| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * | 
 |  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/srcu.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/file.h> | 
 | #include <linux/debugfs.h> | 
 |  | 
 | #include <asm/kvm_ppc.h> | 
 | #include <asm/kvm_book3s.h> | 
 | #include <asm/book3s/64/mmu-hash.h> | 
 | #include <asm/hvcall.h> | 
 | #include <asm/synch.h> | 
 | #include <asm/ppc-opcode.h> | 
 | #include <asm/cputable.h> | 
 | #include <asm/pte-walk.h> | 
 |  | 
 | #include "book3s.h" | 
 | #include "trace_hv.h" | 
 |  | 
 | //#define DEBUG_RESIZE_HPT	1 | 
 |  | 
 | #ifdef DEBUG_RESIZE_HPT | 
 | #define resize_hpt_debug(resize, ...)				\ | 
 | 	do {							\ | 
 | 		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\ | 
 | 		printk(__VA_ARGS__);				\ | 
 | 	} while (0) | 
 | #else | 
 | #define resize_hpt_debug(resize, ...)				\ | 
 | 	do { } while (0) | 
 | #endif | 
 |  | 
 | static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, | 
 | 				long pte_index, unsigned long pteh, | 
 | 				unsigned long ptel, unsigned long *pte_idx_ret); | 
 |  | 
 | struct kvm_resize_hpt { | 
 | 	/* These fields read-only after init */ | 
 | 	struct kvm *kvm; | 
 | 	struct work_struct work; | 
 | 	u32 order; | 
 |  | 
 | 	/* These fields protected by kvm->arch.mmu_setup_lock */ | 
 |  | 
 | 	/* Possible values and their usage: | 
 | 	 *  <0     an error occurred during allocation, | 
 | 	 *  -EBUSY allocation is in the progress, | 
 | 	 *  0      allocation made successfuly. | 
 | 	 */ | 
 | 	int error; | 
 |  | 
 | 	/* Private to the work thread, until error != -EBUSY, | 
 | 	 * then protected by kvm->arch.mmu_setup_lock. | 
 | 	 */ | 
 | 	struct kvm_hpt_info hpt; | 
 | }; | 
 |  | 
 | int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) | 
 | { | 
 | 	unsigned long hpt = 0; | 
 | 	int cma = 0; | 
 | 	struct page *page = NULL; | 
 | 	struct revmap_entry *rev; | 
 | 	unsigned long npte; | 
 |  | 
 | 	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); | 
 | 	if (page) { | 
 | 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); | 
 | 		memset((void *)hpt, 0, (1ul << order)); | 
 | 		cma = 1; | 
 | 	} | 
 |  | 
 | 	if (!hpt) | 
 | 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL | 
 | 				       |__GFP_NOWARN, order - PAGE_SHIFT); | 
 |  | 
 | 	if (!hpt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* HPTEs are 2**4 bytes long */ | 
 | 	npte = 1ul << (order - 4); | 
 |  | 
 | 	/* Allocate reverse map array */ | 
 | 	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); | 
 | 	if (!rev) { | 
 | 		if (cma) | 
 | 			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); | 
 | 		else | 
 | 			free_pages(hpt, order - PAGE_SHIFT); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	info->order = order; | 
 | 	info->virt = hpt; | 
 | 	info->cma = cma; | 
 | 	info->rev = rev; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) | 
 | { | 
 | 	atomic64_set(&kvm->arch.mmio_update, 0); | 
 | 	kvm->arch.hpt = *info; | 
 | 	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); | 
 |  | 
 | 	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", | 
 | 		 info->virt, (long)info->order, kvm->arch.lpid); | 
 | } | 
 |  | 
 | long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) | 
 | { | 
 | 	long err = -EBUSY; | 
 | 	struct kvm_hpt_info info; | 
 |  | 
 | 	mutex_lock(&kvm->arch.mmu_setup_lock); | 
 | 	if (kvm->arch.mmu_ready) { | 
 | 		kvm->arch.mmu_ready = 0; | 
 | 		/* order mmu_ready vs. vcpus_running */ | 
 | 		smp_mb(); | 
 | 		if (atomic_read(&kvm->arch.vcpus_running)) { | 
 | 			kvm->arch.mmu_ready = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	if (kvm_is_radix(kvm)) { | 
 | 		err = kvmppc_switch_mmu_to_hpt(kvm); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (kvm->arch.hpt.order == order) { | 
 | 		/* We already have a suitable HPT */ | 
 |  | 
 | 		/* Set the entire HPT to 0, i.e. invalid HPTEs */ | 
 | 		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); | 
 | 		/* | 
 | 		 * Reset all the reverse-mapping chains for all memslots | 
 | 		 */ | 
 | 		kvmppc_rmap_reset(kvm); | 
 | 		err = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (kvm->arch.hpt.virt) { | 
 | 		kvmppc_free_hpt(&kvm->arch.hpt); | 
 | 		kvmppc_rmap_reset(kvm); | 
 | 	} | 
 |  | 
 | 	err = kvmppc_allocate_hpt(&info, order); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 | 	kvmppc_set_hpt(kvm, &info); | 
 |  | 
 | out: | 
 | 	if (err == 0) | 
 | 		/* Ensure that each vcpu will flush its TLB on next entry. */ | 
 | 		cpumask_setall(&kvm->arch.need_tlb_flush); | 
 |  | 
 | 	mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | void kvmppc_free_hpt(struct kvm_hpt_info *info) | 
 | { | 
 | 	vfree(info->rev); | 
 | 	info->rev = NULL; | 
 | 	if (info->cma) | 
 | 		kvm_free_hpt_cma(virt_to_page(info->virt), | 
 | 				 1 << (info->order - PAGE_SHIFT)); | 
 | 	else if (info->virt) | 
 | 		free_pages(info->virt, info->order - PAGE_SHIFT); | 
 | 	info->virt = 0; | 
 | 	info->order = 0; | 
 | } | 
 |  | 
 | /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ | 
 | static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) | 
 | { | 
 | 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; | 
 | } | 
 |  | 
 | /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ | 
 | static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) | 
 | { | 
 | 	return (pgsize == 0x10000) ? 0x1000 : 0; | 
 | } | 
 |  | 
 | void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, | 
 | 		     unsigned long porder) | 
 | { | 
 | 	unsigned long i; | 
 | 	unsigned long npages; | 
 | 	unsigned long hp_v, hp_r; | 
 | 	unsigned long addr, hash; | 
 | 	unsigned long psize; | 
 | 	unsigned long hp0, hp1; | 
 | 	unsigned long idx_ret; | 
 | 	long ret; | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	psize = 1ul << porder; | 
 | 	npages = memslot->npages >> (porder - PAGE_SHIFT); | 
 |  | 
 | 	/* VRMA can't be > 1TB */ | 
 | 	if (npages > 1ul << (40 - porder)) | 
 | 		npages = 1ul << (40 - porder); | 
 | 	/* Can't use more than 1 HPTE per HPTEG */ | 
 | 	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) | 
 | 		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; | 
 |  | 
 | 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | | 
 | 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); | 
 | 	hp1 = hpte1_pgsize_encoding(psize) | | 
 | 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; | 
 |  | 
 | 	for (i = 0; i < npages; ++i) { | 
 | 		addr = i << porder; | 
 | 		/* can't use hpt_hash since va > 64 bits */ | 
 | 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) | 
 | 			& kvmppc_hpt_mask(&kvm->arch.hpt); | 
 | 		/* | 
 | 		 * We assume that the hash table is empty and no | 
 | 		 * vcpus are using it at this stage.  Since we create | 
 | 		 * at most one HPTE per HPTEG, we just assume entry 7 | 
 | 		 * is available and use it. | 
 | 		 */ | 
 | 		hash = (hash << 3) + 7; | 
 | 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL); | 
 | 		hp_r = hp1 | addr; | 
 | 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, | 
 | 						 &idx_ret); | 
 | 		if (ret != H_SUCCESS) { | 
 | 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", | 
 | 			       addr, ret); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int kvmppc_mmu_hv_init(void) | 
 | { | 
 | 	unsigned long host_lpid, rsvd_lpid; | 
 |  | 
 | 	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	host_lpid = 0; | 
 | 	if (cpu_has_feature(CPU_FTR_HVMODE)) | 
 | 		host_lpid = mfspr(SPRN_LPID); | 
 |  | 
 | 	/* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */ | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
 | 		rsvd_lpid = LPID_RSVD; | 
 | 	else | 
 | 		rsvd_lpid = LPID_RSVD_POWER7; | 
 |  | 
 | 	kvmppc_init_lpid(rsvd_lpid + 1); | 
 |  | 
 | 	kvmppc_claim_lpid(host_lpid); | 
 | 	/* rsvd_lpid is reserved for use in partition switching */ | 
 | 	kvmppc_claim_lpid(rsvd_lpid); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, | 
 | 				long pte_index, unsigned long pteh, | 
