| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * raid10.c : Multiple Devices driver for Linux | 
 |  * | 
 |  * Copyright (C) 2000-2004 Neil Brown | 
 |  * | 
 |  * RAID-10 support for md. | 
 |  * | 
 |  * Base on code in raid1.c.  See raid1.c for further copyright information. | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/module.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/raid/md_p.h> | 
 | #include <trace/events/block.h> | 
 | #include "md.h" | 
 | #include "raid10.h" | 
 | #include "raid0.h" | 
 | #include "md-bitmap.h" | 
 |  | 
 | /* | 
 |  * RAID10 provides a combination of RAID0 and RAID1 functionality. | 
 |  * The layout of data is defined by | 
 |  *    chunk_size | 
 |  *    raid_disks | 
 |  *    near_copies (stored in low byte of layout) | 
 |  *    far_copies (stored in second byte of layout) | 
 |  *    far_offset (stored in bit 16 of layout ) | 
 |  *    use_far_sets (stored in bit 17 of layout ) | 
 |  *    use_far_sets_bugfixed (stored in bit 18 of layout ) | 
 |  * | 
 |  * The data to be stored is divided into chunks using chunksize.  Each device | 
 |  * is divided into far_copies sections.   In each section, chunks are laid out | 
 |  * in a style similar to raid0, but near_copies copies of each chunk is stored | 
 |  * (each on a different drive).  The starting device for each section is offset | 
 |  * near_copies from the starting device of the previous section.  Thus there | 
 |  * are (near_copies * far_copies) of each chunk, and each is on a different | 
 |  * drive.  near_copies and far_copies must be at least one, and their product | 
 |  * is at most raid_disks. | 
 |  * | 
 |  * If far_offset is true, then the far_copies are handled a bit differently. | 
 |  * The copies are still in different stripes, but instead of being very far | 
 |  * apart on disk, there are adjacent stripes. | 
 |  * | 
 |  * The far and offset algorithms are handled slightly differently if | 
 |  * 'use_far_sets' is true.  In this case, the array's devices are grouped into | 
 |  * sets that are (near_copies * far_copies) in size.  The far copied stripes | 
 |  * are still shifted by 'near_copies' devices, but this shifting stays confined | 
 |  * to the set rather than the entire array.  This is done to improve the number | 
 |  * of device combinations that can fail without causing the array to fail. | 
 |  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk | 
 |  * on a device): | 
 |  *    A B C D    A B C D E | 
 |  *      ...         ... | 
 |  *    D A B C    E A B C D | 
 |  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): | 
 |  *    [A B] [C D]    [A B] [C D E] | 
 |  *    |...| |...|    |...| | ... | | 
 |  *    [B A] [D C]    [B A] [E C D] | 
 |  */ | 
 |  | 
 | static void allow_barrier(struct r10conf *conf); | 
 | static void lower_barrier(struct r10conf *conf); | 
 | static int _enough(struct r10conf *conf, int previous, int ignore); | 
 | static int enough(struct r10conf *conf, int ignore); | 
 | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, | 
 | 				int *skipped); | 
 | static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); | 
 | static void end_reshape_write(struct bio *bio); | 
 | static void end_reshape(struct r10conf *conf); | 
 |  | 
 | #define raid10_log(md, fmt, args...)				\ | 
 | 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) | 
 |  | 
 | #include "raid1-10.c" | 
 |  | 
 | #define NULL_CMD | 
 | #define cmd_before(conf, cmd) \ | 
 | 	do { \ | 
 | 		write_sequnlock_irq(&(conf)->resync_lock); \ | 
 | 		cmd; \ | 
 | 	} while (0) | 
 | #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) | 
 |  | 
 | #define wait_event_barrier_cmd(conf, cond, cmd) \ | 
 | 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ | 
 | 		       cmd_after(conf)) | 
 |  | 
 | #define wait_event_barrier(conf, cond) \ | 
 | 	wait_event_barrier_cmd(conf, cond, NULL_CMD) | 
 |  | 
 | /* | 
 |  * for resync bio, r10bio pointer can be retrieved from the per-bio | 
 |  * 'struct resync_pages'. | 
 |  */ | 
 | static inline struct r10bio *get_resync_r10bio(struct bio *bio) | 
 | { | 
 | 	return get_resync_pages(bio)->raid_bio; | 
 | } | 
 |  | 
 | static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	struct r10conf *conf = data; | 
 | 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); | 
 |  | 
 | 	/* allocate a r10bio with room for raid_disks entries in the | 
 | 	 * bios array */ | 
 | 	return kzalloc(size, gfp_flags); | 
 | } | 
 |  | 
 | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) | 
 | /* amount of memory to reserve for resync requests */ | 
 | #define RESYNC_WINDOW (1024*1024) | 
 | /* maximum number of concurrent requests, memory permitting */ | 
 | #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) | 
 | #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) | 
 | #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) | 
 |  | 
 | /* | 
 |  * When performing a resync, we need to read and compare, so | 
 |  * we need as many pages are there are copies. | 
 |  * When performing a recovery, we need 2 bios, one for read, | 
 |  * one for write (we recover only one drive per r10buf) | 
 |  * | 
 |  */ | 
 | static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	struct r10conf *conf = data; | 
 | 	struct r10bio *r10_bio; | 
 | 	struct bio *bio; | 
 | 	int j; | 
 | 	int nalloc, nalloc_rp; | 
 | 	struct resync_pages *rps; | 
 |  | 
 | 	r10_bio = r10bio_pool_alloc(gfp_flags, conf); | 
 | 	if (!r10_bio) | 
 | 		return NULL; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || | 
 | 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) | 
 | 		nalloc = conf->copies; /* resync */ | 
 | 	else | 
 | 		nalloc = 2; /* recovery */ | 
 |  | 
 | 	/* allocate once for all bios */ | 
 | 	if (!conf->have_replacement) | 
 | 		nalloc_rp = nalloc; | 
 | 	else | 
 | 		nalloc_rp = nalloc * 2; | 
 | 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); | 
 | 	if (!rps) | 
 | 		goto out_free_r10bio; | 
 |  | 
 | 	/* | 
 | 	 * Allocate bios. | 
 | 	 */ | 
 | 	for (j = nalloc ; j-- ; ) { | 
 | 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); | 
 | 		if (!bio) | 
 | 			goto out_free_bio; | 
 | 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); | 
 | 		r10_bio->devs[j].bio = bio; | 
 | 		if (!conf->have_replacement) | 
 | 			continue; | 
 | 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); | 
 | 		if (!bio) | 
 | 			goto out_free_bio; | 
 | 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); | 
 | 		r10_bio->devs[j].repl_bio = bio; | 
 | 	} | 
 | 	/* | 
 | 	 * Allocate RESYNC_PAGES data pages and attach them | 
 | 	 * where needed. | 
 | 	 */ | 
 | 	for (j = 0; j < nalloc; j++) { | 
 | 		struct bio *rbio = r10_bio->devs[j].repl_bio; | 
 | 		struct resync_pages *rp, *rp_repl; | 
 |  | 
 | 		rp = &rps[j]; | 
 | 		if (rbio) | 
 | 			rp_repl = &rps[nalloc + j]; | 
 |  | 
 | 		bio = r10_bio->devs[j].bio; | 
 |  | 
 | 		if (!j || test_bit(MD_RECOVERY_SYNC, | 
 | 				   &conf->mddev->recovery)) { | 
 | 			if (resync_alloc_pages(rp, gfp_flags)) | 
 | 				goto out_free_pages; | 
 | 		} else { | 
 | 			memcpy(rp, &rps[0], sizeof(*rp)); | 
 | 			resync_get_all_pages(rp); | 
 | 		} | 
 |  | 
 | 		rp->raid_bio = r10_bio; | 
 | 		bio->bi_private = rp; | 
 | 		if (rbio) { | 
 | 			memcpy(rp_repl, rp, sizeof(*rp)); | 
 | 			rbio->bi_private = rp_repl; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return r10_bio; | 
 |  | 
 | out_free_pages: | 
 | 	while (--j >= 0) | 
 | 		resync_free_pages(&rps[j]); | 
 |  | 
 | 	j = 0; | 
 | out_free_bio: | 
 | 	for ( ; j < nalloc; j++) { | 
 | 		if (r10_bio->devs[j].bio) | 
 | 			bio_uninit(r10_bio->devs[j].bio); | 
 | 		kfree(r10_bio->devs[j].bio); | 
 | 		if (r10_bio->devs[j].repl_bio) | 
 | 			bio_uninit(r10_bio->devs[j].repl_bio); | 
 | 		kfree(r10_bio->devs[j].repl_bio); | 
 | 	} | 
 | 	kfree(rps); | 
 | out_free_r10bio: | 
 | 	rbio_pool_free(r10_bio, conf); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void r10buf_pool_free(void *__r10_bio, void *data) | 
 | { | 
 | 	struct r10conf *conf = data; | 
 | 	struct r10bio *r10bio = __r10_bio; | 
 | 	int j; | 
 | 	struct resync_pages *rp = NULL; | 
 |  | 
 | 	for (j = conf->copies; j--; ) { | 
 | 		struct bio *bio = r10bio->devs[j].bio; | 
 |  | 
 | 		if (bio) { | 
 | 			rp = get_resync_pages(bio); | 
 | 			resync_free_pages(rp); | 
 | 			bio_uninit(bio); | 
 | 			kfree(bio); | 
 | 		} | 
 |  | 
 | 		bio = r10bio->devs[j].repl_bio; | 
 | 		if (bio) { | 
 | 			bio_uninit(bio); | 
 | 			kfree(bio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* resync pages array stored in the 1st bio's .bi_private */ | 
 | 	kfree(rp); | 
 |  | 
 | 	rbio_pool_free(r10bio, conf); | 
 | } | 
 |  | 
 | static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 		struct bio **bio = & r10_bio->devs[i].bio; | 
 | 		if (!BIO_SPECIAL(*bio)) | 
 | 			bio_put(*bio); | 
 | 		*bio = NULL; | 
 | 		bio = &r10_bio->devs[i].repl_bio; | 
 | 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) | 
 | 			bio_put(*bio); | 
 | 		*bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_r10bio(struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	put_all_bios(conf, r10_bio); | 
 | 	mempool_free(r10_bio, &conf->r10bio_pool); | 
 | } | 
 |  | 
 | static void put_buf(struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	mempool_free(r10_bio, &conf->r10buf_pool); | 
 |  | 
 | 	lower_barrier(conf); | 
 | } | 
 |  | 
 | static void wake_up_barrier(struct r10conf *conf) | 
 | { | 
 | 	if (wq_has_sleeper(&conf->wait_barrier)) | 
 | 		wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void reschedule_retry(struct r10bio *r10_bio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	list_add(&r10_bio->retry_list, &conf->retry_list); | 
 | 	conf->nr_queued ++; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	/* wake up frozen array... */ | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	md_wakeup_thread(mddev->thread); | 
 | } | 
 |  | 
 | /* | 
 |  * raid_end_bio_io() is called when we have finished servicing a mirrored | 
 |  * operation and are ready to return a success/failure code to the buffer | 
 |  * cache layer. | 
 |  */ | 
 | static void raid_end_bio_io(struct r10bio *r10_bio) | 
 | { | 
 | 	struct bio *bio = r10_bio->master_bio; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
 | 		bio->bi_status = BLK_STS_IOERR; | 
 |  | 
 | 	if (r10_bio->start_time) | 
 | 		bio_end_io_acct(bio, r10_bio->start_time); | 
 | 	bio_endio(bio); | 
 | 	/* | 
 | 	 * Wake up any possible resync thread that waits for the device | 
 | 	 * to go idle. | 
 | 	 */ | 
 | 	allow_barrier(conf); | 
 |  | 
 | 	free_r10bio(r10_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Update disk head position estimator based on IRQ completion info. | 
 |  */ | 
 | static inline void update_head_pos(int slot, struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	conf->mirrors[r10_bio->devs[slot].devnum].head_position = | 
 | 		r10_bio->devs[slot].addr + (r10_bio->sectors); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the disk number which triggered given bio | 
 |  */ | 
 | static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, | 
 | 			 struct bio *bio, int *slotp, int *replp) | 
 | { | 
 | 	int slot; | 
 | 	int repl = 0; | 
 |  | 
 | 	for (slot = 0; slot < conf->geo.raid_disks; slot++) { | 
 | 		if (r10_bio->devs[slot].bio == bio) | 
 | 			break; | 
 | 		if (r10_bio->devs[slot].repl_bio == bio) { | 
 | 			repl = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	update_head_pos(slot, r10_bio); | 
 |  | 
 | 	if (slotp) | 
 | 		*slotp = slot; | 
 | 	if (replp) | 
 | 		*replp = repl; | 
 | 	return r10_bio->devs[slot].devnum; | 
 | } | 
 |  | 
 | static void raid10_end_read_request(struct bio *bio) | 
 | { | 
 | 	int uptodate = !bio->bi_status; | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	int slot; | 
 | 	struct md_rdev *rdev; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	slot = r10_bio->read_slot; | 
 | 	rdev = r10_bio->devs[slot].rdev; | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	update_head_pos(slot, r10_bio); | 
 |  | 
 | 	if (uptodate) { | 
 | 		/* | 
 | 		 * Set R10BIO_Uptodate in our master bio, so that | 
 | 		 * we will return a good error code to the higher | 
 | 		 * levels even if IO on some other mirrored buffer fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation to | 
 | 		 * user-side. So if something waits for IO, then it will | 
 | 		 * wait for the 'master' bio. | 
 | 		 */ | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 | 	} else { | 
 | 		/* If all other devices that store this block have | 
 | 		 * failed, we want to return the error upwards rather | 
 | 		 * than fail the last device.  Here we redefine | 
 | 		 * "uptodate" to mean "Don't want to retry" | 
 | 		 */ | 
 | 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), | 
 | 			     rdev->raid_disk)) | 
 | 			uptodate = 1; | 
 | 	} | 
 | 	if (uptodate) { | 
 | 		raid_end_bio_io(r10_bio); | 
 | 		rdev_dec_pending(rdev, conf->mddev); | 
 | 	} else { | 
 | 		/* | 
 | 		 * oops, read error - keep the refcount on the rdev | 
 | 		 */ | 
 | 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", | 
 | 				   mdname(conf->mddev), | 
 | 				   rdev->bdev, | 
 | 				   (unsigned long long)r10_bio->sector); | 
 | 		set_bit(R10BIO_ReadError, &r10_bio->state); | 
 | 		reschedule_retry(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void close_write(struct r10bio *r10_bio) | 
 | { | 
 | 	/* clear the bitmap if all writes complete successfully */ | 
 | 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, | 
 | 			   r10_bio->sectors, | 
 | 			   !test_bit(R10BIO_Degraded, &r10_bio->state), | 
 | 			   0); | 
 | 	md_write_end(r10_bio->mddev); | 
 | } | 
 |  | 
 | static void one_write_done(struct r10bio *r10_bio) | 
 | { | 
 | 	if (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		if (test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 			reschedule_retry(r10_bio); | 
 | 		else { | 
 | 			close_write(r10_bio); | 
 | 			if (test_bit(R10BIO_MadeGood, &r10_bio->state)) | 
 | 				reschedule_retry(r10_bio); | 
 | 			else | 
 | 				raid_end_bio_io(r10_bio); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10_end_write_request(struct bio *bio) | 
 | { | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	int dev; | 
 | 	int dec_rdev = 1; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 | 	int slot, repl; | 
 | 	struct md_rdev *rdev = NULL; | 
 | 	struct bio *to_put = NULL; | 
 | 	bool discard_error; | 
 |  | 
 | 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; | 
 |  | 
 | 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
 |  | 
 | 	if (repl) | 
 | 		rdev = conf->mirrors[dev].replacement; | 
 | 	if (!rdev) { | 
 | 		smp_rmb(); | 
 | 		repl = 0; | 
 | 		rdev = conf->mirrors[dev].rdev; | 
 | 	} | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	if (bio->bi_status && !discard_error) { | 
 | 		if (repl) | 
 | 			/* Never record new bad blocks to replacement, | 
 | 			 * just fail it. | 
 | 			 */ | 
 | 			md_error(rdev->mddev, rdev); | 
 | 		else { | 
 | 			set_bit(WriteErrorSeen,	&rdev->flags); | 
 | 			if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 				set_bit(MD_RECOVERY_NEEDED, | 
 | 					&rdev->mddev->recovery); | 
 |  | 
 | 			dec_rdev = 0; | 
 | 			if (test_bit(FailFast, &rdev->flags) && | 
 | 			    (bio->bi_opf & MD_FAILFAST)) { | 
 | 				md_error(rdev->mddev, rdev); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * When the device is faulty, it is not necessary to | 
 | 			 * handle write error. | 
 | 			 */ | 
 | 			if (!test_bit(Faulty, &rdev->flags)) | 
 | 				set_bit(R10BIO_WriteError, &r10_bio->state); | 
 | 			else { | 
 | 				/* Fail the request */ | 
 | 				set_bit(R10BIO_Degraded, &r10_bio->state); | 
 | 				r10_bio->devs[slot].bio = NULL; | 
 | 				to_put = bio; | 
 | 				dec_rdev = 1; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Set R10BIO_Uptodate in our master bio, so that | 
 | 		 * we will return a good error code for to the higher | 
 | 		 * levels even if IO on some other mirrored buffer fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation to | 
 | 		 * user-side. So if something waits for IO, then it will | 
 | 		 * wait for the 'master' bio. | 
 | 		 */ | 
 | 		sector_t first_bad; | 
 | 		int bad_sectors; | 
 |  | 
 | 		/* | 
 | 		 * Do not set R10BIO_Uptodate if the current device is | 
 | 		 * rebuilding or Faulty. This is because we cannot use | 
 | 		 * such device for properly reading the data back (we could | 
 | 		 * potentially use it, if the current write would have felt | 
 | 		 * before rdev->recovery_offset, but for simplicity we don't | 
 | 		 * check this here. | 
 | 		 */ | 
 | 		if (test_bit(In_sync, &rdev->flags) && | 
 | 		    !test_bit(Faulty, &rdev->flags)) | 
 | 			set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 |  | 
 | 		/* Maybe we can clear some bad blocks. */ | 
 | 		if (is_badblock(rdev, | 
 | 				r10_bio->devs[slot].addr, | 
 | 				r10_bio->sectors, | 
 | 				&first_bad, &bad_sectors) && !discard_error) { | 
 | 			bio_put(bio); | 
 | 			if (repl) | 
 | 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; | 
 | 			else | 
 | 				r10_bio->devs[slot].bio = IO_MADE_GOOD; | 
 | 			dec_rdev = 0; | 
 | 			set_bit(R10BIO_MadeGood, &r10_bio->state); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * | 
 | 	 * Let's see if all mirrored write operations have finished | 
 | 	 * already. | 
 | 	 */ | 
 | 	one_write_done(r10_bio); | 
 | 	if (dec_rdev) | 
 | 		rdev_dec_pending(rdev, conf->mddev); | 
 | 	if (to_put) | 
 | 		bio_put(to_put); | 
 | } | 
 |  | 
 | /* | 
 |  * RAID10 layout manager | 
 |  * As well as the chunksize and raid_disks count, there are two | 
 |  * parameters: near_copies and far_copies. | 
 |  * near_copies * far_copies must be <= raid_disks. | 
 |  * Normally one of these will be 1. | 
 |  * If both are 1, we get raid0. | 
 |  * If near_copies == raid_disks, we get raid1. | 
 |  * | 
 |  * Chunks are laid out in raid0 style with near_copies copies of the | 
 |  * first chunk, followed by near_copies copies of the next chunk and | 
 |  * so on. | 
 |  * If far_copies > 1, then after 1/far_copies of the array has been assigned | 
 |  * as described above, we start again with a device offset of near_copies. | 
 |  * So we effectively have another copy of the whole array further down all | 
 |  * the drives, but with blocks on different drives. | 
 |  * With this layout, and block is never stored twice on the one device. | 
 |  * | 
 |  * raid10_find_phys finds the sector offset of a given virtual sector | 
 |  * on each device that it is on. | 
 |  * | 
 |  * raid10_find_virt does the reverse mapping, from a device and a | 
 |  * sector offset to a virtual address | 
 |  */ | 
 |  | 
 | static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) | 
 | { | 
 | 	int n,f; | 
 | 	sector_t sector; | 
 | 	sector_t chunk; | 
 | 	sector_t stripe; | 
 | 	int dev; | 
 | 	int slot = 0; | 
 | 	int last_far_set_start, last_far_set_size; | 
 |  | 
 | 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; | 
 | 	last_far_set_start *= geo->far_set_size; | 
