io_failure_record *failrec, int cur_mirror) | 
|  | { | 
|  | if (cur_mirror == failrec->num_copies) | 
|  | return cur_mirror + 1 - failrec->num_copies; | 
|  | return cur_mirror + 1; | 
|  | } | 
|  |  | 
|  | static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror) | 
|  | { | 
|  | if (cur_mirror == 1) | 
|  | return failrec->num_copies; | 
|  | return cur_mirror - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * each time an IO finishes, we do a fast check in the IO failure tree | 
|  | * to see if we need to process or clean up an io_failure_record | 
|  | */ | 
|  | int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start, | 
|  | struct page *page, unsigned int pg_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | u64 locked_start, locked_end; | 
|  | struct io_failure_record *failrec; | 
|  | int mirror; | 
|  | int ret; | 
|  |  | 
|  | failrec = get_failrec(inode, start); | 
|  | if (IS_ERR(failrec)) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(!failrec->this_mirror); | 
|  |  | 
|  | if (sb_rdonly(fs_info->sb)) | 
|  | goto out; | 
|  |  | 
|  | ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start, | 
|  | &locked_end, EXTENT_LOCKED, NULL); | 
|  | if (ret || locked_start > failrec->bytenr || | 
|  | locked_end < failrec->bytenr + failrec->len - 1) | 
|  | goto out; | 
|  |  | 
|  | mirror = failrec->this_mirror; | 
|  | do { | 
|  | mirror = prev_mirror(failrec, mirror); | 
|  | repair_io_failure(fs_info, ino, start, failrec->len, | 
|  | failrec->logical, page, pg_offset, mirror); | 
|  | } while (mirror != failrec->failed_mirror); | 
|  |  | 
|  | out: | 
|  | free_io_failure(inode, failrec); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can be called when | 
|  | * - hold extent lock | 
|  | * - under ordered extent | 
|  | * - the inode is freeing | 
|  | */ | 
|  | void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct io_failure_record *failrec; | 
|  | struct rb_node *node, *next; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&inode->io_failure_tree)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&inode->io_failure_lock); | 
|  | node = rb_simple_search_first(&inode->io_failure_tree, start); | 
|  | while (node) { | 
|  | failrec = rb_entry(node, struct io_failure_record, rb_node); | 
|  | if (failrec->bytenr > end) | 
|  | break; | 
|  |  | 
|  | next = rb_next(node); | 
|  | rb_erase(&failrec->rb_node, &inode->io_failure_tree); | 
|  | kfree(failrec); | 
|  |  | 
|  | node = next; | 
|  | } | 
|  | spin_unlock(&inode->io_failure_lock); | 
|  | } | 
|  |  | 
|  | static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, | 
|  | struct btrfs_bio *bbio, | 
|  | unsigned int bio_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 start = bbio->file_offset + bio_offset; | 
|  | struct io_failure_record *failrec; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | int ret; | 
|  |  | 
|  | failrec = get_failrec(BTRFS_I(inode), start); | 
|  | if (!IS_ERR(failrec)) { | 
|  | btrfs_debug(fs_info, | 
|  | "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", | 
|  | failrec->logical, failrec->bytenr, failrec->len); | 
|  | /* | 
|  | * when data can be on disk more than twice, add to failrec here | 
|  | * (e.g. with a list for failed_mirror) to make | 
|  | * clean_io_failure() clean all those errors at once. | 
|  | */ | 
|  | ASSERT(failrec->this_mirror == bbio->mirror_num); | 
|  | ASSERT(failrec->len == fs_info->sectorsize); | 
|  | return failrec; | 
|  | } | 
|  |  | 
|  | failrec = kzalloc(sizeof(*failrec), GFP_NOFS); | 
|  | if (!failrec) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | RB_CLEAR_NODE(&failrec->rb_node); | 
|  | failrec->bytenr = start; | 
|  | failrec->len = sectorsize; | 
|  | failrec->failed_mirror = bbio->mirror_num; | 
|  | failrec->this_mirror = bbio->mirror_num; | 
|  | failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset; | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "new io failure record logical %llu start %llu", | 
|  | failrec->logical, start); | 
|  |  | 
|  | failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize); | 
|  | if (failrec->num_copies == 1) { | 
|  | /* | 
|  | * We only have a single copy of the data, so don't bother with | 
|  | * all the retry and error correction code that follows. No | 
|  | * matter what the error is, it is very likely to persist. | 
|  | */ | 
|  | btrfs_debug(fs_info, | 
|  | "cannot repair logical %llu num_copies %d", | 
|  | failrec->logical, failrec->num_copies); | 
|  | kfree(failrec); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  |  | 
|  | /* Set the bits in the private failure tree */ | 
|  | ret = insert_failrec(BTRFS_I(inode), failrec); | 
|  | if (ret) { | 
|  | kfree(failrec); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | return failrec; | 
|  | } | 
|  |  | 
|  | int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio, | 
|  | u32 bio_offset, struct page *page, unsigned int pgoff, | 
|  | submit_bio_hook_t *submit_bio_hook) | 
|  | { | 
|  | u64 start = failed_bbio->file_offset + bio_offset; | 
|  | struct io_failure_record *failrec; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct bio *failed_bio = &failed_bbio->bio; | 
|  | const int icsum = bio_offset >> fs_info->sectorsize_bits; | 
|  | struct bio *repair_bio; | 
|  | struct btrfs_bio *repair_bbio; | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "repair read error: read error at %llu", start); | 
|  |  | 
|  | BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); | 
|  |  | 
|  | failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset); | 
|  | if (IS_ERR(failrec)) | 
|  | return PTR_ERR(failrec); | 
|  |  | 
|  | /* | 
|  | * There are two premises: | 
|  | * a) deliver good data to the caller | 
|  | * b) correct the bad sectors on disk | 
|  | * | 
|  | * Since we're only doing repair for one sector, we only need to get | 
|  | * a good copy of the failed sector and if we succeed, we have setup | 
|  | * everything for repair_io_failure to do the rest for us. | 
|  | */ | 
|  | failrec->this_mirror = next_mirror(failrec, failrec->this_mirror); | 
|  | if (failrec->this_mirror == failrec->failed_mirror) { | 
|  | btrfs_debug(fs_info, | 
|  | "failed to repair num_copies %d this_mirror %d failed_mirror %d", | 
|  | failrec->num_copies, failrec->this_mirror, failrec->failed_mirror); | 
|  | free_io_failure(BTRFS_I(inode), failrec); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io, | 
|  | failed_bbio->private); | 
|  | repair_bbio = btrfs_bio(repair_bio); | 
|  | repair_bbio->file_offset = start; | 
|  | repair_bio->bi_iter.bi_sector = failrec->logical >> 9; | 
|  |  | 
|  | if (failed_bbio->csum) { | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  |  | 
|  | repair_bbio->csum = repair_bbio->csum_inline; | 
|  | memcpy(repair_bbio->csum, | 
|  | failed_bbio->csum + csum_size * icsum, csum_size); | 
|  | } | 
|  |  | 
|  | bio_add_page(repair_bio, page, failrec->len, pgoff); | 
|  | repair_bbio->iter = repair_bio->bi_iter; | 
|  |  | 
|  | btrfs_debug(btrfs_sb(inode->i_sb), | 
|  | "repair read error: submitting new read to mirror %d", | 
|  | failrec->this_mirror); | 
|  |  | 
|  | /* | 
|  | * At this point we have a bio, so any errors from submit_bio_hook() | 
|  | * will be handled by the endio on the repair_bio, so we can't return an | 
|  | * error here. | 
|  | */ | 
|  | submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0); | 
|  | return BLK_STS_OK; | 
|  | } | 
|  |  | 
|  | static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
|  |  | 
|  | ASSERT(page_offset(page) <= start && | 
|  | start + len <= page_offset(page) + PAGE_SIZE); | 
|  |  | 
|  | if (uptodate) { | 
|  | if (fsverity_active(page->mapping->host) && | 
|  | !PageError(page) && | 
|  | !PageUptodate(page) && | 
|  | start < i_size_read(page->mapping->host) && | 
|  | !fsverity_verify_page(page)) { | 
|  | btrfs_page_set_error(fs_info, page, start, len); | 
|  | } else { | 
|  | btrfs_page_set_uptodate(fs_info, page, start, len); | 
|  | } | 
|  | } else { | 
|  | btrfs_page_clear_uptodate(fs_info, page, start, len); | 
|  | btrfs_page_set_error(fs_info, page, start, len); | 
|  | } | 
|  |  | 
|  | if (!btrfs_is_subpage(fs_info, page)) | 
|  | unlock_page(page); | 
|  | else | 
|  | btrfs_subpage_end_reader(fs_info, page, start, len); | 
|  | } | 
|  |  | 
|  | static void end_sector_io(struct page *page, u64 offset, bool uptodate) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
|  | const u32 sectorsize = inode->root->fs_info->sectorsize; | 
|  | struct extent_state *cached = NULL; | 
|  |  | 
|  | end_page_read(page, uptodate, offset, sectorsize); | 
|  | if (uptodate) | 
|  | set_extent_uptodate(&inode->io_tree, offset, | 
|  | offset + sectorsize - 1, &cached, GFP_ATOMIC); | 
|  | unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1, | 
|  | &cached); | 
|  | } | 
|  |  | 
|  | static void submit_data_read_repair(struct inode *inode, | 
|  | struct btrfs_bio *failed_bbio, | 
|  | u32 bio_offset, const struct bio_vec *bvec, | 
|  | unsigned int error_bitmap) | 
|  | { | 
|  | const unsigned int pgoff = bvec->bv_offset; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct page *page = bvec->bv_page; | 
|  | const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset; | 
|  | const u64 end = start + bvec->bv_len - 1; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE); | 
|  |  | 
|  | /* This repair is only for data */ | 
|  | ASSERT(is_data_inode(inode)); | 
|  |  | 
|  | /* We're here because we had some read errors or csum mismatch */ | 
|  | ASSERT(error_bitmap); | 
|  |  | 
|  | /* | 
|  | * We only get called on buffered IO, thus page must be mapped and bio | 
|  | * must not be cloned. | 
|  | */ | 
|  | ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED)); | 
|  |  | 
|  | /* Iterate through all the sectors in the range */ | 
|  | for (i = 0; i < nr_bits; i++) { | 
|  | const unsigned int offset = i * sectorsize; | 
|  | bool uptodate = false; | 
|  | int ret; | 
|  |  | 
|  | if (!(error_bitmap & (1U << i))) { | 
|  | /* | 
|  | * This sector has no error, just end the page read | 
|  | * and unlock the range. | 
|  | */ | 
|  | uptodate = true; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | ret = btrfs_repair_one_sector(inode, failed_bbio, | 
|  | bio_offset + offset, page, pgoff + offset, | 
|  | btrfs_submit_data_read_bio); | 
|  | if (!ret) { | 
|  | /* | 
|  | * We have submitted the read repair, the page release | 
|  | * will be handled by the endio function of the | 
|  | * submitted repair bio. | 
|  | * Thus we don't need to do any thing here. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Continue on failed repair, otherwise the remaining sectors | 
|  | * will not be properly unlocked. | 
|  | */ | 
|  | next: | 
|  | end_sector_io(page, start + offset, uptodate); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* lots and lots of room for performance fixes in the end_bio funcs */ | 
|  |  | 
|  | void end_extent_writepage(struct page *page, int err, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_inode *inode; | 
|  | const bool uptodate = (err == 0); | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(page && page->mapping); | 
|  | inode = BTRFS_I(page->mapping->host); | 
|  | btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); | 
|  |  | 
|  | if (!uptodate) { | 
|  | const struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | u32 len; | 
|  |  | 
|  | ASSERT(end + 1 - start <= U32_MAX); | 
|  | len = end + 1 - start; | 
|  |  | 
|  | btrfs_page_clear_uptodate(fs_info, page, start, len); | 
|  | btrfs_page_set_error(fs_info, page, start, len); | 
|  | ret = err < 0 ? err : -EIO; | 
|  | mapping_set_error(page->mapping, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after a writepage IO is done, we need to: | 
|  | * clear the uptodate bits on error | 
|  | * clear the writeback bits in the extent tree for this IO | 
|  | * end_page_writeback if the page has no more pending IO | 
|  | * | 
|  | * Scheduling is not allowed, so the extent state tree is expected | 
|  | * to have one and only one object corresponding to this IO. | 
|  | */ | 
|  | static void end_bio_extent_writepage(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct bio *bio = &bbio->bio; | 
|  | int error = blk_status_to_errno(bio->bi_status); | 
|  | struct bio_vec *bvec; | 
|  | u64 start; | 
|  | u64 end; | 
|  | struct bvec_iter_all iter_all; | 
|  | bool first_bvec = true; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct page *page = bvec->bv_page; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  |  | 
|  | /* Our read/write should always be sector aligned. */ | 
|  | if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) | 
|  | btrfs_err(fs_info, | 
|  | "partial page write in btrfs with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  | else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) | 
|  | btrfs_info(fs_info, | 
|  | "incomplete page write with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  |  | 
|  | start = page_offset(page) + bvec->bv_offset; | 
|  | end = start + bvec->bv_len - 1; | 
|  |  | 
|  | if (first_bvec) { | 
|  | btrfs_record_physical_zoned(inode, start, bio); | 
|  | first_bvec = false; | 
|  | } | 
|  |  | 
|  | end_extent_writepage(page, error, start, end); | 
|  |  | 
|  | btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record previously processed extent range | 
|  | * | 
|  | * For endio_readpage_release_extent() to handle a full extent range, reducing | 
|  | * the extent io operations. | 
|  | */ | 
|  | struct processed_extent { | 
|  | struct btrfs_inode *inode; | 
|  | /* Start of the range in @inode */ | 
|  | u64 start; | 
|  | /* End of the range in @inode */ | 
|  | u64 end; | 
|  | bool uptodate; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Try to release processed extent range | 
|  | * | 
|  | * May not release the extent range right now if the current range is | 
|  | * contiguous to processed extent. | 
|  | * | 
|  | * Will release processed extent when any of @inode, @uptodate, the range is | 
|  | * no longer contiguous to the processed range. | 
|  | * | 
|  | * Passing @inode == NULL will force processed extent to be released. | 
|  | */ | 
|  | static void endio_readpage_release_extent(struct processed_extent *processed, | 
|  | struct btrfs_inode *inode, u64 start, u64 end, | 
|  | bool uptodate) | 
|  | { | 
|  | struct extent_state *cached = NULL; | 
|  | struct extent_io_tree *tree; | 
|  |  | 
|  | /* The first extent, initialize @processed */ | 
|  | if (!processed->inode) | 
|  | goto update; | 
|  |  | 
|  | /* | 
|  | * Contiguous to processed extent, just uptodate the end. | 
|  | * | 
|  | * Several things to notice: | 
|  | * | 
|  | * - bio can be merged as long as on-disk bytenr is contiguous | 
|  | *   This means we can have page belonging to other inodes, thus need to | 
|  | *   check if the inode still matches. | 
|  | * - bvec can contain range beyond current page for multi-page bvec | 
|  | *   Thus we need to do processed->end + 1 >= start check | 
|  | */ | 
|  | if (processed->inode == inode && processed->uptodate == uptodate && | 
|  | processed->end + 1 >= start && end >= processed->end) { | 
|  | processed->end = end; | 
|  | return; | 
|  | } | 
|  |  | 
|  | tree = &processed->inode->io_tree; | 
|  | /* | 
|  | * Now we don't have range contiguous to the processed range, release | 
|  | * the processed range now. | 
|  | */ | 
|  | unlock_extent_atomic(tree, processed->start, processed->end, &cached); | 
|  |  | 
|  | update: | 
|  | /* Update processed to current range */ | 
|  | processed->inode = inode; | 
|  | processed->start = start; | 
|  | processed->end = end; | 
|  | processed->uptodate = uptodate; | 
|  | } | 
|  |  | 
|  | static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) | 
|  | { | 
|  | ASSERT(PageLocked(page)); | 
|  | if (!btrfs_is_subpage(fs_info, page)) | 
|  | return; | 
|  |  | 
|  | ASSERT(PagePrivate(page)); | 
|  | btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find extent buffer for a givne bytenr. | 
|  | * | 
|  | * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking | 
|  | * in endio context. | 
|  | */ | 
|  | static struct extent_buffer *find_extent_buffer_readpage( | 
|  | struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | /* | 
|  | * For regular sectorsize, we can use page->private to grab extent | 
|  | * buffer | 
|  | */ | 
|  | if (fs_info->nodesize >= PAGE_SIZE) { | 
|  | ASSERT(PagePrivate(page) && page->private); | 
|  | return (struct extent_buffer *)page->private; | 
|  | } | 
|  |  | 
|  | /* For subpage case, we need to lookup buffer radix tree */ | 
|  | rcu_read_lock(); | 
|  | eb = radix_tree_lookup(&fs_info->buffer_radix, | 
|  | bytenr >> fs_info->sectorsize_bits); | 
|  | rcu_read_unlock(); | 
|  | ASSERT(eb); | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after a readpage IO is done, we need to: | 
|  | * clear the uptodate bits on error | 
|  | * set the uptodate bits if things worked | 
|  | * set the page up to date if all extents in the tree are uptodate | 
|  | * clear the lock bit in the extent tree | 
|  | * unlock the page if there are no other extents locked for it | 
|  | * | 
|  | * Scheduling is not allowed, so the extent state tree is expected | 
|  | * to have one and only one object corresponding to this IO. | 
|  | */ | 
|  | static void end_bio_extent_readpage(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct bio *bio = &bbio->bio; | 
|  | struct bio_vec *bvec; | 
|  | struct processed_extent processed = { 0 }; | 
|  | /* | 
|  | * The offset to the beginning of a bio, since one bio can never be | 
|  | * larger than UINT_MAX, u32 here is enough. | 
|  | */ | 
|  | u32 bio_offset = 0; | 
|  | int mirror; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | bool uptodate = !bio->bi_status; | 
|  | struct page *page = bvec->bv_page; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | unsigned int error_bitmap = (unsigned int)-1; | 
|  | bool repair = false; | 
|  | u64 start; | 
|  | u64 end; | 
|  | u32 len; | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", | 
|  | bio->bi_iter.bi_sector, bio->bi_status, | 
|  | bbio->mirror_num); | 
|  |  | 
|  | /* | 
|  | * We always issue full-sector reads, but if some block in a | 
|  | * page fails to read, blk_update_request() will advance | 
|  | * bv_offset and adjust bv_len to compensate.  Print a warning | 
|  | * for unaligned offsets, and an error if they don't add up to | 
|  | * a full sector. | 
|  | */ | 
|  | if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) | 
|  | btrfs_err(fs_info, | 
|  | "partial page read in btrfs with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  | else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, | 
|  | sectorsize)) | 
|  | btrfs_info(fs_info, | 
|  | "incomplete page read with offset %u and length %u", | 
|  | bvec->bv_offset, bvec->bv_len); | 
|  |  | 
|  | start = page_offset(page) + bvec->bv_offset; | 
|  | end = start + bvec->bv_len - 1; | 
|  | len = bvec->bv_len; | 
|  |  | 
|  | mirror = bbio->mirror_num; | 
|  | if (likely(uptodate)) { | 
|  | if (is_data_inode(inode)) { | 
|  | error_bitmap = btrfs_verify_data_csum(bbio, | 
|  | bio_offset, page, start, end); | 
|  | if (error_bitmap) | 
|  | uptodate = false; | 
|  | } else { | 
|  | if (btrfs_validate_metadata_buffer(bbio, | 
|  | page, start, end, mirror)) | 
|  | uptodate = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(uptodate)) { | 
|  | loff_t i_size = i_size_read(inode); | 
|  | pgoff_t end_index = i_size >> PAGE_SHIFT; | 
|  |  | 
|  | btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0); | 
|  |  | 
|  | /* | 
|  | * Zero out the remaining part if this range straddles | 
|  | * i_size. | 
|  | * | 
|  | * Here we should only zero the range inside the bvec, | 
|  | * not touch anything else. | 
|  | * | 
|  | * NOTE: i_size is exclusive while end is inclusive. | 