 | 				unsigned long ptel, unsigned long *pte_idx_ret) | 
 | { | 
 | 	long ret; | 
 |  | 
 | 	preempt_disable(); | 
 | 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, | 
 | 				kvm->mm->pgd, false, pte_idx_ret); | 
 | 	preempt_enable(); | 
 | 	if (ret == H_TOO_HARD) { | 
 | 		/* this can't happen */ | 
 | 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); | 
 | 		ret = H_RESOURCE;	/* or something */ | 
 | 	} | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, | 
 | 							 gva_t eaddr) | 
 | { | 
 | 	u64 mask; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < vcpu->arch.slb_nr; i++) { | 
 | 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) | 
 | 			continue; | 
 |  | 
 | 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) | 
 | 			mask = ESID_MASK_1T; | 
 | 		else | 
 | 			mask = ESID_MASK; | 
 |  | 
 | 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) | 
 | 			return &vcpu->arch.slb[i]; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, | 
 | 			unsigned long ea) | 
 | { | 
 | 	unsigned long ra_mask; | 
 |  | 
 | 	ra_mask = kvmppc_actual_pgsz(v, r) - 1; | 
 | 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); | 
 | } | 
 |  | 
 | static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, | 
 | 			struct kvmppc_pte *gpte, bool data, bool iswrite) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	struct kvmppc_slb *slbe; | 
 | 	unsigned long slb_v; | 
 | 	unsigned long pp, key; | 
 | 	unsigned long v, orig_v, gr; | 
 | 	__be64 *hptep; | 
 | 	long int index; | 
 | 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); | 
 |  | 
 | 	if (kvm_is_radix(vcpu->kvm)) | 
 | 		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); | 
 |  | 
 | 	/* Get SLB entry */ | 
 | 	if (virtmode) { | 
 | 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); | 
 | 		if (!slbe) | 
 | 			return -EINVAL; | 
 | 		slb_v = slbe->origv; | 
 | 	} else { | 
 | 		/* real mode access */ | 
 | 		slb_v = vcpu->kvm->arch.vrma_slb_v; | 
 | 	} | 
 |  | 
 | 	preempt_disable(); | 
 | 	/* Find the HPTE in the hash table */ | 
 | 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, | 
 | 					 HPTE_V_VALID | HPTE_V_ABSENT); | 
 | 	if (index < 0) { | 
 | 		preempt_enable(); | 
 | 		return -ENOENT; | 
 | 	} | 
 | 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); | 
 | 	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) | 
 | 		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); | 
 | 	gr = kvm->arch.hpt.rev[index].guest_rpte; | 
 |  | 
 | 	unlock_hpte(hptep, orig_v); | 
 | 	preempt_enable(); | 
 |  | 
 | 	gpte->eaddr = eaddr; | 
 | 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); | 
 |  | 
 | 	/* Get PP bits and key for permission check */ | 
 | 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP); | 
 | 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; | 
 | 	key &= slb_v; | 
 |  | 
 | 	/* Calculate permissions */ | 
 | 	gpte->may_read = hpte_read_permission(pp, key); | 
 | 	gpte->may_write = hpte_write_permission(pp, key); | 
 | 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); | 
 |  | 
 | 	/* Storage key permission check for POWER7 */ | 
 | 	if (data && virtmode) { | 
 | 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); | 
 | 		if (amrfield & 1) | 
 | 			gpte->may_read = 0; | 
 | 		if (amrfield & 2) | 
 | 			gpte->may_write = 0; | 
 | 	} | 
 |  | 
 | 	/* Get the guest physical address */ | 
 | 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Quick test for whether an instruction is a load or a store. | 
 |  * If the instruction is a load or a store, then this will indicate | 
 |  * which it is, at least on server processors.  (Embedded processors | 
 |  * have some external PID instructions that don't follow the rule | 
 |  * embodied here.)  If the instruction isn't a load or store, then | 
 |  * this doesn't return anything useful. | 
 |  */ | 
 | static int instruction_is_store(unsigned int instr) | 
 | { | 
 | 	unsigned int mask; | 
 |  | 
 | 	mask = 0x10000000; | 
 | 	if ((instr & 0xfc000000) == 0x7c000000) | 
 | 		mask = 0x100;		/* major opcode 31 */ | 
 | 	return (instr & mask) != 0; | 
 | } | 
 |  | 
 | int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, | 
 | 			   unsigned long gpa, gva_t ea, int is_store) | 
 | { | 
 | 	u32 last_inst; | 
 |  | 
 | 	/* | 
 | 	 * Fast path - check if the guest physical address corresponds to a | 
 | 	 * device on the FAST_MMIO_BUS, if so we can avoid loading the | 
 | 	 * instruction all together, then we can just handle it and return. | 
 | 	 */ | 
 | 	if (is_store) { | 
 | 		int idx, ret; | 
 |  | 
 | 		idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, | 
 | 				       NULL); | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 		if (!ret) { | 
 | 			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); | 
 | 			return RESUME_GUEST; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we fail, we just return to the guest and try executing it again. | 
 | 	 */ | 
 | 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != | 
 | 		EMULATE_DONE) | 
 | 		return RESUME_GUEST; | 
 |  | 
 | 	/* | 
 | 	 * WARNING: We do not know for sure whether the instruction we just | 
 | 	 * read from memory is the same that caused the fault in the first | 
 | 	 * place.  If the instruction we read is neither an load or a store, | 
 | 	 * then it can't access memory, so we don't need to worry about | 
 | 	 * enforcing access permissions.  So, assuming it is a load or | 
 | 	 * store, we just check that its direction (load or store) is | 
 | 	 * consistent with the original fault, since that's what we | 
 | 	 * checked the access permissions against.  If there is a mismatch | 
 | 	 * we just return and retry the instruction. | 
 | 	 */ | 
 |  | 
 | 	if (instruction_is_store(last_inst) != !!is_store) | 
 | 		return RESUME_GUEST; | 
 |  | 
 | 	/* | 
 | 	 * Emulated accesses are emulated by looking at the hash for | 
 | 	 * translation once, then performing the access later. The | 
 | 	 * translation could be invalidated in the meantime in which | 
 | 	 * point performing the subsequent memory access on the old | 
 | 	 * physical address could possibly be a security hole for the | 
 | 	 * guest (but not the host). | 
 | 	 * | 
 | 	 * This is less of an issue for MMIO stores since they aren't | 
 | 	 * globally visible. It could be an issue for MMIO loads to | 
 | 	 * a certain extent but we'll ignore it for now. | 
 | 	 */ | 
 |  | 
 | 	vcpu->arch.paddr_accessed = gpa; | 
 | 	vcpu->arch.vaddr_accessed = ea; | 
 | 	return kvmppc_emulate_mmio(vcpu); | 
 | } | 
 |  | 
 | int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, | 
 | 				unsigned long ea, unsigned long dsisr) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	unsigned long hpte[3], r; | 
 | 	unsigned long hnow_v, hnow_r; | 
 | 	__be64 *hptep; | 
 | 	unsigned long mmu_seq, psize, pte_size; | 
 | 	unsigned long gpa_base, gfn_base; | 
 | 	unsigned long gpa, gfn, hva, pfn, hpa; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	unsigned long *rmap; | 
 | 	struct revmap_entry *rev; | 
 | 	struct page *page; | 
 | 	long index, ret; | 
 | 	bool is_ci; | 
 | 	bool writing, write_ok; | 
 | 	unsigned int shift; | 
 | 	unsigned long rcbits; | 
 | 	long mmio_update; | 
 | 	pte_t pte, *ptep; | 
 |  | 
 | 	if (kvm_is_radix(kvm)) | 
 | 		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); | 
 |  | 
 | 	/* | 
 | 	 * Real-mode code has already searched the HPT and found the | 
 | 	 * entry we're interested in.  Lock the entry and check that | 
 | 	 * it hasn't changed.  If it has, just return and re-execute the | 
 | 	 * instruction. | 
 | 	 */ | 
 | 	if (ea != vcpu->arch.pgfault_addr) | 
 | 		return RESUME_GUEST; | 
 |  | 
 | 	if (vcpu->arch.pgfault_cache) { | 
 | 		mmio_update = atomic64_read(&kvm->arch.mmio_update); | 
 | 		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { | 
 | 			r = vcpu->arch.pgfault_cache->rpte; | 
 | 			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], | 
 | 						   r); | 
 | 			gpa_base = r & HPTE_R_RPN & ~(psize - 1); | 