 |  | 
 | 	last_far_set_size = geo->far_set_size; | 
 | 	last_far_set_size += (geo->raid_disks % geo->far_set_size); | 
 |  | 
 | 	/* now calculate first sector/dev */ | 
 | 	chunk = r10bio->sector >> geo->chunk_shift; | 
 | 	sector = r10bio->sector & geo->chunk_mask; | 
 |  | 
 | 	chunk *= geo->near_copies; | 
 | 	stripe = chunk; | 
 | 	dev = sector_div(stripe, geo->raid_disks); | 
 | 	if (geo->far_offset) | 
 | 		stripe *= geo->far_copies; | 
 |  | 
 | 	sector += stripe << geo->chunk_shift; | 
 |  | 
 | 	/* and calculate all the others */ | 
 | 	for (n = 0; n < geo->near_copies; n++) { | 
 | 		int d = dev; | 
 | 		int set; | 
 | 		sector_t s = sector; | 
 | 		r10bio->devs[slot].devnum = d; | 
 | 		r10bio->devs[slot].addr = s; | 
 | 		slot++; | 
 |  | 
 | 		for (f = 1; f < geo->far_copies; f++) { | 
 | 			set = d / geo->far_set_size; | 
 | 			d += geo->near_copies; | 
 |  | 
 | 			if ((geo->raid_disks % geo->far_set_size) && | 
 | 			    (d > last_far_set_start)) { | 
 | 				d -= last_far_set_start; | 
 | 				d %= last_far_set_size; | 
 | 				d += last_far_set_start; | 
 | 			} else { | 
 | 				d %= geo->far_set_size; | 
 | 				d += geo->far_set_size * set; | 
 | 			} | 
 | 			s += geo->stride; | 
 | 			r10bio->devs[slot].devnum = d; | 
 | 			r10bio->devs[slot].addr = s; | 
 | 			slot++; | 
 | 		} | 
 | 		dev++; | 
 | 		if (dev >= geo->raid_disks) { | 
 | 			dev = 0; | 
 | 			sector += (geo->chunk_mask + 1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) | 
 | { | 
 | 	struct geom *geo = &conf->geo; | 
 |  | 
 | 	if (conf->reshape_progress != MaxSector && | 
 | 	    ((r10bio->sector >= conf->reshape_progress) != | 
 | 	     conf->mddev->reshape_backwards)) { | 
 | 		set_bit(R10BIO_Previous, &r10bio->state); | 
 | 		geo = &conf->prev; | 
 | 	} else | 
 | 		clear_bit(R10BIO_Previous, &r10bio->state); | 
 |  | 
 | 	__raid10_find_phys(geo, r10bio); | 
 | } | 
 |  | 
 | static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) | 
 | { | 
 | 	sector_t offset, chunk, vchunk; | 
 | 	/* Never use conf->prev as this is only called during resync | 
 | 	 * or recovery, so reshape isn't happening | 
 | 	 */ | 
 | 	struct geom *geo = &conf->geo; | 
 | 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; | 
 | 	int far_set_size = geo->far_set_size; | 
 | 	int last_far_set_start; | 
 |  | 
 | 	if (geo->raid_disks % geo->far_set_size) { | 
 | 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; | 
 | 		last_far_set_start *= geo->far_set_size; | 
 |  | 
 | 		if (dev >= last_far_set_start) { | 
 | 			far_set_size = geo->far_set_size; | 
 | 			far_set_size += (geo->raid_disks % geo->far_set_size); | 
 | 			far_set_start = last_far_set_start; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	offset = sector & geo->chunk_mask; | 
 | 	if (geo->far_offset) { | 
 | 		int fc; | 
 | 		chunk = sector >> geo->chunk_shift; | 
 | 		fc = sector_div(chunk, geo->far_copies); | 
 | 		dev -= fc * geo->near_copies; | 
 | 		if (dev < far_set_start) | 
 | 			dev += far_set_size; | 
 | 	} else { | 
 | 		while (sector >= geo->stride) { | 
 | 			sector -= geo->stride; | 
 | 			if (dev < (geo->near_copies + far_set_start)) | 
 | 				dev += far_set_size - geo->near_copies; | 
 | 			else | 
 | 				dev -= geo->near_copies; | 
 | 		} | 
 | 		chunk = sector >> geo->chunk_shift; | 
 | 	} | 
 | 	vchunk = chunk * geo->raid_disks + dev; | 
 | 	sector_div(vchunk, geo->near_copies); | 
 | 	return (vchunk << geo->chunk_shift) + offset; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine returns the disk from which the requested read should | 
 |  * be done. There is a per-array 'next expected sequential IO' sector | 
 |  * number - if this matches on the next IO then we use the last disk. | 
 |  * There is also a per-disk 'last know head position' sector that is | 
 |  * maintained from IRQ contexts, both the normal and the resync IO | 
 |  * completion handlers update this position correctly. If there is no | 
 |  * perfect sequential match then we pick the disk whose head is closest. | 
 |  * | 
 |  * If there are 2 mirrors in the same 2 devices, performance degrades | 
 |  * because position is mirror, not device based. | 
 |  * | 
 |  * The rdev for the device selected will have nr_pending incremented. | 
 |  */ | 
 |  | 
 | /* | 
 |  * FIXME: possibly should rethink readbalancing and do it differently | 
 |  * depending on near_copies / far_copies geometry. | 
 |  */ | 
 | static struct md_rdev *read_balance(struct r10conf *conf, | 
 | 				    struct r10bio *r10_bio, | 
 | 				    int *max_sectors) | 
 | { | 
 | 	const sector_t this_sector = r10_bio->sector; | 
 | 	int disk, slot; | 
 | 	int sectors = r10_bio->sectors; | 
 | 	int best_good_sectors; | 
 | 	sector_t new_distance, best_dist; | 
 | 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; | 
 | 	int do_balance; | 
 | 	int best_dist_slot, best_pending_slot; | 
 | 	bool has_nonrot_disk = false; | 
 | 	unsigned int min_pending; | 
 | 	struct geom *geo = &conf->geo; | 
 |  | 
 | 	raid10_find_phys(conf, r10_bio); | 
 | 	rcu_read_lock(); | 
 | 	best_dist_slot = -1; | 
 | 	min_pending = UINT_MAX; | 
 | 	best_dist_rdev = NULL; | 
 | 	best_pending_rdev = NULL; | 
 | 	best_dist = MaxSector; | 
 | 	best_good_sectors = 0; | 
 | 	do_balance = 1; | 
 | 	clear_bit(R10BIO_FailFast, &r10_bio->state); | 
 | 	/* | 
 | 	 * Check if we can balance. We can balance on the whole | 
 | 	 * device if no resync is going on (recovery is ok), or below | 
 | 	 * the resync window. We take the first readable disk when | 
 | 	 * above the resync window. | 
 | 	 */ | 
 | 	if ((conf->mddev->recovery_cp < MaxSector | 
 | 	     && (this_sector + sectors >= conf->next_resync)) || | 
 | 	    (mddev_is_clustered(conf->mddev) && | 
 | 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, | 
 | 					    this_sector + sectors))) | 
 | 		do_balance = 0; | 
 |  | 
 | 	for (slot = 0; slot < conf->copies ; slot++) { | 
 | 		sector_t first_bad; | 
 | 		int bad_sectors; | 
 | 		sector_t dev_sector; | 
 | 		unsigned int pending; | 
 | 		bool nonrot; | 
 |  | 
 | 		if (r10_bio->devs[slot].bio == IO_BLOCKED) | 
 | 			continue; | 
 | 		disk = r10_bio->devs[slot].devnum; | 
 | 		rdev = rcu_dereference(conf->mirrors[disk].replacement); | 
 | 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) || | 
 | 		    r10_bio->devs[slot].addr + sectors > | 
 | 		    rdev->recovery_offset) { | 
 | 			/* | 
 | 			 * Read replacement first to prevent reading both rdev | 
 | 			 * and replacement as NULL during replacement replace | 
 | 			 * rdev. | 
 | 			 */ | 
 | 			smp_mb(); | 
 | 			rdev = rcu_dereference(conf->mirrors[disk].rdev); | 
 | 		} | 
 | 		if (rdev == NULL || | 
 | 		    test_bit(Faulty, &rdev->flags)) | 
 | 			continue; | 
 | 		if (!test_bit(In_sync, &rdev->flags) && | 
 | 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) | 
 | 			continue; | 
 |  | 
 | 		dev_sector = r10_bio->devs[slot].addr; | 
 | 		if (is_badblock(rdev, dev_sector, sectors, | 
 | 				&first_bad, &bad_sectors)) { | 
 | 			if (best_dist < MaxSector) | 
 | 				/* Already have a better slot */ | 
 | 				continue; | 
 | 			if (first_bad <= dev_sector) { | 
 | 				/* Cannot read here.  If this is the | 
 | 				 * 'primary' device, then we must not read | 
 | 				 * beyond 'bad_sectors' from another device. | 
 | 				 */ | 
 | 				bad_sectors -= (dev_sector - first_bad); | 
 | 				if (!do_balance && sectors > bad_sectors) | 
 | 					sectors = bad_sectors; | 
 | 				if (best_good_sectors > sectors) | 
 | 					best_good_sectors = sectors; | 
 | 			} else { | 
 | 				sector_t good_sectors = | 
 | 					first_bad - dev_sector; | 
 | 				if (good_sectors > best_good_sectors) { | 
 | 					best_good_sectors = good_sectors; | 
 | 					best_dist_slot = slot; | 
 | 					best_dist_rdev = rdev; | 
 | 				} | 
 | 				if (!do_balance) | 
 | 					/* Must read from here */ | 
 | 					break; | 
 | 			} | 
 | 			continue; | 
 | 		} else | 
 | 			best_good_sectors = sectors; | 
 |  | 
 | 		if (!do_balance) | 
 | 			break; | 
 |  | 
 | 		nonrot = bdev_nonrot(rdev->bdev); | 
 | 		has_nonrot_disk |= nonrot; | 
 | 		pending = atomic_read(&rdev->nr_pending); | 
 | 		if (min_pending > pending && nonrot) { | 
 | 			min_pending = pending; | 
 | 			best_pending_slot = slot; | 
 | 			best_pending_rdev = rdev; | 
 | 		} | 
 |  | 
 | 		if (best_dist_slot >= 0) | 
 | 			/* At least 2 disks to choose from so failfast is OK */ | 
 | 			set_bit(R10BIO_FailFast, &r10_bio->state); | 
 | 		/* This optimisation is debatable, and completely destroys | 
 | 		 * sequential read speed for 'far copies' arrays.  So only | 
 | 		 * keep it for 'near' arrays, and review those later. | 
 | 		 */ | 
 | 		if (geo->near_copies > 1 && !pending) | 
 | 			new_distance = 0; | 
 |  | 
 | 		/* for far > 1 always use the lowest address */ | 
 | 		else if (geo->far_copies > 1) | 
 | 			new_distance = r10_bio->devs[slot].addr; | 
 | 		else | 
 | 			new_distance = abs(r10_bio->devs[slot].addr - | 
 | 					   conf->mirrors[disk].head_position); | 
 |  | 
 | 		if (new_distance < best_dist) { | 
 | 			best_dist = new_distance; | 
 | 			best_dist_slot = slot; | 
 | 			best_dist_rdev = rdev; | 
 | 		} | 
 | 	} | 
 | 	if (slot >= conf->copies) { | 
 | 		if (has_nonrot_disk) { | 
 | 			slot = best_pending_slot; | 
 | 			rdev = best_pending_rdev; | 
 | 		} else { | 
 | 			slot = best_dist_slot; | 
 | 			rdev = best_dist_rdev; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (slot >= 0) { | 
 | 		atomic_inc(&rdev->nr_pending); | 
 | 		r10_bio->read_slot = slot; | 
 | 	} else | 
 | 		rdev = NULL; | 
 | 	rcu_read_unlock(); | 
 | 	*max_sectors = best_good_sectors; | 
 |  | 
 | 	return rdev; | 
 | } | 
 |  | 
 | static void flush_pending_writes(struct r10conf *conf) | 
 | { | 
 | 	/* Any writes that have been queued but are awaiting | 
 | 	 * bitmap updates get flushed here. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->device_lock); | 
 |  | 
 | 	if (conf->pending_bio_list.head) { | 
 | 		struct blk_plug plug; | 
 | 		struct bio *bio; | 
 |  | 
 | 		bio = bio_list_get(&conf->pending_bio_list); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 		/* | 
 | 		 * As this is called in a wait_event() loop (see freeze_array), | 
 | 		 * current->state might be TASK_UNINTERRUPTIBLE which will | 
 | 		 * cause a warning when we prepare to wait again.  As it is | 
 | 		 * rare that this path is taken, it is perfectly safe to force | 
 | 		 * us to go around the wait_event() loop again, so the warning | 
 | 		 * is a false-positive. Silence the warning by resetting | 
 | 		 * thread state | 
 | 		 */ | 
 | 		__set_current_state(TASK_RUNNING); | 
 |  | 
 | 		blk_start_plug(&plug); | 
 | 		/* flush any pending bitmap writes to disk | 
 | 		 * before proceeding w/ I/O */ | 
 | 		md_bitmap_unplug(conf->mddev->bitmap); | 
 | 		wake_up(&conf->wait_barrier); | 
 |  | 
 | 		while (bio) { /* submit pending writes */ | 
 | 			struct bio *next = bio->bi_next; | 
 |  | 
 | 			raid1_submit_write(bio); | 
 | 			bio = next; | 
 | 			cond_resched(); | 
 | 		} | 
 | 		blk_finish_plug(&plug); | 
 | 	} else | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | } | 
 |  | 
 | /* Barriers.... | 
 |  * Sometimes we need to suspend IO while we do something else, | 
 |  * either some resync/recovery, or reconfigure the array. | 
 |  * To do this we raise a 'barrier'. | 
 |  * The 'barrier' is a counter that can be raised multiple times | 
 |  * to count how many activities are happening which preclude | 
 |  * normal IO. | 
 |  * We can only raise the barrier if there is no pending IO. | 
 |  * i.e. if nr_pending == 0. | 
 |  * We choose only to raise the barrier if no-one is waiting for the | 
 |  * barrier to go down.  This means that as soon as an IO request | 
 |  * is ready, no other operations which require a barrier will start | 
 |  * until the IO request has had a chance. | 
 |  * | 
 |  * So: regular IO calls 'wait_barrier'.  When that returns there | 
 |  *    is no backgroup IO happening,  It must arrange to call | 
 |  *    allow_barrier when it has finished its IO. | 
 |  * backgroup IO calls must call raise_barrier.  Once that returns | 
 |  *    there is no normal IO happeing.  It must arrange to call | 
 |  *    lower_barrier when the particular background IO completes. | 
 |  */ | 
 |  | 
 | static void raise_barrier(struct r10conf *conf, int force) | 
 | { | 
 | 	write_seqlock_irq(&conf->resync_lock); | 
 | 	BUG_ON(force && !conf->barrier); | 
 |  | 
 | 	/* Wait until no block IO is waiting (unless 'force') */ | 
 | 	wait_event_barrier(conf, force || !conf->nr_waiting); | 
 |  | 
 | 	/* block any new IO from starting */ | 
 | 	WRITE_ONCE(conf->barrier, conf->barrier + 1); | 
 |  | 
 | 	/* Now wait for all pending IO to complete */ | 
 | 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && | 
 | 				 conf->barrier < RESYNC_DEPTH); | 
 |  | 
 | 	write_sequnlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void lower_barrier(struct r10conf *conf) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	write_seqlock_irqsave(&conf->resync_lock, flags); | 
 | 	WRITE_ONCE(conf->barrier, conf->barrier - 1); | 
 | 	write_sequnlock_irqrestore(&conf->resync_lock, flags); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static bool stop_waiting_barrier(struct r10conf *conf) | 
 | { | 
 | 	struct bio_list *bio_list = current->bio_list; | 
 |  | 
 | 	/* barrier is dropped */ | 
 | 	if (!conf->barrier) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * If there are already pending requests (preventing the barrier from | 
 | 	 * rising completely), and the pre-process bio queue isn't empty, then | 
 | 	 * don't wait, as we need to empty that queue to get the nr_pending | 
 | 	 * count down. | 
 | 	 */ | 
 | 	if (atomic_read(&conf->nr_pending) && bio_list && | 
 | 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * move on if io is issued from raid10d(), nr_pending is not released | 
 | 	 * from original io(see handle_read_error()). All raise barrier is | 
 | 	 * blocked until this io is done. | 
 | 	 */ | 
 | 	if (conf->mddev->thread->tsk == current) { | 
 | 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool wait_barrier_nolock(struct r10conf *conf) | 
 | { | 
 | 	unsigned int seq = read_seqbegin(&conf->resync_lock); | 
 |  | 
 | 	if (READ_ONCE(conf->barrier)) | 
 | 		return false; | 
 |  | 
 | 	atomic_inc(&conf->nr_pending); | 
 | 	if (!read_seqretry(&conf->resync_lock, seq)) | 
 | 		return true; | 
 |  | 
 | 	if (atomic_dec_and_test(&conf->nr_pending)) | 
 | 		wake_up_barrier(conf); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool wait_barrier(struct r10conf *conf, bool nowait) | 
 | { | 
 | 	bool ret = true; | 
 |  | 
 | 	if (wait_barrier_nolock(conf)) | 
 | 		return true; | 
 |  | 
 | 	write_seqlock_irq(&conf->resync_lock); | 
 | 	if (conf->barrier) { | 
 | 		/* Return false when nowait flag is set */ | 
 | 		if (nowait) { | 
 | 			ret = false; | 
 | 		} else { | 
 | 			conf->nr_waiting++; | 
 | 			raid10_log(conf->mddev, "wait barrier"); | 
 | 			wait_event_barrier(conf, stop_waiting_barrier(conf)); | 
 | 			conf->nr_waiting--; | 
 | 		} | 
 | 		if (!conf->nr_waiting) | 
 | 			wake_up(&conf->wait_barrier); | 
 | 	} | 
 | 	/* Only increment nr_pending when we wait */ | 
 | 	if (ret) | 
 | 		atomic_inc(&conf->nr_pending); | 
 | 	write_sequnlock_irq(&conf->resync_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void allow_barrier(struct r10conf *conf) | 
 | { | 
 | 	if ((atomic_dec_and_test(&conf->nr_pending)) || | 
 | 			(conf->array_freeze_pending)) | 
 | 		wake_up_barrier(conf); | 
 | } | 
 |  | 
 | static void freeze_array(struct r10conf *conf, int extra) | 
 | { | 
 | 	/* stop syncio and normal IO and wait for everything to | 
 | 	 * go quiet. | 
 | 	 * We increment barrier and nr_waiting, and then | 
 | 	 * wait until nr_pending match nr_queued+extra | 
 | 	 * This is called in the context of one normal IO request | 
 | 	 * that has failed. Thus any sync request that might be pending | 
 | 	 * will be blocked by nr_pending, and we need to wait for | 
 | 	 * pending IO requests to complete or be queued for re-try. | 
 | 	 * Thus the number queued (nr_queued) plus this request (extra) | 
 | 	 * must match the number of pending IOs (nr_pending) before | 
 | 	 * we continue. | 
 | 	 */ | 
 | 	write_seqlock_irq(&conf->resync_lock); | 
 | 	conf->array_freeze_pending++; | 
 | 	WRITE_ONCE(conf->barrier, conf->barrier + 1); | 
 | 	conf->nr_waiting++; | 
 | 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == | 
 | 			conf->nr_queued + extra, flush_pending_writes(conf)); | 
 | 	conf->array_freeze_pending--; | 
 | 	write_sequnlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void unfreeze_array(struct r10conf *conf) | 
 | { | 
 | 	/* reverse the effect of the freeze */ | 
 | 	write_seqlock_irq(&conf->resync_lock); | 
 | 	WRITE_ONCE(conf->barrier, conf->barrier - 1); | 
 | 	conf->nr_waiting--; | 
 | 	wake_up(&conf->wait_barrier); | 
 | 	write_sequnlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static sector_t choose_data_offset(struct r10bio *r10_bio, | 
 | 				   struct md_rdev *rdev) | 
 | { | 
 | 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || | 
 | 	    test_bit(R10BIO_Previous, &r10_bio->state)) | 
 | 		return rdev->data_offset; | 
 | 	else | 
 | 		return rdev->new_data_offset; | 
 | } | 
 |  | 
 | static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
 | { | 
 | 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); | 
 | 	struct mddev *mddev = plug->cb.data; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (from_schedule || current->bio_list) { | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		bio_list_merge(&conf->pending_bio_list, &plug->pending); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		wake_up(&conf->wait_barrier); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		kfree(plug); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* we aren't scheduling, so we can do the write-out directly. */ | 
 | 	bio = bio_list_get(&plug->pending); | 
 | 	md_bitmap_unplug(mddev->bitmap); | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	while (bio) { /* submit pending writes */ | 
 | 		struct bio *next = bio->bi_next; | 
 |  | 
 | 		raid1_submit_write(bio); | 
 | 		bio = next; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	kfree(plug); | 
 | } | 
 |  | 
 | /* | 
 |  * 1. Register the new request and wait if the reconstruction thread has put | 
 |  * up a bar for new requests. Continue immediately if no resync is active | 
 |  * currently. | 
 |  * 2. If IO spans the reshape position.  Need to wait for reshape to pass. | 
 |  */ | 
 | static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, | 
 | 				 struct bio *bio, sector_t sectors) | 
 | { | 
 | 	/* Bail out if REQ_NOWAIT is set for the bio */ | 
 | 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { | 
 | 		bio_wouldblock_error(bio); | 
 | 		return false; | 
 | 	} | 
 | 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && | 
 | 	    bio->bi_iter.bi_sector < conf->reshape_progress && | 
 | 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { | 
 | 		allow_barrier(conf); | 