|  | */ | 
|  | if (page->index == end_index && i_size <= end) { | 
|  | u32 zero_start = max(offset_in_page(i_size), | 
|  | offset_in_page(start)); | 
|  |  | 
|  | zero_user_segment(page, zero_start, | 
|  | offset_in_page(end) + 1); | 
|  | } | 
|  | } else if (is_data_inode(inode)) { | 
|  | /* | 
|  | * Only try to repair bios that actually made it to a | 
|  | * device.  If the bio failed to be submitted mirror | 
|  | * is 0 and we need to fail it without retrying. | 
|  | * | 
|  | * This also includes the high level bios for compressed | 
|  | * extents - these never make it to a device and repair | 
|  | * is already handled on the lower compressed bio. | 
|  | */ | 
|  | if (mirror > 0) | 
|  | repair = true; | 
|  | } else { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = find_extent_buffer_readpage(fs_info, page, start); | 
|  | set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
|  | eb->read_mirror = mirror; | 
|  | atomic_dec(&eb->io_pages); | 
|  | } | 
|  |  | 
|  | if (repair) { | 
|  | /* | 
|  | * submit_data_read_repair() will handle all the good | 
|  | * and bad sectors, we just continue to the next bvec. | 
|  | */ | 
|  | submit_data_read_repair(inode, bbio, bio_offset, bvec, | 
|  | error_bitmap); | 
|  | } else { | 
|  | /* Update page status and unlock */ | 
|  | end_page_read(page, uptodate, start, len); | 
|  | endio_readpage_release_extent(&processed, BTRFS_I(inode), | 
|  | start, end, PageUptodate(page)); | 
|  | } | 
|  |  | 
|  | ASSERT(bio_offset + len > bio_offset); | 
|  | bio_offset += len; | 
|  |  | 
|  | } | 
|  | /* Release the last extent */ | 
|  | endio_readpage_release_extent(&processed, NULL, 0, 0, false); | 
|  | btrfs_bio_free_csum(bbio); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Populate every free slot in a provided array with pages. | 
|  | * | 
|  | * @nr_pages:   number of pages to allocate | 
|  | * @page_array: the array to fill with pages; any existing non-null entries in | 
|  | * 		the array will be skipped | 
|  | * | 
|  | * Return: 0        if all pages were able to be allocated; | 
|  | *         -ENOMEM  otherwise, and the caller is responsible for freeing all | 
|  | *                  non-null page pointers in the array. | 
|  | */ | 
|  | int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) | 
|  | { | 
|  | unsigned int allocated; | 
|  |  | 
|  | for (allocated = 0; allocated < nr_pages;) { | 
|  | unsigned int last = allocated; | 
|  |  | 
|  | allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); | 
|  |  | 
|  | if (allocated == nr_pages) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * During this iteration, no page could be allocated, even | 
|  | * though alloc_pages_bulk_array() falls back to alloc_page() | 
|  | * if  it could not bulk-allocate. So we must be out of memory. | 
|  | */ | 
|  | if (allocated == last) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memalloc_retry_wait(GFP_NOFS); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Attempt to add a page to bio | 
|  | * | 
|  | * @bio_ctrl:	record both the bio, and its bio_flags | 
|  | * @page:	page to add to the bio | 
|  | * @disk_bytenr:  offset of the new bio or to check whether we are adding | 
|  | *                a contiguous page to the previous one | 
|  | * @size:	portion of page that we want to write | 
|  | * @pg_offset:	starting offset in the page | 
|  | * @compress_type:   compression type of the current bio to see if we can merge them | 
|  | * | 
|  | * Attempt to add a page to bio considering stripe alignment etc. | 
|  | * | 
|  | * Return >= 0 for the number of bytes added to the bio. | 
|  | * Can return 0 if the current bio is already at stripe/zone boundary. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, | 
|  | struct page *page, | 
|  | u64 disk_bytenr, unsigned int size, | 
|  | unsigned int pg_offset, | 
|  | enum btrfs_compression_type compress_type) | 
|  | { | 
|  | struct bio *bio = bio_ctrl->bio; | 
|  | u32 bio_size = bio->bi_iter.bi_size; | 
|  | u32 real_size; | 
|  | const sector_t sector = disk_bytenr >> SECTOR_SHIFT; | 
|  | bool contig = false; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(bio); | 
|  | /* The limit should be calculated when bio_ctrl->bio is allocated */ | 
|  | ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); | 
|  | if (bio_ctrl->compress_type != compress_type) | 
|  | return 0; | 
|  |  | 
|  |  | 
|  | if (bio->bi_iter.bi_size == 0) { | 
|  | /* We can always add a page into an empty bio. */ | 
|  | contig = true; | 
|  | } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { | 
|  | struct bio_vec *bvec = bio_last_bvec_all(bio); | 
|  |  | 
|  | /* | 
|  | * The contig check requires the following conditions to be met: | 
|  | * 1) The pages are belonging to the same inode | 
|  | *    This is implied by the call chain. | 
|  | * | 
|  | * 2) The range has adjacent logical bytenr | 
|  | * | 
|  | * 3) The range has adjacent file offset | 
|  | *    This is required for the usage of btrfs_bio->file_offset. | 
|  | */ | 
|  | if (bio_end_sector(bio) == sector && | 
|  | page_offset(bvec->bv_page) + bvec->bv_offset + | 
|  | bvec->bv_len == page_offset(page) + pg_offset) | 
|  | contig = true; | 
|  | } else { | 
|  | /* | 
|  | * For compression, all IO should have its logical bytenr | 
|  | * set to the starting bytenr of the compressed extent. | 
|  | */ | 
|  | contig = bio->bi_iter.bi_sector == sector; | 
|  | } | 
|  |  | 
|  | if (!contig) | 
|  | return 0; | 
|  |  | 
|  | real_size = min(bio_ctrl->len_to_oe_boundary, | 
|  | bio_ctrl->len_to_stripe_boundary) - bio_size; | 
|  | real_size = min(real_size, size); | 
|  |  | 
|  | /* | 
|  | * If real_size is 0, never call bio_add_*_page(), as even size is 0, | 
|  | * bio will still execute its endio function on the page! | 
|  | */ | 
|  | if (real_size == 0) | 
|  | return 0; | 
|  |  | 
|  | if (bio_op(bio) == REQ_OP_ZONE_APPEND) | 
|  | ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); | 
|  | else | 
|  | ret = bio_add_page(bio, page, real_size, pg_offset); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, | 
|  | struct btrfs_inode *inode, u64 file_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_io_geometry geom; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct extent_map *em; | 
|  | u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Pages for compressed extent are never submitted to disk directly, | 
|  | * thus it has no real boundary, just set them to U32_MAX. | 
|  | * | 
|  | * The split happens for real compressed bio, which happens in | 
|  | * btrfs_submit_compressed_read/write(). | 
|  | */ | 
|  | if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { | 
|  | bio_ctrl->len_to_oe_boundary = U32_MAX; | 
|  | bio_ctrl->len_to_stripe_boundary = U32_MAX; | 
|  | return 0; | 
|  | } | 
|  | em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  | ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), | 
|  | logical, &geom); | 
|  | free_extent_map(em); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | if (geom.len > U32_MAX) | 
|  | bio_ctrl->len_to_stripe_boundary = U32_MAX; | 
|  | else | 
|  | bio_ctrl->len_to_stripe_boundary = (u32)geom.len; | 
|  |  | 
|  | if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { | 
|  | bio_ctrl->len_to_oe_boundary = U32_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Ordered extent not yet created, so we're good */ | 
|  | ordered = btrfs_lookup_ordered_extent(inode, file_offset); | 
|  | if (!ordered) { | 
|  | bio_ctrl->len_to_oe_boundary = U32_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, | 
|  | ordered->disk_bytenr + ordered->disk_num_bytes - logical); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int alloc_new_bio(struct btrfs_inode *inode, | 
|  | struct btrfs_bio_ctrl *bio_ctrl, | 
|  | struct writeback_control *wbc, | 
|  | blk_opf_t opf, | 
|  | u64 disk_bytenr, u32 offset, u64 file_offset, | 
|  | enum btrfs_compression_type compress_type) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct bio *bio; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(bio_ctrl->end_io_func); | 
|  |  | 
|  | bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL); | 
|  | /* | 
|  | * For compressed page range, its disk_bytenr is always @disk_bytenr | 
|  | * passed in, no matter if we have added any range into previous bio. | 
|  | */ | 
|  | if (compress_type != BTRFS_COMPRESS_NONE) | 
|  | bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; | 
|  | else | 
|  | bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; | 
|  | bio_ctrl->bio = bio; | 
|  | bio_ctrl->compress_type = compress_type; | 
|  | ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | if (wbc) { | 
|  | /* | 
|  | * For Zone append we need the correct block_device that we are | 
|  | * going to write to set in the bio to be able to respect the | 
|  | * hardware limitation.  Look it up here: | 
|  | */ | 
|  | if (bio_op(bio) == REQ_OP_ZONE_APPEND) { | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | dev = btrfs_zoned_get_device(fs_info, disk_bytenr, | 
|  | fs_info->sectorsize); | 
|  | if (IS_ERR(dev)) { | 
|  | ret = PTR_ERR(dev); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | bio_set_dev(bio, dev->bdev); | 
|  | } else { | 
|  | /* | 
|  | * Otherwise pick the last added device to support | 
|  | * cgroup writeback.  For multi-device file systems this | 
|  | * means blk-cgroup policies have to always be set on the | 
|  | * last added/replaced device.  This is a bit odd but has | 
|  | * been like that for a long time. | 
|  | */ | 
|  | bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); | 
|  | } | 
|  | wbc_init_bio(wbc, bio); | 
|  | } else { | 
|  | ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); | 
|  | } | 
|  | return 0; | 
|  | error: | 
|  | bio_ctrl->bio = NULL; | 
|  | btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @opf:	bio REQ_OP_* and REQ_* flags as one value | 
|  | * @wbc:	optional writeback control for io accounting | 
|  | * @disk_bytenr: logical bytenr where the write will be | 
|  | * @page:	page to add to the bio | 
|  | * @size:	portion of page that we want to write to | 
|  | * @pg_offset:	offset of the new bio or to check whether we are adding | 
|  | *              a contiguous page to the previous one | 
|  | * @compress_type:   compress type for current bio | 
|  | * | 
|  | * The will either add the page into the existing @bio_ctrl->bio, or allocate a | 
|  | * new one in @bio_ctrl->bio. | 
|  | * The mirror number for this IO should already be initizlied in | 
|  | * @bio_ctrl->mirror_num. | 
|  | */ | 
|  | static int submit_extent_page(blk_opf_t opf, | 
|  | struct writeback_control *wbc, | 
|  | struct btrfs_bio_ctrl *bio_ctrl, | 
|  | u64 disk_bytenr, struct page *page, | 
|  | size_t size, unsigned long pg_offset, | 
|  | enum btrfs_compression_type compress_type, | 
|  | bool force_bio_submit) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
|  | unsigned int cur = pg_offset; | 
|  |  | 
|  | ASSERT(bio_ctrl); | 
|  |  | 
|  | ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && | 
|  | pg_offset + size <= PAGE_SIZE); | 
|  |  | 
|  | ASSERT(bio_ctrl->end_io_func); | 
|  |  | 
|  | if (force_bio_submit) | 
|  | submit_one_bio(bio_ctrl); | 
|  |  | 
|  | while (cur < pg_offset + size) { | 
|  | u32 offset = cur - pg_offset; | 
|  | int added; | 
|  |  | 
|  | /* Allocate new bio if needed */ | 
|  | if (!bio_ctrl->bio) { | 
|  | ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, | 
|  | disk_bytenr, offset, | 
|  | page_offset(page) + cur, | 
|  | compress_type); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | /* | 
|  | * We must go through btrfs_bio_add_page() to ensure each | 
|  | * page range won't cross various boundaries. | 
|  | */ | 
|  | if (compress_type != BTRFS_COMPRESS_NONE) | 
|  | added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, | 
|  | size - offset, pg_offset + offset, | 
|  | compress_type); | 
|  | else | 
|  | added = btrfs_bio_add_page(bio_ctrl, page, | 
|  | disk_bytenr + offset, size - offset, | 
|  | pg_offset + offset, compress_type); | 
|  |  | 
|  | /* Metadata page range should never be split */ | 
|  | if (!is_data_inode(&inode->vfs_inode)) | 
|  | ASSERT(added == 0 || added == size - offset); | 
|  |  | 
|  | /* At least we added some page, update the account */ | 
|  | if (wbc && added) | 
|  | wbc_account_cgroup_owner(wbc, page, added); | 
|  |  | 
|  | /* We have reached boundary, submit right now */ | 
|  | if (added < size - offset) { | 
|  | /* The bio should contain some page(s) */ | 
|  | ASSERT(bio_ctrl->bio->bi_iter.bi_size); | 
|  | submit_one_bio(bio_ctrl); | 
|  | } | 
|  | cur += added; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int attach_extent_buffer_page(struct extent_buffer *eb, | 
|  | struct page *page, | 
|  | struct btrfs_subpage *prealloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If the page is mapped to btree inode, we should hold the private | 
|  | * lock to prevent race. | 
|  | * For cloned or dummy extent buffers, their pages are not mapped and | 
|  | * will not race with any other ebs. | 
|  | */ | 
|  | if (page->mapping) | 
|  | lockdep_assert_held(&page->mapping->private_lock); | 
|  |  | 
|  | if (fs_info->nodesize >= PAGE_SIZE) { | 
|  | if (!PagePrivate(page)) | 
|  | attach_page_private(page, eb); | 
|  | else | 
|  | WARN_ON(page->private != (unsigned long)eb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Already mapped, just free prealloc */ | 
|  | if (PagePrivate(page)) { | 
|  | btrfs_free_subpage(prealloc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (prealloc) | 
|  | /* Has preallocated memory for subpage */ | 
|  | attach_page_private(page, prealloc); | 
|  | else | 
|  | /* Do new allocation to attach subpage */ | 
|  | ret = btrfs_attach_subpage(fs_info, page, | 
|  | BTRFS_SUBPAGE_METADATA); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int set_page_extent_mapped(struct page *page) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | ASSERT(page->mapping); | 
|  |  | 
|  | if (PagePrivate(page)) | 
|  | return 0; | 
|  |  | 
|  | fs_info = btrfs_sb(page->mapping->host->i_sb); | 
|  |  | 
|  | if (btrfs_is_subpage(fs_info, page)) | 
|  | return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); | 
|  |  | 
|  | attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void clear_page_extent_mapped(struct page *page) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | ASSERT(page->mapping); | 
|  |  | 
|  | if (!PagePrivate(page)) | 
|  | return; | 
|  |  | 
|  | fs_info = btrfs_sb(page->mapping->host->i_sb); | 
|  | if (btrfs_is_subpage(fs_info, page)) | 
|  | return btrfs_detach_subpage(fs_info, page); | 
|  |  | 
|  | detach_page_private(page); | 
|  | } | 
|  |  | 
|  | static struct extent_map * | 
|  | __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, | 
|  | u64 start, u64 len, struct extent_map **em_cached) | 
|  | { | 
|  | struct extent_map *em; | 
|  |  | 
|  | if (em_cached && *em_cached) { | 
|  | em = *em_cached; | 
|  | if (extent_map_in_tree(em) && start >= em->start && | 
|  | start < extent_map_end(em)) { | 
|  | refcount_inc(&em->refs); | 
|  | return em; | 
|  | } | 
|  |  | 
|  | free_extent_map(em); | 
|  | *em_cached = NULL; | 
|  | } | 
|  |  | 
|  | em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); | 
|  | if (em_cached && !IS_ERR(em)) { | 
|  | BUG_ON(*em_cached); | 
|  | refcount_inc(&em->refs); | 
|  | *em_cached = em; | 
|  | } | 
|  | return em; | 
|  | } | 
|  | /* | 
|  | * basic readpage implementation.  Locked extent state structs are inserted | 
|  | * into the tree that are removed when the IO is done (by the end_io | 
|  | * handlers) | 
|  | * XXX JDM: This needs looking at to ensure proper page locking | 
|  | * return 0 on success, otherwise return error | 
|  | */ | 
|  | static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, | 
|  | struct btrfs_bio_ctrl *bio_ctrl, | 
|  | blk_opf_t read_flags, u64 *prev_em_start) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | u64 start = page_offset(page); | 
|  | const u64 end = start + PAGE_SIZE - 1; | 
|  | u64 cur = start; | 
|  | u64 extent_offset; | 
|  | u64 last_byte = i_size_read(inode); | 
|  | u64 block_start; | 
|  | struct extent_map *em; | 
|  | int ret = 0; | 
|  | size_t pg_offset = 0; | 
|  | size_t iosize; | 
|  | size_t blocksize = inode->i_sb->s_blocksize; | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  |  | 
|  | ret = set_page_extent_mapped(page); | 
|  | if (ret < 0) { | 
|  | unlock_extent(tree, start, end, NULL); | 
|  | btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); | 
|  | unlock_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (page->index == last_byte >> PAGE_SHIFT) { | 
|  | size_t zero_offset = offset_in_page(last_byte); | 
|  |  | 
|  | if (zero_offset) { | 
|  | iosize = PAGE_SIZE - zero_offset; | 
|  | memzero_page(page, zero_offset, iosize); | 
|  | } | 
|  | } | 
|  | bio_ctrl->end_io_func = end_bio_extent_readpage; | 
|  | begin_page_read(fs_info, page); | 
|  | while (cur <= end) { | 
|  | unsigned long this_bio_flag = 0; | 
|  | bool force_bio_submit = false; | 
|  | u64 disk_bytenr; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); | 
|  | if (cur >= last_byte) { | 
|  | struct extent_state *cached = NULL; | 
|  |  | 
|  | iosize = PAGE_SIZE - pg_offset; | 
|  | memzero_page(page, pg_offset, iosize); | 
|  | set_extent_uptodate(tree, cur, cur + iosize - 1, | 
|  | &cached, GFP_NOFS); | 
|  | unlock_extent(tree, cur, cur + iosize - 1, &cached); | 
|  | end_page_read(page, true, cur, iosize); | 
|  | break; | 
|  | } | 
|  | em = __get_extent_map(inode, page, pg_offset, cur, | 
|  | end - cur + 1, em_cached); | 
|  | if (IS_ERR(em)) { | 
|  | unlock_extent(tree, cur, end, NULL); | 
|  | end_page_read(page, false, cur, end + 1 - cur); | 
|  | ret = PTR_ERR(em); | 
|  | break; | 
|  | } | 
|  | extent_offset = cur - em->start; | 
|  | BUG_ON(extent_map_end(em) <= cur); | 
|  | BUG_ON(end < cur); | 
|  |  | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
|  | this_bio_flag = em->compress_type; | 
|  |  | 
|  | iosize = min(extent_map_end(em) - cur, end - cur + 1); | 
|  | iosize = ALIGN(iosize, blocksize); | 
|  | if (this_bio_flag != BTRFS_COMPRESS_NONE) | 
|  | disk_bytenr = em->block_start; | 
|  | else | 
|  | disk_bytenr = em->block_start + extent_offset; | 
|  | block_start = em->block_start; | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | block_start = EXTENT_MAP_HOLE; | 
|  |  | 
|  | /* | 
|  | * If we have a file range that points to a compressed extent | 
|  | * and it's followed by a consecutive file range that points | 
|  | * to the same compressed extent (possibly with a different | 
|  | * offset and/or length, so it either points to the whole extent | 
|  | * or only part of it), we must make sure we do not submit a | 
|  | * single bio to populate the pages for the 2 ranges because | 
|  | * this makes the compressed extent read zero out the pages | 
|  | * belonging to the 2nd range. Imagine the following scenario: | 
|  | * | 
|  | *  File layout | 
|  | *  [0 - 8K]                     [8K - 24K] | 
|  | *    |                               | | 
|  | *    |                               | | 
|  | * points to extent X,         points to extent X, | 
|  | * offset 4K, length of 8K     offset 0, length 16K | 
|  | * | 
|  | * [extent X, compressed length = 4K uncompressed length = 16K] | 
|  | * | 
|  | * If the bio to read the compressed extent covers both ranges, | 
|  | * it will decompress extent X into the pages belonging to the | 
|  | * first range and then it will stop, zeroing out the remaining | 
|  | * pages that belong to the other range that points to extent X. | 
|  | * So here we make sure we submit 2 bios, one for the first | 
|  | * range and another one for the third range. Both will target | 
|  | * the same physical extent from disk, but we can't currently | 