 | 			gfn_base = gpa_base >> PAGE_SHIFT; | 
 | 			gpa = gpa_base | (ea & (psize - 1)); | 
 | 			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, | 
 | 						dsisr & DSISR_ISSTORE); | 
 | 		} | 
 | 	} | 
 | 	index = vcpu->arch.pgfault_index; | 
 | 	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); | 
 | 	rev = &kvm->arch.hpt.rev[index]; | 
 | 	preempt_disable(); | 
 | 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) | 
 | 		cpu_relax(); | 
 | 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; | 
 | 	hpte[1] = be64_to_cpu(hptep[1]); | 
 | 	hpte[2] = r = rev->guest_rpte; | 
 | 	unlock_hpte(hptep, hpte[0]); | 
 | 	preempt_enable(); | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); | 
 | 		hpte[1] = hpte_new_to_old_r(hpte[1]); | 
 | 	} | 
 | 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] || | 
 | 	    hpte[1] != vcpu->arch.pgfault_hpte[1]) | 
 | 		return RESUME_GUEST; | 
 |  | 
 | 	/* Translate the logical address and get the page */ | 
 | 	psize = kvmppc_actual_pgsz(hpte[0], r); | 
 | 	gpa_base = r & HPTE_R_RPN & ~(psize - 1); | 
 | 	gfn_base = gpa_base >> PAGE_SHIFT; | 
 | 	gpa = gpa_base | (ea & (psize - 1)); | 
 | 	gfn = gpa >> PAGE_SHIFT; | 
 | 	memslot = gfn_to_memslot(kvm, gfn); | 
 |  | 
 | 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); | 
 |  | 
 | 	/* No memslot means it's an emulated MMIO region */ | 
 | 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) | 
 | 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, | 
 | 					      dsisr & DSISR_ISSTORE); | 
 |  | 
 | 	/* | 
 | 	 * This should never happen, because of the slot_is_aligned() | 
 | 	 * check in kvmppc_do_h_enter(). | 
 | 	 */ | 
 | 	if (gfn_base < memslot->base_gfn) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* used to check for invalidations in progress */ | 
 | 	mmu_seq = kvm->mmu_notifier_seq; | 
 | 	smp_rmb(); | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	page = NULL; | 
 | 	writing = (dsisr & DSISR_ISSTORE) != 0; | 
 | 	/* If writing != 0, then the HPTE must allow writing, if we get here */ | 
 | 	write_ok = writing; | 
 | 	hva = gfn_to_hva_memslot(memslot, gfn); | 
 |  | 
 | 	/* | 
 | 	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't | 
 | 	 * do it with !atomic && !async, which is how we call it. | 
 | 	 * We always ask for write permission since the common case | 
 | 	 * is that the page is writable. | 
 | 	 */ | 
 | 	if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { | 
 | 		write_ok = true; | 
 | 	} else { | 
 | 		/* Call KVM generic code to do the slow-path check */ | 
 | 		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, | 
 | 					   writing, &write_ok, NULL); | 
 | 		if (is_error_noslot_pfn(pfn)) | 
 | 			return -EFAULT; | 
 | 		page = NULL; | 
 | 		if (pfn_valid(pfn)) { | 
 | 			page = pfn_to_page(pfn); | 
 | 			if (PageReserved(page)) | 
 | 				page = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read the PTE from the process' radix tree and use that | 
 | 	 * so we get the shift and attribute bits. | 
 | 	 */ | 
 | 	spin_lock(&kvm->mmu_lock); | 
 | 	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); | 
 | 	pte = __pte(0); | 
 | 	if (ptep) | 
 | 		pte = READ_ONCE(*ptep); | 
 | 	spin_unlock(&kvm->mmu_lock); | 
 | 	/* | 
 | 	 * If the PTE disappeared temporarily due to a THP | 
 | 	 * collapse, just return and let the guest try again. | 
 | 	 */ | 
 | 	if (!pte_present(pte)) { | 
 | 		if (page) | 
 | 			put_page(page); | 
 | 		return RESUME_GUEST; | 
 | 	} | 
 | 	hpa = pte_pfn(pte) << PAGE_SHIFT; | 
 | 	pte_size = PAGE_SIZE; | 
 | 	if (shift) | 
 | 		pte_size = 1ul << shift; | 
 | 	is_ci = pte_ci(pte); | 
 |  | 
 | 	if (psize > pte_size) | 
 | 		goto out_put; | 
 | 	if (pte_size > psize) | 
 | 		hpa |= hva & (pte_size - psize); | 
 |  | 
 | 	/* Check WIMG vs. the actual page we're accessing */ | 
 | 	if (!hpte_cache_flags_ok(r, is_ci)) { | 
 | 		if (is_ci) | 
 | 			goto out_put; | 
 | 		/* | 
 | 		 * Allow guest to map emulated device memory as | 
 | 		 * uncacheable, but actually make it cacheable. | 
 | 		 */ | 
 | 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set the HPTE to point to hpa. | 
 | 	 * Since the hpa is at PAGE_SIZE granularity, make sure we | 
 | 	 * don't mask out lower-order bits if psize < PAGE_SIZE. | 
 | 	 */ | 
 | 	if (psize < PAGE_SIZE) | 
 | 		psize = PAGE_SIZE; | 
 | 	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; | 
 | 	if (hpte_is_writable(r) && !write_ok) | 
 | 		r = hpte_make_readonly(r); | 
 | 	ret = RESUME_GUEST; | 
 | 	preempt_disable(); | 
 | 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) | 
 | 		cpu_relax(); | 
 | 	hnow_v = be64_to_cpu(hptep[0]); | 
 | 	hnow_r = be64_to_cpu(hptep[1]); | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); | 
 | 		hnow_r = hpte_new_to_old_r(hnow_r); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the HPT is being resized, don't update the HPTE, | 
 | 	 * instead let the guest retry after the resize operation is complete. | 
 | 	 * The synchronization for mmu_ready test vs. set is provided | 
 | 	 * by the HPTE lock. | 
 | 	 */ | 
 | 	if (!kvm->arch.mmu_ready) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || | 
 | 	    rev->guest_rpte != hpte[2]) | 
 | 		/* HPTE has been changed under us; let the guest retry */ | 
 | 		goto out_unlock; | 
 | 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; | 
 |  | 
 | 	/* Always put the HPTE in the rmap chain for the page base address */ | 
 | 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; | 
 | 	lock_rmap(rmap); | 
 |  | 
 | 	/* Check if we might have been invalidated; let the guest retry if so */ | 
 | 	ret = RESUME_GUEST; | 
 | 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { | 
 | 		unlock_rmap(rmap); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ | 
 | 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; | 
 | 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C); | 
 |  | 
 | 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { | 
 | 		/* HPTE was previously valid, so we need to invalidate it */ | 
 | 		unlock_rmap(rmap); | 
 | 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); | 
 | 		kvmppc_invalidate_hpte(kvm, hptep, index); | 
 | 		/* don't lose previous R and C bits */ | 
 | 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); | 
 | 	} else { | 
 | 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); | 
 | 	} | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		r = hpte_old_to_new_r(hpte[0], r); | 
 | 		hpte[0] = hpte_old_to_new_v(hpte[0]); | 
 | 	} | 
 | 	hptep[1] = cpu_to_be64(r); | 
 | 	eieio(); | 
 | 	__unlock_hpte(hptep, hpte[0]); | 
 | 	asm volatile("ptesync" : : : "memory"); | 
 | 	preempt_enable(); | 
 | 	if (page && hpte_is_writable(r)) | 
 | 		set_page_dirty_lock(page); | 
 |  | 
 |  out_put: | 
 | 	trace_kvm_page_fault_exit(vcpu, hpte, ret); | 
 |  | 
 | 	if (page) | 
 | 		put_page(page); | 
 | 	return ret; | 
 |  | 
 |  out_unlock: | 
 | 	__unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
 | 	preempt_enable(); | 
 | 	goto out_put; | 
 | } | 
 |  | 
 | void kvmppc_rmap_reset(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	int srcu_idx; | 
 |  | 
 | 	srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 	slots = kvm_memslots(kvm); | 
 | 	kvm_for_each_memslot(memslot, slots) { | 
 | 		/* Mutual exclusion with kvm_unmap_hva_range etc. */ | 
 | 		spin_lock(&kvm->mmu_lock); | 
 | 		/* | 
 | 		 * This assumes it is acceptable to lose reference and | 
 | 		 * change bits across a reset. | 
 | 		 */ | 
 | 		memset(memslot->arch.rmap, 0, | 
 | 		       memslot->npages * sizeof(*memslot->arch.rmap)); | 
 | 		spin_unlock(&kvm->mmu_lock); | 
 | 	} | 
 | 	srcu_read_unlock(&kvm->srcu, srcu_idx); | 
 | } | 
 |  | 
 | /* Must be called with both HPTE and rmap locked */ | 
 | static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, | 
 | 			      struct kvm_memory_slot *memslot, | 
 | 			      unsigned long *rmapp, unsigned long gfn) | 
 | { | 
 | 	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