 | 		if (bio->bi_opf & REQ_NOWAIT) { | 
 | 			bio_wouldblock_error(bio); | 
 | 			return false; | 
 | 		} | 
 | 		raid10_log(conf->mddev, "wait reshape"); | 
 | 		wait_event(conf->wait_barrier, | 
 | 			   conf->reshape_progress <= bio->bi_iter.bi_sector || | 
 | 			   conf->reshape_progress >= bio->bi_iter.bi_sector + | 
 | 			   sectors); | 
 | 		wait_barrier(conf, false); | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static void raid10_read_request(struct mddev *mddev, struct bio *bio, | 
 | 				struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct bio *read_bio; | 
 | 	const enum req_op op = bio_op(bio); | 
 | 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; | 
 | 	int max_sectors; | 
 | 	struct md_rdev *rdev; | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	int slot = r10_bio->read_slot; | 
 | 	struct md_rdev *err_rdev = NULL; | 
 | 	gfp_t gfp = GFP_NOIO; | 
 |  | 
 | 	if (slot >= 0 && r10_bio->devs[slot].rdev) { | 
 | 		/* | 
 | 		 * This is an error retry, but we cannot | 
 | 		 * safely dereference the rdev in the r10_bio, | 
 | 		 * we must use the one in conf. | 
 | 		 * If it has already been disconnected (unlikely) | 
 | 		 * we lose the device name in error messages. | 
 | 		 */ | 
 | 		int disk; | 
 | 		/* | 
 | 		 * As we are blocking raid10, it is a little safer to | 
 | 		 * use __GFP_HIGH. | 
 | 		 */ | 
 | 		gfp = GFP_NOIO | __GFP_HIGH; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		disk = r10_bio->devs[slot].devnum; | 
 | 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev); | 
 | 		if (err_rdev) | 
 | 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev); | 
 | 		else { | 
 | 			strcpy(b, "???"); | 
 | 			/* This never gets dereferenced */ | 
 | 			err_rdev = r10_bio->devs[slot].rdev; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) | 
 | 		return; | 
 | 	rdev = read_balance(conf, r10_bio, &max_sectors); | 
 | 	if (!rdev) { | 
 | 		if (err_rdev) { | 
 | 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", | 
 | 					    mdname(mddev), b, | 
 | 					    (unsigned long long)r10_bio->sector); | 
 | 		} | 
 | 		raid_end_bio_io(r10_bio); | 
 | 		return; | 
 | 	} | 
 | 	if (err_rdev) | 
 | 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", | 
 | 				   mdname(mddev), | 
 | 				   rdev->bdev, | 
 | 				   (unsigned long long)r10_bio->sector); | 
 | 	if (max_sectors < bio_sectors(bio)) { | 
 | 		struct bio *split = bio_split(bio, max_sectors, | 
 | 					      gfp, &conf->bio_split); | 
 | 		bio_chain(split, bio); | 
 | 		allow_barrier(conf); | 
 | 		submit_bio_noacct(bio); | 
 | 		wait_barrier(conf, false); | 
 | 		bio = split; | 
 | 		r10_bio->master_bio = bio; | 
 | 		r10_bio->sectors = max_sectors; | 
 | 	} | 
 | 	slot = r10_bio->read_slot; | 
 |  | 
 | 	if (!r10_bio->start_time && | 
 | 	    blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) | 
 | 		r10_bio->start_time = bio_start_io_acct(bio); | 
 | 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); | 
 |  | 
 | 	r10_bio->devs[slot].bio = read_bio; | 
 | 	r10_bio->devs[slot].rdev = rdev; | 
 |  | 
 | 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + | 
 | 		choose_data_offset(r10_bio, rdev); | 
 | 	read_bio->bi_end_io = raid10_end_read_request; | 
 | 	bio_set_op_attrs(read_bio, op, do_sync); | 
 | 	if (test_bit(FailFast, &rdev->flags) && | 
 | 	    test_bit(R10BIO_FailFast, &r10_bio->state)) | 
 | 	        read_bio->bi_opf |= MD_FAILFAST; | 
 | 	read_bio->bi_private = r10_bio; | 
 |  | 
 | 	if (mddev->gendisk) | 
 | 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), | 
 | 	                              r10_bio->sector); | 
 | 	submit_bio_noacct(read_bio); | 
 | 	return; | 
 | } | 
 |  | 
 | static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, | 
 | 				  struct bio *bio, bool replacement, | 
 | 				  int n_copy) | 
 | { | 
 | 	const enum req_op op = bio_op(bio); | 
 | 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; | 
 | 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; | 
 | 	unsigned long flags; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev; | 
 | 	int devnum = r10_bio->devs[n_copy].devnum; | 
 | 	struct bio *mbio; | 
 |  | 
 | 	if (replacement) { | 
 | 		rdev = conf->mirrors[devnum].replacement; | 
 | 		if (rdev == NULL) { | 
 | 			/* Replacement just got moved to main 'rdev' */ | 
 | 			smp_mb(); | 
 | 			rdev = conf->mirrors[devnum].rdev; | 
 | 		} | 
 | 	} else | 
 | 		rdev = conf->mirrors[devnum].rdev; | 
 |  | 
 | 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); | 
 | 	if (replacement) | 
 | 		r10_bio->devs[n_copy].repl_bio = mbio; | 
 | 	else | 
 | 		r10_bio->devs[n_copy].bio = mbio; | 
 |  | 
 | 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr + | 
 | 				   choose_data_offset(r10_bio, rdev)); | 
 | 	mbio->bi_end_io	= raid10_end_write_request; | 
 | 	bio_set_op_attrs(mbio, op, do_sync | do_fua); | 
 | 	if (!replacement && test_bit(FailFast, | 
 | 				     &conf->mirrors[devnum].rdev->flags) | 
 | 			 && enough(conf, devnum)) | 
 | 		mbio->bi_opf |= MD_FAILFAST; | 
 | 	mbio->bi_private = r10_bio; | 
 |  | 
 | 	if (conf->mddev->gendisk) | 
 | 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), | 
 | 				      r10_bio->sector); | 
 | 	/* flush_pending_writes() needs access to the rdev so...*/ | 
 | 	mbio->bi_bdev = (void *)rdev; | 
 |  | 
 | 	atomic_inc(&r10_bio->remaining); | 
 |  | 
 | 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug)) { | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		bio_list_add(&conf->pending_bio_list, mbio); | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 	} | 
 | } | 
 |  | 
 | static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror, | 
 | 						  struct md_rdev **prrdev) | 
 | { | 
 | 	struct md_rdev *rdev, *rrdev; | 
 |  | 
 | 	rrdev = rcu_dereference(mirror->replacement); | 
 | 	/* | 
 | 	 * Read replacement first to prevent reading both rdev and | 
 | 	 * replacement as NULL during replacement replace rdev. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	rdev = rcu_dereference(mirror->rdev); | 
 | 	if (rdev == rrdev) | 
 | 		rrdev = NULL; | 
 |  | 
 | 	*prrdev = rrdev; | 
 | 	return rdev; | 
 | } | 
 |  | 
 | static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	int i; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *blocked_rdev; | 
 |  | 
 | retry_wait: | 
 | 	blocked_rdev = NULL; | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		struct md_rdev *rdev, *rrdev; | 
 |  | 
 | 		rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev); | 
 | 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			blocked_rdev = rdev; | 
 | 			break; | 
 | 		} | 
 | 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { | 
 | 			atomic_inc(&rrdev->nr_pending); | 
 | 			blocked_rdev = rrdev; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { | 
 | 			sector_t first_bad; | 
 | 			sector_t dev_sector = r10_bio->devs[i].addr; | 
 | 			int bad_sectors; | 
 | 			int is_bad; | 
 |  | 
 | 			/* | 
 | 			 * Discard request doesn't care the write result | 
 | 			 * so it doesn't need to wait blocked disk here. | 
 | 			 */ | 
 | 			if (!r10_bio->sectors) | 
 | 				continue; | 
 |  | 
 | 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, | 
 | 					     &first_bad, &bad_sectors); | 
 | 			if (is_bad < 0) { | 
 | 				/* | 
 | 				 * Mustn't write here until the bad block | 
 | 				 * is acknowledged | 
 | 				 */ | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				set_bit(BlockedBadBlocks, &rdev->flags); | 
 | 				blocked_rdev = rdev; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (unlikely(blocked_rdev)) { | 
 | 		/* Have to wait for this device to get unblocked, then retry */ | 
 | 		allow_barrier(conf); | 
 | 		raid10_log(conf->mddev, "%s wait rdev %d blocked", | 
 | 				__func__, blocked_rdev->raid_disk); | 
 | 		md_wait_for_blocked_rdev(blocked_rdev, mddev); | 
 | 		wait_barrier(conf, false); | 
 | 		goto retry_wait; | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10_write_request(struct mddev *mddev, struct bio *bio, | 
 | 				 struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int i; | 
 | 	sector_t sectors; | 
 | 	int max_sectors; | 
 |  | 
 | 	if ((mddev_is_clustered(mddev) && | 
 | 	     md_cluster_ops->area_resyncing(mddev, WRITE, | 
 | 					    bio->bi_iter.bi_sector, | 
 | 					    bio_end_sector(bio)))) { | 
 | 		DEFINE_WAIT(w); | 
 | 		/* Bail out if REQ_NOWAIT is set for the bio */ | 
 | 		if (bio->bi_opf & REQ_NOWAIT) { | 
 | 			bio_wouldblock_error(bio); | 
 | 			return; | 
 | 		} | 
 | 		for (;;) { | 
 | 			prepare_to_wait(&conf->wait_barrier, | 
 | 					&w, TASK_IDLE); | 
 | 			if (!md_cluster_ops->area_resyncing(mddev, WRITE, | 
 | 				 bio->bi_iter.bi_sector, bio_end_sector(bio))) | 
 | 				break; | 
 | 			schedule(); | 
 | 		} | 
 | 		finish_wait(&conf->wait_barrier, &w); | 
 | 	} | 
 |  | 
 | 	sectors = r10_bio->sectors; | 
 | 	if (!regular_request_wait(mddev, conf, bio, sectors)) | 
 | 		return; | 
 | 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && | 
 | 	    (mddev->reshape_backwards | 
 | 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe && | 
 | 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress) | 
 | 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && | 
 | 		bio->bi_iter.bi_sector < conf->reshape_progress))) { | 
 | 		/* Need to update reshape_position in metadata */ | 
 | 		mddev->reshape_position = conf->reshape_progress; | 
 | 		set_mask_bits(&mddev->sb_flags, 0, | 
 | 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		if (bio->bi_opf & REQ_NOWAIT) { | 
 | 			allow_barrier(conf); | 
 | 			bio_wouldblock_error(bio); | 
 | 			return; | 
 | 		} | 
 | 		raid10_log(conf->mddev, "wait reshape metadata"); | 
 | 		wait_event(mddev->sb_wait, | 
 | 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); | 
 |  | 
 | 		conf->reshape_safe = mddev->reshape_position; | 
 | 	} | 
 |  | 
 | 	/* first select target devices under rcu_lock and | 
 | 	 * inc refcount on their rdev.  Record them by setting | 
 | 	 * bios[x] to bio | 
 | 	 * If there are known/acknowledged bad blocks on any device | 
 | 	 * on which we have seen a write error, we want to avoid | 
 | 	 * writing to those blocks.  This potentially requires several | 
 | 	 * writes to write around the bad blocks.  Each set of writes | 
 | 	 * gets its own r10_bio with a set of bios attached. | 
 | 	 */ | 
 |  | 
 | 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ | 
 | 	raid10_find_phys(conf, r10_bio); | 
 |  | 
 | 	wait_blocked_dev(mddev, r10_bio); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	max_sectors = r10_bio->sectors; | 
 |  | 
 | 	for (i = 0;  i < conf->copies; i++) { | 
 | 		int d = r10_bio->devs[i].devnum; | 
 | 		struct md_rdev *rdev, *rrdev; | 
 |  | 
 | 		rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev); | 
 | 		if (rdev && (test_bit(Faulty, &rdev->flags))) | 
 | 			rdev = NULL; | 
 | 		if (rrdev && (test_bit(Faulty, &rrdev->flags))) | 
 | 			rrdev = NULL; | 
 |  | 
 | 		r10_bio->devs[i].bio = NULL; | 
 | 		r10_bio->devs[i].repl_bio = NULL; | 
 |  | 
 | 		if (!rdev && !rrdev) { | 
 | 			set_bit(R10BIO_Degraded, &r10_bio->state); | 
 | 			continue; | 
 | 		} | 
 | 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { | 
 | 			sector_t first_bad; | 
 | 			sector_t dev_sector = r10_bio->devs[i].addr; | 
 | 			int bad_sectors; | 
 | 			int is_bad; | 
 |  | 
 | 			is_bad = is_badblock(rdev, dev_sector, max_sectors, | 
 | 					     &first_bad, &bad_sectors); | 
 | 			if (is_bad && first_bad <= dev_sector) { | 
 | 				/* Cannot write here at all */ | 
 | 				bad_sectors -= (dev_sector - first_bad); | 
 | 				if (bad_sectors < max_sectors) | 
 | 					/* Mustn't write more than bad_sectors | 
 | 					 * to other devices yet | 
 | 					 */ | 
 | 					max_sectors = bad_sectors; | 
 | 				/* We don't set R10BIO_Degraded as that | 
 | 				 * only applies if the disk is missing, | 
 | 				 * so it might be re-added, and we want to | 
 | 				 * know to recover this chunk. | 
 | 				 * In this case the device is here, and the | 
 | 				 * fact that this chunk is not in-sync is | 
 | 				 * recorded in the bad block log. | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			if (is_bad) { | 
 | 				int good_sectors = first_bad - dev_sector; | 
 | 				if (good_sectors < max_sectors) | 
 | 					max_sectors = good_sectors; | 
 | 			} | 
 | 		} | 
 | 		if (rdev) { | 
 | 			r10_bio->devs[i].bio = bio; | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 		} | 
 | 		if (rrdev) { | 
 | 			r10_bio->devs[i].repl_bio = bio; | 
 | 			atomic_inc(&rrdev->nr_pending); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (max_sectors < r10_bio->sectors) | 
 | 		r10_bio->sectors = max_sectors; | 
 |  | 
 | 	if (r10_bio->sectors < bio_sectors(bio)) { | 
 | 		struct bio *split = bio_split(bio, r10_bio->sectors, | 
 | 					      GFP_NOIO, &conf->bio_split); | 
 | 		bio_chain(split, bio); | 
 | 		allow_barrier(conf); | 
 | 		submit_bio_noacct(bio); | 
 | 		wait_barrier(conf, false); | 
 | 		bio = split; | 
 | 		r10_bio->master_bio = bio; | 
 | 	} | 
 |  | 
 | 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) | 
 | 		r10_bio->start_time = bio_start_io_acct(bio); | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 | 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); | 
 |  | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		if (r10_bio->devs[i].bio) | 
 | 			raid10_write_one_disk(mddev, r10_bio, bio, false, i); | 
 | 		if (r10_bio->devs[i].repl_bio) | 
 | 			raid10_write_one_disk(mddev, r10_bio, bio, true, i); | 
 | 	} | 
 | 	one_write_done(r10_bio); | 
 | } | 
 |  | 
 | static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct r10bio *r10_bio; | 
 |  | 
 | 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); | 
 |  | 
 | 	r10_bio->master_bio = bio; | 
 | 	r10_bio->sectors = sectors; | 
 |  | 
 | 	r10_bio->mddev = mddev; | 
 | 	r10_bio->sector = bio->bi_iter.bi_sector; | 
 | 	r10_bio->state = 0; | 
 | 	r10_bio->read_slot = -1; | 
 | 	r10_bio->start_time = 0; | 
 | 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * | 
 | 			conf->geo.raid_disks); | 
 |  | 
 | 	if (bio_data_dir(bio) == READ) | 
 | 		raid10_read_request(mddev, bio, r10_bio); | 
 | 	else | 
 | 		raid10_write_request(mddev, bio, r10_bio); | 
 | } | 
 |  | 
 | static void raid_end_discard_bio(struct r10bio *r10bio) | 
 | { | 
 | 	struct r10conf *conf = r10bio->mddev->private; | 
 | 	struct r10bio *first_r10bio; | 
 |  | 
 | 	while (atomic_dec_and_test(&r10bio->remaining)) { | 
 |  | 
 | 		allow_barrier(conf); | 
 |  | 
 | 		if (!test_bit(R10BIO_Discard, &r10bio->state)) { | 
 | 			first_r10bio = (struct r10bio *)r10bio->master_bio; | 
 | 			free_r10bio(r10bio); | 
 | 			r10bio = first_r10bio; | 
 | 		} else { | 
 | 			md_write_end(r10bio->mddev); | 
 | 			bio_endio(r10bio->master_bio); | 
 | 			free_r10bio(r10bio); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10_end_discard_request(struct bio *bio) | 
 | { | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 | 	struct md_rdev *rdev = NULL; | 
 | 	int dev; | 
 | 	int slot, repl; | 
 |  | 
 | 	/* | 
 | 	 * We don't care the return value of discard bio | 
 | 	 */ | 
 | 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 |  | 
 | 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
 | 	if (repl) | 
 | 		rdev = conf->mirrors[dev].replacement; | 
 | 	if (!rdev) { | 
 | 		/* | 
 | 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to | 
 | 		 * replacement before setting replacement to NULL. It can read | 
 | 		 * rdev first without barrier protect even replacment is NULL | 
 | 		 */ | 
 | 		smp_rmb(); | 
 | 		rdev = conf->mirrors[dev].rdev; | 
 | 	} | 
 |  | 
 | 	raid_end_discard_bio(r10_bio); | 
 | 	rdev_dec_pending(rdev, conf->mddev); | 
 | } | 
 |  | 
 | /* | 
 |  * There are some limitations to handle discard bio | 
 |  * 1st, the discard size is bigger than stripe_size*2. | 
 |  * 2st, if the discard bio spans reshape progress, we use the old way to | 
 |  * handle discard bio | 
 |  */ | 
 | static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct geom *geo = &conf->geo; | 
 | 	int far_copies = geo->far_copies; | 
 | 	bool first_copy = true; | 
 | 	struct r10bio *r10_bio, *first_r10bio; | 
 | 	struct bio *split; | 
 | 	int disk; | 
 | 	sector_t chunk; | 
 | 	unsigned int stripe_size; | 
 | 	unsigned int stripe_data_disks; | 
 | 	sector_t split_size; | 
 | 	sector_t bio_start, bio_end; | 
 | 	sector_t first_stripe_index, last_stripe_index; | 
 | 	sector_t start_disk_offset; | 
 | 	unsigned int start_disk_index; | 
 | 	sector_t end_disk_offset; | 
 | 	unsigned int end_disk_index; | 
 | 	unsigned int remainder; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { | 
 | 		bio_wouldblock_error(bio); | 
 | 		return 0; | 
 | 	} | 
 | 	wait_barrier(conf, false); | 
 |  | 
 | 	/* | 
 | 	 * Check reshape again to avoid reshape happens after checking | 
 | 	 * MD_RECOVERY_RESHAPE and before wait_barrier | 
 | 	 */ | 
 | 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
 | 		goto out; | 
 |  | 
 | 	if (geo->near_copies) | 
 | 		stripe_data_disks = geo->raid_disks / geo->near_copies + | 
 | 					geo->raid_disks % geo->near_copies; | 
 | 	else | 
 | 		stripe_data_disks = geo->raid_disks; | 
 |  | 
 | 	stripe_size = stripe_data_disks << geo->chunk_shift; | 
 |  | 
 | 	bio_start = bio->bi_iter.bi_sector; | 
 | 	bio_end = bio_end_sector(bio); | 
 |  | 
 | 	/* | 
 | 	 * Maybe one discard bio is smaller than strip size or across one | 
 | 	 * stripe and discard region is larger than one stripe size. For far | 
 | 	 * offset layout, if the discard region is not aligned with stripe | 
 | 	 * size, there is hole when we submit discard bio to member disk. | 
 | 	 * For simplicity, we only handle discard bio which discard region | 
 | 	 * is bigger than stripe_size * 2 | 
 | 	 */ | 
 | 	if (bio_sectors(bio) < stripe_size*2) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Keep bio aligned with strip size. | 
 | 	 */ | 
 | 	div_u64_rem(bio_start, stripe_size, &remainder); | 
 | 	if (remainder) { | 
 | 		split_size = stripe_size - remainder; | 
 | 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); | 
 | 		bio_chain(split, bio); | 
 | 		allow_barrier(conf); | 
 | 		/* Resend the fist split part */ | 
 | 		submit_bio_noacct(split); | 
 | 		wait_barrier(conf, false); | 
 | 	} | 
 | 	div_u64_rem(bio_end, stripe_size, &remainder); | 
 | 	if (remainder) { | 
 | 		split_size = bio_sectors(bio) - remainder; | 
 | 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); | 
 | 		bio_chain(split, bio); | 
 | 		allow_barrier(conf); | 
 | 		/* Resend the second split part */ | 
 | 		submit_bio_noacct(bio); | 
 | 		bio = split; | 
 | 		wait_barrier(conf, false); | 
 | 	} | 
 |  | 
 | 	bio_start = bio->bi_iter.bi_sector; | 
 | 	bio_end = bio_end_sector(bio); | 
 |  | 
 | 	/* | 
 | 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0. | 
 | 	 * One stripe contains the chunks from all member disk (one chunk from | 
 | 	 * one disk at the same HBA address). For layout detail, see 'man md 4' | 
 | 	 */ | 
 | 	chunk = bio_start >> geo->chunk_shift; | 
 | 	chunk *= geo->near_copies; | 
 | 	first_stripe_index = chunk; | 