|  | * make the compressed bio endio callback populate the pages | 
|  | * for both ranges because each compressed bio is tightly | 
|  | * coupled with a single extent map, and each range can have | 
|  | * an extent map with a different offset value relative to the | 
|  | * uncompressed data of our extent and different lengths. This | 
|  | * is a corner case so we prioritize correctness over | 
|  | * non-optimal behavior (submitting 2 bios for the same extent). | 
|  | */ | 
|  | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && | 
|  | prev_em_start && *prev_em_start != (u64)-1 && | 
|  | *prev_em_start != em->start) | 
|  | force_bio_submit = true; | 
|  |  | 
|  | if (prev_em_start) | 
|  | *prev_em_start = em->start; | 
|  |  | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | /* we've found a hole, just zero and go on */ | 
|  | if (block_start == EXTENT_MAP_HOLE) { | 
|  | struct extent_state *cached = NULL; | 
|  |  | 
|  | memzero_page(page, pg_offset, iosize); | 
|  |  | 
|  | set_extent_uptodate(tree, cur, cur + iosize - 1, | 
|  | &cached, GFP_NOFS); | 
|  | unlock_extent(tree, cur, cur + iosize - 1, &cached); | 
|  | end_page_read(page, true, cur, iosize); | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | continue; | 
|  | } | 
|  | /* the get_extent function already copied into the page */ | 
|  | if (block_start == EXTENT_MAP_INLINE) { | 
|  | unlock_extent(tree, cur, cur + iosize - 1, NULL); | 
|  | end_page_read(page, true, cur, iosize); | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, | 
|  | bio_ctrl, disk_bytenr, page, iosize, | 
|  | pg_offset, this_bio_flag, | 
|  | force_bio_submit); | 
|  | if (ret) { | 
|  | /* | 
|  | * We have to unlock the remaining range, or the page | 
|  | * will never be unlocked. | 
|  | */ | 
|  | unlock_extent(tree, cur, end, NULL); | 
|  | end_page_read(page, false, cur, end + 1 - cur); | 
|  | goto out; | 
|  | } | 
|  | cur = cur + iosize; | 
|  | pg_offset += iosize; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_read_folio(struct file *file, struct folio *folio) | 
|  | { | 
|  | struct page *page = &folio->page; | 
|  | struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { 0 }; | 
|  | int ret; | 
|  |  | 
|  | btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); | 
|  |  | 
|  | ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); | 
|  | /* | 
|  | * If btrfs_do_readpage() failed we will want to submit the assembled | 
|  | * bio to do the cleanup. | 
|  | */ | 
|  | submit_one_bio(&bio_ctrl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void contiguous_readpages(struct page *pages[], int nr_pages, | 
|  | u64 start, u64 end, | 
|  | struct extent_map **em_cached, | 
|  | struct btrfs_bio_ctrl *bio_ctrl, | 
|  | u64 *prev_em_start) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); | 
|  | int index; | 
|  |  | 
|  | btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); | 
|  |  | 
|  | for (index = 0; index < nr_pages; index++) { | 
|  | btrfs_do_readpage(pages[index], em_cached, bio_ctrl, | 
|  | REQ_RAHEAD, prev_em_start); | 
|  | put_page(pages[index]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for __extent_writepage, doing all of the delayed allocation setup. | 
|  | * | 
|  | * This returns 1 if btrfs_run_delalloc_range function did all the work required | 
|  | * to write the page (copy into inline extent).  In this case the IO has | 
|  | * been started and the page is already unlocked. | 
|  | * | 
|  | * This returns 0 if all went well (page still locked) | 
|  | * This returns < 0 if there were errors (page still locked) | 
|  | */ | 
|  | static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, | 
|  | struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | const u64 page_end = page_offset(page) + PAGE_SIZE - 1; | 
|  | u64 delalloc_start = page_offset(page); | 
|  | u64 delalloc_to_write = 0; | 
|  | /* How many pages are started by btrfs_run_delalloc_range() */ | 
|  | unsigned long nr_written = 0; | 
|  | int ret; | 
|  | int page_started = 0; | 
|  |  | 
|  | while (delalloc_start < page_end) { | 
|  | u64 delalloc_end = page_end; | 
|  | bool found; | 
|  |  | 
|  | found = find_lock_delalloc_range(&inode->vfs_inode, page, | 
|  | &delalloc_start, | 
|  | &delalloc_end); | 
|  | if (!found) { | 
|  | delalloc_start = delalloc_end + 1; | 
|  | continue; | 
|  | } | 
|  | ret = btrfs_run_delalloc_range(inode, page, delalloc_start, | 
|  | delalloc_end, &page_started, &nr_written, wbc); | 
|  | if (ret) { | 
|  | btrfs_page_set_error(inode->root->fs_info, page, | 
|  | page_offset(page), PAGE_SIZE); | 
|  | return ret; | 
|  | } | 
|  | /* | 
|  | * delalloc_end is already one less than the total length, so | 
|  | * we don't subtract one from PAGE_SIZE | 
|  | */ | 
|  | delalloc_to_write += (delalloc_end - delalloc_start + | 
|  | PAGE_SIZE) >> PAGE_SHIFT; | 
|  | delalloc_start = delalloc_end + 1; | 
|  | } | 
|  | if (wbc->nr_to_write < delalloc_to_write) { | 
|  | int thresh = 8192; | 
|  |  | 
|  | if (delalloc_to_write < thresh * 2) | 
|  | thresh = delalloc_to_write; | 
|  | wbc->nr_to_write = min_t(u64, delalloc_to_write, | 
|  | thresh); | 
|  | } | 
|  |  | 
|  | /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ | 
|  | if (page_started) { | 
|  | /* | 
|  | * We've unlocked the page, so we can't update the mapping's | 
|  | * writeback index, just update nr_to_write. | 
|  | */ | 
|  | wbc->nr_to_write -= nr_written; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the first byte we need to write. | 
|  | * | 
|  | * For subpage, one page can contain several sectors, and | 
|  | * __extent_writepage_io() will just grab all extent maps in the page | 
|  | * range and try to submit all non-inline/non-compressed extents. | 
|  | * | 
|  | * This is a big problem for subpage, we shouldn't re-submit already written | 
|  | * data at all. | 
|  | * This function will lookup subpage dirty bit to find which range we really | 
|  | * need to submit. | 
|  | * | 
|  | * Return the next dirty range in [@start, @end). | 
|  | * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. | 
|  | */ | 
|  | static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, | 
|  | struct page *page, u64 *start, u64 *end) | 
|  | { | 
|  | struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; | 
|  | struct btrfs_subpage_info *spi = fs_info->subpage_info; | 
|  | u64 orig_start = *start; | 
|  | /* Declare as unsigned long so we can use bitmap ops */ | 
|  | unsigned long flags; | 
|  | int range_start_bit; | 
|  | int range_end_bit; | 
|  |  | 
|  | /* | 
|  | * For regular sector size == page size case, since one page only | 
|  | * contains one sector, we return the page offset directly. | 
|  | */ | 
|  | if (!btrfs_is_subpage(fs_info, page)) { | 
|  | *start = page_offset(page); | 
|  | *end = page_offset(page) + PAGE_SIZE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | range_start_bit = spi->dirty_offset + | 
|  | (offset_in_page(orig_start) >> fs_info->sectorsize_bits); | 
|  |  | 
|  | /* We should have the page locked, but just in case */ | 
|  | spin_lock_irqsave(&subpage->lock, flags); | 
|  | bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, | 
|  | spi->dirty_offset + spi->bitmap_nr_bits); | 
|  | spin_unlock_irqrestore(&subpage->lock, flags); | 
|  |  | 
|  | range_start_bit -= spi->dirty_offset; | 
|  | range_end_bit -= spi->dirty_offset; | 
|  |  | 
|  | *start = page_offset(page) + range_start_bit * fs_info->sectorsize; | 
|  | *end = page_offset(page) + range_end_bit * fs_info->sectorsize; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for __extent_writepage.  This calls the writepage start hooks, | 
|  | * and does the loop to map the page into extents and bios. | 
|  | * | 
|  | * We return 1 if the IO is started and the page is unlocked, | 
|  | * 0 if all went well (page still locked) | 
|  | * < 0 if there were errors (page still locked) | 
|  | */ | 
|  | static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, | 
|  | struct page *page, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd, | 
|  | loff_t i_size, | 
|  | int *nr_ret) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | u64 cur = page_offset(page); | 
|  | u64 end = cur + PAGE_SIZE - 1; | 
|  | u64 extent_offset; | 
|  | u64 block_start; | 
|  | struct extent_map *em; | 
|  | int saved_ret = 0; | 
|  | int ret = 0; | 
|  | int nr = 0; | 
|  | enum req_op op = REQ_OP_WRITE; | 
|  | const blk_opf_t write_flags = wbc_to_write_flags(wbc); | 
|  | bool has_error = false; | 
|  | bool compressed; | 
|  |  | 
|  | ret = btrfs_writepage_cow_fixup(page); | 
|  | if (ret) { | 
|  | /* Fixup worker will requeue */ | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we don't want to touch the inode after unlocking the page, | 
|  | * so we update the mapping writeback index now | 
|  | */ | 
|  | wbc->nr_to_write--; | 
|  |  | 
|  | epd->bio_ctrl.end_io_func = end_bio_extent_writepage; | 
|  | while (cur <= end) { | 
|  | u64 disk_bytenr; | 
|  | u64 em_end; | 
|  | u64 dirty_range_start = cur; | 
|  | u64 dirty_range_end; | 
|  | u32 iosize; | 
|  |  | 
|  | if (cur >= i_size) { | 
|  | btrfs_writepage_endio_finish_ordered(inode, page, cur, | 
|  | end, true); | 
|  | /* | 
|  | * This range is beyond i_size, thus we don't need to | 
|  | * bother writing back. | 
|  | * But we still need to clear the dirty subpage bit, or | 
|  | * the next time the page gets dirtied, we will try to | 
|  | * writeback the sectors with subpage dirty bits, | 
|  | * causing writeback without ordered extent. | 
|  | */ | 
|  | btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); | 
|  | break; | 
|  | } | 
|  |  | 
|  | find_next_dirty_byte(fs_info, page, &dirty_range_start, | 
|  | &dirty_range_end); | 
|  | if (cur < dirty_range_start) { | 
|  | cur = dirty_range_start; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); | 
|  | if (IS_ERR(em)) { | 
|  | btrfs_page_set_error(fs_info, page, cur, end - cur + 1); | 
|  | ret = PTR_ERR_OR_ZERO(em); | 
|  | has_error = true; | 
|  | if (!saved_ret) | 
|  | saved_ret = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | extent_offset = cur - em->start; | 
|  | em_end = extent_map_end(em); | 
|  | ASSERT(cur <= em_end); | 
|  | ASSERT(cur < end); | 
|  | ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); | 
|  | ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); | 
|  | block_start = em->block_start; | 
|  | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
|  | disk_bytenr = em->block_start + extent_offset; | 
|  |  | 
|  | /* | 
|  | * Note that em_end from extent_map_end() and dirty_range_end from | 
|  | * find_next_dirty_byte() are all exclusive | 
|  | */ | 
|  | iosize = min(min(em_end, end + 1), dirty_range_end) - cur; | 
|  |  | 
|  | if (btrfs_use_zone_append(inode, em->block_start)) | 
|  | op = REQ_OP_ZONE_APPEND; | 
|  |  | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | /* | 
|  | * compressed and inline extents are written through other | 
|  | * paths in the FS | 
|  | */ | 
|  | if (compressed || block_start == EXTENT_MAP_HOLE || | 
|  | block_start == EXTENT_MAP_INLINE) { | 
|  | if (compressed) | 
|  | nr++; | 
|  | else | 
|  | btrfs_writepage_endio_finish_ordered(inode, | 
|  | page, cur, cur + iosize - 1, true); | 
|  | btrfs_page_clear_dirty(fs_info, page, cur, iosize); | 
|  | cur += iosize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_set_range_writeback(inode, cur, cur + iosize - 1); | 
|  | if (!PageWriteback(page)) { | 
|  | btrfs_err(inode->root->fs_info, | 
|  | "page %lu not writeback, cur %llu end %llu", | 
|  | page->index, cur, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Although the PageDirty bit is cleared before entering this | 
|  | * function, subpage dirty bit is not cleared. | 
|  | * So clear subpage dirty bit here so next time we won't submit | 
|  | * page for range already written to disk. | 
|  | */ | 
|  | btrfs_page_clear_dirty(fs_info, page, cur, iosize); | 
|  |  | 
|  | ret = submit_extent_page(op | write_flags, wbc, | 
|  | &epd->bio_ctrl, disk_bytenr, | 
|  | page, iosize, | 
|  | cur - page_offset(page), | 
|  | 0, false); | 
|  | if (ret) { | 
|  | has_error = true; | 
|  | if (!saved_ret) | 
|  | saved_ret = ret; | 
|  |  | 
|  | btrfs_page_set_error(fs_info, page, cur, iosize); | 
|  | if (PageWriteback(page)) | 
|  | btrfs_page_clear_writeback(fs_info, page, cur, | 
|  | iosize); | 
|  | } | 
|  |  | 
|  | cur += iosize; | 
|  | nr++; | 
|  | } | 
|  | /* | 
|  | * If we finish without problem, we should not only clear page dirty, | 
|  | * but also empty subpage dirty bits | 
|  | */ | 
|  | if (!has_error) | 
|  | btrfs_page_assert_not_dirty(fs_info, page); | 
|  | else | 
|  | ret = saved_ret; | 
|  | *nr_ret = nr; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the writepage semantics are similar to regular writepage.  extent | 
|  | * records are inserted to lock ranges in the tree, and as dirty areas | 
|  | * are found, they are marked writeback.  Then the lock bits are removed | 
|  | * and the end_io handler clears the writeback ranges | 
|  | * | 
|  | * Return 0 if everything goes well. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int __extent_writepage(struct page *page, struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | const u64 page_start = page_offset(page); | 
|  | const u64 page_end = page_start + PAGE_SIZE - 1; | 
|  | int ret; | 
|  | int nr = 0; | 
|  | size_t pg_offset; | 
|  | loff_t i_size = i_size_read(inode); | 
|  | unsigned long end_index = i_size >> PAGE_SHIFT; | 
|  |  | 
|  | trace___extent_writepage(page, inode, wbc); | 
|  |  | 
|  | WARN_ON(!PageLocked(page)); | 
|  |  | 
|  | btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, | 
|  | page_offset(page), PAGE_SIZE); | 
|  |  | 
|  | pg_offset = offset_in_page(i_size); | 
|  | if (page->index > end_index || | 
|  | (page->index == end_index && !pg_offset)) { | 
|  | folio_invalidate(folio, 0, folio_size(folio)); | 
|  | folio_unlock(folio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (page->index == end_index) | 
|  | memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); | 
|  |  | 
|  | ret = set_page_extent_mapped(page); | 
|  | if (ret < 0) { | 
|  | SetPageError(page); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!epd->extent_locked) { | 
|  | ret = writepage_delalloc(BTRFS_I(inode), page, wbc); | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | if (ret) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, | 
|  | &nr); | 
|  | if (ret == 1) | 
|  | return 0; | 
|  |  | 
|  | done: | 
|  | if (nr == 0) { | 
|  | /* make sure the mapping tag for page dirty gets cleared */ | 
|  | set_page_writeback(page); | 
|  | end_page_writeback(page); | 
|  | } | 
|  | /* | 
|  | * Here we used to have a check for PageError() and then set @ret and | 
|  | * call end_extent_writepage(). | 
|  | * | 
|  | * But in fact setting @ret here will cause different error paths | 
|  | * between subpage and regular sectorsize. | 
|  | * | 
|  | * For regular page size, we never submit current page, but only add | 
|  | * current page to current bio. | 
|  | * The bio submission can only happen in next page. | 
|  | * Thus if we hit the PageError() branch, @ret is already set to | 
|  | * non-zero value and will not get updated for regular sectorsize. | 
|  | * | 
|  | * But for subpage case, it's possible we submit part of current page, | 
|  | * thus can get PageError() set by submitted bio of the same page, | 
|  | * while our @ret is still 0. | 
|  | * | 
|  | * So here we unify the behavior and don't set @ret. | 
|  | * Error can still be properly passed to higher layer as page will | 
|  | * be set error, here we just don't handle the IO failure. | 
|  | * | 
|  | * NOTE: This is just a hotfix for subpage. | 
|  | * The root fix will be properly ending ordered extent when we hit | 
|  | * an error during writeback. | 
|  | * | 
|  | * But that needs a bigger refactoring, as we not only need to grab the | 
|  | * submitted OE, but also need to know exactly at which bytenr we hit | 
|  | * the error. | 
|  | * Currently the full page based __extent_writepage_io() is not | 
|  | * capable of that. | 
|  | */ | 
|  | if (PageError(page)) | 
|  | end_extent_writepage(page, ret, page_start, page_end); | 
|  | if (epd->extent_locked) { | 
|  | /* | 
|  | * If epd->extent_locked, it's from extent_write_locked_range(), | 
|  | * the page can either be locked by lock_page() or | 
|  | * process_one_page(). | 
|  | * Let btrfs_page_unlock_writer() handle both cases. | 
|  | */ | 
|  | ASSERT(wbc); | 
|  | btrfs_page_unlock_writer(fs_info, page, wbc->range_start, | 
|  | wbc->range_end + 1 - wbc->range_start); | 
|  | } else { | 
|  | unlock_page(page); | 
|  | } | 
|  | ASSERT(ret <= 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void wait_on_extent_buffer_writeback(struct extent_buffer *eb) | 
|  | { | 
|  | wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | static void end_extent_buffer_writeback(struct extent_buffer *eb) | 
|  | { | 
|  | clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
|  | smp_mb__after_atomic(); | 
|  | wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock extent buffer status and pages for writeback. | 
|  | * | 
|  | * May try to flush write bio if we can't get the lock. | 
|  | * | 
|  | * Return  0 if the extent buffer doesn't need to be submitted. | 
|  | *           (E.g. the extent buffer is not dirty) | 
|  | * Return >0 is the extent buffer is submitted to bio. | 
|  | * Return <0 if something went wrong, no page is locked. | 
|  | */ | 
|  | static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int i, num_pages; | 
|  | int flush = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!btrfs_try_tree_write_lock(eb)) { | 
|  | submit_write_bio(epd, 0); | 
|  | flush = 1; | 
|  | btrfs_tree_lock(eb); | 
|  | } | 
|  |  | 
|  | if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { | 
|  | btrfs_tree_unlock(eb); | 
|  | if (!epd->sync_io) | 
|  | return 0; | 
|  | if (!flush) { | 
|  | submit_write_bio(epd, 0); | 
|  | flush = 1; | 
|  | } | 
|  | while (1) { | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | btrfs_tree_lock(eb); | 
|  | if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) | 
|  | break; | 
|  | btrfs_tree_unlock(eb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to do this to prevent races in people who check if the eb is | 
|  | * under IO since we can end up having no IO bits set for a short period | 
|  | * of time. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
|  | set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | -eb->len, | 
|  | fs_info->dirty_metadata_batch); | 
|  | ret = 1; | 
|  | } else { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | btrfs_tree_unlock(eb); | 
|  |  | 
|  | /* | 
|  | * Either we don't need to submit any tree block, or we're submitting | 
|  | * subpage eb. | 
|  | * Subpage metadata doesn't use page locking at all, so we can skip | 
|  | * the page locking. | 
|  | */ | 
|  | if (!ret || fs_info->nodesize < PAGE_SIZE) | 
|  | return ret; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | if (!trylock_page(p)) { | 
|  | if (!flush) { | 
|  | submit_write_bio(epd, 0); | 
|  | flush = 1; | 
|  | } | 
|  | lock_page(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | btrfs_page_set_error(fs_info, page, eb->start, eb->len); | 
|  | if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * A read may stumble upon this buffer later, make sure that it gets an | 
|  | * error and knows there was an error. | 
|  | */ | 
|  | clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * We need to set the mapping with the io error as well because a write | 
|  | * error will flip the file system readonly, and then syncfs() will | 
|  | * return a 0 because we are readonly if we don't modify the err seq for | 
|  | * the superblock. | 
|  | */ | 
|  | mapping_set_error(page->mapping, -EIO); | 
|  |  | 
|  | /* | 