 | 	struct revmap_entry *rev = kvm->arch.hpt.rev; | 
 | 	unsigned long j, h; | 
 | 	unsigned long ptel, psize, rcbits; | 
 |  | 
 | 	j = rev[i].forw; | 
 | 	if (j == i) { | 
 | 		/* chain is now empty */ | 
 | 		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); | 
 | 	} else { | 
 | 		/* remove i from chain */ | 
 | 		h = rev[i].back; | 
 | 		rev[h].forw = j; | 
 | 		rev[j].back = h; | 
 | 		rev[i].forw = rev[i].back = i; | 
 | 		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; | 
 | 	} | 
 |  | 
 | 	/* Now check and modify the HPTE */ | 
 | 	ptel = rev[i].guest_rpte; | 
 | 	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); | 
 | 	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && | 
 | 	    hpte_rpn(ptel, psize) == gfn) { | 
 | 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); | 
 | 		kvmppc_invalidate_hpte(kvm, hptep, i); | 
 | 		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); | 
 | 		/* Harvest R and C */ | 
 | 		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); | 
 | 		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; | 
 | 		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) | 
 | 			kvmppc_update_dirty_map(memslot, gfn, psize); | 
 | 		if (rcbits & ~rev[i].guest_rpte) { | 
 | 			rev[i].guest_rpte = ptel | rcbits; | 
 | 			note_hpte_modification(kvm, &rev[i]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
 | 			    unsigned long gfn) | 
 | { | 
 | 	unsigned long i; | 
 | 	__be64 *hptep; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
 | 	for (;;) { | 
 | 		lock_rmap(rmapp); | 
 | 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { | 
 | 			unlock_rmap(rmapp); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * To avoid an ABBA deadlock with the HPTE lock bit, | 
 | 		 * we can't spin on the HPTE lock while holding the | 
 | 		 * rmap chain lock. | 
 | 		 */ | 
 | 		i = *rmapp & KVMPPC_RMAP_INDEX; | 
 | 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
 | 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { | 
 | 			/* unlock rmap before spinning on the HPTE lock */ | 
 | 			unlock_rmap(rmapp); | 
 | 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) | 
 | 				cpu_relax(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); | 
 | 		unlock_rmap(rmapp); | 
 | 		__unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
 | 	} | 
 | } | 
 |  | 
 | bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
 | { | 
 | 	gfn_t gfn; | 
 |  | 
 | 	if (kvm_is_radix(kvm)) { | 
 | 		for (gfn = range->start; gfn < range->end; gfn++) | 
 | 			kvm_unmap_radix(kvm, range->slot, gfn); | 
 | 	} else { | 
 | 		for (gfn = range->start; gfn < range->end; gfn++) | 
 | 			kvm_unmap_rmapp(kvm, range->slot, gfn); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void kvmppc_core_flush_memslot_hv(struct kvm *kvm, | 
 | 				  struct kvm_memory_slot *memslot) | 
 | { | 
 | 	unsigned long gfn; | 
 | 	unsigned long n; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	gfn = memslot->base_gfn; | 
 | 	rmapp = memslot->arch.rmap; | 
 | 	if (kvm_is_radix(kvm)) { | 
 | 		kvmppc_radix_flush_memslot(kvm, memslot); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (n = memslot->npages; n; --n, ++gfn) { | 
 | 		/* | 
 | 		 * Testing the present bit without locking is OK because | 
 | 		 * the memslot has been marked invalid already, and hence | 
 | 		 * no new HPTEs referencing this page can be created, | 
 | 		 * thus the present bit can't go from 0 to 1. | 
 | 		 */ | 
 | 		if (*rmapp & KVMPPC_RMAP_PRESENT) | 
 | 			kvm_unmap_rmapp(kvm, memslot, gfn); | 
 | 		++rmapp; | 
 | 	} | 
 | } | 
 |  | 
 | static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
 | 			  unsigned long gfn) | 
 | { | 
 | 	struct revmap_entry *rev = kvm->arch.hpt.rev; | 
 | 	unsigned long head, i, j; | 
 | 	__be64 *hptep; | 
 | 	int ret = 0; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
 |  retry: | 
 | 	lock_rmap(rmapp); | 
 | 	if (*rmapp & KVMPPC_RMAP_REFERENCED) { | 
 | 		*rmapp &= ~KVMPPC_RMAP_REFERENCED; | 
 | 		ret = 1; | 
 | 	} | 
 | 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { | 
 | 		unlock_rmap(rmapp); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	i = head = *rmapp & KVMPPC_RMAP_INDEX; | 
 | 	do { | 
 | 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
 | 		j = rev[i].forw; | 
 |  | 
 | 		/* If this HPTE isn't referenced, ignore it */ | 
 | 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) | 
 | 			continue; | 
 |  | 
 | 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { | 
 | 			/* unlock rmap before spinning on the HPTE lock */ | 
 | 			unlock_rmap(rmapp); | 
 | 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) | 
 | 				cpu_relax(); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		/* Now check and modify the HPTE */ | 
 | 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && | 
 | 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) { | 
 | 			kvmppc_clear_ref_hpte(kvm, hptep, i); | 
 | 			if (!(rev[i].guest_rpte & HPTE_R_R)) { | 
 | 				rev[i].guest_rpte |= HPTE_R_R; | 
 | 				note_hpte_modification(kvm, &rev[i]); | 
 | 			} | 
 | 			ret = 1; | 
 | 		} | 
 | 		__unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
 | 	} while ((i = j) != head); | 
 |  | 
 | 	unlock_rmap(rmapp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
 | { | 
 | 	gfn_t gfn; | 
 | 	bool ret = false; | 
 |  | 
 | 	if (kvm_is_radix(kvm)) { | 
 | 		for (gfn = range->start; gfn < range->end; gfn++) | 
 | 			ret |= kvm_age_radix(kvm, range->slot, gfn); | 
 | 	} else { | 
 | 		for (gfn = range->start; gfn < range->end; gfn++) | 
 | 			ret |= kvm_age_rmapp(kvm, range->slot, gfn); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
 | 			       unsigned long gfn) | 
 | { | 
 | 	struct revmap_entry *rev = kvm->arch.hpt.rev; | 
 | 	unsigned long head, i, j; | 
 | 	unsigned long *hp; | 
 | 	bool ret = true; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
 | 	if (*rmapp & KVMPPC_RMAP_REFERENCED) | 
 | 		return true; | 
 |  | 
 | 	lock_rmap(rmapp); | 
 | 	if (*rmapp & KVMPPC_RMAP_REFERENCED) | 
 | 		goto out; | 
 |  | 
 | 	if (*rmapp & KVMPPC_RMAP_PRESENT) { | 
 | 		i = head = *rmapp & KVMPPC_RMAP_INDEX; | 
 | 		do { | 
 | 			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); | 
 | 			j = rev[i].forw; | 
 | 			if (be64_to_cpu(hp[1]) & HPTE_R_R) | 
 | 				goto out; | 
 | 		} while ((i = j) != head); | 
 | 	} | 
 | 	ret = false; | 
 |  | 
 |  out: | 
 | 	unlock_rmap(rmapp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
 | { | 
 | 	WARN_ON(range->start + 1 != range->end); | 
 |  | 
 | 	if (kvm_is_radix(kvm)) | 
 | 		return kvm_test_age_radix(kvm, range->slot, range->start); | 
 | 	else | 
 | 		return kvm_test_age_rmapp(kvm, range->slot, range->start); | 
 | } | 
 |  | 
 | bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
 | { | 
 | 	WARN_ON(range->start + 1 != range->end); | 
 |  | 
 | 	if (kvm_is_radix(kvm)) | 
 | 		kvm_unmap_radix(kvm, range->slot, range->start); | 
 | 	else | 
 | 		kvm_unmap_rmapp(kvm, range->slot, range->start); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int vcpus_running(struct kvm *kvm) | 
 | { | 
 | 	return atomic_read(&kvm->arch.vcpus_running) != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the number of system pages that are dirty. | 
 |  * This can be more than 1 if we find a huge-page HPTE. | 
 |  */ | 
 | static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) | 
 | { | 
 | 	struct revmap_entry *rev = kvm->arch.hpt.rev; | 
 | 	unsigned long head, i, j; | 
 | 	unsigned long n; | 
 | 	unsigned long v, r; | 
 | 	__be64 *hptep; | 
 | 	int npages_dirty = 0; | 
 |  | 
 |  retry: | 
 | 	lock_rmap(rmapp); | 
 | 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { | 
 | 		unlock_rmap(rmapp); | 
 | 		return npages_dirty; | 
 | 	} | 
 |  | 
 | 	i = head = *rmapp & KVMPPC_RMAP_INDEX; | 
 | 	do { | 
 | 		unsigned long hptep1; | 
 | 		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
 | 		j = rev[i].forw; | 
 |  | 
 | 		/* | 
 | 		 * Checking the C (changed) bit here is racy since there | 