 | 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks); | 
 | 	if (geo->far_offset) | 
 | 		first_stripe_index *= geo->far_copies; | 
 | 	start_disk_offset = (bio_start & geo->chunk_mask) + | 
 | 				(first_stripe_index << geo->chunk_shift); | 
 |  | 
 | 	chunk = bio_end >> geo->chunk_shift; | 
 | 	chunk *= geo->near_copies; | 
 | 	last_stripe_index = chunk; | 
 | 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks); | 
 | 	if (geo->far_offset) | 
 | 		last_stripe_index *= geo->far_copies; | 
 | 	end_disk_offset = (bio_end & geo->chunk_mask) + | 
 | 				(last_stripe_index << geo->chunk_shift); | 
 |  | 
 | retry_discard: | 
 | 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); | 
 | 	r10_bio->mddev = mddev; | 
 | 	r10_bio->state = 0; | 
 | 	r10_bio->sectors = 0; | 
 | 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); | 
 | 	wait_blocked_dev(mddev, r10_bio); | 
 |  | 
 | 	/* | 
 | 	 * For far layout it needs more than one r10bio to cover all regions. | 
 | 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio | 
 | 	 * to record the discard bio. Other r10bio->master_bio record the first | 
 | 	 * r10bio. The first r10bio only release after all other r10bios finish. | 
 | 	 * The discard bio returns only first r10bio finishes | 
 | 	 */ | 
 | 	if (first_copy) { | 
 | 		r10_bio->master_bio = bio; | 
 | 		set_bit(R10BIO_Discard, &r10_bio->state); | 
 | 		first_copy = false; | 
 | 		first_r10bio = r10_bio; | 
 | 	} else | 
 | 		r10_bio->master_bio = (struct bio *)first_r10bio; | 
 |  | 
 | 	/* | 
 | 	 * first select target devices under rcu_lock and | 
 | 	 * inc refcount on their rdev.  Record them by setting | 
 | 	 * bios[x] to bio | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	for (disk = 0; disk < geo->raid_disks; disk++) { | 
 | 		struct md_rdev *rdev, *rrdev; | 
 |  | 
 | 		rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev); | 
 | 		r10_bio->devs[disk].bio = NULL; | 
 | 		r10_bio->devs[disk].repl_bio = NULL; | 
 |  | 
 | 		if (rdev && (test_bit(Faulty, &rdev->flags))) | 
 | 			rdev = NULL; | 
 | 		if (rrdev && (test_bit(Faulty, &rrdev->flags))) | 
 | 			rrdev = NULL; | 
 | 		if (!rdev && !rrdev) | 
 | 			continue; | 
 |  | 
 | 		if (rdev) { | 
 | 			r10_bio->devs[disk].bio = bio; | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 		} | 
 | 		if (rrdev) { | 
 | 			r10_bio->devs[disk].repl_bio = bio; | 
 | 			atomic_inc(&rrdev->nr_pending); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 | 	for (disk = 0; disk < geo->raid_disks; disk++) { | 
 | 		sector_t dev_start, dev_end; | 
 | 		struct bio *mbio, *rbio = NULL; | 
 |  | 
 | 		/* | 
 | 		 * Now start to calculate the start and end address for each disk. | 
 | 		 * The space between dev_start and dev_end is the discard region. | 
 | 		 * | 
 | 		 * For dev_start, it needs to consider three conditions: | 
 | 		 * 1st, the disk is before start_disk, you can imagine the disk in | 
 | 		 * the next stripe. So the dev_start is the start address of next | 
 | 		 * stripe. | 
 | 		 * 2st, the disk is after start_disk, it means the disk is at the | 
 | 		 * same stripe of first disk | 
 | 		 * 3st, the first disk itself, we can use start_disk_offset directly | 
 | 		 */ | 
 | 		if (disk < start_disk_index) | 
 | 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; | 
 | 		else if (disk > start_disk_index) | 
 | 			dev_start = first_stripe_index * mddev->chunk_sectors; | 
 | 		else | 
 | 			dev_start = start_disk_offset; | 
 |  | 
 | 		if (disk < end_disk_index) | 
 | 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; | 
 | 		else if (disk > end_disk_index) | 
 | 			dev_end = last_stripe_index * mddev->chunk_sectors; | 
 | 		else | 
 | 			dev_end = end_disk_offset; | 
 |  | 
 | 		/* | 
 | 		 * It only handles discard bio which size is >= stripe size, so | 
 | 		 * dev_end > dev_start all the time. | 
 | 		 * It doesn't need to use rcu lock to get rdev here. We already | 
 | 		 * add rdev->nr_pending in the first loop. | 
 | 		 */ | 
 | 		if (r10_bio->devs[disk].bio) { | 
 | 			struct md_rdev *rdev = conf->mirrors[disk].rdev; | 
 | 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, | 
 | 					       &mddev->bio_set); | 
 | 			mbio->bi_end_io = raid10_end_discard_request; | 
 | 			mbio->bi_private = r10_bio; | 
 | 			r10_bio->devs[disk].bio = mbio; | 
 | 			r10_bio->devs[disk].devnum = disk; | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			md_submit_discard_bio(mddev, rdev, mbio, | 
 | 					dev_start + choose_data_offset(r10_bio, rdev), | 
 | 					dev_end - dev_start); | 
 | 			bio_endio(mbio); | 
 | 		} | 
 | 		if (r10_bio->devs[disk].repl_bio) { | 
 | 			struct md_rdev *rrdev = conf->mirrors[disk].replacement; | 
 | 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, | 
 | 					       &mddev->bio_set); | 
 | 			rbio->bi_end_io = raid10_end_discard_request; | 
 | 			rbio->bi_private = r10_bio; | 
 | 			r10_bio->devs[disk].repl_bio = rbio; | 
 | 			r10_bio->devs[disk].devnum = disk; | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			md_submit_discard_bio(mddev, rrdev, rbio, | 
 | 					dev_start + choose_data_offset(r10_bio, rrdev), | 
 | 					dev_end - dev_start); | 
 | 			bio_endio(rbio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!geo->far_offset && --far_copies) { | 
 | 		first_stripe_index += geo->stride >> geo->chunk_shift; | 
 | 		start_disk_offset += geo->stride; | 
 | 		last_stripe_index += geo->stride >> geo->chunk_shift; | 
 | 		end_disk_offset += geo->stride; | 
 | 		atomic_inc(&first_r10bio->remaining); | 
 | 		raid_end_discard_bio(r10_bio); | 
 | 		wait_barrier(conf, false); | 
 | 		goto retry_discard; | 
 | 	} | 
 |  | 
 | 	raid_end_discard_bio(r10_bio); | 
 |  | 
 | 	return 0; | 
 | out: | 
 | 	allow_barrier(conf); | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | static bool raid10_make_request(struct mddev *mddev, struct bio *bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); | 
 | 	int chunk_sects = chunk_mask + 1; | 
 | 	int sectors = bio_sectors(bio); | 
 |  | 
 | 	if (unlikely(bio->bi_opf & REQ_PREFLUSH) | 
 | 	    && md_flush_request(mddev, bio)) | 
 | 		return true; | 
 |  | 
 | 	if (!md_write_start(mddev, bio)) | 
 | 		return false; | 
 |  | 
 | 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) | 
 | 		if (!raid10_handle_discard(mddev, bio)) | 
 | 			return true; | 
 |  | 
 | 	/* | 
 | 	 * If this request crosses a chunk boundary, we need to split | 
 | 	 * it. | 
 | 	 */ | 
 | 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + | 
 | 		     sectors > chunk_sects | 
 | 		     && (conf->geo.near_copies < conf->geo.raid_disks | 
 | 			 || conf->prev.near_copies < | 
 | 			 conf->prev.raid_disks))) | 
 | 		sectors = chunk_sects - | 
 | 			(bio->bi_iter.bi_sector & | 
 | 			 (chunk_sects - 1)); | 
 | 	__make_request(mddev, bio, sectors); | 
 |  | 
 | 	/* In case raid10d snuck in to freeze_array */ | 
 | 	wake_up_barrier(conf); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void raid10_status(struct seq_file *seq, struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int i; | 
 |  | 
 | 	if (conf->geo.near_copies < conf->geo.raid_disks) | 
 | 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); | 
 | 	if (conf->geo.near_copies > 1) | 
 | 		seq_printf(seq, " %d near-copies", conf->geo.near_copies); | 
 | 	if (conf->geo.far_copies > 1) { | 
 | 		if (conf->geo.far_offset) | 
 | 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies); | 
 | 		else | 
 | 			seq_printf(seq, " %d far-copies", conf->geo.far_copies); | 
 | 		if (conf->geo.far_set_size != conf->geo.raid_disks) | 
 | 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size); | 
 | 	} | 
 | 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, | 
 | 					conf->geo.raid_disks - mddev->degraded); | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	seq_printf(seq, "]"); | 
 | } | 
 |  | 
 | /* check if there are enough drives for | 
 |  * every block to appear on atleast one. | 
 |  * Don't consider the device numbered 'ignore' | 
 |  * as we might be about to remove it. | 
 |  */ | 
 | static int _enough(struct r10conf *conf, int previous, int ignore) | 
 | { | 
 | 	int first = 0; | 
 | 	int has_enough = 0; | 
 | 	int disks, ncopies; | 
 | 	if (previous) { | 
 | 		disks = conf->prev.raid_disks; | 
 | 		ncopies = conf->prev.near_copies; | 
 | 	} else { | 
 | 		disks = conf->geo.raid_disks; | 
 | 		ncopies = conf->geo.near_copies; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	do { | 
 | 		int n = conf->copies; | 
 | 		int cnt = 0; | 
 | 		int this = first; | 
 | 		while (n--) { | 
 | 			struct md_rdev *rdev; | 
 | 			if (this != ignore && | 
 | 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) && | 
 | 			    test_bit(In_sync, &rdev->flags)) | 
 | 				cnt++; | 
 | 			this = (this+1) % disks; | 
 | 		} | 
 | 		if (cnt == 0) | 
 | 			goto out; | 
 | 		first = (first + ncopies) % disks; | 
 | 	} while (first != 0); | 
 | 	has_enough = 1; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return has_enough; | 
 | } | 
 |  | 
 | static int enough(struct r10conf *conf, int ignore) | 
 | { | 
 | 	/* when calling 'enough', both 'prev' and 'geo' must | 
 | 	 * be stable. | 
 | 	 * This is ensured if ->reconfig_mutex or ->device_lock | 
 | 	 * is held. | 
 | 	 */ | 
 | 	return _enough(conf, 0, ignore) && | 
 | 		_enough(conf, 1, ignore); | 
 | } | 
 |  | 
 | /** | 
 |  * raid10_error() - RAID10 error handler. | 
 |  * @mddev: affected md device. | 
 |  * @rdev: member device to fail. | 
 |  * | 
 |  * The routine acknowledges &rdev failure and determines new @mddev state. | 
 |  * If it failed, then: | 
 |  *	- &MD_BROKEN flag is set in &mddev->flags. | 
 |  * Otherwise, it must be degraded: | 
 |  *	- recovery is interrupted. | 
 |  *	- &mddev->degraded is bumped. | 
 |  * | 
 |  * @rdev is marked as &Faulty excluding case when array is failed and | 
 |  * &mddev->fail_last_dev is off. | 
 |  */ | 
 | static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 |  | 
 | 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { | 
 | 		set_bit(MD_BROKEN, &mddev->flags); | 
 |  | 
 | 		if (!mddev->fail_last_dev) { | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	if (test_and_clear_bit(In_sync, &rdev->flags)) | 
 | 		mddev->degraded++; | 
 |  | 
 | 	set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 	set_bit(Blocked, &rdev->flags); | 
 | 	set_bit(Faulty, &rdev->flags); | 
 | 	set_mask_bits(&mddev->sb_flags, 0, | 
 | 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" | 
 | 		"md/raid10:%s: Operation continuing on %d devices.\n", | 
 | 		mdname(mddev), rdev->bdev, | 
 | 		mdname(mddev), conf->geo.raid_disks - mddev->degraded); | 
 | } | 
 |  | 
 | static void print_conf(struct r10conf *conf) | 
 | { | 
 | 	int i; | 
 | 	struct md_rdev *rdev; | 
 |  | 
 | 	pr_debug("RAID10 conf printout:\n"); | 
 | 	if (!conf) { | 
 | 		pr_debug("(!conf)\n"); | 
 | 		return; | 
 | 	} | 
 | 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, | 
 | 		 conf->geo.raid_disks); | 
 |  | 
 | 	/* This is only called with ->reconfix_mutex held, so | 
 | 	 * rcu protection of rdev is not needed */ | 
 | 	for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 		rdev = conf->mirrors[i].rdev; | 
 | 		if (rdev) | 
 | 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", | 
 | 				 i, !test_bit(In_sync, &rdev->flags), | 
 | 				 !test_bit(Faulty, &rdev->flags), | 
 | 				 rdev->bdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void close_sync(struct r10conf *conf) | 
 | { | 
 | 	wait_barrier(conf, false); | 
 | 	allow_barrier(conf); | 
 |  | 
 | 	mempool_exit(&conf->r10buf_pool); | 
 | } | 
 |  | 
 | static int raid10_spare_active(struct mddev *mddev) | 
 | { | 
 | 	int i; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct raid10_info *tmp; | 
 | 	int count = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Find all non-in_sync disks within the RAID10 configuration | 
 | 	 * and mark them in_sync | 
 | 	 */ | 
 | 	for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 		tmp = conf->mirrors + i; | 
 | 		if (tmp->replacement | 
 | 		    && tmp->replacement->recovery_offset == MaxSector | 
 | 		    && !test_bit(Faulty, &tmp->replacement->flags) | 
 | 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { | 
 | 			/* Replacement has just become active */ | 
 | 			if (!tmp->rdev | 
 | 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) | 
 | 				count++; | 
 | 			if (tmp->rdev) { | 
 | 				/* Replaced device not technically faulty, | 
 | 				 * but we need to be sure it gets removed | 
 | 				 * and never re-added. | 
 | 				 */ | 
 | 				set_bit(Faulty, &tmp->rdev->flags); | 
 | 				sysfs_notify_dirent_safe( | 
 | 					tmp->rdev->sysfs_state); | 
 | 			} | 
 | 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); | 
 | 		} else if (tmp->rdev | 
 | 			   && tmp->rdev->recovery_offset == MaxSector | 
 | 			   && !test_bit(Faulty, &tmp->rdev->flags) | 
 | 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { | 
 | 			count++; | 
 | 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); | 
 | 		} | 
 | 	} | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	mddev->degraded -= count; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	print_conf(conf); | 
 | 	return count; | 
 | } | 
 |  | 
 | static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int err = -EEXIST; | 
 | 	int mirror; | 
 | 	int first = 0; | 
 | 	int last = conf->geo.raid_disks - 1; | 
 |  | 
 | 	if (mddev->recovery_cp < MaxSector) | 
 | 		/* only hot-add to in-sync arrays, as recovery is | 
 | 		 * very different from resync | 
 | 		 */ | 
 | 		return -EBUSY; | 
 | 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (md_integrity_add_rdev(rdev, mddev)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (rdev->raid_disk >= 0) | 
 | 		first = last = rdev->raid_disk; | 
 |  | 
 | 	if (rdev->saved_raid_disk >= first && | 
 | 	    rdev->saved_raid_disk < conf->geo.raid_disks && | 
 | 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
 | 		mirror = rdev->saved_raid_disk; | 
 | 	else | 
 | 		mirror = first; | 
 | 	for ( ; mirror <= last ; mirror++) { | 
 | 		struct raid10_info *p = &conf->mirrors[mirror]; | 
 | 		if (p->recovery_disabled == mddev->recovery_disabled) | 
 | 			continue; | 
 | 		if (p->rdev) { | 
 | 			if (!test_bit(WantReplacement, &p->rdev->flags) || | 
 | 			    p->replacement != NULL) | 
 | 				continue; | 
 | 			clear_bit(In_sync, &rdev->flags); | 
 | 			set_bit(Replacement, &rdev->flags); | 
 | 			rdev->raid_disk = mirror; | 
 | 			err = 0; | 
 | 			if (mddev->gendisk) | 
 | 				disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 						  rdev->data_offset << 9); | 
 | 			conf->fullsync = 1; | 
 | 			rcu_assign_pointer(p->replacement, rdev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (mddev->gendisk) | 
 | 			disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 					  rdev->data_offset << 9); | 
 |  | 
 | 		p->head_position = 0; | 
 | 		p->recovery_disabled = mddev->recovery_disabled - 1; | 
 | 		rdev->raid_disk = mirror; | 
 | 		err = 0; | 
 | 		if (rdev->saved_raid_disk != mirror) | 
 | 			conf->fullsync = 1; | 
 | 		rcu_assign_pointer(p->rdev, rdev); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int err = 0; | 
 | 	int number = rdev->raid_disk; | 
 | 	struct md_rdev **rdevp; | 
 | 	struct raid10_info *p; | 
 |  | 
 | 	print_conf(conf); | 
 | 	if (unlikely(number >= mddev->raid_disks)) | 
 | 		return 0; | 
 | 	p = conf->mirrors + number; | 
 | 	if (rdev == p->rdev) | 
 | 		rdevp = &p->rdev; | 
 | 	else if (rdev == p->replacement) | 
 | 		rdevp = &p->replacement; | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | 	if (test_bit(In_sync, &rdev->flags) || | 
 | 	    atomic_read(&rdev->nr_pending)) { | 
 | 		err = -EBUSY; | 
 | 		goto abort; | 
 | 	} | 
 | 	/* Only remove non-faulty devices if recovery | 
 | 	 * is not possible. | 
 | 	 */ | 
 | 	if (!test_bit(Faulty, &rdev->flags) && | 
 | 	    mddev->recovery_disabled != p->recovery_disabled && | 
 | 	    (!p->replacement || p->replacement == rdev) && | 
 | 	    number < conf->geo.raid_disks && | 
 | 	    enough(conf, -1)) { | 
 | 		err = -EBUSY; | 
 | 		goto abort; | 
 | 	} | 
 | 	*rdevp = NULL; | 
 | 	if (!test_bit(RemoveSynchronized, &rdev->flags)) { | 
 | 		synchronize_rcu(); | 
 | 		if (atomic_read(&rdev->nr_pending)) { | 
 | 			/* lost the race, try later */ | 
 | 			err = -EBUSY; | 
 | 			*rdevp = rdev; | 
 | 			goto abort; | 
 | 		} | 
 | 	} | 
 | 	if (p->replacement) { | 
 | 		/* We must have just cleared 'rdev' */ | 
 | 		p->rdev = p->replacement; | 
 | 		clear_bit(Replacement, &p->replacement->flags); | 
 | 		smp_mb(); /* Make sure other CPUs may see both as identical | 
 | 			   * but will never see neither -- if they are careful. | 
 | 			   */ | 
 | 		p->replacement = NULL; | 
 | 	} | 
 |  | 
 | 	clear_bit(WantReplacement, &rdev->flags); | 
 | 	err = md_integrity_register(mddev); | 
 |  | 
 | abort: | 
 |  | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	if (!bio->bi_status) | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 | 	else | 
 | 		/* The write handler will notice the lack of | 
 | 		 * R10BIO_Uptodate and record any errors etc | 
 | 		 */ | 
 | 		atomic_add(r10_bio->sectors, | 
 | 			   &conf->mirrors[d].rdev->corrected_errors); | 
 |  | 
 | 	/* for reconstruct, we always reschedule after a read. | 
 | 	 * for resync, only after all reads | 
 | 	 */ | 
 | 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); | 
 | 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) || | 
 | 	    atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		/* we have read all the blocks, | 
 | 		 * do the comparison in process context in raid10d | 
 | 		 */ | 
 | 		reschedule_retry(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void end_sync_read(struct bio *bio) | 
 | { | 
 | 	struct r10bio *r10_bio = get_resync_r10bio(bio); | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 | 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); | 
 |  | 
 | 	__end_sync_read(r10_bio, bio, d); | 
 | } | 
 |  | 
 | static void end_reshape_read(struct bio *bio) | 
 | { | 
 | 	/* reshape read bio isn't allocated from r10buf_pool */ | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 |  | 
 | 	__end_sync_read(r10_bio, bio, r10_bio->read_slot); | 
 | } | 
 |  | 
 | static void end_sync_request(struct r10bio *r10_bio) | 
 | { | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 |  | 
 | 	while (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		if (r10_bio->master_bio == NULL) { | 
 | 			/* the primary of several recovery bios */ | 
 | 			sector_t s = r10_bio->sectors; | 
 | 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
 | 			    test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 				reschedule_retry(r10_bio); | 
 | 			else | 
 | 				put_buf(r10_bio); | 
 | 			md_done_sync(mddev, s, 1); | 
 | 			break; | 
 | 		} else { | 
 | 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; | 
 | 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
 | 			    test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 				reschedule_retry(r10_bio); | 
 | 			else | 
 | 				put_buf(r10_bio); | 