|  | * If we error out, we should add back the dirty_metadata_bytes | 
|  | * to make it consistent. | 
|  | */ | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | eb->len, fs_info->dirty_metadata_batch); | 
|  |  | 
|  | /* | 
|  | * If writeback for a btree extent that doesn't belong to a log tree | 
|  | * failed, increment the counter transaction->eb_write_errors. | 
|  | * We do this because while the transaction is running and before it's | 
|  | * committing (when we call filemap_fdata[write|wait]_range against | 
|  | * the btree inode), we might have | 
|  | * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it | 
|  | * returns an error or an error happens during writeback, when we're | 
|  | * committing the transaction we wouldn't know about it, since the pages | 
|  | * can be no longer dirty nor marked anymore for writeback (if a | 
|  | * subsequent modification to the extent buffer didn't happen before the | 
|  | * transaction commit), which makes filemap_fdata[write|wait]_range not | 
|  | * able to find the pages tagged with SetPageError at transaction | 
|  | * commit time. So if this happens we must abort the transaction, | 
|  | * otherwise we commit a super block with btree roots that point to | 
|  | * btree nodes/leafs whose content on disk is invalid - either garbage | 
|  | * or the content of some node/leaf from a past generation that got | 
|  | * cowed or deleted and is no longer valid. | 
|  | * | 
|  | * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would | 
|  | * not be enough - we need to distinguish between log tree extents vs | 
|  | * non-log tree extents, and the next filemap_fdatawait_range() call | 
|  | * will catch and clear such errors in the mapping - and that call might | 
|  | * be from a log sync and not from a transaction commit. Also, checking | 
|  | * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is | 
|  | * not done and would not be reliable - the eb might have been released | 
|  | * from memory and reading it back again means that flag would not be | 
|  | * set (since it's a runtime flag, not persisted on disk). | 
|  | * | 
|  | * Using the flags below in the btree inode also makes us achieve the | 
|  | * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started | 
|  | * writeback for all dirty pages and before filemap_fdatawait_range() | 
|  | * is called, the writeback for all dirty pages had already finished | 
|  | * with errors - because we were not using AS_EIO/AS_ENOSPC, | 
|  | * filemap_fdatawait_range() would return success, as it could not know | 
|  | * that writeback errors happened (the pages were no longer tagged for | 
|  | * writeback). | 
|  | */ | 
|  | switch (eb->log_index) { | 
|  | case -1: | 
|  | set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); | 
|  | break; | 
|  | case 0: | 
|  | set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); | 
|  | break; | 
|  | case 1: | 
|  | set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); | 
|  | break; | 
|  | default: | 
|  | BUG(); /* unexpected, logic error */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The endio specific version which won't touch any unsafe spinlock in endio | 
|  | * context. | 
|  | */ | 
|  | static struct extent_buffer *find_extent_buffer_nolock( | 
|  | struct btrfs_fs_info *fs_info, u64 start) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | eb = radix_tree_lookup(&fs_info->buffer_radix, | 
|  | start >> fs_info->sectorsize_bits); | 
|  | if (eb && atomic_inc_not_zero(&eb->refs)) { | 
|  | rcu_read_unlock(); | 
|  | return eb; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The endio function for subpage extent buffer write. | 
|  | * | 
|  | * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() | 
|  | * after all extent buffers in the page has finished their writeback. | 
|  | */ | 
|  | static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct bio *bio = &bbio->bio; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct bio_vec *bvec; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); | 
|  | ASSERT(fs_info->nodesize < PAGE_SIZE); | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct page *page = bvec->bv_page; | 
|  | u64 bvec_start = page_offset(page) + bvec->bv_offset; | 
|  | u64 bvec_end = bvec_start + bvec->bv_len - 1; | 
|  | u64 cur_bytenr = bvec_start; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); | 
|  |  | 
|  | /* Iterate through all extent buffers in the range */ | 
|  | while (cur_bytenr <= bvec_end) { | 
|  | struct extent_buffer *eb; | 
|  | int done; | 
|  |  | 
|  | /* | 
|  | * Here we can't use find_extent_buffer(), as it may | 
|  | * try to lock eb->refs_lock, which is not safe in endio | 
|  | * context. | 
|  | */ | 
|  | eb = find_extent_buffer_nolock(fs_info, cur_bytenr); | 
|  | ASSERT(eb); | 
|  |  | 
|  | cur_bytenr = eb->start + eb->len; | 
|  |  | 
|  | ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); | 
|  | done = atomic_dec_and_test(&eb->io_pages); | 
|  | ASSERT(done); | 
|  |  | 
|  | if (bio->bi_status || | 
|  | test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { | 
|  | ClearPageUptodate(page); | 
|  | set_btree_ioerr(page, eb); | 
|  | } | 
|  |  | 
|  | btrfs_subpage_clear_writeback(fs_info, page, eb->start, | 
|  | eb->len); | 
|  | end_extent_buffer_writeback(eb); | 
|  | /* | 
|  | * free_extent_buffer() will grab spinlock which is not | 
|  | * safe in endio context. Thus here we manually dec | 
|  | * the ref. | 
|  | */ | 
|  | atomic_dec(&eb->refs); | 
|  | } | 
|  | } | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct bio *bio = &bbio->bio; | 
|  | struct bio_vec *bvec; | 
|  | struct extent_buffer *eb; | 
|  | int done; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct page *page = bvec->bv_page; | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | BUG_ON(!eb); | 
|  | done = atomic_dec_and_test(&eb->io_pages); | 
|  |  | 
|  | if (bio->bi_status || | 
|  | test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { | 
|  | ClearPageUptodate(page); | 
|  | set_btree_ioerr(page, eb); | 
|  | } | 
|  |  | 
|  | end_page_writeback(page); | 
|  |  | 
|  | if (!done) | 
|  | continue; | 
|  |  | 
|  | end_extent_buffer_writeback(eb); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void prepare_eb_write(struct extent_buffer *eb) | 
|  | { | 
|  | u32 nritems; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); | 
|  | atomic_set(&eb->io_pages, num_extent_pages(eb)); | 
|  |  | 
|  | /* Set btree blocks beyond nritems with 0 to avoid stale content */ | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | if (btrfs_header_level(eb) > 0) { | 
|  | end = btrfs_node_key_ptr_offset(nritems); | 
|  | memzero_extent_buffer(eb, end, eb->len - end); | 
|  | } else { | 
|  | /* | 
|  | * Leaf: | 
|  | * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 | 
|  | */ | 
|  | start = btrfs_item_nr_offset(nritems); | 
|  | end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); | 
|  | memzero_extent_buffer(eb, start, end - start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlike the work in write_one_eb(), we rely completely on extent locking. | 
|  | * Page locking is only utilized at minimum to keep the VMM code happy. | 
|  | */ | 
|  | static int write_one_subpage_eb(struct extent_buffer *eb, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct page *page = eb->pages[0]; | 
|  | blk_opf_t write_flags = wbc_to_write_flags(wbc); | 
|  | bool no_dirty_ebs = false; | 
|  | int ret; | 
|  |  | 
|  | prepare_eb_write(eb); | 
|  |  | 
|  | /* clear_page_dirty_for_io() in subpage helper needs page locked */ | 
|  | lock_page(page); | 
|  | btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); | 
|  |  | 
|  | /* Check if this is the last dirty bit to update nr_written */ | 
|  | no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, | 
|  | eb->start, eb->len); | 
|  | if (no_dirty_ebs) | 
|  | clear_page_dirty_for_io(page); | 
|  |  | 
|  | epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage; | 
|  |  | 
|  | ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, | 
|  | &epd->bio_ctrl, eb->start, page, eb->len, | 
|  | eb->start - page_offset(page), 0, false); | 
|  | if (ret) { | 
|  | btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); | 
|  | set_btree_ioerr(page, eb); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (atomic_dec_and_test(&eb->io_pages)) | 
|  | end_extent_buffer_writeback(eb); | 
|  | return -EIO; | 
|  | } | 
|  | unlock_page(page); | 
|  | /* | 
|  | * Submission finished without problem, if no range of the page is | 
|  | * dirty anymore, we have submitted a page.  Update nr_written in wbc. | 
|  | */ | 
|  | if (no_dirty_ebs) | 
|  | wbc->nr_to_write--; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int write_one_eb(struct extent_buffer *eb, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | u64 disk_bytenr = eb->start; | 
|  | int i, num_pages; | 
|  | blk_opf_t write_flags = wbc_to_write_flags(wbc); | 
|  | int ret = 0; | 
|  |  | 
|  | prepare_eb_write(eb); | 
|  |  | 
|  | epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | clear_page_dirty_for_io(p); | 
|  | set_page_writeback(p); | 
|  | ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, | 
|  | &epd->bio_ctrl, disk_bytenr, p, | 
|  | PAGE_SIZE, 0, 0, false); | 
|  | if (ret) { | 
|  | set_btree_ioerr(p, eb); | 
|  | if (PageWriteback(p)) | 
|  | end_page_writeback(p); | 
|  | if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) | 
|  | end_extent_buffer_writeback(eb); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | disk_bytenr += PAGE_SIZE; | 
|  | wbc->nr_to_write--; | 
|  | unlock_page(p); | 
|  | } | 
|  |  | 
|  | if (unlikely(ret)) { | 
|  | for (; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  | clear_page_dirty_for_io(p); | 
|  | unlock_page(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit one subpage btree page. | 
|  | * | 
|  | * The main difference to submit_eb_page() is: | 
|  | * - Page locking | 
|  | *   For subpage, we don't rely on page locking at all. | 
|  | * | 
|  | * - Flush write bio | 
|  | *   We only flush bio if we may be unable to fit current extent buffers into | 
|  | *   current bio. | 
|  | * | 
|  | * Return >=0 for the number of submitted extent buffers. | 
|  | * Return <0 for fatal error. | 
|  | */ | 
|  | static int submit_eb_subpage(struct page *page, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
|  | int submitted = 0; | 
|  | u64 page_start = page_offset(page); | 
|  | int bit_start = 0; | 
|  | int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; | 
|  | int ret; | 
|  |  | 
|  | /* Lock and write each dirty extent buffers in the range */ | 
|  | while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { | 
|  | struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; | 
|  | struct extent_buffer *eb; | 
|  | unsigned long flags; | 
|  | u64 start; | 
|  |  | 
|  | /* | 
|  | * Take private lock to ensure the subpage won't be detached | 
|  | * in the meantime. | 
|  | */ | 
|  | spin_lock(&page->mapping->private_lock); | 
|  | if (!PagePrivate(page)) { | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | break; | 
|  | } | 
|  | spin_lock_irqsave(&subpage->lock, flags); | 
|  | if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, | 
|  | subpage->bitmaps)) { | 
|  | spin_unlock_irqrestore(&subpage->lock, flags); | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | bit_start++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | start = page_start + bit_start * fs_info->sectorsize; | 
|  | bit_start += sectors_per_node; | 
|  |  | 
|  | /* | 
|  | * Here we just want to grab the eb without touching extra | 
|  | * spin locks, so call find_extent_buffer_nolock(). | 
|  | */ | 
|  | eb = find_extent_buffer_nolock(fs_info, start); | 
|  | spin_unlock_irqrestore(&subpage->lock, flags); | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  |  | 
|  | /* | 
|  | * The eb has already reached 0 refs thus find_extent_buffer() | 
|  | * doesn't return it. We don't need to write back such eb | 
|  | * anyway. | 
|  | */ | 
|  | if (!eb) | 
|  | continue; | 
|  |  | 
|  | ret = lock_extent_buffer_for_io(eb, epd); | 
|  | if (ret == 0) { | 
|  | free_extent_buffer(eb); | 
|  | continue; | 
|  | } | 
|  | if (ret < 0) { | 
|  | free_extent_buffer(eb); | 
|  | goto cleanup; | 
|  | } | 
|  | ret = write_one_subpage_eb(eb, wbc, epd); | 
|  | free_extent_buffer(eb); | 
|  | if (ret < 0) | 
|  | goto cleanup; | 
|  | submitted++; | 
|  | } | 
|  | return submitted; | 
|  |  | 
|  | cleanup: | 
|  | /* We hit error, end bio for the submitted extent buffers */ | 
|  | submit_write_bio(epd, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit all page(s) of one extent buffer. | 
|  | * | 
|  | * @page:	the page of one extent buffer | 
|  | * @eb_context:	to determine if we need to submit this page, if current page | 
|  | *		belongs to this eb, we don't need to submit | 
|  | * | 
|  | * The caller should pass each page in their bytenr order, and here we use | 
|  | * @eb_context to determine if we have submitted pages of one extent buffer. | 
|  | * | 
|  | * If we have, we just skip until we hit a new page that doesn't belong to | 
|  | * current @eb_context. | 
|  | * | 
|  | * If not, we submit all the page(s) of the extent buffer. | 
|  | * | 
|  | * Return >0 if we have submitted the extent buffer successfully. | 
|  | * Return 0 if we don't need to submit the page, as it's already submitted by | 
|  | * previous call. | 
|  | * Return <0 for fatal error. | 
|  | */ | 
|  | static int submit_eb_page(struct page *page, struct writeback_control *wbc, | 
|  | struct extent_page_data *epd, | 
|  | struct extent_buffer **eb_context) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | struct btrfs_block_group *cache = NULL; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  |  | 
|  | if (!PagePrivate(page)) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) | 
|  | return submit_eb_subpage(page, wbc, epd); | 
|  |  | 
|  | spin_lock(&mapping->private_lock); | 
|  | if (!PagePrivate(page)) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  |  | 
|  | /* | 
|  | * Shouldn't happen and normally this would be a BUG_ON but no point | 
|  | * crashing the machine for something we can survive anyway. | 
|  | */ | 
|  | if (WARN_ON(!eb)) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (eb == *eb_context) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | return 0; | 
|  | } | 
|  | ret = atomic_inc_not_zero(&eb->refs); | 
|  | spin_unlock(&mapping->private_lock); | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { | 
|  | /* | 
|  | * If for_sync, this hole will be filled with | 
|  | * trasnsaction commit. | 
|  | */ | 
|  | if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) | 
|  | ret = -EAGAIN; | 
|  | else | 
|  | ret = 0; | 
|  | free_extent_buffer(eb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *eb_context = eb; | 
|  |  | 
|  | ret = lock_extent_buffer_for_io(eb, epd); | 
|  | if (ret <= 0) { | 
|  | btrfs_revert_meta_write_pointer(cache, eb); | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | free_extent_buffer(eb); | 
|  | return ret; | 
|  | } | 
|  | if (cache) { | 
|  | /* | 
|  | * Implies write in zoned mode. Mark the last eb in a block group. | 
|  | */ | 
|  | btrfs_schedule_zone_finish_bg(cache, eb); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  | ret = write_one_eb(eb, wbc, epd); | 
|  | free_extent_buffer(eb); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int btree_write_cache_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct extent_buffer *eb_context = NULL; | 
|  | struct extent_page_data epd = { | 
|  | .bio_ctrl = { 0 }, | 
|  | .extent_locked = 0, | 
|  | .sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
|  | }; | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int nr_to_write_done = 0; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | pgoff_t index; | 
|  | pgoff_t end;		/* Inclusive */ | 
|  | int scanned = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | if (wbc->range_cyclic) { | 
|  | index = mapping->writeback_index; /* Start from prev offset */ | 
|  | end = -1; | 
|  | /* | 
|  | * Start from the beginning does not need to cycle over the | 
|  | * range, mark it as scanned. | 
|  | */ | 
|  | scanned = (index == 0); | 
|  | } else { | 
|  | index = wbc->range_start >> PAGE_SHIFT; | 
|  | end = wbc->range_end >> PAGE_SHIFT; | 
|  | scanned = 1; | 
|  | } | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | btrfs_zoned_meta_io_lock(fs_info); | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | tag_pages_for_writeback(mapping, index, end); | 
|  | while (!done && !nr_to_write_done && (index <= end) && | 
|  | (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, | 
|  | tag))) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | ret = submit_eb_page(page, wbc, &epd, &eb_context); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The filesystem may choose to bump up nr_to_write. | 
|  | * We have to make sure to honor the new nr_to_write | 
|  | * at any time. | 
|  | */ | 
|  | nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && | 
|  | wbc->nr_to_write <= 0); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!scanned && !done) { | 
|  | /* | 
|  | * We hit the last page and there is more work to be done: wrap | 
|  | * back to the start of the file | 
|  | */ | 
|  | scanned = 1; | 
|  | index = 0; | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * If something went wrong, don't allow any metadata write bio to be | 
|  | * submitted. | 
|  | * | 
|  | * This would prevent use-after-free if we had dirty pages not | 
|  | * cleaned up, which can still happen by fuzzed images. | 
|  | * | 
|  | * - Bad extent tree | 
|  | *   Allowing existing tree block to be allocated for other trees. | 
|  | * | 
|  | * - Log tree operations | 
|  | *   Exiting tree blocks get allocated to log tree, bumps its | 
|  | *   generation, then get cleaned in tree re-balance. | 
|  | *   Such tree block will not be written back, since it's clean, | 
|  | *   thus no WRITTEN flag set. | 
|  | *   And after log writes back, this tree block is not traced by | 
|  | *   any dirty extent_io_tree. | 
|  | * | 
|  | * - Offending tree block gets re-dirtied from its original owner | 
|  | *   Since it has bumped generation, no WRITTEN flag, it can be | 
|  | *   reused without COWing. This tree block will not be traced | 
|  | *   by btrfs_transaction::dirty_pages. | 
|  | * | 
|  | *   Now such dirty tree block will not be cleaned by any dirty | 
|  | *   extent io tree. Thus we don't want to submit such wild eb | 
|  | *   if the fs already has error. | 
|  | * | 
|  | * We can get ret > 0 from submit_extent_page() indicating how many ebs | 
|  | * were submitted. Reset it to 0 to avoid false alerts for the caller. | 
|  | */ | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | if (!ret && BTRFS_FS_ERROR(fs_info)) | 
|  | ret = -EROFS; | 
|  | submit_write_bio(&epd, ret); | 
|  |  | 
|  | btrfs_zoned_meta_io_unlock(fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Walk the list of dirty pages of the given address space and write all of them. | 
|  | * | 
|  | * @mapping: address space structure to write | 
|  | * @wbc:     subtract the number of written pages from *@wbc->nr_to_write | 
|  | * @epd:     holds context for the write, namely the bio | 
|  | * | 
|  | * If a page is already under I/O, write_cache_pages() skips it, even | 
|  | * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
|  | * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
|  | * and msync() need to guarantee that all the data which was dirty at the time | 
|  | * the call was made get new I/O started against them.  If wbc->sync_mode is | 
|  | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
|  | * existing IO to complete. | 
|  | */ | 
|  | static int extent_write_cache_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc, | 