 | 		 * is no guarantee about when the hardware writes it back. | 
 | 		 * If the HPTE is not writable then it is stable since the | 
 | 		 * page can't be written to, and we would have done a tlbie | 
 | 		 * (which forces the hardware to complete any writeback) | 
 | 		 * when making the HPTE read-only. | 
 | 		 * If vcpus are running then this call is racy anyway | 
 | 		 * since the page could get dirtied subsequently, so we | 
 | 		 * expect there to be a further call which would pick up | 
 | 		 * any delayed C bit writeback. | 
 | 		 * Otherwise we need to do the tlbie even if C==0 in | 
 | 		 * order to pick up any delayed writeback of C. | 
 | 		 */ | 
 | 		hptep1 = be64_to_cpu(hptep[1]); | 
 | 		if (!(hptep1 & HPTE_R_C) && | 
 | 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm))) | 
 | 			continue; | 
 |  | 
 | 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { | 
 | 			/* unlock rmap before spinning on the HPTE lock */ | 
 | 			unlock_rmap(rmapp); | 
 | 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) | 
 | 				cpu_relax(); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		/* Now check and modify the HPTE */ | 
 | 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { | 
 | 			__unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* need to make it temporarily absent so C is stable */ | 
 | 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); | 
 | 		kvmppc_invalidate_hpte(kvm, hptep, i); | 
 | 		v = be64_to_cpu(hptep[0]); | 
 | 		r = be64_to_cpu(hptep[1]); | 
 | 		if (r & HPTE_R_C) { | 
 | 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C); | 
 | 			if (!(rev[i].guest_rpte & HPTE_R_C)) { | 
 | 				rev[i].guest_rpte |= HPTE_R_C; | 
 | 				note_hpte_modification(kvm, &rev[i]); | 
 | 			} | 
 | 			n = kvmppc_actual_pgsz(v, r); | 
 | 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 			if (n > npages_dirty) | 
 | 				npages_dirty = n; | 
 | 			eieio(); | 
 | 		} | 
 | 		v &= ~HPTE_V_ABSENT; | 
 | 		v |= HPTE_V_VALID; | 
 | 		__unlock_hpte(hptep, v); | 
 | 	} while ((i = j) != head); | 
 |  | 
 | 	unlock_rmap(rmapp); | 
 | 	return npages_dirty; | 
 | } | 
 |  | 
 | void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, | 
 | 			      struct kvm_memory_slot *memslot, | 
 | 			      unsigned long *map) | 
 | { | 
 | 	unsigned long gfn; | 
 |  | 
 | 	if (!vpa->dirty || !vpa->pinned_addr) | 
 | 		return; | 
 | 	gfn = vpa->gpa >> PAGE_SHIFT; | 
 | 	if (gfn < memslot->base_gfn || | 
 | 	    gfn >= memslot->base_gfn + memslot->npages) | 
 | 		return; | 
 |  | 
 | 	vpa->dirty = false; | 
 | 	if (map) | 
 | 		__set_bit_le(gfn - memslot->base_gfn, map); | 
 | } | 
 |  | 
 | long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, | 
 | 			struct kvm_memory_slot *memslot, unsigned long *map) | 
 | { | 
 | 	unsigned long i; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	preempt_disable(); | 
 | 	rmapp = memslot->arch.rmap; | 
 | 	for (i = 0; i < memslot->npages; ++i) { | 
 | 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp); | 
 | 		/* | 
 | 		 * Note that if npages > 0 then i must be a multiple of npages, | 
 | 		 * since we always put huge-page HPTEs in the rmap chain | 
 | 		 * corresponding to their page base address. | 
 | 		 */ | 
 | 		if (npages) | 
 | 			set_dirty_bits(map, i, npages); | 
 | 		++rmapp; | 
 | 	} | 
 | 	preempt_enable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, | 
 | 			    unsigned long *nb_ret) | 
 | { | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	unsigned long gfn = gpa >> PAGE_SHIFT; | 
 | 	struct page *page, *pages[1]; | 
 | 	int npages; | 
 | 	unsigned long hva, offset; | 
 | 	int srcu_idx; | 
 |  | 
 | 	srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 	memslot = gfn_to_memslot(kvm, gfn); | 
 | 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) | 
 | 		goto err; | 
 | 	hva = gfn_to_hva_memslot(memslot, gfn); | 
 | 	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); | 
 | 	if (npages < 1) | 
 | 		goto err; | 
 | 	page = pages[0]; | 
 | 	srcu_read_unlock(&kvm->srcu, srcu_idx); | 
 |  | 
 | 	offset = gpa & (PAGE_SIZE - 1); | 
 | 	if (nb_ret) | 
 | 		*nb_ret = PAGE_SIZE - offset; | 
 | 	return page_address(page) + offset; | 
 |  | 
 |  err: | 
 | 	srcu_read_unlock(&kvm->srcu, srcu_idx); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, | 
 | 			     bool dirty) | 
 | { | 
 | 	struct page *page = virt_to_page(va); | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	unsigned long gfn; | 
 | 	int srcu_idx; | 
 |  | 
 | 	put_page(page); | 
 |  | 
 | 	if (!dirty) | 
 | 		return; | 
 |  | 
 | 	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */ | 
 | 	gfn = gpa >> PAGE_SHIFT; | 
 | 	srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 	memslot = gfn_to_memslot(kvm, gfn); | 
 | 	if (memslot && memslot->dirty_bitmap) | 
 | 		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); | 
 | 	srcu_read_unlock(&kvm->srcu, srcu_idx); | 
 | } | 
 |  | 
 | /* | 
 |  * HPT resizing | 
 |  */ | 
 | static int resize_hpt_allocate(struct kvm_resize_hpt *resize) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); | 
 | 	if (rc < 0) | 
 | 		return rc; | 
 |  | 
 | 	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", | 
 | 			 resize->hpt.virt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, | 
 | 					    unsigned long idx) | 
 | { | 
 | 	struct kvm *kvm = resize->kvm; | 
 | 	struct kvm_hpt_info *old = &kvm->arch.hpt; | 
 | 	struct kvm_hpt_info *new = &resize->hpt; | 
 | 	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; | 
 | 	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; | 
 | 	__be64 *hptep, *new_hptep; | 
 | 	unsigned long vpte, rpte, guest_rpte; | 
 | 	int ret; | 
 | 	struct revmap_entry *rev; | 
 | 	unsigned long apsize, avpn, pteg, hash; | 
 | 	unsigned long new_idx, new_pteg, replace_vpte; | 
 | 	int pshift; | 
 |  | 
 | 	hptep = (__be64 *)(old->virt + (idx << 4)); | 
 |  | 
 | 	/* Guest is stopped, so new HPTEs can't be added or faulted | 
 | 	 * in, only unmapped or altered by host actions.  So, it's | 
 | 	 * safe to check this before we take the HPTE lock */ | 
 | 	vpte = be64_to_cpu(hptep[0]); | 
 | 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) | 
 | 		return 0; /* nothing to do */ | 
 |  | 
 | 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) | 
 | 		cpu_relax(); | 
 |  | 
 | 	vpte = be64_to_cpu(hptep[0]); | 
 |  | 
 | 	ret = 0; | 
 | 	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) | 
 | 		/* Nothing to do */ | 
 | 		goto out; | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		rpte = be64_to_cpu(hptep[1]); | 
 | 		vpte = hpte_new_to_old_v(vpte, rpte); | 
 | 	} | 
 |  | 
 | 	/* Unmap */ | 
 | 	rev = &old->rev[idx]; | 
 | 	guest_rpte = rev->guest_rpte; | 
 |  | 
 | 	ret = -EIO; | 
 | 	apsize = kvmppc_actual_pgsz(vpte, guest_rpte); | 
 | 	if (!apsize) | 
 | 		goto out; | 
 |  | 
 | 	if (vpte & HPTE_V_VALID) { | 
 | 		unsigned long gfn = hpte_rpn(guest_rpte, apsize); | 
 | 		int srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 		struct kvm_memory_slot *memslot = | 
 | 			__gfn_to_memslot(kvm_memslots(kvm), gfn); | 
 |  | 
 | 		if (memslot) { | 
 | 			unsigned long *rmapp; | 
 | 			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
 |  | 
 | 			lock_rmap(rmapp); | 
 | 			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); | 
 | 			unlock_rmap(rmapp); | 
 | 		} | 
 |  | 
 | 		srcu_read_unlock(&kvm->srcu, srcu_idx); | 
 | 	} | 
 |  | 
 | 	/* Reload PTE after unmap */ | 
 | 	vpte = be64_to_cpu(hptep[0]); | 
 | 	BUG_ON(vpte & HPTE_V_VALID); | 
 | 	BUG_ON(!(vpte & HPTE_V_ABSENT)); | 
 |  | 
 | 	ret = 0; | 
 | 	if (!(vpte & HPTE_V_BOLTED)) | 
 | 		goto out; | 
 |  | 
 | 	rpte = be64_to_cpu(hptep[1]); | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		vpte = hpte_new_to_old_v(vpte, rpte); | 
 | 		rpte = hpte_new_to_old_r(rpte); | 
 | 	} | 
 |  | 
 | 	pshift = kvmppc_hpte_base_page_shift(vpte, rpte); | 
 | 	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); | 
 | 	pteg = idx / HPTES_PER_GROUP; | 