 | 			r10_bio = r10_bio2; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void end_sync_write(struct bio *bio) | 
 | { | 
 | 	struct r10bio *r10_bio = get_resync_r10bio(bio); | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int d; | 
 | 	sector_t first_bad; | 
 | 	int bad_sectors; | 
 | 	int slot; | 
 | 	int repl; | 
 | 	struct md_rdev *rdev = NULL; | 
 |  | 
 | 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
 | 	if (repl) | 
 | 		rdev = conf->mirrors[d].replacement; | 
 | 	else | 
 | 		rdev = conf->mirrors[d].rdev; | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		if (repl) | 
 | 			md_error(mddev, rdev); | 
 | 		else { | 
 | 			set_bit(WriteErrorSeen, &rdev->flags); | 
 | 			if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 				set_bit(MD_RECOVERY_NEEDED, | 
 | 					&rdev->mddev->recovery); | 
 | 			set_bit(R10BIO_WriteError, &r10_bio->state); | 
 | 		} | 
 | 	} else if (is_badblock(rdev, | 
 | 			     r10_bio->devs[slot].addr, | 
 | 			     r10_bio->sectors, | 
 | 			     &first_bad, &bad_sectors)) | 
 | 		set_bit(R10BIO_MadeGood, &r10_bio->state); | 
 |  | 
 | 	rdev_dec_pending(rdev, mddev); | 
 |  | 
 | 	end_sync_request(r10_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Note: sync and recover and handled very differently for raid10 | 
 |  * This code is for resync. | 
 |  * For resync, we read through virtual addresses and read all blocks. | 
 |  * If there is any error, we schedule a write.  The lowest numbered | 
 |  * drive is authoritative. | 
 |  * However requests come for physical address, so we need to map. | 
 |  * For every physical address there are raid_disks/copies virtual addresses, | 
 |  * which is always are least one, but is not necessarly an integer. | 
 |  * This means that a physical address can span multiple chunks, so we may | 
 |  * have to submit multiple io requests for a single sync request. | 
 |  */ | 
 | /* | 
 |  * We check if all blocks are in-sync and only write to blocks that | 
 |  * aren't in sync | 
 |  */ | 
 | static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int i, first; | 
 | 	struct bio *tbio, *fbio; | 
 | 	int vcnt; | 
 | 	struct page **tpages, **fpages; | 
 |  | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 |  | 
 | 	/* find the first device with a block */ | 
 | 	for (i=0; i<conf->copies; i++) | 
 | 		if (!r10_bio->devs[i].bio->bi_status) | 
 | 			break; | 
 |  | 
 | 	if (i == conf->copies) | 
 | 		goto done; | 
 |  | 
 | 	first = i; | 
 | 	fbio = r10_bio->devs[i].bio; | 
 | 	fbio->bi_iter.bi_size = r10_bio->sectors << 9; | 
 | 	fbio->bi_iter.bi_idx = 0; | 
 | 	fpages = get_resync_pages(fbio)->pages; | 
 |  | 
 | 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); | 
 | 	/* now find blocks with errors */ | 
 | 	for (i=0 ; i < conf->copies ; i++) { | 
 | 		int  j, d; | 
 | 		struct md_rdev *rdev; | 
 | 		struct resync_pages *rp; | 
 |  | 
 | 		tbio = r10_bio->devs[i].bio; | 
 |  | 
 | 		if (tbio->bi_end_io != end_sync_read) | 
 | 			continue; | 
 | 		if (i == first) | 
 | 			continue; | 
 |  | 
 | 		tpages = get_resync_pages(tbio)->pages; | 
 | 		d = r10_bio->devs[i].devnum; | 
 | 		rdev = conf->mirrors[d].rdev; | 
 | 		if (!r10_bio->devs[i].bio->bi_status) { | 
 | 			/* We know that the bi_io_vec layout is the same for | 
 | 			 * both 'first' and 'i', so we just compare them. | 
 | 			 * All vec entries are PAGE_SIZE; | 
 | 			 */ | 
 | 			int sectors = r10_bio->sectors; | 
 | 			for (j = 0; j < vcnt; j++) { | 
 | 				int len = PAGE_SIZE; | 
 | 				if (sectors < (len / 512)) | 
 | 					len = sectors * 512; | 
 | 				if (memcmp(page_address(fpages[j]), | 
 | 					   page_address(tpages[j]), | 
 | 					   len)) | 
 | 					break; | 
 | 				sectors -= len/512; | 
 | 			} | 
 | 			if (j == vcnt) | 
 | 				continue; | 
 | 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); | 
 | 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) | 
 | 				/* Don't fix anything. */ | 
 | 				continue; | 
 | 		} else if (test_bit(FailFast, &rdev->flags)) { | 
 | 			/* Just give up on this device */ | 
 | 			md_error(rdev->mddev, rdev); | 
 | 			continue; | 
 | 		} | 
 | 		/* Ok, we need to write this bio, either to correct an | 
 | 		 * inconsistency or to correct an unreadable block. | 
 | 		 * First we need to fixup bv_offset, bv_len and | 
 | 		 * bi_vecs, as the read request might have corrupted these | 
 | 		 */ | 
 | 		rp = get_resync_pages(tbio); | 
 | 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); | 
 |  | 
 | 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); | 
 |  | 
 | 		rp->raid_bio = r10_bio; | 
 | 		tbio->bi_private = rp; | 
 | 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; | 
 | 		tbio->bi_end_io = end_sync_write; | 
 |  | 
 | 		bio_copy_data(tbio, fbio); | 
 |  | 
 | 		atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); | 
 |  | 
 | 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) | 
 | 			tbio->bi_opf |= MD_FAILFAST; | 
 | 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; | 
 | 		submit_bio_noacct(tbio); | 
 | 	} | 
 |  | 
 | 	/* Now write out to any replacement devices | 
 | 	 * that are active | 
 | 	 */ | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		int d; | 
 |  | 
 | 		tbio = r10_bio->devs[i].repl_bio; | 
 | 		if (!tbio || !tbio->bi_end_io) | 
 | 			continue; | 
 | 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write | 
 | 		    && r10_bio->devs[i].bio != fbio) | 
 | 			bio_copy_data(tbio, fbio); | 
 | 		d = r10_bio->devs[i].devnum; | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		md_sync_acct(conf->mirrors[d].replacement->bdev, | 
 | 			     bio_sectors(tbio)); | 
 | 		submit_bio_noacct(tbio); | 
 | 	} | 
 |  | 
 | done: | 
 | 	if (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		md_done_sync(mddev, r10_bio->sectors, 1); | 
 | 		put_buf(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Now for the recovery code. | 
 |  * Recovery happens across physical sectors. | 
 |  * We recover all non-is_sync drives by finding the virtual address of | 
 |  * each, and then choose a working drive that also has that virt address. | 
 |  * There is a separate r10_bio for each non-in_sync drive. | 
 |  * Only the first two slots are in use. The first for reading, | 
 |  * The second for writing. | 
 |  * | 
 |  */ | 
 | static void fix_recovery_read_error(struct r10bio *r10_bio) | 
 | { | 
 | 	/* We got a read error during recovery. | 
 | 	 * We repeat the read in smaller page-sized sections. | 
 | 	 * If a read succeeds, write it to the new device or record | 
 | 	 * a bad block if we cannot. | 
 | 	 * If a read fails, record a bad block on both old and | 
 | 	 * new devices. | 
 | 	 */ | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct bio *bio = r10_bio->devs[0].bio; | 
 | 	sector_t sect = 0; | 
 | 	int sectors = r10_bio->sectors; | 
 | 	int idx = 0; | 
 | 	int dr = r10_bio->devs[0].devnum; | 
 | 	int dw = r10_bio->devs[1].devnum; | 
 | 	struct page **pages = get_resync_pages(bio)->pages; | 
 |  | 
 | 	while (sectors) { | 
 | 		int s = sectors; | 
 | 		struct md_rdev *rdev; | 
 | 		sector_t addr; | 
 | 		int ok; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		rdev = conf->mirrors[dr].rdev; | 
 | 		addr = r10_bio->devs[0].addr + sect, | 
 | 		ok = sync_page_io(rdev, | 
 | 				  addr, | 
 | 				  s << 9, | 
 | 				  pages[idx], | 
 | 				  REQ_OP_READ, false); | 
 | 		if (ok) { | 
 | 			rdev = conf->mirrors[dw].rdev; | 
 | 			addr = r10_bio->devs[1].addr + sect; | 
 | 			ok = sync_page_io(rdev, | 
 | 					  addr, | 
 | 					  s << 9, | 
 | 					  pages[idx], | 
 | 					  REQ_OP_WRITE, false); | 
 | 			if (!ok) { | 
 | 				set_bit(WriteErrorSeen, &rdev->flags); | 
 | 				if (!test_and_set_bit(WantReplacement, | 
 | 						      &rdev->flags)) | 
 | 					set_bit(MD_RECOVERY_NEEDED, | 
 | 						&rdev->mddev->recovery); | 
 | 			} | 
 | 		} | 
 | 		if (!ok) { | 
 | 			/* We don't worry if we cannot set a bad block - | 
 | 			 * it really is bad so there is no loss in not | 
 | 			 * recording it yet | 
 | 			 */ | 
 | 			rdev_set_badblocks(rdev, addr, s, 0); | 
 |  | 
 | 			if (rdev != conf->mirrors[dw].rdev) { | 
 | 				/* need bad block on destination too */ | 
 | 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev; | 
 | 				addr = r10_bio->devs[1].addr + sect; | 
 | 				ok = rdev_set_badblocks(rdev2, addr, s, 0); | 
 | 				if (!ok) { | 
 | 					/* just abort the recovery */ | 
 | 					pr_notice("md/raid10:%s: recovery aborted due to read error\n", | 
 | 						  mdname(mddev)); | 
 |  | 
 | 					conf->mirrors[dw].recovery_disabled | 
 | 						= mddev->recovery_disabled; | 
 | 					set_bit(MD_RECOVERY_INTR, | 
 | 						&mddev->recovery); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 		idx++; | 
 | 	} | 
 | } | 
 |  | 
 | static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int d; | 
 | 	struct bio *wbio = r10_bio->devs[1].bio; | 
 | 	struct bio *wbio2 = r10_bio->devs[1].repl_bio; | 
 |  | 
 | 	/* Need to test wbio2->bi_end_io before we call | 
 | 	 * submit_bio_noacct as if the former is NULL, | 
 | 	 * the latter is free to free wbio2. | 
 | 	 */ | 
 | 	if (wbio2 && !wbio2->bi_end_io) | 
 | 		wbio2 = NULL; | 
 |  | 
 | 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { | 
 | 		fix_recovery_read_error(r10_bio); | 
 | 		if (wbio->bi_end_io) | 
 | 			end_sync_request(r10_bio); | 
 | 		if (wbio2) | 
 | 			end_sync_request(r10_bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * share the pages with the first bio | 
 | 	 * and submit the write request | 
 | 	 */ | 
 | 	d = r10_bio->devs[1].devnum; | 
 | 	if (wbio->bi_end_io) { | 
 | 		atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); | 
 | 		submit_bio_noacct(wbio); | 
 | 	} | 
 | 	if (wbio2) { | 
 | 		atomic_inc(&conf->mirrors[d].replacement->nr_pending); | 
 | 		md_sync_acct(conf->mirrors[d].replacement->bdev, | 
 | 			     bio_sectors(wbio2)); | 
 | 		submit_bio_noacct(wbio2); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Used by fix_read_error() to decay the per rdev read_errors. | 
 |  * We halve the read error count for every hour that has elapsed | 
 |  * since the last recorded read error. | 
 |  * | 
 |  */ | 
 | static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	long cur_time_mon; | 
 | 	unsigned long hours_since_last; | 
 | 	unsigned int read_errors = atomic_read(&rdev->read_errors); | 
 |  | 
 | 	cur_time_mon = ktime_get_seconds(); | 
 |  | 
 | 	if (rdev->last_read_error == 0) { | 
 | 		/* first time we've seen a read error */ | 
 | 		rdev->last_read_error = cur_time_mon; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hours_since_last = (long)(cur_time_mon - | 
 | 			    rdev->last_read_error) / 3600; | 
 |  | 
 | 	rdev->last_read_error = cur_time_mon; | 
 |  | 
 | 	/* | 
 | 	 * if hours_since_last is > the number of bits in read_errors | 
 | 	 * just set read errors to 0. We do this to avoid | 
 | 	 * overflowing the shift of read_errors by hours_since_last. | 
 | 	 */ | 
 | 	if (hours_since_last >= 8 * sizeof(read_errors)) | 
 | 		atomic_set(&rdev->read_errors, 0); | 
 | 	else | 
 | 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last); | 
 | } | 
 |  | 
 | static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, | 
 | 			    int sectors, struct page *page, enum req_op op) | 
 | { | 
 | 	sector_t first_bad; | 
 | 	int bad_sectors; | 
 |  | 
 | 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) | 
 | 	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) | 
 | 		return -1; | 
 | 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) | 
 | 		/* success */ | 
 | 		return 1; | 
 | 	if (op == REQ_OP_WRITE) { | 
 | 		set_bit(WriteErrorSeen, &rdev->flags); | 
 | 		if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 			set_bit(MD_RECOVERY_NEEDED, | 
 | 				&rdev->mddev->recovery); | 
 | 	} | 
 | 	/* need to record an error - either for the block or the device */ | 
 | 	if (!rdev_set_badblocks(rdev, sector, sectors, 0)) | 
 | 		md_error(rdev->mddev, rdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a kernel thread which: | 
 |  * | 
 |  *	1.	Retries failed read operations on working mirrors. | 
 |  *	2.	Updates the raid superblock when problems encounter. | 
 |  *	3.	Performs writes following reads for array synchronising. | 
 |  */ | 
 |  | 
 | static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	int sect = 0; /* Offset from r10_bio->sector */ | 
 | 	int sectors = r10_bio->sectors; | 
 | 	struct md_rdev *rdev; | 
 | 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors); | 
 | 	int d = r10_bio->devs[r10_bio->read_slot].devnum; | 
 |  | 
 | 	/* still own a reference to this rdev, so it cannot | 
 | 	 * have been cleared recently. | 
 | 	 */ | 
 | 	rdev = conf->mirrors[d].rdev; | 
 |  | 
 | 	if (test_bit(Faulty, &rdev->flags)) | 
 | 		/* drive has already been failed, just ignore any | 
 | 		   more fix_read_error() attempts */ | 
 | 		return; | 
 |  | 
 | 	check_decay_read_errors(mddev, rdev); | 
 | 	atomic_inc(&rdev->read_errors); | 
 | 	if (atomic_read(&rdev->read_errors) > max_read_errors) { | 
 | 		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", | 
 | 			  mdname(mddev), rdev->bdev, | 
 | 			  atomic_read(&rdev->read_errors), max_read_errors); | 
 | 		pr_notice("md/raid10:%s: %pg: Failing raid device\n", | 
 | 			  mdname(mddev), rdev->bdev); | 
 | 		md_error(mddev, rdev); | 
 | 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	while(sectors) { | 
 | 		int s = sectors; | 
 | 		int sl = r10_bio->read_slot; | 
 | 		int success = 0; | 
 | 		int start; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		do { | 
 | 			sector_t first_bad; | 
 | 			int bad_sectors; | 
 |  | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    test_bit(In_sync, &rdev->flags) && | 
 | 			    !test_bit(Faulty, &rdev->flags) && | 
 | 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, | 
 | 					&first_bad, &bad_sectors) == 0) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				success = sync_page_io(rdev, | 
 | 						       r10_bio->devs[sl].addr + | 
 | 						       sect, | 
 | 						       s<<9, | 
 | 						       conf->tmppage, | 
 | 						       REQ_OP_READ, false); | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				rcu_read_lock(); | 
 | 				if (success) | 
 | 					break; | 
 | 			} | 
 | 			sl++; | 
 | 			if (sl == conf->copies) | 
 | 				sl = 0; | 
 | 		} while (!success && sl != r10_bio->read_slot); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (!success) { | 
 | 			/* Cannot read from anywhere, just mark the block | 
 | 			 * as bad on the first device to discourage future | 
 | 			 * reads. | 
 | 			 */ | 
 | 			int dn = r10_bio->devs[r10_bio->read_slot].devnum; | 
 | 			rdev = conf->mirrors[dn].rdev; | 
 |  | 
 | 			if (!rdev_set_badblocks( | 
 | 				    rdev, | 
 | 				    r10_bio->devs[r10_bio->read_slot].addr | 
 | 				    + sect, | 
 | 				    s, 0)) { | 
 | 				md_error(mddev, rdev); | 
 | 				r10_bio->devs[r10_bio->read_slot].bio | 
 | 					= IO_BLOCKED; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		start = sl; | 
 | 		/* write it back and re-read */ | 
 | 		rcu_read_lock(); | 
 | 		while (sl != r10_bio->read_slot) { | 
 | 			if (sl==0) | 
 | 				sl = conf->copies; | 
 | 			sl--; | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (!rdev || | 
 | 			    test_bit(Faulty, &rdev->flags) || | 
 | 			    !test_bit(In_sync, &rdev->flags)) | 
 | 				continue; | 
 |  | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 | 			if (r10_sync_page_io(rdev, | 
 | 					     r10_bio->devs[sl].addr + | 
 | 					     sect, | 
 | 					     s, conf->tmppage, REQ_OP_WRITE) | 
 | 			    == 0) { | 
 | 				/* Well, this device is dead */ | 
 | 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", | 
 | 					  mdname(mddev), s, | 
 | 					  (unsigned long long)( | 
 | 						  sect + | 
 | 						  choose_data_offset(r10_bio, | 
 | 								     rdev)), | 
 | 					  rdev->bdev); | 
 | 				pr_notice("md/raid10:%s: %pg: failing drive\n", | 
 | 					  mdname(mddev), | 
 | 					  rdev->bdev); | 
 | 			} | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 		} | 
 | 		sl = start; | 
 | 		while (sl != r10_bio->read_slot) { | 
 | 			if (sl==0) | 
 | 				sl = conf->copies; | 
 | 			sl--; | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (!rdev || | 
 | 			    test_bit(Faulty, &rdev->flags) || | 
 | 			    !test_bit(In_sync, &rdev->flags)) | 
 | 				continue; | 
 |  | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 | 			switch (r10_sync_page_io(rdev, | 
 | 					     r10_bio->devs[sl].addr + | 
 | 					     sect, | 
 | 					     s, conf->tmppage, REQ_OP_READ)) { | 
 | 			case 0: | 
 | 				/* Well, this device is dead */ | 
 | 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", | 
 | 				       mdname(mddev), s, | 
 | 				       (unsigned long long)( | 
 | 					       sect + | 
 | 					       choose_data_offset(r10_bio, rdev)), | 
 | 				       rdev->bdev); | 
 | 				pr_notice("md/raid10:%s: %pg: failing drive\n", | 
 | 				       mdname(mddev), | 
 | 				       rdev->bdev); | 
 | 				break; | 
 | 			case 1: | 
 | 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", | 
 | 				       mdname(mddev), s, | 
 | 				       (unsigned long long)( | 
 | 					       sect + | 
 | 					       choose_data_offset(r10_bio, rdev)), | 
 | 				       rdev->bdev); | 
 | 				atomic_add(s, &rdev->corrected_errors); | 
 | 			} | 
 |  | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 	} | 
 | } | 
 |  | 
 | static int narrow_write_error(struct r10bio *r10_bio, int i) | 
 | { | 
 | 	struct bio *bio = r10_bio->master_bio; | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; | 
 | 	/* bio has the data to be written to slot 'i' where | 
 | 	 * we just recently had a write error. | 
 | 	 * We repeatedly clone the bio and trim down to one block, | 
 | 	 * then try the write.  Where the write fails we record | 
 | 	 * a bad block. | 
 | 	 * It is conceivable that the bio doesn't exactly align with | 
 | 	 * blocks.  We must handle this. | 
 | 	 * | 
 | 	 * We currently own a reference to the rdev. | 
 | 	 */ | 
 |  | 
 | 	int block_sectors; | 
 | 	sector_t sector; | 
 | 	int sectors; | 
 | 	int sect_to_write = r10_bio->sectors; | 
 | 	int ok = 1; | 
 |  | 
 | 	if (rdev->badblocks.shift < 0) | 
 | 		return 0; | 
 |  | 
 | 	block_sectors = roundup(1 << rdev->badblocks.shift, | 
 | 				bdev_logical_block_size(rdev->bdev) >> 9); | 
 | 	sector = r10_bio->sector; | 
 | 	sectors = ((r10_bio->sector + block_sectors) | 
 | 		   & ~(sector_t)(block_sectors - 1)) | 
 | 		- sector; | 
 |  | 
 | 	while (sect_to_write) { | 
 | 		struct bio *wbio; | 
 | 		sector_t wsector; | 
 | 		if (sectors > sect_to_write) | 
 | 			sectors = sect_to_write; | 
 | 		/* Write at 'sector' for 'sectors' */ | 
 | 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, | 
 | 				       &mddev->bio_set); | 
 | 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); | 
 | 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); | 
 | 		wbio->bi_iter.bi_sector = wsector + | 
 | 				   choose_data_offset(r10_bio, rdev); | 
 | 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); | 
 |  | 
 | 		if (submit_bio_wait(wbio) < 0) | 
 | 			/* Failure! */ | 