|  | struct extent_page_data *epd) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int nr_to_write_done = 0; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | pgoff_t index; | 
|  | pgoff_t end;		/* Inclusive */ | 
|  | pgoff_t done_index; | 
|  | int range_whole = 0; | 
|  | int scanned = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | /* | 
|  | * We have to hold onto the inode so that ordered extents can do their | 
|  | * work when the IO finishes.  The alternative to this is failing to add | 
|  | * an ordered extent if the igrab() fails there and that is a huge pain | 
|  | * to deal with, so instead just hold onto the inode throughout the | 
|  | * writepages operation.  If it fails here we are freeing up the inode | 
|  | * anyway and we'd rather not waste our time writing out stuff that is | 
|  | * going to be truncated anyway. | 
|  | */ | 
|  | if (!igrab(inode)) | 
|  | return 0; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | if (wbc->range_cyclic) { | 
|  | index = mapping->writeback_index; /* Start from prev offset */ | 
|  | end = -1; | 
|  | /* | 
|  | * Start from the beginning does not need to cycle over the | 
|  | * range, mark it as scanned. | 
|  | */ | 
|  | scanned = (index == 0); | 
|  | } else { | 
|  | index = wbc->range_start >> PAGE_SHIFT; | 
|  | end = wbc->range_end >> PAGE_SHIFT; | 
|  | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | range_whole = 1; | 
|  | scanned = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do the tagged writepage as long as the snapshot flush bit is set | 
|  | * and we are the first one who do the filemap_flush() on this inode. | 
|  | * | 
|  | * The nr_to_write == LONG_MAX is needed to make sure other flushers do | 
|  | * not race in and drop the bit. | 
|  | */ | 
|  | if (range_whole && wbc->nr_to_write == LONG_MAX && | 
|  | test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | wbc->tagged_writepages = 1; | 
|  |  | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag_pages_for_writeback(mapping, index, end); | 
|  | done_index = index; | 
|  | while (!done && !nr_to_write_done && (index <= end) && | 
|  | (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, | 
|  | &index, end, tag))) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | done_index = page->index + 1; | 
|  | /* | 
|  | * At this point we hold neither the i_pages lock nor | 
|  | * the page lock: the page may be truncated or | 
|  | * invalidated (changing page->mapping to NULL), | 
|  | * or even swizzled back from swapper_space to | 
|  | * tmpfs file mapping | 
|  | */ | 
|  | if (!trylock_page(page)) { | 
|  | submit_write_bio(epd, 0); | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (wbc->sync_mode != WB_SYNC_NONE) { | 
|  | if (PageWriteback(page)) | 
|  | submit_write_bio(epd, 0); | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  |  | 
|  | if (PageWriteback(page) || | 
|  | !clear_page_dirty_for_io(page)) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = __extent_writepage(page, wbc, epd); | 
|  | if (ret < 0) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the filesystem may choose to bump up nr_to_write. | 
|  | * We have to make sure to honor the new nr_to_write | 
|  | * at any time | 
|  | */ | 
|  | nr_to_write_done = wbc->nr_to_write <= 0; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!scanned && !done) { | 
|  | /* | 
|  | * We hit the last page and there is more work to be done: wrap | 
|  | * back to the start of the file | 
|  | */ | 
|  | scanned = 1; | 
|  | index = 0; | 
|  |  | 
|  | /* | 
|  | * If we're looping we could run into a page that is locked by a | 
|  | * writer and that writer could be waiting on writeback for a | 
|  | * page in our current bio, and thus deadlock, so flush the | 
|  | * write bio here. | 
|  | */ | 
|  | submit_write_bio(epd, 0); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) | 
|  | mapping->writeback_index = done_index; | 
|  |  | 
|  | btrfs_add_delayed_iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit the pages in the range to bio for call sites which delalloc range has | 
|  | * already been ran (aka, ordered extent inserted) and all pages are still | 
|  | * locked. | 
|  | */ | 
|  | int extent_write_locked_range(struct inode *inode, u64 start, u64 end) | 
|  | { | 
|  | bool found_error = false; | 
|  | int first_error = 0; | 
|  | int ret = 0; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct page *page; | 
|  | u64 cur = start; | 
|  | unsigned long nr_pages; | 
|  | const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; | 
|  | struct extent_page_data epd = { | 
|  | .bio_ctrl = { 0 }, | 
|  | .extent_locked = 1, | 
|  | .sync_io = 1, | 
|  | }; | 
|  | struct writeback_control wbc_writepages = { | 
|  | .sync_mode	= WB_SYNC_ALL, | 
|  | .range_start	= start, | 
|  | .range_end	= end + 1, | 
|  | /* We're called from an async helper function */ | 
|  | .punt_to_cgroup	= 1, | 
|  | .no_cgroup_owner = 1, | 
|  | }; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); | 
|  | nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> | 
|  | PAGE_SHIFT; | 
|  | wbc_writepages.nr_to_write = nr_pages * 2; | 
|  |  | 
|  | wbc_attach_fdatawrite_inode(&wbc_writepages, inode); | 
|  | while (cur <= end) { | 
|  | u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); | 
|  |  | 
|  | page = find_get_page(mapping, cur >> PAGE_SHIFT); | 
|  | /* | 
|  | * All pages in the range are locked since | 
|  | * btrfs_run_delalloc_range(), thus there is no way to clear | 
|  | * the page dirty flag. | 
|  | */ | 
|  | ASSERT(PageLocked(page)); | 
|  | ASSERT(PageDirty(page)); | 
|  | clear_page_dirty_for_io(page); | 
|  | ret = __extent_writepage(page, &wbc_writepages, &epd); | 
|  | ASSERT(ret <= 0); | 
|  | if (ret < 0) { | 
|  | found_error = true; | 
|  | first_error = ret; | 
|  | } | 
|  | put_page(page); | 
|  | cur = cur_end + 1; | 
|  | } | 
|  |  | 
|  | submit_write_bio(&epd, found_error ? ret : 0); | 
|  |  | 
|  | wbc_detach_inode(&wbc_writepages); | 
|  | if (found_error) | 
|  | return first_error; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int extent_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0; | 
|  | struct extent_page_data epd = { | 
|  | .bio_ctrl = { 0 }, | 
|  | .extent_locked = 0, | 
|  | .sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allow only a single thread to do the reloc work in zoned mode to | 
|  | * protect the write pointer updates. | 
|  | */ | 
|  | btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); | 
|  | ret = extent_write_cache_pages(mapping, wbc, &epd); | 
|  | submit_write_bio(&epd, ret); | 
|  | btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void extent_readahead(struct readahead_control *rac) | 
|  | { | 
|  | struct btrfs_bio_ctrl bio_ctrl = { 0 }; | 
|  | struct page *pagepool[16]; | 
|  | struct extent_map *em_cached = NULL; | 
|  | u64 prev_em_start = (u64)-1; | 
|  | int nr; | 
|  |  | 
|  | while ((nr = readahead_page_batch(rac, pagepool))) { | 
|  | u64 contig_start = readahead_pos(rac); | 
|  | u64 contig_end = contig_start + readahead_batch_length(rac) - 1; | 
|  |  | 
|  | contiguous_readpages(pagepool, nr, contig_start, contig_end, | 
|  | &em_cached, &bio_ctrl, &prev_em_start); | 
|  | } | 
|  |  | 
|  | if (em_cached) | 
|  | free_extent_map(em_cached); | 
|  | submit_one_bio(&bio_ctrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * basic invalidate_folio code, this waits on any locked or writeback | 
|  | * ranges corresponding to the folio, and then deletes any extent state | 
|  | * records from the tree | 
|  | */ | 
|  | int extent_invalidate_folio(struct extent_io_tree *tree, | 
|  | struct folio *folio, size_t offset) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start = folio_pos(folio); | 
|  | u64 end = start + folio_size(folio) - 1; | 
|  | size_t blocksize = folio->mapping->host->i_sb->s_blocksize; | 
|  |  | 
|  | /* This function is only called for the btree inode */ | 
|  | ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); | 
|  |  | 
|  | start += ALIGN(offset, blocksize); | 
|  | if (start > end) | 
|  | return 0; | 
|  |  | 
|  | lock_extent(tree, start, end, &cached_state); | 
|  | folio_wait_writeback(folio); | 
|  |  | 
|  | /* | 
|  | * Currently for btree io tree, only EXTENT_LOCKED is utilized, | 
|  | * so here we only need to unlock the extent range to free any | 
|  | * existing extent state. | 
|  | */ | 
|  | unlock_extent(tree, start, end, &cached_state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper for release_folio, this tests for areas of the page that | 
|  | * are locked or under IO and drops the related state bits if it is safe | 
|  | * to drop the page. | 
|  | */ | 
|  | static int try_release_extent_state(struct extent_io_tree *tree, | 
|  | struct page *page, gfp_t mask) | 
|  | { | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | int ret = 1; | 
|  |  | 
|  | if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { | 
|  | ret = 0; | 
|  | } else { | 
|  | u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | | 
|  | EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | | 
|  | EXTENT_QGROUP_RESERVED); | 
|  |  | 
|  | /* | 
|  | * At this point we can safely clear everything except the | 
|  | * locked bit, the nodatasum bit and the delalloc new bit. | 
|  | * The delalloc new bit will be cleared by ordered extent | 
|  | * completion. | 
|  | */ | 
|  | ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, | 
|  | mask, NULL); | 
|  |  | 
|  | /* if clear_extent_bit failed for enomem reasons, | 
|  | * we can't allow the release to continue. | 
|  | */ | 
|  | if (ret < 0) | 
|  | ret = 0; | 
|  | else | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper for release_folio.  As long as there are no locked extents | 
|  | * in the range corresponding to the page, both state records and extent | 
|  | * map records are removed | 
|  | */ | 
|  | int try_release_extent_mapping(struct page *page, gfp_t mask) | 
|  | { | 
|  | struct extent_map *em; | 
|  | u64 start = page_offset(page); | 
|  | u64 end = start + PAGE_SIZE - 1; | 
|  | struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); | 
|  | struct extent_io_tree *tree = &btrfs_inode->io_tree; | 
|  | struct extent_map_tree *map = &btrfs_inode->extent_tree; | 
|  |  | 
|  | if (gfpflags_allow_blocking(mask) && | 
|  | page->mapping->host->i_size > SZ_16M) { | 
|  | u64 len; | 
|  | while (start <= end) { | 
|  | struct btrfs_fs_info *fs_info; | 
|  | u64 cur_gen; | 
|  |  | 
|  | len = end - start + 1; | 
|  | write_lock(&map->lock); | 
|  | em = lookup_extent_mapping(map, start, len); | 
|  | if (!em) { | 
|  | write_unlock(&map->lock); | 
|  | break; | 
|  | } | 
|  | if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || | 
|  | em->start != start) { | 
|  | write_unlock(&map->lock); | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | if (test_range_bit(tree, em->start, | 
|  | extent_map_end(em) - 1, | 
|  | EXTENT_LOCKED, 0, NULL)) | 
|  | goto next; | 
|  | /* | 
|  | * If it's not in the list of modified extents, used | 
|  | * by a fast fsync, we can remove it. If it's being | 
|  | * logged we can safely remove it since fsync took an | 
|  | * extra reference on the em. | 
|  | */ | 
|  | if (list_empty(&em->list) || | 
|  | test_bit(EXTENT_FLAG_LOGGING, &em->flags)) | 
|  | goto remove_em; | 
|  | /* | 
|  | * If it's in the list of modified extents, remove it | 
|  | * only if its generation is older then the current one, | 
|  | * in which case we don't need it for a fast fsync. | 
|  | * Otherwise don't remove it, we could be racing with an | 
|  | * ongoing fast fsync that could miss the new extent. | 
|  | */ | 
|  | fs_info = btrfs_inode->root->fs_info; | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | cur_gen = fs_info->generation; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | if (em->generation >= cur_gen) | 
|  | goto next; | 
|  | remove_em: | 
|  | /* | 
|  | * We only remove extent maps that are not in the list of | 
|  | * modified extents or that are in the list but with a | 
|  | * generation lower then the current generation, so there | 
|  | * is no need to set the full fsync flag on the inode (it | 
|  | * hurts the fsync performance for workloads with a data | 
|  | * size that exceeds or is close to the system's memory). | 
|  | */ | 
|  | remove_extent_mapping(map, em); | 
|  | /* once for the rb tree */ | 
|  | free_extent_map(em); | 
|  | next: | 
|  | start = extent_map_end(em); | 
|  | write_unlock(&map->lock); | 
|  |  | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  |  | 
|  | cond_resched(); /* Allow large-extent preemption. */ | 
|  | } | 
|  | } | 
|  | return try_release_extent_state(tree, page, mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To cache previous fiemap extent | 
|  | * | 
|  | * Will be used for merging fiemap extent | 
|  | */ | 
|  | struct fiemap_cache { | 
|  | u64 offset; | 
|  | u64 phys; | 
|  | u64 len; | 
|  | u32 flags; | 
|  | bool cached; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Helper to submit fiemap extent. | 
|  | * | 
|  | * Will try to merge current fiemap extent specified by @offset, @phys, | 
|  | * @len and @flags with cached one. | 
|  | * And only when we fails to merge, cached one will be submitted as | 
|  | * fiemap extent. | 
|  | * | 
|  | * Return value is the same as fiemap_fill_next_extent(). | 
|  | */ | 
|  | static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, | 
|  | struct fiemap_cache *cache, | 
|  | u64 offset, u64 phys, u64 len, u32 flags) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* Set at the end of extent_fiemap(). */ | 
|  | ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); | 
|  |  | 
|  | if (!cache->cached) | 
|  | goto assign; | 
|  |  | 
|  | /* | 
|  | * Sanity check, extent_fiemap() should have ensured that new | 
|  | * fiemap extent won't overlap with cached one. | 
|  | * Not recoverable. | 
|  | * | 
|  | * NOTE: Physical address can overlap, due to compression | 
|  | */ | 
|  | if (cache->offset + cache->len > offset) { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only merges fiemap extents if | 
|  | * 1) Their logical addresses are continuous | 
|  | * | 
|  | * 2) Their physical addresses are continuous | 
|  | *    So truly compressed (physical size smaller than logical size) | 
|  | *    extents won't get merged with each other | 
|  | * | 
|  | * 3) Share same flags | 
|  | */ | 
|  | if (cache->offset + cache->len  == offset && | 
|  | cache->phys + cache->len == phys  && | 
|  | cache->flags == flags) { | 
|  | cache->len += len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Not mergeable, need to submit cached one */ | 
|  | ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
|  | cache->len, cache->flags); | 
|  | cache->cached = false; | 
|  | if (ret) | 
|  | return ret; | 
|  | assign: | 
|  | cache->cached = true; | 
|  | cache->offset = offset; | 
|  | cache->phys = phys; | 
|  | cache->len = len; | 
|  | cache->flags = flags; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emit last fiemap cache | 
|  | * | 
|  | * The last fiemap cache may still be cached in the following case: | 
|  | * 0		      4k		    8k | 
|  | * |<- Fiemap range ->| | 
|  | * |<------------  First extent ----------->| | 
|  | * | 
|  | * In this case, the first extent range will be cached but not emitted. | 
|  | * So we must emit it before ending extent_fiemap(). | 
|  | */ | 
|  | static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, | 
|  | struct fiemap_cache *cache) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!cache->cached) | 
|  | return 0; | 
|  |  | 
|  | ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
|  | cache->len, cache->flags); | 
|  | cache->cached = false; | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) | 
|  | { | 
|  | struct extent_buffer *clone; | 
|  | struct btrfs_key key; | 
|  | int slot; | 
|  | int ret; | 
|  |  | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_next_leaf(inode->root, path); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Don't bother with cloning if there are no more file extent items for | 
|  | * our inode. | 
|  | */ | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return 1; | 
|  |  | 
|  | /* See the comment at fiemap_search_slot() about why we clone. */ | 
|  | clone = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!clone) | 
|  | return -ENOMEM; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | btrfs_release_path(path); | 
|  | path->nodes[0] = clone; | 
|  | path->slots[0] = slot; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for the first file extent item that starts at a given file offset or | 
|  | * the one that starts immediately before that offset. | 
|  | * Returns: 0 on success, < 0 on error, 1 if not found. | 
|  | */ | 
|  | static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, | 
|  | u64 file_offset) | 
|  | { | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *clone; | 
|  | struct btrfs_key key; | 
|  | int slot; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = file_offset; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret > 0 && path->slots[0] > 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); | 
|  | if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We clone the leaf and use it during fiemap. This is because while | 
|  | * using the leaf we do expensive things like checking if an extent is | 
|  | * shared, which can take a long time. In order to prevent blocking | 
|  | * other tasks for too long, we use a clone of the leaf. We have locked | 
|  | * the file range in the inode's io tree, so we know none of our file | 
|  | * extent items can change. This way we avoid blocking other tasks that | 
|  | * want to insert items for other inodes in the same leaf or b+tree | 
|  | * rebalance operations (triggered for example when someone is trying | 
|  | * to push items into this leaf when trying to insert an item in a | 
|  | * neighbour leaf). | 
|  | * We also need the private clone because holding a read lock on an | 
|  | * extent buffer of the subvolume's b+tree will make lockdep unhappy | 
|  | * when we call fiemap_fill_next_extent(), because that may cause a page | 
|  | * fault when filling the user space buffer with fiemap data. | 
|  | */ | 
|  | clone = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!clone) | 
|  | return -ENOMEM; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | btrfs_release_path(path); | 
|  | path->nodes[0] = clone; | 
|  | path->slots[0] = slot; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process a range which is a hole or a prealloc extent in the inode's subvolume | 
|  | * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc | 
|  | * extent. The end offset (@end) is inclusive. | 
|  | */ | 
|  | static int fiemap_process_hole(struct btrfs_inode *inode, | 
|  | struct fiemap_extent_info *fieinfo, | 
|  | struct fiemap_cache *cache, | 
|  | struct btrfs_backref_shared_cache *backref_cache, | 
|  | u64 disk_bytenr, u64 extent_offset, | 
|  | u64 extent_gen, | 
|  | struct ulist *roots, struct ulist *tmp_ulist, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | u64 cur_offset = start; | 
|  | u64 last_delalloc_end = 0; | 
|  | u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; | 
|  | bool checked_extent_shared = false; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * There can be no delalloc past i_size, so don't waste time looking for | 
|  | * it beyond i_size. | 
|  | */ | 
|  | while (cur_offset < end && cur_offset < i_size) { | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | u64 prealloc_start; | 
|  | u64 prealloc_len = 0; | 
|  | bool delalloc; | 
|  |  | 
|  | delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, | 
|  | &delalloc_start, | 
|  | &delalloc_end); | 
|  | if (!delalloc) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If this is a prealloc extent we have to report every section | 