 | 	if (vpte & HPTE_V_SECONDARY) | 
 | 		pteg = ~pteg; | 
 |  | 
 | 	if (!(vpte & HPTE_V_1TB_SEG)) { | 
 | 		unsigned long offset, vsid; | 
 |  | 
 | 		/* We only have 28 - 23 bits of offset in avpn */ | 
 | 		offset = (avpn & 0x1f) << 23; | 
 | 		vsid = avpn >> 5; | 
 | 		/* We can find more bits from the pteg value */ | 
 | 		if (pshift < 23) | 
 | 			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; | 
 |  | 
 | 		hash = vsid ^ (offset >> pshift); | 
 | 	} else { | 
 | 		unsigned long offset, vsid; | 
 |  | 
 | 		/* We only have 40 - 23 bits of seg_off in avpn */ | 
 | 		offset = (avpn & 0x1ffff) << 23; | 
 | 		vsid = avpn >> 17; | 
 | 		if (pshift < 23) | 
 | 			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; | 
 |  | 
 | 		hash = vsid ^ (vsid << 25) ^ (offset >> pshift); | 
 | 	} | 
 |  | 
 | 	new_pteg = hash & new_hash_mask; | 
 | 	if (vpte & HPTE_V_SECONDARY) | 
 | 		new_pteg = ~hash & new_hash_mask; | 
 |  | 
 | 	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); | 
 | 	new_hptep = (__be64 *)(new->virt + (new_idx << 4)); | 
 |  | 
 | 	replace_vpte = be64_to_cpu(new_hptep[0]); | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); | 
 | 		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); | 
 | 	} | 
 |  | 
 | 	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { | 
 | 		BUG_ON(new->order >= old->order); | 
 |  | 
 | 		if (replace_vpte & HPTE_V_BOLTED) { | 
 | 			if (vpte & HPTE_V_BOLTED) | 
 | 				/* Bolted collision, nothing we can do */ | 
 | 				ret = -ENOSPC; | 
 | 			/* Discard the new HPTE */ | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* Discard the previous HPTE */ | 
 | 	} | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		rpte = hpte_old_to_new_r(vpte, rpte); | 
 | 		vpte = hpte_old_to_new_v(vpte); | 
 | 	} | 
 |  | 
 | 	new_hptep[1] = cpu_to_be64(rpte); | 
 | 	new->rev[new_idx].guest_rpte = guest_rpte; | 
 | 	/* No need for a barrier, since new HPT isn't active */ | 
 | 	new_hptep[0] = cpu_to_be64(vpte); | 
 | 	unlock_hpte(new_hptep, vpte); | 
 |  | 
 | out: | 
 | 	unlock_hpte(hptep, vpte); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int resize_hpt_rehash(struct kvm_resize_hpt *resize) | 
 | { | 
 | 	struct kvm *kvm = resize->kvm; | 
 | 	unsigned  long i; | 
 | 	int rc; | 
 |  | 
 | 	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { | 
 | 		rc = resize_hpt_rehash_hpte(resize, i); | 
 | 		if (rc != 0) | 
 | 			return rc; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void resize_hpt_pivot(struct kvm_resize_hpt *resize) | 
 | { | 
 | 	struct kvm *kvm = resize->kvm; | 
 | 	struct kvm_hpt_info hpt_tmp; | 
 |  | 
 | 	/* Exchange the pending tables in the resize structure with | 
 | 	 * the active tables */ | 
 |  | 
 | 	resize_hpt_debug(resize, "resize_hpt_pivot()\n"); | 
 |  | 
 | 	spin_lock(&kvm->mmu_lock); | 
 | 	asm volatile("ptesync" : : : "memory"); | 
 |  | 
 | 	hpt_tmp = kvm->arch.hpt; | 
 | 	kvmppc_set_hpt(kvm, &resize->hpt); | 
 | 	resize->hpt = hpt_tmp; | 
 |  | 
 | 	spin_unlock(&kvm->mmu_lock); | 
 |  | 
 | 	synchronize_srcu_expedited(&kvm->srcu); | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) | 
 | 		kvmppc_setup_partition_table(kvm); | 
 |  | 
 | 	resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); | 
 | } | 
 |  | 
 | static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) | 
 | { | 
 | 	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) | 
 | 		return; | 
 |  | 
 | 	if (!resize) | 
 | 		return; | 
 |  | 
 | 	if (resize->error != -EBUSY) { | 
 | 		if (resize->hpt.virt) | 
 | 			kvmppc_free_hpt(&resize->hpt); | 
 | 		kfree(resize); | 
 | 	} | 
 |  | 
 | 	if (kvm->arch.resize_hpt == resize) | 
 | 		kvm->arch.resize_hpt = NULL; | 
 | } | 
 |  | 
 | static void resize_hpt_prepare_work(struct work_struct *work) | 
 | { | 
 | 	struct kvm_resize_hpt *resize = container_of(work, | 
 | 						     struct kvm_resize_hpt, | 
 | 						     work); | 
 | 	struct kvm *kvm = resize->kvm; | 
 | 	int err = 0; | 
 |  | 
 | 	if (WARN_ON(resize->error != -EBUSY)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&kvm->arch.mmu_setup_lock); | 
 |  | 
 | 	/* Request is still current? */ | 
 | 	if (kvm->arch.resize_hpt == resize) { | 
 | 		/* We may request large allocations here: | 
 | 		 * do not sleep with kvm->arch.mmu_setup_lock held for a while. | 
 | 		 */ | 
 | 		mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 |  | 
 | 		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", | 
 | 				 resize->order); | 
 |  | 
 | 		err = resize_hpt_allocate(resize); | 
 |  | 
 | 		/* We have strict assumption about -EBUSY | 
 | 		 * when preparing for HPT resize. | 
 | 		 */ | 
 | 		if (WARN_ON(err == -EBUSY)) | 
 | 			err = -EINPROGRESS; | 
 |  | 
 | 		mutex_lock(&kvm->arch.mmu_setup_lock); | 
 | 		/* It is possible that kvm->arch.resize_hpt != resize | 
 | 		 * after we grab kvm->arch.mmu_setup_lock again. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	resize->error = err; | 
 |  | 
 | 	if (kvm->arch.resize_hpt != resize) | 
 | 		resize_hpt_release(kvm, resize); | 
 |  | 
 | 	mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 | } | 
 |  | 
 | long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, | 
 | 				     struct kvm_ppc_resize_hpt *rhpt) | 
 | { | 
 | 	unsigned long flags = rhpt->flags; | 
 | 	unsigned long shift = rhpt->shift; | 
 | 	struct kvm_resize_hpt *resize; | 
 | 	int ret; | 
 |  | 
 | 	if (flags != 0 || kvm_is_radix(kvm)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (shift && ((shift < 18) || (shift > 46))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->arch.mmu_setup_lock); | 
 |  | 
 | 	resize = kvm->arch.resize_hpt; | 
 |  | 
 | 	if (resize) { | 
 | 		if (resize->order == shift) { | 
 | 			/* Suitable resize in progress? */ | 
 | 			ret = resize->error; | 
 | 			if (ret == -EBUSY) | 
 | 				ret = 100; /* estimated time in ms */ | 
 | 			else if (ret) | 
 | 				resize_hpt_release(kvm, resize); | 
 |  | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* not suitable, cancel it */ | 
 | 		resize_hpt_release(kvm, resize); | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (!shift) | 
 | 		goto out; /* nothing to do */ | 
 |  | 
 | 	/* start new resize */ | 
 |  | 
 | 	resize = kzalloc(sizeof(*resize), GFP_KERNEL); | 
 | 	if (!resize) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	resize->error = -EBUSY; | 
 | 	resize->order = shift; | 
 | 	resize->kvm = kvm; | 
 | 	INIT_WORK(&resize->work, resize_hpt_prepare_work); | 
 | 	kvm->arch.resize_hpt = resize; | 
 |  | 
 | 	schedule_work(&resize->work); | 
 |  | 
 | 	ret = 100; /* estimated time in ms */ | 
 |  | 
 | out: | 
 | 	mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void resize_hpt_boot_vcpu(void *opaque) | 
 | { | 
 | 	/* Nothing to do, just force a KVM exit */ | 
 | } | 
 |  | 
 | long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, | 
 | 				    struct kvm_ppc_resize_hpt *rhpt) | 
 | { | 
 | 	unsigned long flags = rhpt->flags; | 
 | 	unsigned long shift = rhpt->shift; | 
 | 	struct kvm_resize_hpt *resize; | 
 | 	long ret; | 
 |  | 
 | 	if (flags != 0 || kvm_is_radix(kvm)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (shift && ((shift < 18) || (shift > 46))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->arch.mmu_setup_lock); | 
 |  | 
 | 	resize = kvm->arch.resize_hpt; | 
 |  | 
 | 	/* This shouldn't be possible */ | 
 | 	ret = -EIO; | 
 | 	if (WARN_ON(!kvm->arch.mmu_ready)) | 
 | 		goto out_no_hpt; | 
 |  | 
 | 	/* Stop VCPUs from running while we mess with the HPT */ | 
 | 	kvm->arch.mmu_ready = 0; | 
 | 	smp_mb(); | 
 |  | 
 | 	/* Boot all CPUs out of the guest so they re-read | 
 | 	 * mmu_ready */ | 
 | 	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); | 
 |  | 
 | 	ret = -ENXIO; | 
 | 	if (!resize || (resize->order != shift)) | 
 | 		goto out; | 
 |  | 
 | 	ret = resize->error; | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = resize_hpt_rehash(resize); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	resize_hpt_pivot(resize); | 
 |  | 