 | 			ok = rdev_set_badblocks(rdev, wsector, | 
 | 						sectors, 0) | 
 | 				&& ok; | 
 |  | 
 | 		bio_put(wbio); | 
 | 		sect_to_write -= sectors; | 
 | 		sector += sectors; | 
 | 		sectors = block_sectors; | 
 | 	} | 
 | 	return ok; | 
 | } | 
 |  | 
 | static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	int slot = r10_bio->read_slot; | 
 | 	struct bio *bio; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev = r10_bio->devs[slot].rdev; | 
 |  | 
 | 	/* we got a read error. Maybe the drive is bad.  Maybe just | 
 | 	 * the block and we can fix it. | 
 | 	 * We freeze all other IO, and try reading the block from | 
 | 	 * other devices.  When we find one, we re-write | 
 | 	 * and check it that fixes the read error. | 
 | 	 * This is all done synchronously while the array is | 
 | 	 * frozen. | 
 | 	 */ | 
 | 	bio = r10_bio->devs[slot].bio; | 
 | 	bio_put(bio); | 
 | 	r10_bio->devs[slot].bio = NULL; | 
 |  | 
 | 	if (mddev->ro) | 
 | 		r10_bio->devs[slot].bio = IO_BLOCKED; | 
 | 	else if (!test_bit(FailFast, &rdev->flags)) { | 
 | 		freeze_array(conf, 1); | 
 | 		fix_read_error(conf, mddev, r10_bio); | 
 | 		unfreeze_array(conf); | 
 | 	} else | 
 | 		md_error(mddev, rdev); | 
 |  | 
 | 	rdev_dec_pending(rdev, mddev); | 
 | 	r10_bio->state = 0; | 
 | 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio); | 
 | 	/* | 
 | 	 * allow_barrier after re-submit to ensure no sync io | 
 | 	 * can be issued while regular io pending. | 
 | 	 */ | 
 | 	allow_barrier(conf); | 
 | } | 
 |  | 
 | static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) | 
 | { | 
 | 	/* Some sort of write request has finished and it | 
 | 	 * succeeded in writing where we thought there was a | 
 | 	 * bad block.  So forget the bad block. | 
 | 	 * Or possibly if failed and we need to record | 
 | 	 * a bad block. | 
 | 	 */ | 
 | 	int m; | 
 | 	struct md_rdev *rdev; | 
 |  | 
 | 	if (test_bit(R10BIO_IsSync, &r10_bio->state) || | 
 | 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) { | 
 | 		for (m = 0; m < conf->copies; m++) { | 
 | 			int dev = r10_bio->devs[m].devnum; | 
 | 			rdev = conf->mirrors[dev].rdev; | 
 | 			if (r10_bio->devs[m].bio == NULL || | 
 | 				r10_bio->devs[m].bio->bi_end_io == NULL) | 
 | 				continue; | 
 | 			if (!r10_bio->devs[m].bio->bi_status) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors, 0); | 
 | 			} else { | 
 | 				if (!rdev_set_badblocks( | 
 | 					    rdev, | 
 | 					    r10_bio->devs[m].addr, | 
 | 					    r10_bio->sectors, 0)) | 
 | 					md_error(conf->mddev, rdev); | 
 | 			} | 
 | 			rdev = conf->mirrors[dev].replacement; | 
 | 			if (r10_bio->devs[m].repl_bio == NULL || | 
 | 				r10_bio->devs[m].repl_bio->bi_end_io == NULL) | 
 | 				continue; | 
 |  | 
 | 			if (!r10_bio->devs[m].repl_bio->bi_status) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors, 0); | 
 | 			} else { | 
 | 				if (!rdev_set_badblocks( | 
 | 					    rdev, | 
 | 					    r10_bio->devs[m].addr, | 
 | 					    r10_bio->sectors, 0)) | 
 | 					md_error(conf->mddev, rdev); | 
 | 			} | 
 | 		} | 
 | 		put_buf(r10_bio); | 
 | 	} else { | 
 | 		bool fail = false; | 
 | 		for (m = 0; m < conf->copies; m++) { | 
 | 			int dev = r10_bio->devs[m].devnum; | 
 | 			struct bio *bio = r10_bio->devs[m].bio; | 
 | 			rdev = conf->mirrors[dev].rdev; | 
 | 			if (bio == IO_MADE_GOOD) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors, 0); | 
 | 				rdev_dec_pending(rdev, conf->mddev); | 
 | 			} else if (bio != NULL && bio->bi_status) { | 
 | 				fail = true; | 
 | 				if (!narrow_write_error(r10_bio, m)) { | 
 | 					md_error(conf->mddev, rdev); | 
 | 					set_bit(R10BIO_Degraded, | 
 | 						&r10_bio->state); | 
 | 				} | 
 | 				rdev_dec_pending(rdev, conf->mddev); | 
 | 			} | 
 | 			bio = r10_bio->devs[m].repl_bio; | 
 | 			rdev = conf->mirrors[dev].replacement; | 
 | 			if (rdev && bio == IO_MADE_GOOD) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors, 0); | 
 | 				rdev_dec_pending(rdev, conf->mddev); | 
 | 			} | 
 | 		} | 
 | 		if (fail) { | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list); | 
 | 			conf->nr_queued++; | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			/* | 
 | 			 * In case freeze_array() is waiting for condition | 
 | 			 * nr_pending == nr_queued + extra to be true. | 
 | 			 */ | 
 | 			wake_up(&conf->wait_barrier); | 
 | 			md_wakeup_thread(conf->mddev->thread); | 
 | 		} else { | 
 | 			if (test_bit(R10BIO_WriteError, | 
 | 				     &r10_bio->state)) | 
 | 				close_write(r10_bio); | 
 | 			raid_end_bio_io(r10_bio); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10d(struct md_thread *thread) | 
 | { | 
 | 	struct mddev *mddev = thread->mddev; | 
 | 	struct r10bio *r10_bio; | 
 | 	unsigned long flags; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct list_head *head = &conf->retry_list; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	md_check_recovery(mddev); | 
 |  | 
 | 	if (!list_empty_careful(&conf->bio_end_io_list) && | 
 | 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { | 
 | 		LIST_HEAD(tmp); | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { | 
 | 			while (!list_empty(&conf->bio_end_io_list)) { | 
 | 				list_move(conf->bio_end_io_list.prev, &tmp); | 
 | 				conf->nr_queued--; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		while (!list_empty(&tmp)) { | 
 | 			r10_bio = list_first_entry(&tmp, struct r10bio, | 
 | 						   retry_list); | 
 | 			list_del(&r10_bio->retry_list); | 
 | 			if (mddev->degraded) | 
 | 				set_bit(R10BIO_Degraded, &r10_bio->state); | 
 |  | 
 | 			if (test_bit(R10BIO_WriteError, | 
 | 				     &r10_bio->state)) | 
 | 				close_write(r10_bio); | 
 | 			raid_end_bio_io(r10_bio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	for (;;) { | 
 |  | 
 | 		flush_pending_writes(conf); | 
 |  | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		r10_bio = list_entry(head->prev, struct r10bio, retry_list); | 
 | 		list_del(head->prev); | 
 | 		conf->nr_queued--; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 		mddev = r10_bio->mddev; | 
 | 		conf = mddev->private; | 
 | 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
 | 		    test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 			handle_write_completed(conf, r10_bio); | 
 | 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) | 
 | 			reshape_request_write(mddev, r10_bio); | 
 | 		else if (test_bit(R10BIO_IsSync, &r10_bio->state)) | 
 | 			sync_request_write(mddev, r10_bio); | 
 | 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) | 
 | 			recovery_request_write(mddev, r10_bio); | 
 | 		else if (test_bit(R10BIO_ReadError, &r10_bio->state)) | 
 | 			handle_read_error(mddev, r10_bio); | 
 | 		else | 
 | 			WARN_ON_ONCE(1); | 
 |  | 
 | 		cond_resched(); | 
 | 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) | 
 | 			md_check_recovery(mddev); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | static int init_resync(struct r10conf *conf) | 
 | { | 
 | 	int ret, buffs, i; | 
 |  | 
 | 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
 | 	BUG_ON(mempool_initialized(&conf->r10buf_pool)); | 
 | 	conf->have_replacement = 0; | 
 | 	for (i = 0; i < conf->geo.raid_disks; i++) | 
 | 		if (conf->mirrors[i].replacement) | 
 | 			conf->have_replacement = 1; | 
 | 	ret = mempool_init(&conf->r10buf_pool, buffs, | 
 | 			   r10buf_pool_alloc, r10buf_pool_free, conf); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	conf->next_resync = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) | 
 | { | 
 | 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); | 
 | 	struct rsync_pages *rp; | 
 | 	struct bio *bio; | 
 | 	int nalloc; | 
 | 	int i; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || | 
 | 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) | 
 | 		nalloc = conf->copies; /* resync */ | 
 | 	else | 
 | 		nalloc = 2; /* recovery */ | 
 |  | 
 | 	for (i = 0; i < nalloc; i++) { | 
 | 		bio = r10bio->devs[i].bio; | 
 | 		rp = bio->bi_private; | 
 | 		bio_reset(bio, NULL, 0); | 
 | 		bio->bi_private = rp; | 
 | 		bio = r10bio->devs[i].repl_bio; | 
 | 		if (bio) { | 
 | 			rp = bio->bi_private; | 
 | 			bio_reset(bio, NULL, 0); | 
 | 			bio->bi_private = rp; | 
 | 		} | 
 | 	} | 
 | 	return r10bio; | 
 | } | 
 |  | 
 | /* | 
 |  * Set cluster_sync_high since we need other nodes to add the | 
 |  * range [cluster_sync_low, cluster_sync_high] to suspend list. | 
 |  */ | 
 | static void raid10_set_cluster_sync_high(struct r10conf *conf) | 
 | { | 
 | 	sector_t window_size; | 
 | 	int extra_chunk, chunks; | 
 |  | 
 | 	/* | 
 | 	 * First, here we define "stripe" as a unit which across | 
 | 	 * all member devices one time, so we get chunks by use | 
 | 	 * raid_disks / near_copies. Otherwise, if near_copies is | 
 | 	 * close to raid_disks, then resync window could increases | 
 | 	 * linearly with the increase of raid_disks, which means | 
 | 	 * we will suspend a really large IO window while it is not | 
 | 	 * necessary. If raid_disks is not divisible by near_copies, | 
 | 	 * an extra chunk is needed to ensure the whole "stripe" is | 
 | 	 * covered. | 
 | 	 */ | 
 |  | 
 | 	chunks = conf->geo.raid_disks / conf->geo.near_copies; | 
 | 	if (conf->geo.raid_disks % conf->geo.near_copies == 0) | 
 | 		extra_chunk = 0; | 
 | 	else | 
 | 		extra_chunk = 1; | 
 | 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; | 
 |  | 
 | 	/* | 
 | 	 * At least use a 32M window to align with raid1's resync window | 
 | 	 */ | 
 | 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? | 
 | 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size; | 
 |  | 
 | 	conf->cluster_sync_high = conf->cluster_sync_low + window_size; | 
 | } | 
 |  | 
 | /* | 
 |  * perform a "sync" on one "block" | 
 |  * | 
 |  * We need to make sure that no normal I/O request - particularly write | 
 |  * requests - conflict with active sync requests. | 
 |  * | 
 |  * This is achieved by tracking pending requests and a 'barrier' concept | 
 |  * that can be installed to exclude normal IO requests. | 
 |  * | 
 |  * Resync and recovery are handled very differently. | 
 |  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. | 
 |  * | 
 |  * For resync, we iterate over virtual addresses, read all copies, | 
 |  * and update if there are differences.  If only one copy is live, | 
 |  * skip it. | 
 |  * For recovery, we iterate over physical addresses, read a good | 
 |  * value for each non-in_sync drive, and over-write. | 
 |  * | 
 |  * So, for recovery we may have several outstanding complex requests for a | 
 |  * given address, one for each out-of-sync device.  We model this by allocating | 
 |  * a number of r10_bio structures, one for each out-of-sync device. | 
 |  * As we setup these structures, we collect all bio's together into a list | 
 |  * which we then process collectively to add pages, and then process again | 
 |  * to pass to submit_bio_noacct. | 
 |  * | 
 |  * The r10_bio structures are linked using a borrowed master_bio pointer. | 
 |  * This link is counted in ->remaining.  When the r10_bio that points to NULL | 
 |  * has its remaining count decremented to 0, the whole complex operation | 
 |  * is complete. | 
 |  * | 
 |  */ | 
 |  | 
 | static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, | 
 | 			     int *skipped) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct r10bio *r10_bio; | 
 | 	struct bio *biolist = NULL, *bio; | 
 | 	sector_t max_sector, nr_sectors; | 
 | 	int i; | 
 | 	int max_sync; | 
 | 	sector_t sync_blocks; | 
 | 	sector_t sectors_skipped = 0; | 
 | 	int chunks_skipped = 0; | 
 | 	sector_t chunk_mask = conf->geo.chunk_mask; | 
 | 	int page_idx = 0; | 
 |  | 
 | 	/* | 
 | 	 * Allow skipping a full rebuild for incremental assembly | 
 | 	 * of a clean array, like RAID1 does. | 
 | 	 */ | 
 | 	if (mddev->bitmap == NULL && | 
 | 	    mddev->recovery_cp == MaxSector && | 
 | 	    mddev->reshape_position == MaxSector && | 
 | 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && | 
 | 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
 | 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && | 
 | 	    conf->fullsync == 0) { | 
 | 		*skipped = 1; | 
 | 		return mddev->dev_sectors - sector_nr; | 
 | 	} | 
 |  | 
 | 	if (!mempool_initialized(&conf->r10buf_pool)) | 
 | 		if (init_resync(conf)) | 
 | 			return 0; | 
 |  | 
 |  skipped: | 
 | 	max_sector = mddev->dev_sectors; | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || | 
 | 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
 | 		max_sector = mddev->resync_max_sectors; | 
 | 	if (sector_nr >= max_sector) { | 
 | 		conf->cluster_sync_low = 0; | 
 | 		conf->cluster_sync_high = 0; | 
 |  | 
 | 		/* If we aborted, we need to abort the | 
 | 		 * sync on the 'current' bitmap chucks (there can | 
 | 		 * be several when recovering multiple devices). | 
 | 		 * as we may have started syncing it but not finished. | 
 | 		 * We can find the current address in | 
 | 		 * mddev->curr_resync, but for recovery, | 
 | 		 * we need to convert that to several | 
 | 		 * virtual addresses. | 
 | 		 */ | 
 | 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { | 
 | 			end_reshape(conf); | 
 | 			close_sync(conf); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (mddev->curr_resync < max_sector) { /* aborted */ | 
 | 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
 | 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
 | 						   &sync_blocks, 1); | 
 | 			else for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 				sector_t sect = | 
 | 					raid10_find_virt(conf, mddev->curr_resync, i); | 
 | 				md_bitmap_end_sync(mddev->bitmap, sect, | 
 | 						   &sync_blocks, 1); | 
 | 			} | 
 | 		} else { | 
 | 			/* completed sync */ | 
 | 			if ((!mddev->bitmap || conf->fullsync) | 
 | 			    && conf->have_replacement | 
 | 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 				/* Completed a full sync so the replacements | 
 | 				 * are now fully recovered. | 
 | 				 */ | 
 | 				rcu_read_lock(); | 
 | 				for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 					struct md_rdev *rdev = | 
 | 						rcu_dereference(conf->mirrors[i].replacement); | 
 | 					if (rdev) | 
 | 						rdev->recovery_offset = MaxSector; | 
 | 				} | 
 | 				rcu_read_unlock(); | 
 | 			} | 
 | 			conf->fullsync = 0; | 
 | 		} | 
 | 		md_bitmap_close_sync(mddev->bitmap); | 
 | 		close_sync(conf); | 
 | 		*skipped = 1; | 
 | 		return sectors_skipped; | 
 | 	} | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
 | 		return reshape_request(mddev, sector_nr, skipped); | 
 |  | 
 | 	if (chunks_skipped >= conf->geo.raid_disks) { | 
 | 		/* if there has been nothing to do on any drive, | 
 | 		 * then there is nothing to do at all.. | 
 | 		 */ | 
 | 		*skipped = 1; | 
 | 		return (max_sector - sector_nr) + sectors_skipped; | 
 | 	} | 
 |  | 
 | 	if (max_sector > mddev->resync_max) | 
 | 		max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
 |  | 
 | 	/* make sure whole request will fit in a chunk - if chunks | 
 | 	 * are meaningful | 
 | 	 */ | 
 | 	if (conf->geo.near_copies < conf->geo.raid_disks && | 
 | 	    max_sector > (sector_nr | chunk_mask)) | 
 | 		max_sector = (sector_nr | chunk_mask) + 1; | 
 |  | 
 | 	/* | 
 | 	 * If there is non-resync activity waiting for a turn, then let it | 
 | 	 * though before starting on this new sync request. | 
 | 	 */ | 
 | 	if (conf->nr_waiting) | 
 | 		schedule_timeout_uninterruptible(1); | 
 |  | 
 | 	/* Again, very different code for resync and recovery. | 
 | 	 * Both must result in an r10bio with a list of bios that | 
 | 	 * have bi_end_io, bi_sector, bi_bdev set, | 
 | 	 * and bi_private set to the r10bio. | 
 | 	 * For recovery, we may actually create several r10bios | 
 | 	 * with 2 bios in each, that correspond to the bios in the main one. | 
 | 	 * In this case, the subordinate r10bios link back through a | 
 | 	 * borrowed master_bio pointer, and the counter in the master | 
 | 	 * includes a ref from each subordinate. | 
 | 	 */ | 
 | 	/* First, we decide what to do and set ->bi_end_io | 
 | 	 * To end_sync_read if we want to read, and | 
 | 	 * end_sync_write if we will want to write. | 
 | 	 */ | 
 |  | 
 | 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); | 
 | 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 		/* recovery... the complicated one */ | 
 | 		int j; | 
 | 		r10_bio = NULL; | 
 |  | 
 | 		for (i = 0 ; i < conf->geo.raid_disks; i++) { | 
 | 			int still_degraded; | 
 | 			struct r10bio *rb2; | 
 | 			sector_t sect; | 
 | 			int must_sync; | 
 | 			int any_working; | 
 | 			int need_recover = 0; | 
 | 			struct raid10_info *mirror = &conf->mirrors[i]; | 
 | 			struct md_rdev *mrdev, *mreplace; | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			mrdev = rcu_dereference(mirror->rdev); | 
 | 			mreplace = rcu_dereference(mirror->replacement); | 
 |  | 
 | 			if (mrdev != NULL && | 
 | 			    !test_bit(Faulty, &mrdev->flags) && | 
 | 			    !test_bit(In_sync, &mrdev->flags)) | 
 | 				need_recover = 1; | 
 | 			if (mreplace && test_bit(Faulty, &mreplace->flags)) | 
 | 				mreplace = NULL; | 
 |  | 
 | 			if (!need_recover && !mreplace) { | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			still_degraded = 0; | 
 | 			/* want to reconstruct this device */ | 
 | 			rb2 = r10_bio; | 
 | 			sect = raid10_find_virt(conf, sector_nr, i); | 
 | 			if (sect >= mddev->resync_max_sectors) { | 
 | 				/* last stripe is not complete - don't | 
 | 				 * try to recover this sector. | 
 | 				 */ | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 | 			/* Unless we are doing a full sync, or a replacement | 
 | 			 * we only need to recover the block if it is set in | 
 | 			 * the bitmap | 
 | 			 */ | 
 | 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect, | 
 | 							 &sync_blocks, 1); | 
 | 			if (sync_blocks < max_sync) | 
 | 				max_sync = sync_blocks; | 
 | 			if (!must_sync && | 
 | 			    mreplace == NULL && | 
 | 			    !conf->fullsync) { | 
 | 				/* yep, skip the sync_blocks here, but don't assume | 
 | 				 * that there will never be anything to do here | 
 | 				 */ | 
 | 				chunks_skipped = -1; | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 | 			atomic_inc(&mrdev->nr_pending); | 
 | 			if (mreplace) | 
 | 				atomic_inc(&mreplace->nr_pending); | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			r10_bio = raid10_alloc_init_r10buf(conf); | 
 | 			r10_bio->state = 0; | 
 | 			raise_barrier(conf, rb2 != NULL); | 
 | 			atomic_set(&r10_bio->remaining, 0); | 
 |  | 
 | 			r10_bio->master_bio = (struct bio*)rb2; | 
 | 			if (rb2) | 
 | 				atomic_inc(&rb2->remaining); | 
 | 			r10_bio->mddev = mddev; | 
 | 			set_bit(R10BIO_IsRecover, &r10_bio->state); | 
 | 			r10_bio->sector = sect; | 
 |  | 
 | 			raid10_find_phys(conf, r10_bio); | 
 |  | 
 | 			/* Need to check if the array will still be | 
 | 			 * degraded | 
 | 			 */ | 
 | 			rcu_read_lock(); | 
 | 			for (j = 0; j < conf->geo.raid_disks; j++) { | 
 | 				struct md_rdev *rdev = rcu_dereference( | 
 | 					conf->mirrors[j].rdev); | 
 | 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { | 