|  | * of it that has no delalloc. | 
|  | */ | 
|  | if (disk_bytenr != 0) { | 
|  | if (last_delalloc_end == 0) { | 
|  | prealloc_start = start; | 
|  | prealloc_len = delalloc_start - start; | 
|  | } else { | 
|  | prealloc_start = last_delalloc_end + 1; | 
|  | prealloc_len = delalloc_start - prealloc_start; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (prealloc_len > 0) { | 
|  | if (!checked_extent_shared && fieinfo->fi_extents_max) { | 
|  | ret = btrfs_is_data_extent_shared(inode->root, | 
|  | ino, disk_bytenr, | 
|  | extent_gen, roots, | 
|  | tmp_ulist, | 
|  | backref_cache); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | prealloc_flags |= FIEMAP_EXTENT_SHARED; | 
|  |  | 
|  | checked_extent_shared = true; | 
|  | } | 
|  | ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, | 
|  | disk_bytenr + extent_offset, | 
|  | prealloc_len, prealloc_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  | extent_offset += prealloc_len; | 
|  | } | 
|  |  | 
|  | ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, | 
|  | delalloc_end + 1 - delalloc_start, | 
|  | FIEMAP_EXTENT_DELALLOC | | 
|  | FIEMAP_EXTENT_UNKNOWN); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | last_delalloc_end = delalloc_end; | 
|  | cur_offset = delalloc_end + 1; | 
|  | extent_offset += cur_offset - delalloc_start; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Either we found no delalloc for the whole prealloc extent or we have | 
|  | * a prealloc extent that spans i_size or starts at or after i_size. | 
|  | */ | 
|  | if (disk_bytenr != 0 && last_delalloc_end < end) { | 
|  | u64 prealloc_start; | 
|  | u64 prealloc_len; | 
|  |  | 
|  | if (last_delalloc_end == 0) { | 
|  | prealloc_start = start; | 
|  | prealloc_len = end + 1 - start; | 
|  | } else { | 
|  | prealloc_start = last_delalloc_end + 1; | 
|  | prealloc_len = end + 1 - prealloc_start; | 
|  | } | 
|  |  | 
|  | if (!checked_extent_shared && fieinfo->fi_extents_max) { | 
|  | ret = btrfs_is_data_extent_shared(inode->root, | 
|  | ino, disk_bytenr, | 
|  | extent_gen, roots, | 
|  | tmp_ulist, | 
|  | backref_cache); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | prealloc_flags |= FIEMAP_EXTENT_SHARED; | 
|  | } | 
|  | ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, | 
|  | disk_bytenr + extent_offset, | 
|  | prealloc_len, prealloc_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | u64 *last_extent_end_ret) | 
|  | { | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | u64 disk_bytenr; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Lookup the last file extent. We're not using i_size here because | 
|  | * there might be preallocation past i_size. | 
|  | */ | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); | 
|  | /* There can't be a file extent item at offset (u64)-1 */ | 
|  | ASSERT(ret != 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * For a non-existing key, btrfs_search_slot() always leaves us at a | 
|  | * slot > 0, except if the btree is empty, which is impossible because | 
|  | * at least it has the inode item for this inode and all the items for | 
|  | * the root inode 256. | 
|  | */ | 
|  | ASSERT(path->slots[0] > 0); | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | /* No file extent items in the subvolume tree. */ | 
|  | *last_extent_end_ret = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For an inline extent, the disk_bytenr is where inline data starts at, | 
|  | * so first check if we have an inline extent item before checking if we | 
|  | * have an implicit hole (disk_bytenr == 0). | 
|  | */ | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { | 
|  | *last_extent_end_ret = btrfs_file_extent_end(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the last file extent item that is not a hole (when NO_HOLES is | 
|  | * not enabled). This should take at most 2 iterations in the worst | 
|  | * case: we have one hole file extent item at slot 0 of a leaf and | 
|  | * another hole file extent item as the last item in the previous leaf. | 
|  | * This is because we merge file extent items that represent holes. | 
|  | */ | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); | 
|  | while (disk_bytenr == 0) { | 
|  | ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0) { | 
|  | /* No file extent items that are not holes. */ | 
|  | *last_extent_end_ret = 0; | 
|  | return 0; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); | 
|  | } | 
|  |  | 
|  | *last_extent_end_ret = btrfs_file_extent_end(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct fiemap_cache cache = { 0 }; | 
|  | struct btrfs_backref_shared_cache *backref_cache; | 
|  | struct ulist *roots; | 
|  | struct ulist *tmp_ulist; | 
|  | u64 last_extent_end; | 
|  | u64 prev_extent_end; | 
|  | u64 lockstart; | 
|  | u64 lockend; | 
|  | bool stopped = false; | 
|  | int ret; | 
|  |  | 
|  | backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL); | 
|  | path = btrfs_alloc_path(); | 
|  | roots = ulist_alloc(GFP_KERNEL); | 
|  | tmp_ulist = ulist_alloc(GFP_KERNEL); | 
|  | if (!backref_cache || !path || !roots || !tmp_ulist) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | lockstart = round_down(start, root->fs_info->sectorsize); | 
|  | lockend = round_up(start + len, root->fs_info->sectorsize); | 
|  | prev_extent_end = lockstart; | 
|  |  | 
|  | btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); | 
|  | lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); | 
|  |  | 
|  | ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | ret = fiemap_search_slot(inode, path, lockstart); | 
|  | if (ret < 0) { | 
|  | goto out_unlock; | 
|  | } else if (ret > 0) { | 
|  | /* | 
|  | * No file extent item found, but we may have delalloc between | 
|  | * the current offset and i_size. So check for that. | 
|  | */ | 
|  | ret = 0; | 
|  | goto check_eof_delalloc; | 
|  | } | 
|  |  | 
|  | while (prev_extent_end < lockend) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | u64 extent_end; | 
|  | u64 extent_len; | 
|  | u64 extent_offset = 0; | 
|  | u64 extent_gen; | 
|  | u64 disk_bytenr = 0; | 
|  | u64 flags = 0; | 
|  | int extent_type; | 
|  | u8 compression; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | break; | 
|  |  | 
|  | extent_end = btrfs_file_extent_end(path); | 
|  |  | 
|  | /* | 
|  | * The first iteration can leave us at an extent item that ends | 
|  | * before our range's start. Move to the next item. | 
|  | */ | 
|  | if (extent_end <= lockstart) | 
|  | goto next_item; | 
|  |  | 
|  | /* We have in implicit hole (NO_HOLES feature enabled). */ | 
|  | if (prev_extent_end < key.offset) { | 
|  | const u64 range_end = min(key.offset, lockend) - 1; | 
|  |  | 
|  | ret = fiemap_process_hole(inode, fieinfo, &cache, | 
|  | backref_cache, 0, 0, 0, | 
|  | roots, tmp_ulist, | 
|  | prev_extent_end, range_end); | 
|  | if (ret < 0) { | 
|  | goto out_unlock; | 
|  | } else if (ret > 0) { | 
|  | /* fiemap_fill_next_extent() told us to stop. */ | 
|  | stopped = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We've reached the end of the fiemap range, stop. */ | 
|  | if (key.offset >= lockend) { | 
|  | stopped = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | extent_len = extent_end - key.offset; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | compression = btrfs_file_extent_compression(leaf, ei); | 
|  | extent_type = btrfs_file_extent_type(leaf, ei); | 
|  | extent_gen = btrfs_file_extent_generation(leaf, ei); | 
|  |  | 
|  | if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); | 
|  | if (compression == BTRFS_COMPRESS_NONE) | 
|  | extent_offset = btrfs_file_extent_offset(leaf, ei); | 
|  | } | 
|  |  | 
|  | if (compression != BTRFS_COMPRESS_NONE) | 
|  | flags |= FIEMAP_EXTENT_ENCODED; | 
|  |  | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | flags |= FIEMAP_EXTENT_DATA_INLINE; | 
|  | flags |= FIEMAP_EXTENT_NOT_ALIGNED; | 
|  | ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, | 
|  | extent_len, flags); | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | ret = fiemap_process_hole(inode, fieinfo, &cache, | 
|  | backref_cache, | 
|  | disk_bytenr, extent_offset, | 
|  | extent_gen, roots, tmp_ulist, | 
|  | key.offset, extent_end - 1); | 
|  | } else if (disk_bytenr == 0) { | 
|  | /* We have an explicit hole. */ | 
|  | ret = fiemap_process_hole(inode, fieinfo, &cache, | 
|  | backref_cache, 0, 0, 0, | 
|  | roots, tmp_ulist, | 
|  | key.offset, extent_end - 1); | 
|  | } else { | 
|  | /* We have a regular extent. */ | 
|  | if (fieinfo->fi_extents_max) { | 
|  | ret = btrfs_is_data_extent_shared(root, ino, | 
|  | disk_bytenr, | 
|  | extent_gen, | 
|  | roots, | 
|  | tmp_ulist, | 
|  | backref_cache); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | else if (ret > 0) | 
|  | flags |= FIEMAP_EXTENT_SHARED; | 
|  | } | 
|  |  | 
|  | ret = emit_fiemap_extent(fieinfo, &cache, key.offset, | 
|  | disk_bytenr + extent_offset, | 
|  | extent_len, flags); | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | goto out_unlock; | 
|  | } else if (ret > 0) { | 
|  | /* fiemap_fill_next_extent() told us to stop. */ | 
|  | stopped = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev_extent_end = extent_end; | 
|  | next_item: | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = fiemap_next_leaf_item(inode, path); | 
|  | if (ret < 0) { | 
|  | goto out_unlock; | 
|  | } else if (ret > 0) { | 
|  | /* No more file extent items for this inode. */ | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | check_eof_delalloc: | 
|  | /* | 
|  | * Release (and free) the path before emitting any final entries to | 
|  | * fiemap_fill_next_extent() to keep lockdep happy. This is because | 
|  | * once we find no more file extent items exist, we may have a | 
|  | * non-cloned leaf, and fiemap_fill_next_extent() can trigger page | 
|  | * faults when copying data to the user space buffer. | 
|  | */ | 
|  | btrfs_free_path(path); | 
|  | path = NULL; | 
|  |  | 
|  | if (!stopped && prev_extent_end < lockend) { | 
|  | ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache, | 
|  | 0, 0, 0, roots, tmp_ulist, | 
|  | prev_extent_end, lockend - 1); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | prev_extent_end = lockend; | 
|  | } | 
|  |  | 
|  | if (cache.cached && cache.offset + cache.len >= last_extent_end) { | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  |  | 
|  | if (prev_extent_end < i_size) { | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | bool delalloc; | 
|  |  | 
|  | delalloc = btrfs_find_delalloc_in_range(inode, | 
|  | prev_extent_end, | 
|  | i_size - 1, | 
|  | &delalloc_start, | 
|  | &delalloc_end); | 
|  | if (!delalloc) | 
|  | cache.flags |= FIEMAP_EXTENT_LAST; | 
|  | } else { | 
|  | cache.flags |= FIEMAP_EXTENT_LAST; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = emit_last_fiemap_cache(fieinfo, &cache); | 
|  |  | 
|  | out_unlock: | 
|  | unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); | 
|  | btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); | 
|  | out: | 
|  | kfree(backref_cache); | 
|  | btrfs_free_path(path); | 
|  | ulist_free(roots); | 
|  | ulist_free(tmp_ulist); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __free_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  |  | 
|  | int extent_buffer_under_io(const struct extent_buffer *eb) | 
|  | { | 
|  | return (atomic_read(&eb->io_pages) || | 
|  | test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || | 
|  | test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | } | 
|  |  | 
|  | static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) | 
|  | { | 
|  | struct btrfs_subpage *subpage; | 
|  |  | 
|  | lockdep_assert_held(&page->mapping->private_lock); | 
|  |  | 
|  | if (PagePrivate(page)) { | 
|  | subpage = (struct btrfs_subpage *)page->private; | 
|  | if (atomic_read(&subpage->eb_refs)) | 
|  | return true; | 
|  | /* | 
|  | * Even there is no eb refs here, we may still have | 
|  | * end_page_read() call relying on page::private. | 
|  | */ | 
|  | if (atomic_read(&subpage->readers)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * For mapped eb, we're going to change the page private, which should | 
|  | * be done under the private_lock. | 
|  | */ | 
|  | if (mapped) | 
|  | spin_lock(&page->mapping->private_lock); | 
|  |  | 
|  | if (!PagePrivate(page)) { | 
|  | if (mapped) | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (fs_info->nodesize >= PAGE_SIZE) { | 
|  | /* | 
|  | * We do this since we'll remove the pages after we've | 
|  | * removed the eb from the radix tree, so we could race | 
|  | * and have this page now attached to the new eb.  So | 
|  | * only clear page_private if it's still connected to | 
|  | * this eb. | 
|  | */ | 
|  | if (PagePrivate(page) && | 
|  | page->private == (unsigned long)eb) { | 
|  | BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | BUG_ON(PageDirty(page)); | 
|  | BUG_ON(PageWriteback(page)); | 
|  | /* | 
|  | * We need to make sure we haven't be attached | 
|  | * to a new eb. | 
|  | */ | 
|  | detach_page_private(page); | 
|  | } | 
|  | if (mapped) | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For subpage, we can have dummy eb with page private.  In this case, | 
|  | * we can directly detach the private as such page is only attached to | 
|  | * one dummy eb, no sharing. | 
|  | */ | 
|  | if (!mapped) { | 
|  | btrfs_detach_subpage(fs_info, page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | btrfs_page_dec_eb_refs(fs_info, page); | 
|  |  | 
|  | /* | 
|  | * We can only detach the page private if there are no other ebs in the | 
|  | * page range and no unfinished IO. | 
|  | */ | 
|  | if (!page_range_has_eb(fs_info, page)) | 
|  | btrfs_detach_subpage(fs_info, page); | 
|  |  | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | } | 
|  |  | 
|  | /* Release all pages attached to the extent buffer */ | 
|  | static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  |  | 
|  | ASSERT(!extent_buffer_under_io(eb)); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *page = eb->pages[i]; | 
|  |  | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | detach_extent_buffer_page(eb, page); | 
|  |  | 
|  | /* One for when we allocated the page */ | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for releasing the extent buffer. | 
|  | */ | 
|  | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | btrfs_release_extent_buffer_pages(eb); | 
|  | btrfs_leak_debug_del_eb(eb); | 
|  | __free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | static struct extent_buffer * | 
|  | __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, | 
|  | unsigned long len) | 
|  | { | 
|  | struct extent_buffer *eb = NULL; | 
|  |  | 
|  | eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); | 
|  | eb->start = start; | 
|  | eb->len = len; | 
|  | eb->fs_info = fs_info; | 
|  | eb->bflags = 0; | 
|  | init_rwsem(&eb->lock); | 
|  |  | 
|  | btrfs_leak_debug_add_eb(eb); | 
|  | INIT_LIST_HEAD(&eb->release_list); | 
|  |  | 
|  | spin_lock_init(&eb->refs_lock); | 
|  | atomic_set(&eb->refs, 1); | 
|  | atomic_set(&eb->io_pages, 0); | 
|  |  | 
|  | ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); | 
|  |  | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) | 
|  | { | 
|  | int i; | 
|  | struct extent_buffer *new; | 
|  | int num_pages = num_extent_pages(src); | 
|  | int ret; | 
|  |  | 
|  | new = __alloc_extent_buffer(src->fs_info, src->start, src->len); | 
|  | if (new == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Set UNMAPPED before calling btrfs_release_extent_buffer(), as | 
|  | * btrfs_release_extent_buffer() have different behavior for | 
|  | * UNMAPPED subpage extent buffer. | 
|  | */ | 
|  | set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); | 
|  |  | 
|  | memset(new->pages, 0, sizeof(*new->pages) * num_pages); | 
|  | ret = btrfs_alloc_page_array(num_pages, new->pages); | 
|  | if (ret) { | 
|  | btrfs_release_extent_buffer(new); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | int ret; | 
|  | struct page *p = new->pages[i]; | 
|  |  | 
|  | ret = attach_extent_buffer_page(new, p, NULL); | 
|  | if (ret < 0) { | 
|  | btrfs_release_extent_buffer(new); | 
|  | return NULL; | 
|  | } | 
|  | WARN_ON(PageDirty(p)); | 
|  | copy_page(page_address(p), page_address(src->pages[i])); | 
|  | } | 
|  | set_extent_buffer_uptodate(new); | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start, unsigned long len) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | int num_pages; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | eb = __alloc_extent_buffer(fs_info, start, len); | 
|  | if (!eb) | 
|  | return NULL; | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | ret = btrfs_alloc_page_array(num_pages, eb->pages); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | ret = attach_extent_buffer_page(eb, p, NULL); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | set_extent_buffer_uptodate(eb); | 
|  | btrfs_set_header_nritems(eb, 0); | 
|  | set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | return eb; | 
|  | err: | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | if (eb->pages[i]) { | 
|  | detach_extent_buffer_page(eb, eb->pages[i]); | 
|  | __free_page(eb->pages[i]); | 
|  | } | 
|  | } | 
|  | __free_extent_buffer(eb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); | 
|  | } | 
|  |  | 
|  | static void check_buffer_tree_ref(struct extent_buffer *eb) | 
|  | { | 
|  | int refs; | 
|  | /* | 
|  | * The TREE_REF bit is first set when the extent_buffer is added | 
|  | * to the radix tree. It is also reset, if unset, when a new reference | 
|  | * is created by find_extent_buffer. | 
|  | * | 
|  | * It is only cleared in two cases: freeing the last non-tree | 
|  | * reference to the extent_buffer when its STALE bit is set or | 
|  | * calling release_folio when the tree reference is the only reference. | 
|  | * | 
|  | * In both cases, care is taken to ensure that the extent_buffer's | 
|  | * pages are not under io. However, release_folio can be concurrently | 
|  | * called with creating new references, which is prone to race | 
|  | * conditions between the calls to check_buffer_tree_ref in those | 
|  | * codepaths and clearing TREE_REF in try_release_extent_buffer. | 
|  | * | 
|  | * The actual lifetime of the extent_buffer in the radix tree is | 
|  | * adequately protected by the refcount, but the TREE_REF bit and | 
|  | * its corresponding reference are not. To protect against this | 
|  | * class of races, we call check_buffer_tree_ref from the codepaths | 
|  | * which trigger io after they set eb->io_pages. Note that once io is | 
|  | * initiated, TREE_REF can no longer be cleared, so that is the | 
|  | * moment at which any such race is best fixed. | 
|  | */ | 
|  | refs = atomic_read(&eb->refs); | 
|  | if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | atomic_inc(&eb->refs); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | static void mark_extent_buffer_accessed(struct extent_buffer *eb, | 
|  | struct page *accessed) | 
|  | { | 
|  | int num_pages, i; | 
|  |  | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = eb->pages[i]; | 
|  |  | 
|  | if (p != accessed) | 
|  | mark_page_accessed(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = find_extent_buffer_nolock(fs_info, start); | 
|  | if (!eb) | 
|  | return NULL; | 
|  | /* | 
|  | * Lock our eb's refs_lock to avoid races with free_extent_buffer(). | 
|  | * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and | 
|  | * another task running free_extent_buffer() might have seen that flag | 
|  | * set, eb->refs == 2, that the buffer isn't under IO (dirty and | 
|  | * writeback flags not set) and it's still in the tree (flag | 
|  | * EXTENT_BUFFER_TREE_REF set), therefore being in the process of | 
|  | * decrementing the extent buffer's reference count twice.  So here we | 