 | out: | 
 | 	/* Let VCPUs run again */ | 
 | 	kvm->arch.mmu_ready = 1; | 
 | 	smp_mb(); | 
 | out_no_hpt: | 
 | 	resize_hpt_release(kvm, resize); | 
 | 	mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Functions for reading and writing the hash table via reads and | 
 |  * writes on a file descriptor. | 
 |  * | 
 |  * Reads return the guest view of the hash table, which has to be | 
 |  * pieced together from the real hash table and the guest_rpte | 
 |  * values in the revmap array. | 
 |  * | 
 |  * On writes, each HPTE written is considered in turn, and if it | 
 |  * is valid, it is written to the HPT as if an H_ENTER with the | 
 |  * exact flag set was done.  When the invalid count is non-zero | 
 |  * in the header written to the stream, the kernel will make | 
 |  * sure that that many HPTEs are invalid, and invalidate them | 
 |  * if not. | 
 |  */ | 
 |  | 
 | struct kvm_htab_ctx { | 
 | 	unsigned long	index; | 
 | 	unsigned long	flags; | 
 | 	struct kvm	*kvm; | 
 | 	int		first_pass; | 
 | }; | 
 |  | 
 | #define HPTE_SIZE	(2 * sizeof(unsigned long)) | 
 |  | 
 | /* | 
 |  * Returns 1 if this HPT entry has been modified or has pending | 
 |  * R/C bit changes. | 
 |  */ | 
 | static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) | 
 | { | 
 | 	unsigned long rcbits_unset; | 
 |  | 
 | 	if (revp->guest_rpte & HPTE_GR_MODIFIED) | 
 | 		return 1; | 
 |  | 
 | 	/* Also need to consider changes in reference and changed bits */ | 
 | 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); | 
 | 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && | 
 | 	    (be64_to_cpu(hptp[1]) & rcbits_unset)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long record_hpte(unsigned long flags, __be64 *hptp, | 
 | 			unsigned long *hpte, struct revmap_entry *revp, | 
 | 			int want_valid, int first_pass) | 
 | { | 
 | 	unsigned long v, r, hr; | 
 | 	unsigned long rcbits_unset; | 
 | 	int ok = 1; | 
 | 	int valid, dirty; | 
 |  | 
 | 	/* Unmodified entries are uninteresting except on the first pass */ | 
 | 	dirty = hpte_dirty(revp, hptp); | 
 | 	if (!first_pass && !dirty) | 
 | 		return 0; | 
 |  | 
 | 	valid = 0; | 
 | 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { | 
 | 		valid = 1; | 
 | 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && | 
 | 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) | 
 | 			valid = 0; | 
 | 	} | 
 | 	if (valid != want_valid) | 
 | 		return 0; | 
 |  | 
 | 	v = r = 0; | 
 | 	if (valid || dirty) { | 
 | 		/* lock the HPTE so it's stable and read it */ | 
 | 		preempt_disable(); | 
 | 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) | 
 | 			cpu_relax(); | 
 | 		v = be64_to_cpu(hptp[0]); | 
 | 		hr = be64_to_cpu(hptp[1]); | 
 | 		if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 			v = hpte_new_to_old_v(v, hr); | 
 | 			hr = hpte_new_to_old_r(hr); | 
 | 		} | 
 |  | 
 | 		/* re-evaluate valid and dirty from synchronized HPTE value */ | 
 | 		valid = !!(v & HPTE_V_VALID); | 
 | 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); | 
 |  | 
 | 		/* Harvest R and C into guest view if necessary */ | 
 | 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); | 
 | 		if (valid && (rcbits_unset & hr)) { | 
 | 			revp->guest_rpte |= (hr & | 
 | 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; | 
 | 			dirty = 1; | 
 | 		} | 
 |  | 
 | 		if (v & HPTE_V_ABSENT) { | 
 | 			v &= ~HPTE_V_ABSENT; | 
 | 			v |= HPTE_V_VALID; | 
 | 			valid = 1; | 
 | 		} | 
 | 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) | 
 | 			valid = 0; | 
 |  | 
 | 		r = revp->guest_rpte; | 
 | 		/* only clear modified if this is the right sort of entry */ | 
 | 		if (valid == want_valid && dirty) { | 
 | 			r &= ~HPTE_GR_MODIFIED; | 
 | 			revp->guest_rpte = r; | 
 | 		} | 
 | 		unlock_hpte(hptp, be64_to_cpu(hptp[0])); | 
 | 		preempt_enable(); | 
 | 		if (!(valid == want_valid && (first_pass || dirty))) | 
 | 			ok = 0; | 
 | 	} | 
 | 	hpte[0] = cpu_to_be64(v); | 
 | 	hpte[1] = cpu_to_be64(r); | 
 | 	return ok; | 
 | } | 
 |  | 
 | static ssize_t kvm_htab_read(struct file *file, char __user *buf, | 
 | 			     size_t count, loff_t *ppos) | 
 | { | 
 | 	struct kvm_htab_ctx *ctx = file->private_data; | 
 | 	struct kvm *kvm = ctx->kvm; | 
 | 	struct kvm_get_htab_header hdr; | 
 | 	__be64 *hptp; | 
 | 	struct revmap_entry *revp; | 
 | 	unsigned long i, nb, nw; | 
 | 	unsigned long __user *lbuf; | 
 | 	struct kvm_get_htab_header __user *hptr; | 
 | 	unsigned long flags; | 
 | 	int first_pass; | 
 | 	unsigned long hpte[2]; | 
 |  | 
 | 	if (!access_ok(buf, count)) | 
 | 		return -EFAULT; | 
 | 	if (kvm_is_radix(kvm)) | 
 | 		return 0; | 
 |  | 
 | 	first_pass = ctx->first_pass; | 
 | 	flags = ctx->flags; | 
 |  | 
 | 	i = ctx->index; | 
 | 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); | 
 | 	revp = kvm->arch.hpt.rev + i; | 
 | 	lbuf = (unsigned long __user *)buf; | 
 |  | 
 | 	nb = 0; | 
 | 	while (nb + sizeof(hdr) + HPTE_SIZE < count) { | 
 | 		/* Initialize header */ | 
 | 		hptr = (struct kvm_get_htab_header __user *)buf; | 
 | 		hdr.n_valid = 0; | 
 | 		hdr.n_invalid = 0; | 
 | 		nw = nb; | 
 | 		nb += sizeof(hdr); | 
 | 		lbuf = (unsigned long __user *)(buf + sizeof(hdr)); | 
 |  | 
 | 		/* Skip uninteresting entries, i.e. clean on not-first pass */ | 
 | 		if (!first_pass) { | 
 | 			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && | 
 | 			       !hpte_dirty(revp, hptp)) { | 
 | 				++i; | 
 | 				hptp += 2; | 
 | 				++revp; | 
 | 			} | 
 | 		} | 
 | 		hdr.index = i; | 
 |  | 
 | 		/* Grab a series of valid entries */ | 
 | 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && | 
 | 		       hdr.n_valid < 0xffff && | 
 | 		       nb + HPTE_SIZE < count && | 
 | 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { | 
 | 			/* valid entry, write it out */ | 
 | 			++hdr.n_valid; | 
 | 			if (__put_user(hpte[0], lbuf) || | 
 | 			    __put_user(hpte[1], lbuf + 1)) | 
 | 				return -EFAULT; | 
 | 			nb += HPTE_SIZE; | 
 | 			lbuf += 2; | 
 | 			++i; | 
 | 			hptp += 2; | 
 | 			++revp; | 
 | 		} | 
 | 		/* Now skip invalid entries while we can */ | 
 | 		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && | 
 | 		       hdr.n_invalid < 0xffff && | 
 | 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { | 
 | 			/* found an invalid entry */ | 
 | 			++hdr.n_invalid; | 
 | 			++i; | 
 | 			hptp += 2; | 
 | 			++revp; | 
 | 		} | 
 |  | 
 | 		if (hdr.n_valid || hdr.n_invalid) { | 
 | 			/* write back the header */ | 
 | 			if (__copy_to_user(hptr, &hdr, sizeof(hdr))) | 
 | 				return -EFAULT; | 
 | 			nw = nb; | 
 | 			buf = (char __user *)lbuf; | 
 | 		} else { | 
 | 			nb = nw; | 
 | 		} | 
 |  | 
 | 		/* Check if we've wrapped around the hash table */ | 
 | 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { | 
 | 			i = 0; | 
 | 			ctx->first_pass = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->index = i; | 
 |  | 
 | 	return nb; | 
 | } | 
 |  | 
 | static ssize_t kvm_htab_write(struct file *file, const char __user *buf, | 
 | 			      size_t count, loff_t *ppos) | 
 | { | 
 | 	struct kvm_htab_ctx *ctx = file->private_data; | 
 | 	struct kvm *kvm = ctx->kvm; | 
 | 	struct kvm_get_htab_header hdr; | 
 | 	unsigned long i, j; | 
 | 	unsigned long v, r; | 
 | 	unsigned long __user *lbuf; | 
 | 	__be64 *hptp; | 
 | 	unsigned long tmp[2]; | 
 | 	ssize_t nb; | 
 | 	long int err, ret; | 
 | 	int mmu_ready; | 
 | 	int pshift; | 
 |  | 
 | 	if (!access_ok(buf, count)) | 
 | 		return -EFAULT; | 
 | 	if (kvm_is_radix(kvm)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* lock out vcpus from running while we're doing this */ | 
 | 	mutex_lock(&kvm->arch.mmu_setup_lock); | 
 | 	mmu_ready = kvm->arch.mmu_ready; | 
 | 	if (mmu_ready) { | 
 | 		kvm->arch.mmu_ready = 0;	/* temporarily */ | 
 | 		/* order mmu_ready vs. vcpus_running */ | 
 | 		smp_mb(); | 
 | 		if (atomic_read(&kvm->arch.vcpus_running)) { | 
 | 			kvm->arch.mmu_ready = 1; | 
 | 			mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | 	for (nb = 0; nb + sizeof(hdr) <= count; ) { | 