 | 					still_degraded = 1; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect, | 
 | 							 &sync_blocks, still_degraded); | 
 |  | 
 | 			any_working = 0; | 
 | 			for (j=0; j<conf->copies;j++) { | 
 | 				int k; | 
 | 				int d = r10_bio->devs[j].devnum; | 
 | 				sector_t from_addr, to_addr; | 
 | 				struct md_rdev *rdev = | 
 | 					rcu_dereference(conf->mirrors[d].rdev); | 
 | 				sector_t sector, first_bad; | 
 | 				int bad_sectors; | 
 | 				if (!rdev || | 
 | 				    !test_bit(In_sync, &rdev->flags)) | 
 | 					continue; | 
 | 				/* This is where we read from */ | 
 | 				any_working = 1; | 
 | 				sector = r10_bio->devs[j].addr; | 
 |  | 
 | 				if (is_badblock(rdev, sector, max_sync, | 
 | 						&first_bad, &bad_sectors)) { | 
 | 					if (first_bad > sector) | 
 | 						max_sync = first_bad - sector; | 
 | 					else { | 
 | 						bad_sectors -= (sector | 
 | 								- first_bad); | 
 | 						if (max_sync > bad_sectors) | 
 | 							max_sync = bad_sectors; | 
 | 						continue; | 
 | 					} | 
 | 				} | 
 | 				bio = r10_bio->devs[0].bio; | 
 | 				bio->bi_next = biolist; | 
 | 				biolist = bio; | 
 | 				bio->bi_end_io = end_sync_read; | 
 | 				bio_set_op_attrs(bio, REQ_OP_READ, 0); | 
 | 				if (test_bit(FailFast, &rdev->flags)) | 
 | 					bio->bi_opf |= MD_FAILFAST; | 
 | 				from_addr = r10_bio->devs[j].addr; | 
 | 				bio->bi_iter.bi_sector = from_addr + | 
 | 					rdev->data_offset; | 
 | 				bio_set_dev(bio, rdev->bdev); | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				/* and we write to 'i' (if not in_sync) */ | 
 |  | 
 | 				for (k=0; k<conf->copies; k++) | 
 | 					if (r10_bio->devs[k].devnum == i) | 
 | 						break; | 
 | 				BUG_ON(k == conf->copies); | 
 | 				to_addr = r10_bio->devs[k].addr; | 
 | 				r10_bio->devs[0].devnum = d; | 
 | 				r10_bio->devs[0].addr = from_addr; | 
 | 				r10_bio->devs[1].devnum = i; | 
 | 				r10_bio->devs[1].addr = to_addr; | 
 |  | 
 | 				if (need_recover) { | 
 | 					bio = r10_bio->devs[1].bio; | 
 | 					bio->bi_next = biolist; | 
 | 					biolist = bio; | 
 | 					bio->bi_end_io = end_sync_write; | 
 | 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 | 					bio->bi_iter.bi_sector = to_addr | 
 | 						+ mrdev->data_offset; | 
 | 					bio_set_dev(bio, mrdev->bdev); | 
 | 					atomic_inc(&r10_bio->remaining); | 
 | 				} else | 
 | 					r10_bio->devs[1].bio->bi_end_io = NULL; | 
 |  | 
 | 				/* and maybe write to replacement */ | 
 | 				bio = r10_bio->devs[1].repl_bio; | 
 | 				if (bio) | 
 | 					bio->bi_end_io = NULL; | 
 | 				/* Note: if replace is not NULL, then bio | 
 | 				 * cannot be NULL as r10buf_pool_alloc will | 
 | 				 * have allocated it. | 
 | 				 */ | 
 | 				if (!mreplace) | 
 | 					break; | 
 | 				bio->bi_next = biolist; | 
 | 				biolist = bio; | 
 | 				bio->bi_end_io = end_sync_write; | 
 | 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 | 				bio->bi_iter.bi_sector = to_addr + | 
 | 					mreplace->data_offset; | 
 | 				bio_set_dev(bio, mreplace->bdev); | 
 | 				atomic_inc(&r10_bio->remaining); | 
 | 				break; | 
 | 			} | 
 | 			rcu_read_unlock(); | 
 | 			if (j == conf->copies) { | 
 | 				/* Cannot recover, so abort the recovery or | 
 | 				 * record a bad block */ | 
 | 				if (any_working) { | 
 | 					/* problem is that there are bad blocks | 
 | 					 * on other device(s) | 
 | 					 */ | 
 | 					int k; | 
 | 					for (k = 0; k < conf->copies; k++) | 
 | 						if (r10_bio->devs[k].devnum == i) | 
 | 							break; | 
 | 					if (!test_bit(In_sync, | 
 | 						      &mrdev->flags) | 
 | 					    && !rdev_set_badblocks( | 
 | 						    mrdev, | 
 | 						    r10_bio->devs[k].addr, | 
 | 						    max_sync, 0)) | 
 | 						any_working = 0; | 
 | 					if (mreplace && | 
 | 					    !rdev_set_badblocks( | 
 | 						    mreplace, | 
 | 						    r10_bio->devs[k].addr, | 
 | 						    max_sync, 0)) | 
 | 						any_working = 0; | 
 | 				} | 
 | 				if (!any_working)  { | 
 | 					if (!test_and_set_bit(MD_RECOVERY_INTR, | 
 | 							      &mddev->recovery)) | 
 | 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", | 
 | 						       mdname(mddev)); | 
 | 					mirror->recovery_disabled | 
 | 						= mddev->recovery_disabled; | 
 | 				} | 
 | 				put_buf(r10_bio); | 
 | 				if (rb2) | 
 | 					atomic_dec(&rb2->remaining); | 
 | 				r10_bio = rb2; | 
 | 				rdev_dec_pending(mrdev, mddev); | 
 | 				if (mreplace) | 
 | 					rdev_dec_pending(mreplace, mddev); | 
 | 				break; | 
 | 			} | 
 | 			rdev_dec_pending(mrdev, mddev); | 
 | 			if (mreplace) | 
 | 				rdev_dec_pending(mreplace, mddev); | 
 | 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { | 
 | 				/* Only want this if there is elsewhere to | 
 | 				 * read from. 'j' is currently the first | 
 | 				 * readable copy. | 
 | 				 */ | 
 | 				int targets = 1; | 
 | 				for (; j < conf->copies; j++) { | 
 | 					int d = r10_bio->devs[j].devnum; | 
 | 					if (conf->mirrors[d].rdev && | 
 | 					    test_bit(In_sync, | 
 | 						      &conf->mirrors[d].rdev->flags)) | 
 | 						targets++; | 
 | 				} | 
 | 				if (targets == 1) | 
 | 					r10_bio->devs[0].bio->bi_opf | 
 | 						&= ~MD_FAILFAST; | 
 | 			} | 
 | 		} | 
 | 		if (biolist == NULL) { | 
 | 			while (r10_bio) { | 
 | 				struct r10bio *rb2 = r10_bio; | 
 | 				r10_bio = (struct r10bio*) rb2->master_bio; | 
 | 				rb2->master_bio = NULL; | 
 | 				put_buf(rb2); | 
 | 			} | 
 | 			goto giveup; | 
 | 		} | 
 | 	} else { | 
 | 		/* resync. Schedule a read for every block at this virt offset */ | 
 | 		int count = 0; | 
 |  | 
 | 		/* | 
 | 		 * Since curr_resync_completed could probably not update in | 
 | 		 * time, and we will set cluster_sync_low based on it. | 
 | 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for | 
 | 		 * safety reason, which ensures curr_resync_completed is | 
 | 		 * updated in bitmap_cond_end_sync. | 
 | 		 */ | 
 | 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, | 
 | 					mddev_is_clustered(mddev) && | 
 | 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); | 
 |  | 
 | 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, | 
 | 					  &sync_blocks, mddev->degraded) && | 
 | 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, | 
 | 						 &mddev->recovery)) { | 
 | 			/* We can skip this block */ | 
 | 			*skipped = 1; | 
 | 			return sync_blocks + sectors_skipped; | 
 | 		} | 
 | 		if (sync_blocks < max_sync) | 
 | 			max_sync = sync_blocks; | 
 | 		r10_bio = raid10_alloc_init_r10buf(conf); | 
 | 		r10_bio->state = 0; | 
 |  | 
 | 		r10_bio->mddev = mddev; | 
 | 		atomic_set(&r10_bio->remaining, 0); | 
 | 		raise_barrier(conf, 0); | 
 | 		conf->next_resync = sector_nr; | 
 |  | 
 | 		r10_bio->master_bio = NULL; | 
 | 		r10_bio->sector = sector_nr; | 
 | 		set_bit(R10BIO_IsSync, &r10_bio->state); | 
 | 		raid10_find_phys(conf, r10_bio); | 
 | 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; | 
 |  | 
 | 		for (i = 0; i < conf->copies; i++) { | 
 | 			int d = r10_bio->devs[i].devnum; | 
 | 			sector_t first_bad, sector; | 
 | 			int bad_sectors; | 
 | 			struct md_rdev *rdev; | 
 |  | 
 | 			if (r10_bio->devs[i].repl_bio) | 
 | 				r10_bio->devs[i].repl_bio->bi_end_io = NULL; | 
 |  | 
 | 			bio = r10_bio->devs[i].bio; | 
 | 			bio->bi_status = BLK_STS_IOERR; | 
 | 			rcu_read_lock(); | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 | 			sector = r10_bio->devs[i].addr; | 
 | 			if (is_badblock(rdev, sector, max_sync, | 
 | 					&first_bad, &bad_sectors)) { | 
 | 				if (first_bad > sector) | 
 | 					max_sync = first_bad - sector; | 
 | 				else { | 
 | 					bad_sectors -= (sector - first_bad); | 
 | 					if (max_sync > bad_sectors) | 
 | 						max_sync = bad_sectors; | 
 | 					rcu_read_unlock(); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			bio->bi_next = biolist; | 
 | 			biolist = bio; | 
 | 			bio->bi_end_io = end_sync_read; | 
 | 			bio_set_op_attrs(bio, REQ_OP_READ, 0); | 
 | 			if (test_bit(FailFast, &rdev->flags)) | 
 | 				bio->bi_opf |= MD_FAILFAST; | 
 | 			bio->bi_iter.bi_sector = sector + rdev->data_offset; | 
 | 			bio_set_dev(bio, rdev->bdev); | 
 | 			count++; | 
 |  | 
 | 			rdev = rcu_dereference(conf->mirrors[d].replacement); | 
 | 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 | 			atomic_inc(&rdev->nr_pending); | 
 |  | 
 | 			/* Need to set up for writing to the replacement */ | 
 | 			bio = r10_bio->devs[i].repl_bio; | 
 | 			bio->bi_status = BLK_STS_IOERR; | 
 |  | 
 | 			sector = r10_bio->devs[i].addr; | 
 | 			bio->bi_next = biolist; | 
 | 			biolist = bio; | 
 | 			bio->bi_end_io = end_sync_write; | 
 | 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 | 			if (test_bit(FailFast, &rdev->flags)) | 
 | 				bio->bi_opf |= MD_FAILFAST; | 
 | 			bio->bi_iter.bi_sector = sector + rdev->data_offset; | 
 | 			bio_set_dev(bio, rdev->bdev); | 
 | 			count++; | 
 | 			rcu_read_unlock(); | 
 | 		} | 
 |  | 
 | 		if (count < 2) { | 
 | 			for (i=0; i<conf->copies; i++) { | 
 | 				int d = r10_bio->devs[i].devnum; | 
 | 				if (r10_bio->devs[i].bio->bi_end_io) | 
 | 					rdev_dec_pending(conf->mirrors[d].rdev, | 
 | 							 mddev); | 
 | 				if (r10_bio->devs[i].repl_bio && | 
 | 				    r10_bio->devs[i].repl_bio->bi_end_io) | 
 | 					rdev_dec_pending( | 
 | 						conf->mirrors[d].replacement, | 
 | 						mddev); | 
 | 			} | 
 | 			put_buf(r10_bio); | 
 | 			biolist = NULL; | 
 | 			goto giveup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nr_sectors = 0; | 
 | 	if (sector_nr + max_sync < max_sector) | 
 | 		max_sector = sector_nr + max_sync; | 
 | 	do { | 
 | 		struct page *page; | 
 | 		int len = PAGE_SIZE; | 
 | 		if (sector_nr + (len>>9) > max_sector) | 
 | 			len = (max_sector - sector_nr) << 9; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		for (bio= biolist ; bio ; bio=bio->bi_next) { | 
 | 			struct resync_pages *rp = get_resync_pages(bio); | 
 | 			page = resync_fetch_page(rp, page_idx); | 
 | 			/* | 
 | 			 * won't fail because the vec table is big enough | 
 | 			 * to hold all these pages | 
 | 			 */ | 
 | 			bio_add_page(bio, page, len, 0); | 
 | 		} | 
 | 		nr_sectors += len>>9; | 
 | 		sector_nr += len>>9; | 
 | 	} while (++page_idx < RESYNC_PAGES); | 
 | 	r10_bio->sectors = nr_sectors; | 
 |  | 
 | 	if (mddev_is_clustered(mddev) && | 
 | 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 		/* It is resync not recovery */ | 
 | 		if (conf->cluster_sync_high < sector_nr + nr_sectors) { | 
 | 			conf->cluster_sync_low = mddev->curr_resync_completed; | 
 | 			raid10_set_cluster_sync_high(conf); | 
 | 			/* Send resync message */ | 
 | 			md_cluster_ops->resync_info_update(mddev, | 
 | 						conf->cluster_sync_low, | 
 | 						conf->cluster_sync_high); | 
 | 		} | 
 | 	} else if (mddev_is_clustered(mddev)) { | 
 | 		/* This is recovery not resync */ | 
 | 		sector_t sect_va1, sect_va2; | 
 | 		bool broadcast_msg = false; | 
 |  | 
 | 		for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 			/* | 
 | 			 * sector_nr is a device address for recovery, so we | 
 | 			 * need translate it to array address before compare | 
 | 			 * with cluster_sync_high. | 
 | 			 */ | 
 | 			sect_va1 = raid10_find_virt(conf, sector_nr, i); | 
 |  | 
 | 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) { | 
 | 				broadcast_msg = true; | 
 | 				/* | 
 | 				 * curr_resync_completed is similar as | 
 | 				 * sector_nr, so make the translation too. | 
 | 				 */ | 
 | 				sect_va2 = raid10_find_virt(conf, | 
 | 					mddev->curr_resync_completed, i); | 
 |  | 
 | 				if (conf->cluster_sync_low == 0 || | 
 | 				    conf->cluster_sync_low > sect_va2) | 
 | 					conf->cluster_sync_low = sect_va2; | 
 | 			} | 
 | 		} | 
 | 		if (broadcast_msg) { | 
 | 			raid10_set_cluster_sync_high(conf); | 
 | 			md_cluster_ops->resync_info_update(mddev, | 
 | 						conf->cluster_sync_low, | 
 | 						conf->cluster_sync_high); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (biolist) { | 
 | 		bio = biolist; | 
 | 		biolist = biolist->bi_next; | 
 |  | 
 | 		bio->bi_next = NULL; | 
 | 		r10_bio = get_resync_r10bio(bio); | 
 | 		r10_bio->sectors = nr_sectors; | 
 |  | 
 | 		if (bio->bi_end_io == end_sync_read) { | 
 | 			md_sync_acct_bio(bio, nr_sectors); | 
 | 			bio->bi_status = 0; | 
 | 			submit_bio_noacct(bio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sectors_skipped) | 
 | 		/* pretend they weren't skipped, it makes | 
 | 		 * no important difference in this case | 
 | 		 */ | 
 | 		md_done_sync(mddev, sectors_skipped, 1); | 
 |  | 
 | 	return sectors_skipped + nr_sectors; | 
 |  giveup: | 
 | 	/* There is nowhere to write, so all non-sync | 
 | 	 * drives must be failed or in resync, all drives | 
 | 	 * have a bad block, so try the next chunk... | 
 | 	 */ | 
 | 	if (sector_nr + max_sync < max_sector) | 
 | 		max_sector = sector_nr + max_sync; | 
 |  | 
 | 	sectors_skipped += (max_sector - sector_nr); | 
 | 	chunks_skipped ++; | 
 | 	sector_nr = max_sector; | 
 | 	goto skipped; | 
 | } | 
 |  | 
 | static sector_t | 
 | raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
 | { | 
 | 	sector_t size; | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	if (!raid_disks) | 
 | 		raid_disks = min(conf->geo.raid_disks, | 
 | 				 conf->prev.raid_disks); | 
 | 	if (!sectors) | 
 | 		sectors = conf->dev_sectors; | 
 |  | 
 | 	size = sectors >> conf->geo.chunk_shift; | 
 | 	sector_div(size, conf->geo.far_copies); | 
 | 	size = size * raid_disks; | 
 | 	sector_div(size, conf->geo.near_copies); | 
 |  | 
 | 	return size << conf->geo.chunk_shift; | 
 | } | 
 |  | 
 | static void calc_sectors(struct r10conf *conf, sector_t size) | 
 | { | 
 | 	/* Calculate the number of sectors-per-device that will | 
 | 	 * actually be used, and set conf->dev_sectors and | 
 | 	 * conf->stride | 
 | 	 */ | 
 |  | 
 | 	size = size >> conf->geo.chunk_shift; | 
 | 	sector_div(size, conf->geo.far_copies); | 
 | 	size = size * conf->geo.raid_disks; | 
 | 	sector_div(size, conf->geo.near_copies); | 
 | 	/* 'size' is now the number of chunks in the array */ | 
 | 	/* calculate "used chunks per device" */ | 
 | 	size = size * conf->copies; | 
 |  | 
 | 	/* We need to round up when dividing by raid_disks to | 
 | 	 * get the stride size. | 
 | 	 */ | 
 | 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); | 
 |  | 
 | 	conf->dev_sectors = size << conf->geo.chunk_shift; | 
 |  | 
 | 	if (conf->geo.far_offset) | 
 | 		conf->geo.stride = 1 << conf->geo.chunk_shift; | 
 | 	else { | 
 | 		sector_div(size, conf->geo.far_copies); | 
 | 		conf->geo.stride = size << conf->geo.chunk_shift; | 
 | 	} | 
 | } | 
 |  | 
 | enum geo_type {geo_new, geo_old, geo_start}; | 
 | static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) | 
 | { | 
 | 	int nc, fc, fo; | 
 | 	int layout, chunk, disks; | 
 | 	switch (new) { | 
 | 	case geo_old: | 
 | 		layout = mddev->layout; | 
 | 		chunk = mddev->chunk_sectors; | 
 | 		disks = mddev->raid_disks - mddev->delta_disks; | 
 | 		break; | 
 | 	case geo_new: | 
 | 		layout = mddev->new_layout; | 
 | 		chunk = mddev->new_chunk_sectors; | 
 | 		disks = mddev->raid_disks; | 
 | 		break; | 
 | 	default: /* avoid 'may be unused' warnings */ | 
 | 	case geo_start: /* new when starting reshape - raid_disks not | 
 | 			 * updated yet. */ | 
 | 		layout = mddev->new_layout; | 
 | 		chunk = mddev->new_chunk_sectors; | 
 | 		disks = mddev->raid_disks + mddev->delta_disks; | 
 | 		break; | 
 | 	} | 
 | 	if (layout >> 19) | 
 | 		return -1; | 
 | 	if (chunk < (PAGE_SIZE >> 9) || | 
 | 	    !is_power_of_2(chunk)) | 
 | 		return -2; | 
 | 	nc = layout & 255; | 
 | 	fc = (layout >> 8) & 255; | 
 | 	fo = layout & (1<<16); | 
 | 	geo->raid_disks = disks; | 
 | 	geo->near_copies = nc; | 
 | 	geo->far_copies = fc; | 
 | 	geo->far_offset = fo; | 
 | 	switch (layout >> 17) { | 
 | 	case 0:	/* original layout.  simple but not always optimal */ | 
 | 		geo->far_set_size = disks; | 
 | 		break; | 
 | 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is | 
 | 		 * actually using this, but leave code here just in case.*/ | 
 | 		geo->far_set_size = disks/fc; | 
 | 		WARN(geo->far_set_size < fc, | 
 | 		     "This RAID10 layout does not provide data safety - please backup and create new array\n"); | 
 | 		break; | 
 | 	case 2: /* "improved" layout fixed to match documentation */ | 
 | 		geo->far_set_size = fc * nc; | 
 | 		break; | 
 | 	default: /* Not a valid layout */ | 
 | 		return -1; | 
 | 	} | 
 | 	geo->chunk_mask = chunk - 1; | 
 | 	geo->chunk_shift = ffz(~chunk); | 
 | 	return nc*fc; | 
 | } | 
 |  | 
 | static void raid10_free_conf(struct r10conf *conf) | 
 | { | 
 | 	if (!conf) | 
 | 		return; | 
 |  | 
 | 	mempool_exit(&conf->r10bio_pool); | 
 | 	kfree(conf->mirrors); | 
 | 	kfree(conf->mirrors_old); | 
 | 	kfree(conf->mirrors_new); | 
 | 	safe_put_page(conf->tmppage); | 
 | 	bioset_exit(&conf->bio_split); | 
 | 	kfree(conf); | 
 | } | 
 |  | 
 | static struct r10conf *setup_conf(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = NULL; | 
 | 	int err = -EINVAL; | 
 | 	struct geom geo; | 
 | 	int copies; | 
 |  | 
 | 	copies = setup_geo(&geo, mddev, geo_new); | 
 |  | 
 | 	if (copies == -2) { | 
 | 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", | 
 | 			mdname(mddev), PAGE_SIZE); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (copies < 2 || copies > mddev->raid_disks) { | 
 | 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", | 
 | 			mdname(mddev), mddev->new_layout); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); | 
 | 	if (!conf) | 
 | 		goto out; | 
 |  | 
 | 	/* FIXME calc properly */ | 
 | 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), | 
 | 				sizeof(struct raid10_info), | 
 | 				GFP_KERNEL); | 
 | 	if (!conf->mirrors) | 
 | 		goto out; | 
 |  | 
 | 	conf->tmppage = alloc_page(GFP_KERNEL); | 
 | 	if (!conf->tmppage) | 
 | 		goto out; | 
 |  | 
 | 	conf->geo = geo; | 
 | 	conf->copies = copies; | 
 | 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, | 
 | 			   rbio_pool_free, conf); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	calc_sectors(conf, mddev->dev_sectors); | 
 | 	if (mddev->reshape_position == MaxSector) { | 
 | 		conf->prev = conf->geo; | 
 | 		conf->reshape_progress = MaxSector; | 
 | 	} else { | 
 | 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 		conf->reshape_progress = mddev->reshape_position; | 
 | 		if (conf->prev.far_offset) | 
 | 			conf->prev.stride = 1 << conf->prev.chunk_shift; | 
 | 		else | 
 | 			/* far_copies must be 1 */ | 
 | 			conf->prev.stride = conf->dev_sectors; | 
 | 	} | 
 | 	conf->reshape_safe = conf->reshape_progress; | 
 | 	spin_lock_init(&conf->device_lock); | 
 | 	INIT_LIST_HEAD(&conf->retry_list); | 
 | 	INIT_LIST_HEAD(&conf->bio_end_io_list); | 
 |  | 
 | 	seqlock_init(&conf->resync_lock); | 
 | 	init_waitqueue_head(&conf->wait_barrier); | 
 | 	atomic_set(&conf->nr_pending, 0); | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	conf->thread = md_register_thread(raid10d, mddev, "raid10"); | 
 | 	if (!conf->thread) | 
 | 		goto out; | 
 |  | 
 | 	conf->mddev = mddev; | 
 | 	return conf; | 
 |  | 
 |  out: | 