|  | * could race and increment the eb's reference count, clear its stale | 
|  | * flag, mark it as dirty and drop our reference before the other task | 
|  | * finishes executing free_extent_buffer, which would later result in | 
|  | * an attempt to free an extent buffer that is dirty. | 
|  | */ | 
|  | if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { | 
|  | spin_lock(&eb->refs_lock); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  | mark_extent_buffer_accessed(eb, NULL); | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb, *exists = NULL; | 
|  | int ret; | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | if (eb) | 
|  | return eb; | 
|  | eb = alloc_dummy_extent_buffer(fs_info, start); | 
|  | if (!eb) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | eb->fs_info = fs_info; | 
|  | again: | 
|  | ret = radix_tree_preload(GFP_NOFS); | 
|  | if (ret) { | 
|  | exists = ERR_PTR(ret); | 
|  | goto free_eb; | 
|  | } | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | ret = radix_tree_insert(&fs_info->buffer_radix, | 
|  | start >> fs_info->sectorsize_bits, eb); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (ret == -EEXIST) { | 
|  | exists = find_extent_buffer(fs_info, start); | 
|  | if (exists) | 
|  | goto free_eb; | 
|  | else | 
|  | goto again; | 
|  | } | 
|  | check_buffer_tree_ref(eb); | 
|  | set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
|  |  | 
|  | return eb; | 
|  | free_eb: | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return exists; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct extent_buffer *grab_extent_buffer( | 
|  | struct btrfs_fs_info *fs_info, struct page *page) | 
|  | { | 
|  | struct extent_buffer *exists; | 
|  |  | 
|  | /* | 
|  | * For subpage case, we completely rely on radix tree to ensure we | 
|  | * don't try to insert two ebs for the same bytenr.  So here we always | 
|  | * return NULL and just continue. | 
|  | */ | 
|  | if (fs_info->nodesize < PAGE_SIZE) | 
|  | return NULL; | 
|  |  | 
|  | /* Page not yet attached to an extent buffer */ | 
|  | if (!PagePrivate(page)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We could have already allocated an eb for this page and attached one | 
|  | * so lets see if we can get a ref on the existing eb, and if we can we | 
|  | * know it's good and we can just return that one, else we know we can | 
|  | * just overwrite page->private. | 
|  | */ | 
|  | exists = (struct extent_buffer *)page->private; | 
|  | if (atomic_inc_not_zero(&exists->refs)) | 
|  | return exists; | 
|  |  | 
|  | WARN_ON(PageDirty(page)); | 
|  | detach_page_private(page); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) | 
|  | { | 
|  | if (!IS_ALIGNED(start, fs_info->sectorsize)) { | 
|  | btrfs_err(fs_info, "bad tree block start %llu", start); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (fs_info->nodesize < PAGE_SIZE && | 
|  | offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { | 
|  | btrfs_err(fs_info, | 
|  | "tree block crosses page boundary, start %llu nodesize %u", | 
|  | start, fs_info->nodesize); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (fs_info->nodesize >= PAGE_SIZE && | 
|  | !PAGE_ALIGNED(start)) { | 
|  | btrfs_err(fs_info, | 
|  | "tree block is not page aligned, start %llu nodesize %u", | 
|  | start, fs_info->nodesize); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 owner_root, int level) | 
|  | { | 
|  | unsigned long len = fs_info->nodesize; | 
|  | int num_pages; | 
|  | int i; | 
|  | unsigned long index = start >> PAGE_SHIFT; | 
|  | struct extent_buffer *eb; | 
|  | struct extent_buffer *exists = NULL; | 
|  | struct page *p; | 
|  | struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
|  | u64 lockdep_owner = owner_root; | 
|  | int uptodate = 1; | 
|  | int ret; | 
|  |  | 
|  | if (check_eb_alignment(fs_info, start)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | if (start >= MAX_LFS_FILESIZE) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "extent buffer %llu is beyond 32bit page cache limit", start); | 
|  | btrfs_err_32bit_limit(fs_info); | 
|  | return ERR_PTR(-EOVERFLOW); | 
|  | } | 
|  | if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) | 
|  | btrfs_warn_32bit_limit(fs_info); | 
|  | #endif | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | if (eb) | 
|  | return eb; | 
|  |  | 
|  | eb = __alloc_extent_buffer(fs_info, start, len); | 
|  | if (!eb) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * The reloc trees are just snapshots, so we need them to appear to be | 
|  | * just like any other fs tree WRT lockdep. | 
|  | */ | 
|  | if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) | 
|  | lockdep_owner = BTRFS_FS_TREE_OBJECTID; | 
|  |  | 
|  | btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++, index++) { | 
|  | struct btrfs_subpage *prealloc = NULL; | 
|  |  | 
|  | p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); | 
|  | if (!p) { | 
|  | exists = ERR_PTR(-ENOMEM); | 
|  | goto free_eb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preallocate page->private for subpage case, so that we won't | 
|  | * allocate memory with private_lock hold.  The memory will be | 
|  | * freed by attach_extent_buffer_page() or freed manually if | 
|  | * we exit earlier. | 
|  | * | 
|  | * Although we have ensured one subpage eb can only have one | 
|  | * page, but it may change in the future for 16K page size | 
|  | * support, so we still preallocate the memory in the loop. | 
|  | */ | 
|  | if (fs_info->nodesize < PAGE_SIZE) { | 
|  | prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); | 
|  | if (IS_ERR(prealloc)) { | 
|  | ret = PTR_ERR(prealloc); | 
|  | unlock_page(p); | 
|  | put_page(p); | 
|  | exists = ERR_PTR(ret); | 
|  | goto free_eb; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&mapping->private_lock); | 
|  | exists = grab_extent_buffer(fs_info, p); | 
|  | if (exists) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | unlock_page(p); | 
|  | put_page(p); | 
|  | mark_extent_buffer_accessed(exists, p); | 
|  | btrfs_free_subpage(prealloc); | 
|  | goto free_eb; | 
|  | } | 
|  | /* Should not fail, as we have preallocated the memory */ | 
|  | ret = attach_extent_buffer_page(eb, p, prealloc); | 
|  | ASSERT(!ret); | 
|  | /* | 
|  | * To inform we have extra eb under allocation, so that | 
|  | * detach_extent_buffer_page() won't release the page private | 
|  | * when the eb hasn't yet been inserted into radix tree. | 
|  | * | 
|  | * The ref will be decreased when the eb released the page, in | 
|  | * detach_extent_buffer_page(). | 
|  | * Thus needs no special handling in error path. | 
|  | */ | 
|  | btrfs_page_inc_eb_refs(fs_info, p); | 
|  | spin_unlock(&mapping->private_lock); | 
|  |  | 
|  | WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); | 
|  | eb->pages[i] = p; | 
|  | if (!PageUptodate(p)) | 
|  | uptodate = 0; | 
|  |  | 
|  | /* | 
|  | * We can't unlock the pages just yet since the extent buffer | 
|  | * hasn't been properly inserted in the radix tree, this | 
|  | * opens a race with btree_release_folio which can free a page | 
|  | * while we are still filling in all pages for the buffer and | 
|  | * we could crash. | 
|  | */ | 
|  | } | 
|  | if (uptodate) | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | again: | 
|  | ret = radix_tree_preload(GFP_NOFS); | 
|  | if (ret) { | 
|  | exists = ERR_PTR(ret); | 
|  | goto free_eb; | 
|  | } | 
|  |  | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | ret = radix_tree_insert(&fs_info->buffer_radix, | 
|  | start >> fs_info->sectorsize_bits, eb); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (ret == -EEXIST) { | 
|  | exists = find_extent_buffer(fs_info, start); | 
|  | if (exists) | 
|  | goto free_eb; | 
|  | else | 
|  | goto again; | 
|  | } | 
|  | /* add one reference for the tree */ | 
|  | check_buffer_tree_ref(eb); | 
|  | set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * Now it's safe to unlock the pages because any calls to | 
|  | * btree_release_folio will correctly detect that a page belongs to a | 
|  | * live buffer and won't free them prematurely. | 
|  | */ | 
|  | for (i = 0; i < num_pages; i++) | 
|  | unlock_page(eb->pages[i]); | 
|  | return eb; | 
|  |  | 
|  | free_eb: | 
|  | WARN_ON(!atomic_dec_and_test(&eb->refs)); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | if (eb->pages[i]) | 
|  | unlock_page(eb->pages[i]); | 
|  | } | 
|  |  | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return exists; | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct extent_buffer *eb = | 
|  | container_of(head, struct extent_buffer, rcu_head); | 
|  |  | 
|  | __free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | static int release_extent_buffer(struct extent_buffer *eb) | 
|  | __releases(&eb->refs_lock) | 
|  | { | 
|  | lockdep_assert_held(&eb->refs_lock); | 
|  |  | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | if (atomic_dec_and_test(&eb->refs)) { | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | radix_tree_delete(&fs_info->buffer_radix, | 
|  | eb->start >> fs_info->sectorsize_bits); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | } else { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | btrfs_leak_debug_del_eb(eb); | 
|  | /* Should be safe to release our pages at this point */ | 
|  | btrfs_release_extent_buffer_pages(eb); | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { | 
|  | __free_extent_buffer(eb); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); | 
|  | return 1; | 
|  | } | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void free_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | int refs; | 
|  | if (!eb) | 
|  | return; | 
|  |  | 
|  | refs = atomic_read(&eb->refs); | 
|  | while (1) { | 
|  | if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) | 
|  | || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && | 
|  | refs == 1)) | 
|  | break; | 
|  | if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (atomic_read(&eb->refs) == 2 && | 
|  | test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && | 
|  | !extent_buffer_under_io(eb) && | 
|  | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | atomic_dec(&eb->refs); | 
|  |  | 
|  | /* | 
|  | * I know this is terrible, but it's temporary until we stop tracking | 
|  | * the uptodate bits and such for the extent buffers. | 
|  | */ | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | void free_extent_buffer_stale(struct extent_buffer *eb) | 
|  | { | 
|  | if (!eb) | 
|  | return; | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | set_bit(EXTENT_BUFFER_STALE, &eb->bflags); | 
|  |  | 
|  | if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && | 
|  | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | atomic_dec(&eb->refs); | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | static void btree_clear_page_dirty(struct page *page) | 
|  | { | 
|  | ASSERT(PageDirty(page)); | 
|  | ASSERT(PageLocked(page)); | 
|  | clear_page_dirty_for_io(page); | 
|  | xa_lock_irq(&page->mapping->i_pages); | 
|  | if (!PageDirty(page)) | 
|  | __xa_clear_mark(&page->mapping->i_pages, | 
|  | page_index(page), PAGECACHE_TAG_DIRTY); | 
|  | xa_unlock_irq(&page->mapping->i_pages); | 
|  | } | 
|  |  | 
|  | static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct page *page = eb->pages[0]; | 
|  | bool last; | 
|  |  | 
|  | /* btree_clear_page_dirty() needs page locked */ | 
|  | lock_page(page); | 
|  | last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, | 
|  | eb->len); | 
|  | if (last) | 
|  | btree_clear_page_dirty(page); | 
|  | unlock_page(page); | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | } | 
|  |  | 
|  | void clear_extent_buffer_dirty(const struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  | struct page *page; | 
|  |  | 
|  | if (eb->fs_info->nodesize < PAGE_SIZE) | 
|  | return clear_subpage_extent_buffer_dirty(eb); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (!PageDirty(page)) | 
|  | continue; | 
|  | lock_page(page); | 
|  | btree_clear_page_dirty(page); | 
|  | ClearPageError(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | } | 
|  |  | 
|  | bool set_extent_buffer_dirty(struct extent_buffer *eb) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  | bool was_dirty; | 
|  |  | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | WARN_ON(atomic_read(&eb->refs) == 0); | 
|  | WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); | 
|  |  | 
|  | if (!was_dirty) { | 
|  | bool subpage = eb->fs_info->nodesize < PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * For subpage case, we can have other extent buffers in the | 
|  | * same page, and in clear_subpage_extent_buffer_dirty() we | 
|  | * have to clear page dirty without subpage lock held. | 
|  | * This can cause race where our page gets dirty cleared after | 
|  | * we just set it. | 
|  | * | 
|  | * Thankfully, clear_subpage_extent_buffer_dirty() has locked | 
|  | * its page for other reasons, we can use page lock to prevent | 
|  | * the above race. | 
|  | */ | 
|  | if (subpage) | 
|  | lock_page(eb->pages[0]); | 
|  | for (i = 0; i < num_pages; i++) | 
|  | btrfs_page_set_dirty(eb->fs_info, eb->pages[i], | 
|  | eb->start, eb->len); | 
|  | if (subpage) | 
|  | unlock_page(eb->pages[0]); | 
|  | } | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | for (i = 0; i < num_pages; i++) | 
|  | ASSERT(PageDirty(eb->pages[i])); | 
|  | #endif | 
|  |  | 
|  | return was_dirty; | 
|  | } | 
|  |  | 
|  | void clear_extent_buffer_uptodate(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct page *page; | 
|  | int num_pages; | 
|  | int i; | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * This is special handling for metadata subpage, as regular | 
|  | * btrfs_is_subpage() can not handle cloned/dummy metadata. | 
|  | */ | 
|  | if (fs_info->nodesize >= PAGE_SIZE) | 
|  | ClearPageUptodate(page); | 
|  | else | 
|  | btrfs_subpage_clear_uptodate(fs_info, page, eb->start, | 
|  | eb->len); | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_extent_buffer_uptodate(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct page *page; | 
|  | int num_pages; | 
|  | int i; | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | /* | 
|  | * This is special handling for metadata subpage, as regular | 
|  | * btrfs_is_subpage() can not handle cloned/dummy metadata. | 
|  | */ | 
|  | if (fs_info->nodesize >= PAGE_SIZE) | 
|  | SetPageUptodate(page); | 
|  | else | 
|  | btrfs_subpage_set_uptodate(fs_info, page, eb->start, | 
|  | eb->len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, | 
|  | int mirror_num) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct extent_io_tree *io_tree; | 
|  | struct page *page = eb->pages[0]; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { | 
|  | .mirror_num = mirror_num, | 
|  | }; | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); | 
|  | ASSERT(PagePrivate(page)); | 
|  | io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; | 
|  |  | 
|  | if (wait == WAIT_NONE) { | 
|  | if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || | 
|  | PageUptodate(page) || | 
|  | btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
|  | eb->read_mirror = 0; | 
|  | atomic_set(&eb->io_pages, 1); | 
|  | check_buffer_tree_ref(eb); | 
|  | bio_ctrl.end_io_func = end_bio_extent_readpage; | 
|  |  | 
|  | btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); | 
|  |  | 
|  | btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); | 
|  | ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, | 
|  | eb->start, page, eb->len, | 
|  | eb->start - page_offset(page), 0, true); | 
|  | if (ret) { | 
|  | /* | 
|  | * In the endio function, if we hit something wrong we will | 
|  | * increase the io_pages, so here we need to decrease it for | 
|  | * error path. | 
|  | */ | 
|  | atomic_dec(&eb->io_pages); | 
|  | } | 
|  | submit_one_bio(&bio_ctrl); | 
|  | if (ret || wait != WAIT_COMPLETE) | 
|  | return ret; | 
|  |  | 
|  | wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); | 
|  | if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
|  | ret = -EIO; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  | int err; | 
|  | int ret = 0; | 
|  | int locked_pages = 0; | 
|  | int all_uptodate = 1; | 
|  | int num_pages; | 
|  | unsigned long num_reads = 0; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { | 
|  | .mirror_num = mirror_num, | 
|  | }; | 
|  |  | 
|  | if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We could have had EXTENT_BUFFER_UPTODATE cleared by the write | 
|  | * operation, which could potentially still be in flight.  In this case | 
|  | * we simply want to return an error. | 
|  | */ | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) | 
|  | return -EIO; | 
|  |  | 
|  | if (eb->fs_info->nodesize < PAGE_SIZE) | 
|  | return read_extent_buffer_subpage(eb, wait, mirror_num); | 
|  |  | 
|  | num_pages = num_extent_pages(eb); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (wait == WAIT_NONE) { | 
|  | /* | 
|  | * WAIT_NONE is only utilized by readahead. If we can't | 
|  | * acquire the lock atomically it means either the eb | 
|  | * is being read out or under modification. | 
|  | * Either way the eb will be or has been cached, | 
|  | * readahead can exit safely. | 
|  | */ | 
|  | if (!trylock_page(page)) | 
|  | goto unlock_exit; | 
|  | } else { | 
|  | lock_page(page); | 
|  | } | 
|  | locked_pages++; | 
|  | } | 
|  | /* | 
|  | * We need to firstly lock all pages to make sure that | 
|  | * the uptodate bit of our pages won't be affected by | 
|  | * clear_extent_buffer_uptodate(). | 
|  | */ | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | if (!PageUptodate(page)) { | 
|  | num_reads++; | 
|  | all_uptodate = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (all_uptodate) { | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | goto unlock_exit; | 
|  | } | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
|  | eb->read_mirror = 0; | 
|  | atomic_set(&eb->io_pages, num_reads); | 
|  | /* | 
|  | * It is possible for release_folio to clear the TREE_REF bit before we | 
|  | * set io_pages. See check_buffer_tree_ref for a more detailed comment. | 
|  | */ | 
|  | check_buffer_tree_ref(eb); | 
|  | bio_ctrl.end_io_func = end_bio_extent_readpage; | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | if (ret) { | 
|  | atomic_dec(&eb->io_pages); | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ClearPageError(page); | 
|  | err = submit_extent_page(REQ_OP_READ, NULL, | 
|  | &bio_ctrl, page_offset(page), page, | 
|  | PAGE_SIZE, 0, 0, false); | 
|  | if (err) { | 
|  | /* | 
|  | * We failed to submit the bio so it's the | 
|  | * caller's responsibility to perform cleanup | 
|  | * i.e unlock page/set error bit. | 
|  | */ | 
|  | ret = err; | 
|  | SetPageError(page); | 
|  | unlock_page(page); | 
|  | atomic_dec(&eb->io_pages); | 
|  | } | 
|  | } else { | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | submit_one_bio(&bio_ctrl); | 
|  |  | 
|  | if (ret || wait != WAIT_COMPLETE) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | page = eb->pages[i]; | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | unlock_exit: | 
|  | while (locked_pages > 0) { | 
|  | locked_pages--; | 
|  | page = eb->pages[locked_pages]; | 
|  | unlock_page(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | btrfs_warn(eb->fs_info, | 
|  | "access to eb bytenr %llu len %lu out of range start %lu len %lu", | 
|  | eb->start, eb->len, start, len); | 
|  | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the [start, start + len) range is valid before reading/writing | 
|  | * the eb. | 
|  | * NOTE: @start and @len are offset inside the eb, not logical address. | 
|  | * | 
|  | * Caller should not touch the dst/src memory if this function returns error. | 
|  | */ | 
|  | static inline int check_eb_range(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | unsigned long offset; | 