 | 		err = -EFAULT; | 
 | 		if (__copy_from_user(&hdr, buf, sizeof(hdr))) | 
 | 			break; | 
 |  | 
 | 		err = 0; | 
 | 		if (nb + hdr.n_valid * HPTE_SIZE > count) | 
 | 			break; | 
 |  | 
 | 		nb += sizeof(hdr); | 
 | 		buf += sizeof(hdr); | 
 |  | 
 | 		err = -EINVAL; | 
 | 		i = hdr.index; | 
 | 		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || | 
 | 		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) | 
 | 			break; | 
 |  | 
 | 		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); | 
 | 		lbuf = (unsigned long __user *)buf; | 
 | 		for (j = 0; j < hdr.n_valid; ++j) { | 
 | 			__be64 hpte_v; | 
 | 			__be64 hpte_r; | 
 |  | 
 | 			err = -EFAULT; | 
 | 			if (__get_user(hpte_v, lbuf) || | 
 | 			    __get_user(hpte_r, lbuf + 1)) | 
 | 				goto out; | 
 | 			v = be64_to_cpu(hpte_v); | 
 | 			r = be64_to_cpu(hpte_r); | 
 | 			err = -EINVAL; | 
 | 			if (!(v & HPTE_V_VALID)) | 
 | 				goto out; | 
 | 			pshift = kvmppc_hpte_base_page_shift(v, r); | 
 | 			if (pshift <= 0) | 
 | 				goto out; | 
 | 			lbuf += 2; | 
 | 			nb += HPTE_SIZE; | 
 |  | 
 | 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) | 
 | 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp); | 
 | 			err = -EIO; | 
 | 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, | 
 | 							 tmp); | 
 | 			if (ret != H_SUCCESS) { | 
 | 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx " | 
 | 				       "r=%lx\n", ret, i, v, r); | 
 | 				goto out; | 
 | 			} | 
 | 			if (!mmu_ready && is_vrma_hpte(v)) { | 
 | 				unsigned long senc, lpcr; | 
 |  | 
 | 				senc = slb_pgsize_encoding(1ul << pshift); | 
 | 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | | 
 | 					(VRMA_VSID << SLB_VSID_SHIFT_1T); | 
 | 				if (!cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 					lpcr = senc << (LPCR_VRMASD_SH - 4); | 
 | 					kvmppc_update_lpcr(kvm, lpcr, | 
 | 							   LPCR_VRMASD); | 
 | 				} else { | 
 | 					kvmppc_setup_partition_table(kvm); | 
 | 				} | 
 | 				mmu_ready = 1; | 
 | 			} | 
 | 			++i; | 
 | 			hptp += 2; | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < hdr.n_invalid; ++j) { | 
 | 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) | 
 | 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp); | 
 | 			++i; | 
 | 			hptp += 2; | 
 | 		} | 
 | 		err = 0; | 
 | 	} | 
 |  | 
 |  out: | 
 | 	/* Order HPTE updates vs. mmu_ready */ | 
 | 	smp_wmb(); | 
 | 	kvm->arch.mmu_ready = mmu_ready; | 
 | 	mutex_unlock(&kvm->arch.mmu_setup_lock); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 | 	return nb; | 
 | } | 
 |  | 
 | static int kvm_htab_release(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct kvm_htab_ctx *ctx = filp->private_data; | 
 |  | 
 | 	filp->private_data = NULL; | 
 | 	if (!(ctx->flags & KVM_GET_HTAB_WRITE)) | 
 | 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest); | 
 | 	kvm_put_kvm(ctx->kvm); | 
 | 	kfree(ctx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations kvm_htab_fops = { | 
 | 	.read		= kvm_htab_read, | 
 | 	.write		= kvm_htab_write, | 
 | 	.llseek		= default_llseek, | 
 | 	.release	= kvm_htab_release, | 
 | }; | 
 |  | 
 | int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) | 
 | { | 
 | 	int ret; | 
 | 	struct kvm_htab_ctx *ctx; | 
 | 	int rwflag; | 
 |  | 
 | 	/* reject flags we don't recognize */ | 
 | 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) | 
 | 		return -EINVAL; | 
 | 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		return -ENOMEM; | 
 | 	kvm_get_kvm(kvm); | 
 | 	ctx->kvm = kvm; | 
 | 	ctx->index = ghf->start_index; | 
 | 	ctx->flags = ghf->flags; | 
 | 	ctx->first_pass = 1; | 
 |  | 
 | 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; | 
 | 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); | 
 | 	if (ret < 0) { | 
 | 		kfree(ctx); | 
 | 		kvm_put_kvm_no_destroy(kvm); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (rwflag == O_RDONLY) { | 
 | 		mutex_lock(&kvm->slots_lock); | 
 | 		atomic_inc(&kvm->arch.hpte_mod_interest); | 
 | 		/* make sure kvmppc_do_h_enter etc. see the increment */ | 
 | 		synchronize_srcu_expedited(&kvm->srcu); | 
 | 		mutex_unlock(&kvm->slots_lock); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct debugfs_htab_state { | 
 | 	struct kvm	*kvm; | 
 | 	struct mutex	mutex; | 
 | 	unsigned long	hpt_index; | 
 | 	int		chars_left; | 
 | 	int		buf_index; | 
 | 	char		buf[64]; | 
 | }; | 
 |  | 
 | static int debugfs_htab_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct kvm *kvm = inode->i_private; | 
 | 	struct debugfs_htab_state *p; | 
 |  | 
 | 	p = kzalloc(sizeof(*p), GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	kvm_get_kvm(kvm); | 
 | 	p->kvm = kvm; | 
 | 	mutex_init(&p->mutex); | 
 | 	file->private_data = p; | 
 |  | 
 | 	return nonseekable_open(inode, file); | 
 | } | 
 |  | 
 | static int debugfs_htab_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct debugfs_htab_state *p = file->private_data; | 
 |  | 
 | 	kvm_put_kvm(p->kvm); | 
 | 	kfree(p); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t debugfs_htab_read(struct file *file, char __user *buf, | 
 | 				 size_t len, loff_t *ppos) | 
 | { | 
 | 	struct debugfs_htab_state *p = file->private_data; | 
 | 	ssize_t ret, r; | 
 | 	unsigned long i, n; | 
 | 	unsigned long v, hr, gr; | 
 | 	struct kvm *kvm; | 
 | 	__be64 *hptp; | 
 |  | 
 | 	kvm = p->kvm; | 
 | 	if (kvm_is_radix(kvm)) | 
 | 		return 0; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&p->mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (p->chars_left) { | 
 | 		n = p->chars_left; | 
 | 		if (n > len) | 
 | 			n = len; | 
 | 		r = copy_to_user(buf, p->buf + p->buf_index, n); | 
 | 		n -= r; | 
 | 		p->chars_left -= n; | 
 | 		p->buf_index += n; | 
 | 		buf += n; | 
 | 		len -= n; | 
 | 		ret = n; | 
 | 		if (r) { | 
 | 			if (!n) | 
 | 				ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i = p->hpt_index; | 
 | 	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); | 
 | 	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); | 
 | 	     ++i, hptp += 2) { | 
 | 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) | 
 | 			continue; | 
 |  | 
 | 		/* lock the HPTE so it's stable and read it */ | 
 | 		preempt_disable(); | 
 | 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) | 
 | 			cpu_relax(); | 
 | 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; | 
 | 		hr = be64_to_cpu(hptp[1]); | 
 | 		gr = kvm->arch.hpt.rev[i].guest_rpte; | 
 | 		unlock_hpte(hptp, v); | 
 | 		preempt_enable(); | 
 |  | 
 | 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) | 
 | 			continue; | 
 |  | 
 | 		n = scnprintf(p->buf, sizeof(p->buf), | 
 | 			      "%6lx %.16lx %.16lx %.16lx\n", | 
 | 			      i, v, hr, gr); | 
 | 		p->chars_left = n; | 
 | 		if (n > len) | 
 | 			n = len; | 
 | 		r = copy_to_user(buf, p->buf, n); | 
 | 		n -= r; | 
 | 		p->chars_left -= n; | 
 | 		p->buf_index = n; | 
 | 		buf += n; | 
 | 		len -= n; | 
 | 		ret += n; | 
 | 		if (r) { | 
 | 			if (!ret) | 
 | 				ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	p->hpt_index = i; | 
 |  | 
 |  out: | 
 | 	mutex_unlock(&p->mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, | 
 | 			   size_t len, loff_t *ppos) | 
 | { | 
 | 	return -EACCES; | 
 | } | 
 |  | 
 | static const struct file_operations debugfs_htab_fops = { | 
 | 	.owner	 = THIS_MODULE, | 
 | 	.open	 = debugfs_htab_open, | 
 | 	.release = debugfs_htab_release, | 
 | 	.read	 = debugfs_htab_read, | 
 | 	.write	 = debugfs_htab_write, | 
 | 	.llseek	 = generic_file_llseek, | 
 | }; | 
 |  | 
 | void kvmppc_mmu_debugfs_init(struct kvm *kvm) | 
 | { | 
 | 	debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm, | 
 | 			    &debugfs_htab_fops); | 
 | } | 
 |  | 
 | void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu; | 
 |  | 
 | 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */ | 
 |  | 
 | 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; | 
 |  | 
 | 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; | 
 | } |