|  |  | 
|  | /* start, start + len should not go beyond eb->len nor overflow */ | 
|  | if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) | 
|  | return report_eb_range(eb, start, len); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void read_extent_buffer(const struct extent_buffer *eb, void *dstv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char *dst = (char *)dstv; | 
|  | unsigned long i = get_eb_page_index(start); | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) { | 
|  | /* | 
|  | * Invalid range hit, reset the memory, so callers won't get | 
|  | * some random garbage for their uninitialzed memory. | 
|  | */ | 
|  | memset(dstv, 0, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset = get_eb_offset_in_page(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | cur = min(len, (PAGE_SIZE - offset)); | 
|  | kaddr = page_address(page); | 
|  | memcpy(dst, kaddr + offset, cur); | 
|  |  | 
|  | dst += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, | 
|  | void __user *dstv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char __user *dst = (char __user *)dstv; | 
|  | unsigned long i = get_eb_page_index(start); | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(start > eb->len); | 
|  | WARN_ON(start + len > eb->start + eb->len); | 
|  |  | 
|  | offset = get_eb_offset_in_page(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | cur = min(len, (PAGE_SIZE - offset)); | 
|  | kaddr = page_address(page); | 
|  | if (copy_to_user_nofault(dst, kaddr + offset, cur)) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dst += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char *ptr = (char *)ptrv; | 
|  | unsigned long i = get_eb_page_index(start); | 
|  | int ret = 0; | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | offset = get_eb_offset_in_page(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  |  | 
|  | cur = min(len, (PAGE_SIZE - offset)); | 
|  |  | 
|  | kaddr = page_address(page); | 
|  | ret = memcmp(ptr, kaddr + offset, cur); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ptr += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the extent buffer is uptodate. | 
|  | * | 
|  | * For regular sector size == PAGE_SIZE case, check if @page is uptodate. | 
|  | * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. | 
|  | */ | 
|  | static void assert_eb_page_uptodate(const struct extent_buffer *eb, | 
|  | struct page *page) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | /* | 
|  | * If we are using the commit root we could potentially clear a page | 
|  | * Uptodate while we're using the extent buffer that we've previously | 
|  | * looked up.  We don't want to complain in this case, as the page was | 
|  | * valid before, we just didn't write it out.  Instead we want to catch | 
|  | * the case where we didn't actually read the block properly, which | 
|  | * would have !PageUptodate && !PageError, as we clear PageError before | 
|  | * reading. | 
|  | */ | 
|  | if (fs_info->nodesize < PAGE_SIZE) { | 
|  | bool uptodate, error; | 
|  |  | 
|  | uptodate = btrfs_subpage_test_uptodate(fs_info, page, | 
|  | eb->start, eb->len); | 
|  | error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); | 
|  | WARN_ON(!uptodate && !error); | 
|  | } else { | 
|  | WARN_ON(!PageUptodate(page) && !PageError(page)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, | 
|  | const void *srcv) | 
|  | { | 
|  | char *kaddr; | 
|  |  | 
|  | assert_eb_page_uptodate(eb, eb->pages[0]); | 
|  | kaddr = page_address(eb->pages[0]) + | 
|  | get_eb_offset_in_page(eb, offsetof(struct btrfs_header, | 
|  | chunk_tree_uuid)); | 
|  | memcpy(kaddr, srcv, BTRFS_FSID_SIZE); | 
|  | } | 
|  |  | 
|  | void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) | 
|  | { | 
|  | char *kaddr; | 
|  |  | 
|  | assert_eb_page_uptodate(eb, eb->pages[0]); | 
|  | kaddr = page_address(eb->pages[0]) + | 
|  | get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); | 
|  | memcpy(kaddr, srcv, BTRFS_FSID_SIZE); | 
|  | } | 
|  |  | 
|  | void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | char *src = (char *)srcv; | 
|  | unsigned long i = get_eb_page_index(start); | 
|  |  | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) | 
|  | return; | 
|  |  | 
|  | offset = get_eb_offset_in_page(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  |  | 
|  | cur = min(len, PAGE_SIZE - offset); | 
|  | kaddr = page_address(page); | 
|  | memcpy(kaddr + offset, src, cur); | 
|  |  | 
|  | src += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | unsigned long i = get_eb_page_index(start); | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) | 
|  | return; | 
|  |  | 
|  | offset = get_eb_offset_in_page(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = eb->pages[i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  |  | 
|  | cur = min(len, PAGE_SIZE - offset); | 
|  | kaddr = page_address(page); | 
|  | memset(kaddr + offset, 0, cur); | 
|  |  | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void copy_extent_buffer_full(const struct extent_buffer *dst, | 
|  | const struct extent_buffer *src) | 
|  | { | 
|  | int i; | 
|  | int num_pages; | 
|  |  | 
|  | ASSERT(dst->len == src->len); | 
|  |  | 
|  | if (dst->fs_info->nodesize >= PAGE_SIZE) { | 
|  | num_pages = num_extent_pages(dst); | 
|  | for (i = 0; i < num_pages; i++) | 
|  | copy_page(page_address(dst->pages[i]), | 
|  | page_address(src->pages[i])); | 
|  | } else { | 
|  | size_t src_offset = get_eb_offset_in_page(src, 0); | 
|  | size_t dst_offset = get_eb_offset_in_page(dst, 0); | 
|  |  | 
|  | ASSERT(src->fs_info->nodesize < PAGE_SIZE); | 
|  | memcpy(page_address(dst->pages[0]) + dst_offset, | 
|  | page_address(src->pages[0]) + src_offset, | 
|  | src->len); | 
|  | } | 
|  | } | 
|  |  | 
|  | void copy_extent_buffer(const struct extent_buffer *dst, | 
|  | const struct extent_buffer *src, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | u64 dst_len = dst->len; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | unsigned long i = get_eb_page_index(dst_offset); | 
|  |  | 
|  | if (check_eb_range(dst, dst_offset, len) || | 
|  | check_eb_range(src, src_offset, len)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(src->len != dst_len); | 
|  |  | 
|  | offset = get_eb_offset_in_page(dst, dst_offset); | 
|  |  | 
|  | while (len > 0) { | 
|  | page = dst->pages[i]; | 
|  | assert_eb_page_uptodate(dst, page); | 
|  |  | 
|  | cur = min(len, (unsigned long)(PAGE_SIZE - offset)); | 
|  |  | 
|  | kaddr = page_address(page); | 
|  | read_extent_buffer(src, kaddr + offset, src_offset, cur); | 
|  |  | 
|  | src_offset += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * eb_bitmap_offset() - calculate the page and offset of the byte containing the | 
|  | * given bit number | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @nr: bit number | 
|  | * @page_index: return index of the page in the extent buffer that contains the | 
|  | * given bit number | 
|  | * @page_offset: return offset into the page given by page_index | 
|  | * | 
|  | * This helper hides the ugliness of finding the byte in an extent buffer which | 
|  | * contains a given bit. | 
|  | */ | 
|  | static inline void eb_bitmap_offset(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long nr, | 
|  | unsigned long *page_index, | 
|  | size_t *page_offset) | 
|  | { | 
|  | size_t byte_offset = BIT_BYTE(nr); | 
|  | size_t offset; | 
|  |  | 
|  | /* | 
|  | * The byte we want is the offset of the extent buffer + the offset of | 
|  | * the bitmap item in the extent buffer + the offset of the byte in the | 
|  | * bitmap item. | 
|  | */ | 
|  | offset = start + offset_in_page(eb->start) + byte_offset; | 
|  |  | 
|  | *page_index = offset >> PAGE_SHIFT; | 
|  | *page_offset = offset_in_page(offset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * extent_buffer_test_bit - determine whether a bit in a bitmap item is set | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @nr: bit number to test | 
|  | */ | 
|  | int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long nr) | 
|  | { | 
|  | u8 *kaddr; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  |  | 
|  | eb_bitmap_offset(eb, start, nr, &i, &offset); | 
|  | page = eb->pages[i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  | kaddr = page_address(page); | 
|  | return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * extent_buffer_bitmap_set - set an area of a bitmap | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @pos: bit number of the first bit | 
|  | * @len: number of bits to set | 
|  | */ | 
|  | void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long pos, unsigned long len) | 
|  | { | 
|  | u8 *kaddr; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  | const unsigned int size = pos + len; | 
|  | int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
|  | u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); | 
|  |  | 
|  | eb_bitmap_offset(eb, start, pos, &i, &offset); | 
|  | page = eb->pages[i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  | kaddr = page_address(page); | 
|  |  | 
|  | while (len >= bits_to_set) { | 
|  | kaddr[offset] |= mask_to_set; | 
|  | len -= bits_to_set; | 
|  | bits_to_set = BITS_PER_BYTE; | 
|  | mask_to_set = ~0; | 
|  | if (++offset >= PAGE_SIZE && len > 0) { | 
|  | offset = 0; | 
|  | page = eb->pages[++i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  | kaddr = page_address(page); | 
|  | } | 
|  | } | 
|  | if (len) { | 
|  | mask_to_set &= BITMAP_LAST_BYTE_MASK(size); | 
|  | kaddr[offset] |= mask_to_set; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * extent_buffer_bitmap_clear - clear an area of a bitmap | 
|  | * @eb: the extent buffer | 
|  | * @start: offset of the bitmap item in the extent buffer | 
|  | * @pos: bit number of the first bit | 
|  | * @len: number of bits to clear | 
|  | */ | 
|  | void extent_buffer_bitmap_clear(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long pos, | 
|  | unsigned long len) | 
|  | { | 
|  | u8 *kaddr; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  | const unsigned int size = pos + len; | 
|  | int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
|  | u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); | 
|  |  | 
|  | eb_bitmap_offset(eb, start, pos, &i, &offset); | 
|  | page = eb->pages[i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  | kaddr = page_address(page); | 
|  |  | 
|  | while (len >= bits_to_clear) { | 
|  | kaddr[offset] &= ~mask_to_clear; | 
|  | len -= bits_to_clear; | 
|  | bits_to_clear = BITS_PER_BYTE; | 
|  | mask_to_clear = ~0; | 
|  | if (++offset >= PAGE_SIZE && len > 0) { | 
|  | offset = 0; | 
|  | page = eb->pages[++i]; | 
|  | assert_eb_page_uptodate(eb, page); | 
|  | kaddr = page_address(page); | 
|  | } | 
|  | } | 
|  | if (len) { | 
|  | mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); | 
|  | kaddr[offset] &= ~mask_to_clear; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) | 
|  | { | 
|  | unsigned long distance = (src > dst) ? src - dst : dst - src; | 
|  | return distance < len; | 
|  | } | 
|  |  | 
|  | static void copy_pages(struct page *dst_page, struct page *src_page, | 
|  | unsigned long dst_off, unsigned long src_off, | 
|  | unsigned long len) | 
|  | { | 
|  | char *dst_kaddr = page_address(dst_page); | 
|  | char *src_kaddr; | 
|  | int must_memmove = 0; | 
|  |  | 
|  | if (dst_page != src_page) { | 
|  | src_kaddr = page_address(src_page); | 
|  | } else { | 
|  | src_kaddr = dst_kaddr; | 
|  | if (areas_overlap(src_off, dst_off, len)) | 
|  | must_memmove = 1; | 
|  | } | 
|  |  | 
|  | if (must_memmove) | 
|  | memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
|  | else | 
|  | memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
|  | } | 
|  |  | 
|  | void memcpy_extent_buffer(const struct extent_buffer *dst, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t dst_off_in_page; | 
|  | size_t src_off_in_page; | 
|  | unsigned long dst_i; | 
|  | unsigned long src_i; | 
|  |  | 
|  | if (check_eb_range(dst, dst_offset, len) || | 
|  | check_eb_range(dst, src_offset, len)) | 
|  | return; | 
|  |  | 
|  | while (len > 0) { | 
|  | dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); | 
|  | src_off_in_page = get_eb_offset_in_page(dst, src_offset); | 
|  |  | 
|  | dst_i = get_eb_page_index(dst_offset); | 
|  | src_i = get_eb_page_index(src_offset); | 
|  |  | 
|  | cur = min(len, (unsigned long)(PAGE_SIZE - | 
|  | src_off_in_page)); | 
|  | cur = min_t(unsigned long, cur, | 
|  | (unsigned long)(PAGE_SIZE - dst_off_in_page)); | 
|  |  | 
|  | copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
|  | dst_off_in_page, src_off_in_page, cur); | 
|  |  | 
|  | src_offset += cur; | 
|  | dst_offset += cur; | 
|  | len -= cur; | 
|  | } | 
|  | } | 
|  |  | 
|  | void memmove_extent_buffer(const struct extent_buffer *dst, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | size_t cur; | 
|  | size_t dst_off_in_page; | 
|  | size_t src_off_in_page; | 
|  | unsigned long dst_end = dst_offset + len - 1; | 
|  | unsigned long src_end = src_offset + len - 1; | 
|  | unsigned long dst_i; | 
|  | unsigned long src_i; | 
|  |  | 
|  | if (check_eb_range(dst, dst_offset, len) || | 
|  | check_eb_range(dst, src_offset, len)) | 
|  | return; | 
|  | if (dst_offset < src_offset) { | 
|  | memcpy_extent_buffer(dst, dst_offset, src_offset, len); | 
|  | return; | 
|  | } | 
|  | while (len > 0) { | 
|  | dst_i = get_eb_page_index(dst_end); | 
|  | src_i = get_eb_page_index(src_end); | 
|  |  | 
|  | dst_off_in_page = get_eb_offset_in_page(dst, dst_end); | 
|  | src_off_in_page = get_eb_offset_in_page(dst, src_end); | 
|  |  | 
|  | cur = min_t(unsigned long, len, src_off_in_page + 1); | 
|  | cur = min(cur, dst_off_in_page + 1); | 
|  | copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
|  | dst_off_in_page - cur + 1, | 
|  | src_off_in_page - cur + 1, cur); | 
|  |  | 
|  | dst_end -= cur; | 
|  | src_end -= cur; | 
|  | len -= cur; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define GANG_LOOKUP_SIZE	16 | 
|  | static struct extent_buffer *get_next_extent_buffer( | 
|  | struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) | 
|  | { | 
|  | struct extent_buffer *gang[GANG_LOOKUP_SIZE]; | 
|  | struct extent_buffer *found = NULL; | 
|  | u64 page_start = page_offset(page); | 
|  | u64 cur = page_start; | 
|  |  | 
|  | ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); | 
|  | lockdep_assert_held(&fs_info->buffer_lock); | 
|  |  | 
|  | while (cur < page_start + PAGE_SIZE) { | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = radix_tree_gang_lookup(&fs_info->buffer_radix, | 
|  | (void **)gang, cur >> fs_info->sectorsize_bits, | 
|  | min_t(unsigned int, GANG_LOOKUP_SIZE, | 
|  | PAGE_SIZE / fs_info->nodesize)); | 
|  | if (ret == 0) | 
|  | goto out; | 
|  | for (i = 0; i < ret; i++) { | 
|  | /* Already beyond page end */ | 
|  | if (gang[i]->start >= page_start + PAGE_SIZE) | 
|  | goto out; | 
|  | /* Found one */ | 
|  | if (gang[i]->start >= bytenr) { | 
|  | found = gang[i]; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | cur = gang[ret - 1]->start + gang[ret - 1]->len; | 
|  | } | 
|  | out: | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int try_release_subpage_extent_buffer(struct page *page) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
|  | u64 cur = page_offset(page); | 
|  | const u64 end = page_offset(page) + PAGE_SIZE; | 
|  | int ret; | 
|  |  | 
|  | while (cur < end) { | 
|  | struct extent_buffer *eb = NULL; | 
|  |  | 
|  | /* | 
|  | * Unlike try_release_extent_buffer() which uses page->private | 
|  | * to grab buffer, for subpage case we rely on radix tree, thus | 
|  | * we need to ensure radix tree consistency. | 
|  | * | 
|  | * We also want an atomic snapshot of the radix tree, thus go | 
|  | * with spinlock rather than RCU. | 
|  | */ | 
|  | spin_lock(&fs_info->buffer_lock); | 
|  | eb = get_next_extent_buffer(fs_info, page, cur); | 
|  | if (!eb) { | 
|  | /* No more eb in the page range after or at cur */ | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | break; | 
|  | } | 
|  | cur = eb->start + eb->len; | 
|  |  | 
|  | /* | 
|  | * The same as try_release_extent_buffer(), to ensure the eb | 
|  | * won't disappear out from under us. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  | break; | 
|  | } | 
|  | spin_unlock(&fs_info->buffer_lock); | 
|  |  | 
|  | /* | 
|  | * If tree ref isn't set then we know the ref on this eb is a | 
|  | * real ref, so just return, this eb will likely be freed soon | 
|  | * anyway. | 
|  | */ | 
|  | if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we don't care about the return value, we will always | 
|  | * check the page private at the end.  And | 
|  | * release_extent_buffer() will release the refs_lock. | 
|  | */ | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  | /* | 
|  | * Finally to check if we have cleared page private, as if we have | 
|  | * released all ebs in the page, the page private should be cleared now. | 
|  | */ | 
|  | spin_lock(&page->mapping->private_lock); | 
|  | if (!PagePrivate(page)) | 
|  | ret = 1; | 
|  | else | 
|  | ret = 0; | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | int try_release_extent_buffer(struct page *page) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) | 
|  | return try_release_subpage_extent_buffer(page); | 
|  |  | 
|  | /* | 
|  | * We need to make sure nobody is changing page->private, as we rely on | 
|  | * page->private as the pointer to extent buffer. | 
|  | */ | 
|  | spin_lock(&page->mapping->private_lock); | 
|  | if (!PagePrivate(page)) { | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | BUG_ON(!eb); | 
|  |  | 
|  | /* | 
|  | * This is a little awful but should be ok, we need to make sure that | 
|  | * the eb doesn't disappear out from under us while we're looking at | 
|  | * this page. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&page->mapping->private_lock); | 
|  |  | 
|  | /* | 
|  | * If tree ref isn't set then we know the ref on this eb is a real ref, | 
|  | * so just return, this page will likely be freed soon anyway. | 
|  | */ | 
|  | if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_readahead_tree_block - attempt to readahead a child block | 
|  | * @fs_info:	the fs_info | 
|  | * @bytenr:	bytenr to read | 
|  | * @owner_root: objectid of the root that owns this eb | 
|  | * @gen:	generation for the uptodate check, can be 0 | 
|  | * @level:	level for the eb | 
|  | * | 
|  | * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a | 
|  | * normal uptodate check of the eb, without checking the generation.  If we have | 
|  | * to read the block we will not block on anything. | 
|  | */ | 
|  | void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 owner_root, u64 gen, int level) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  |  | 
|  | eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); | 
|  | if (IS_ERR(eb)) | 
|  | return; | 
|  |  | 
|  | if (btrfs_buffer_uptodate(eb, gen, 1)) { | 
|  | free_extent_buffer(eb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); | 
|  | if (ret < 0) | 
|  | free_extent_buffer_stale(eb); | 
|  | else | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_readahead_node_child - readahead a node's child block | 
|  | * @node:	parent node we're reading from | 
|  | * @slot:	slot in the parent node for the child we want to read | 
|  | * | 
|  | * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at | 
|  | * the slot in the node provided. | 
|  | */ | 
|  | void btrfs_readahead_node_child(struct extent_buffer *node, int slot) | 
|  | { | 
|  | btrfs_readahead_tree_block(node->fs_info, | 
|  | btrfs_node_blockptr(node, slot), | 
|  | btrfs_header_owner(node), | 
|  | btrfs_node_ptr_generation(node, slot), | 
|  | btrfs_header_level(node) - 1); | 
|  | } |