 | 	raid10_free_conf(conf); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void raid10_set_io_opt(struct r10conf *conf) | 
 | { | 
 | 	int raid_disks = conf->geo.raid_disks; | 
 |  | 
 | 	if (!(conf->geo.raid_disks % conf->geo.near_copies)) | 
 | 		raid_disks /= conf->geo.near_copies; | 
 | 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * | 
 | 			 raid_disks); | 
 | } | 
 |  | 
 | static int raid10_run(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf; | 
 | 	int i, disk_idx; | 
 | 	struct raid10_info *disk; | 
 | 	struct md_rdev *rdev; | 
 | 	sector_t size; | 
 | 	sector_t min_offset_diff = 0; | 
 | 	int first = 1; | 
 |  | 
 | 	if (mddev_init_writes_pending(mddev) < 0) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (mddev->private == NULL) { | 
 | 		conf = setup_conf(mddev); | 
 | 		if (IS_ERR(conf)) | 
 | 			return PTR_ERR(conf); | 
 | 		mddev->private = conf; | 
 | 	} | 
 | 	conf = mddev->private; | 
 | 	if (!conf) | 
 | 		goto out; | 
 |  | 
 | 	mddev->thread = conf->thread; | 
 | 	conf->thread = NULL; | 
 |  | 
 | 	if (mddev_is_clustered(conf->mddev)) { | 
 | 		int fc, fo; | 
 |  | 
 | 		fc = (mddev->layout >> 8) & 255; | 
 | 		fo = mddev->layout & (1<<16); | 
 | 		if (fc > 1 || fo > 0) { | 
 | 			pr_err("only near layout is supported by clustered" | 
 | 				" raid10\n"); | 
 | 			goto out_free_conf; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (mddev->queue) { | 
 | 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0); | 
 | 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); | 
 | 		raid10_set_io_opt(conf); | 
 | 	} | 
 |  | 
 | 	rdev_for_each(rdev, mddev) { | 
 | 		long long diff; | 
 |  | 
 | 		disk_idx = rdev->raid_disk; | 
 | 		if (disk_idx < 0) | 
 | 			continue; | 
 | 		if (disk_idx >= conf->geo.raid_disks && | 
 | 		    disk_idx >= conf->prev.raid_disks) | 
 | 			continue; | 
 | 		disk = conf->mirrors + disk_idx; | 
 |  | 
 | 		if (test_bit(Replacement, &rdev->flags)) { | 
 | 			if (disk->replacement) | 
 | 				goto out_free_conf; | 
 | 			disk->replacement = rdev; | 
 | 		} else { | 
 | 			if (disk->rdev) | 
 | 				goto out_free_conf; | 
 | 			disk->rdev = rdev; | 
 | 		} | 
 | 		diff = (rdev->new_data_offset - rdev->data_offset); | 
 | 		if (!mddev->reshape_backwards) | 
 | 			diff = -diff; | 
 | 		if (diff < 0) | 
 | 			diff = 0; | 
 | 		if (first || diff < min_offset_diff) | 
 | 			min_offset_diff = diff; | 
 |  | 
 | 		if (mddev->gendisk) | 
 | 			disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 					  rdev->data_offset << 9); | 
 |  | 
 | 		disk->head_position = 0; | 
 | 		first = 0; | 
 | 	} | 
 |  | 
 | 	/* need to check that every block has at least one working mirror */ | 
 | 	if (!enough(conf, -1)) { | 
 | 		pr_err("md/raid10:%s: not enough operational mirrors.\n", | 
 | 		       mdname(mddev)); | 
 | 		goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	if (conf->reshape_progress != MaxSector) { | 
 | 		/* must ensure that shape change is supported */ | 
 | 		if (conf->geo.far_copies != 1 && | 
 | 		    conf->geo.far_offset == 0) | 
 | 			goto out_free_conf; | 
 | 		if (conf->prev.far_copies != 1 && | 
 | 		    conf->prev.far_offset == 0) | 
 | 			goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	mddev->degraded = 0; | 
 | 	for (i = 0; | 
 | 	     i < conf->geo.raid_disks | 
 | 		     || i < conf->prev.raid_disks; | 
 | 	     i++) { | 
 |  | 
 | 		disk = conf->mirrors + i; | 
 |  | 
 | 		if (!disk->rdev && disk->replacement) { | 
 | 			/* The replacement is all we have - use it */ | 
 | 			disk->rdev = disk->replacement; | 
 | 			disk->replacement = NULL; | 
 | 			clear_bit(Replacement, &disk->rdev->flags); | 
 | 		} | 
 |  | 
 | 		if (!disk->rdev || | 
 | 		    !test_bit(In_sync, &disk->rdev->flags)) { | 
 | 			disk->head_position = 0; | 
 | 			mddev->degraded++; | 
 | 			if (disk->rdev && | 
 | 			    disk->rdev->saved_raid_disk < 0) | 
 | 				conf->fullsync = 1; | 
 | 		} | 
 |  | 
 | 		if (disk->replacement && | 
 | 		    !test_bit(In_sync, &disk->replacement->flags) && | 
 | 		    disk->replacement->saved_raid_disk < 0) { | 
 | 			conf->fullsync = 1; | 
 | 		} | 
 |  | 
 | 		disk->recovery_disabled = mddev->recovery_disabled - 1; | 
 | 	} | 
 |  | 
 | 	if (mddev->recovery_cp != MaxSector) | 
 | 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", | 
 | 			  mdname(mddev)); | 
 | 	pr_info("md/raid10:%s: active with %d out of %d devices\n", | 
 | 		mdname(mddev), conf->geo.raid_disks - mddev->degraded, | 
 | 		conf->geo.raid_disks); | 
 | 	/* | 
 | 	 * Ok, everything is just fine now | 
 | 	 */ | 
 | 	mddev->dev_sectors = conf->dev_sectors; | 
 | 	size = raid10_size(mddev, 0, 0); | 
 | 	md_set_array_sectors(mddev, size); | 
 | 	mddev->resync_max_sectors = size; | 
 | 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); | 
 |  | 
 | 	if (md_integrity_register(mddev)) | 
 | 		goto out_free_conf; | 
 |  | 
 | 	if (conf->reshape_progress != MaxSector) { | 
 | 		unsigned long before_length, after_length; | 
 |  | 
 | 		before_length = ((1 << conf->prev.chunk_shift) * | 
 | 				 conf->prev.far_copies); | 
 | 		after_length = ((1 << conf->geo.chunk_shift) * | 
 | 				conf->geo.far_copies); | 
 |  | 
 | 		if (max(before_length, after_length) > min_offset_diff) { | 
 | 			/* This cannot work */ | 
 | 			pr_warn("md/raid10: offset difference not enough to continue reshape\n"); | 
 | 			goto out_free_conf; | 
 | 		} | 
 | 		conf->offset_diff = min_offset_diff; | 
 |  | 
 | 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
 | 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
 | 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
 | 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
 | 		mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
 | 							"reshape"); | 
 | 		if (!mddev->sync_thread) | 
 | 			goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_conf: | 
 | 	md_unregister_thread(&mddev->thread); | 
 | 	raid10_free_conf(conf); | 
 | 	mddev->private = NULL; | 
 | out: | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static void raid10_free(struct mddev *mddev, void *priv) | 
 | { | 
 | 	raid10_free_conf(priv); | 
 | } | 
 |  | 
 | static void raid10_quiesce(struct mddev *mddev, int quiesce) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	if (quiesce) | 
 | 		raise_barrier(conf, 0); | 
 | 	else | 
 | 		lower_barrier(conf); | 
 | } | 
 |  | 
 | static int raid10_resize(struct mddev *mddev, sector_t sectors) | 
 | { | 
 | 	/* Resize of 'far' arrays is not supported. | 
 | 	 * For 'near' and 'offset' arrays we can set the | 
 | 	 * number of sectors used to be an appropriate multiple | 
 | 	 * of the chunk size. | 
 | 	 * For 'offset', this is far_copies*chunksize. | 
 | 	 * For 'near' the multiplier is the LCM of | 
 | 	 * near_copies and raid_disks. | 
 | 	 * So if far_copies > 1 && !far_offset, fail. | 
 | 	 * Else find LCM(raid_disks, near_copy)*far_copies and | 
 | 	 * multiply by chunk_size.  Then round to this number. | 
 | 	 * This is mostly done by raid10_size() | 
 | 	 */ | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	sector_t oldsize, size; | 
 |  | 
 | 	if (mddev->reshape_position != MaxSector) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset) | 
 | 		return -EINVAL; | 
 |  | 
 | 	oldsize = raid10_size(mddev, 0, 0); | 
 | 	size = raid10_size(mddev, sectors, 0); | 
 | 	if (mddev->external_size && | 
 | 	    mddev->array_sectors > size) | 
 | 		return -EINVAL; | 
 | 	if (mddev->bitmap) { | 
 | 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	md_set_array_sectors(mddev, size); | 
 | 	if (sectors > mddev->dev_sectors && | 
 | 	    mddev->recovery_cp > oldsize) { | 
 | 		mddev->recovery_cp = oldsize; | 
 | 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
 | 	} | 
 | 	calc_sectors(conf, sectors); | 
 | 	mddev->dev_sectors = conf->dev_sectors; | 
 | 	mddev->resync_max_sectors = size; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) | 
 | { | 
 | 	struct md_rdev *rdev; | 
 | 	struct r10conf *conf; | 
 |  | 
 | 	if (mddev->degraded > 0) { | 
 | 		pr_warn("md/raid10:%s: Error: degraded raid0!\n", | 
 | 			mdname(mddev)); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 | 	sector_div(size, devs); | 
 |  | 
 | 	/* Set new parameters */ | 
 | 	mddev->new_level = 10; | 
 | 	/* new layout: far_copies = 1, near_copies = 2 */ | 
 | 	mddev->new_layout = (1<<8) + 2; | 
 | 	mddev->new_chunk_sectors = mddev->chunk_sectors; | 
 | 	mddev->delta_disks = mddev->raid_disks; | 
 | 	mddev->raid_disks *= 2; | 
 | 	/* make sure it will be not marked as dirty */ | 
 | 	mddev->recovery_cp = MaxSector; | 
 | 	mddev->dev_sectors = size; | 
 |  | 
 | 	conf = setup_conf(mddev); | 
 | 	if (!IS_ERR(conf)) { | 
 | 		rdev_for_each(rdev, mddev) | 
 | 			if (rdev->raid_disk >= 0) { | 
 | 				rdev->new_raid_disk = rdev->raid_disk * 2; | 
 | 				rdev->sectors = size; | 
 | 			} | 
 | 		WRITE_ONCE(conf->barrier, 1); | 
 | 	} | 
 |  | 
 | 	return conf; | 
 | } | 
 |  | 
 | static void *raid10_takeover(struct mddev *mddev) | 
 | { | 
 | 	struct r0conf *raid0_conf; | 
 |  | 
 | 	/* raid10 can take over: | 
 | 	 *  raid0 - providing it has only two drives | 
 | 	 */ | 
 | 	if (mddev->level == 0) { | 
 | 		/* for raid0 takeover only one zone is supported */ | 
 | 		raid0_conf = mddev->private; | 
 | 		if (raid0_conf->nr_strip_zones > 1) { | 
 | 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", | 
 | 				mdname(mddev)); | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		} | 
 | 		return raid10_takeover_raid0(mddev, | 
 | 			raid0_conf->strip_zone->zone_end, | 
 | 			raid0_conf->strip_zone->nb_dev); | 
 | 	} | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | static int raid10_check_reshape(struct mddev *mddev) | 
 | { | 
 | 	/* Called when there is a request to change | 
 | 	 * - layout (to ->new_layout) | 
 | 	 * - chunk size (to ->new_chunk_sectors) | 
 | 	 * - raid_disks (by delta_disks) | 
 | 	 * or when trying to restart a reshape that was ongoing. | 
 | 	 * | 
 | 	 * We need to validate the request and possibly allocate | 
 | 	 * space if that might be an issue later. | 
 | 	 * | 
 | 	 * Currently we reject any reshape of a 'far' mode array, | 
 | 	 * allow chunk size to change if new is generally acceptable, | 
 | 	 * allow raid_disks to increase, and allow | 
 | 	 * a switch between 'near' mode and 'offset' mode. | 
 | 	 */ | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct geom geo; | 
 |  | 
 | 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (setup_geo(&geo, mddev, geo_start) != conf->copies) | 
 | 		/* mustn't change number of copies */ | 
 | 		return -EINVAL; | 
 | 	if (geo.far_copies > 1 && !geo.far_offset) | 
 | 		/* Cannot switch to 'far' mode */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (mddev->array_sectors & geo.chunk_mask) | 
 | 			/* not factor of array size */ | 
 | 			return -EINVAL; | 
 |  | 
 | 	if (!enough(conf, -1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kfree(conf->mirrors_new); | 
 | 	conf->mirrors_new = NULL; | 
 | 	if (mddev->delta_disks > 0) { | 
 | 		/* allocate new 'mirrors' list */ | 
 | 		conf->mirrors_new = | 
 | 			kcalloc(mddev->raid_disks + mddev->delta_disks, | 
 | 				sizeof(struct raid10_info), | 
 | 				GFP_KERNEL); | 
 | 		if (!conf->mirrors_new) | 
 | 			return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Need to check if array has failed when deciding whether to: | 
 |  *  - start an array | 
 |  *  - remove non-faulty devices | 
 |  *  - add a spare | 
 |  *  - allow a reshape | 
 |  * This determination is simple when no reshape is happening. | 
 |  * However if there is a reshape, we need to carefully check | 
 |  * both the before and after sections. | 
 |  * This is because some failed devices may only affect one | 
 |  * of the two sections, and some non-in_sync devices may | 
 |  * be insync in the section most affected by failed devices. | 
 |  */ | 
 | static int calc_degraded(struct r10conf *conf) | 
 | { | 
 | 	int degraded, degraded2; | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	degraded = 0; | 
 | 	/* 'prev' section first */ | 
 | 	for (i = 0; i < conf->prev.raid_disks; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (!rdev || test_bit(Faulty, &rdev->flags)) | 
 | 			degraded++; | 
 | 		else if (!test_bit(In_sync, &rdev->flags)) | 
 | 			/* When we can reduce the number of devices in | 
 | 			 * an array, this might not contribute to | 
 | 			 * 'degraded'.  It does now. | 
 | 			 */ | 
 | 			degraded++; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	if (conf->geo.raid_disks == conf->prev.raid_disks) | 
 | 		return degraded; | 
 | 	rcu_read_lock(); | 
 | 	degraded2 = 0; | 
 | 	for (i = 0; i < conf->geo.raid_disks; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (!rdev || test_bit(Faulty, &rdev->flags)) | 
 | 			degraded2++; | 
 | 		else if (!test_bit(In_sync, &rdev->flags)) { | 
 | 			/* If reshape is increasing the number of devices, | 
 | 			 * this section has already been recovered, so | 
 | 			 * it doesn't contribute to degraded. | 
 | 			 * else it does. | 
 | 			 */ | 
 | 			if (conf->geo.raid_disks <= conf->prev.raid_disks) | 
 | 				degraded2++; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	if (degraded2 > degraded) | 
 | 		return degraded2; | 
 | 	return degraded; | 
 | } | 
 |  | 
 | static int raid10_start_reshape(struct mddev *mddev) | 
 | { | 
 | 	/* A 'reshape' has been requested. This commits | 
 | 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE | 
 | 	 * This also checks if there are enough spares and adds them | 
 | 	 * to the array. | 
 | 	 * We currently require enough spares to make the final | 
 | 	 * array non-degraded.  We also require that the difference | 
 | 	 * between old and new data_offset - on each device - is | 
 | 	 * enough that we never risk over-writing. | 
 | 	 */ | 
 |  | 
 | 	unsigned long before_length, after_length; | 
 | 	sector_t min_offset_diff = 0; | 
 | 	int first = 1; | 
 | 	struct geom new; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev; | 
 | 	int spares = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (setup_geo(&new, mddev, geo_start) != conf->copies) | 
 | 		return -EINVAL; | 
 |  | 
 | 	before_length = ((1 << conf->prev.chunk_shift) * | 
 | 			 conf->prev.far_copies); | 
 | 	after_length = ((1 << conf->geo.chunk_shift) * | 
 | 			conf->geo.far_copies); | 
 |  | 
 | 	rdev_for_each(rdev, mddev) { | 
 | 		if (!test_bit(In_sync, &rdev->flags) | 
 | 		    && !test_bit(Faulty, &rdev->flags)) | 
 | 			spares++; | 
 | 		if (rdev->raid_disk >= 0) { | 
 | 			long long diff = (rdev->new_data_offset | 
 | 					  - rdev->data_offset); | 
 | 			if (!mddev->reshape_backwards) | 
 | 				diff = -diff; | 
 | 			if (diff < 0) | 
 | 				diff = 0; | 
 | 			if (first || diff < min_offset_diff) | 
 | 				min_offset_diff = diff; | 
 | 			first = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (max(before_length, after_length) > min_offset_diff) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (spares < mddev->delta_disks) | 
 | 		return -EINVAL; | 
 |  | 
 | 	conf->offset_diff = min_offset_diff; | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	if (conf->mirrors_new) { | 
 | 		memcpy(conf->mirrors_new, conf->mirrors, | 
 | 		       sizeof(struct raid10_info)*conf->prev.raid_disks); | 
 | 		smp_mb(); | 
 | 		kfree(conf->mirrors_old); | 
 | 		conf->mirrors_old = conf->mirrors; | 
 | 		conf->mirrors = conf->mirrors_new; | 
 | 		conf->mirrors_new = NULL; | 
 | 	} | 
 | 	setup_geo(&conf->geo, mddev, geo_start); | 
 | 	smp_mb(); | 
 | 	if (mddev->reshape_backwards) { | 
 | 		sector_t size = raid10_size(mddev, 0, 0); | 
 | 		if (size < mddev->array_sectors) { | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", | 
 | 				mdname(mddev)); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		mddev->resync_max_sectors = size; | 
 | 		conf->reshape_progress = size; | 
 | 	} else | 
 | 		conf->reshape_progress = 0; | 
 | 	conf->reshape_safe = conf->reshape_progress; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 	if (mddev->delta_disks && mddev->bitmap) { | 
 | 		struct mdp_superblock_1 *sb = NULL; | 
 | 		sector_t oldsize, newsize; | 
 |  | 
 | 		oldsize = raid10_size(mddev, 0, 0); | 
 | 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks); | 
 |  | 
 | 		if (!mddev_is_clustered(mddev)) { | 
 | 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); | 
 | 			if (ret) | 
 | 				goto abort; | 
 | 			else | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		rdev_for_each(rdev, mddev) { | 
 | 			if (rdev->raid_disk > -1 && | 
 | 			    !test_bit(Faulty, &rdev->flags)) | 
 | 				sb = page_address(rdev->sb_page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * some node is already performing reshape, and no need to | 
 | 		 * call md_bitmap_resize again since it should be called when | 
 | 		 * receiving BITMAP_RESIZE msg | 
 | 		 */ | 
 | 		if ((sb && (le32_to_cpu(sb->feature_map) & | 
 | 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) | 
 | 			goto out; | 
 |  | 
 | 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); | 
 | 		if (ret) | 
 | 			goto abort; | 
 |  | 
 | 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); | 
 | 		if (ret) { | 
 | 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); | 
 | 			goto abort; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	if (mddev->delta_disks > 0) { | 
 | 		rdev_for_each(rdev, mddev) | 
 | 			if (rdev->raid_disk < 0 && | 
 | 			    !test_bit(Faulty, &rdev->flags)) { | 
 | 				if (raid10_add_disk(mddev, rdev) == 0) { | 
 | 					if (rdev->raid_disk >= | 
 | 					    conf->prev.raid_disks) | 
 | 						set_bit(In_sync, &rdev->flags); | 
 | 					else | 
 | 						rdev->recovery_offset = 0; | 
 |  | 
 | 					/* Failure here is OK */ | 
 | 					sysfs_link_rdev(mddev, rdev); | 
 | 				} | 
 | 			} else if (rdev->raid_disk >= conf->prev.raid_disks | 
 | 				   && !test_bit(Faulty, &rdev->flags)) { | 
 | 				/* This is a spare that was manually added */ | 
 | 				set_bit(In_sync, &rdev->flags); | 
 | 			} | 
 | 	} | 
 | 	/* When a reshape changes the number of devices, | 
 | 	 * ->degraded is measured against the larger of the | 
 | 	 * pre and  post numbers. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	mddev->degraded = calc_degraded(conf); | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	mddev->raid_disks = conf->geo.raid_disks; | 
 | 	mddev->reshape_position = conf->reshape_progress; | 
 | 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
 |  | 
 | 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
 | 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
 | 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery); | 
 | 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
 | 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
 |  | 
 | 	mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
 | 						"reshape"); | 
 | 	if (!mddev->sync_thread) { | 
 | 		ret = -EAGAIN; | 
 | 		goto abort; | 
 | 	} | 
 | 	conf->reshape_checkpoint = jiffies; | 
 | 	md_wakeup_thread(mddev->sync_thread); | 
 | 	md_new_event(); | 
 | 	return 0; | 
 |  | 
 | abort: | 
 | 	mddev->recovery = 0; | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	conf->geo = conf->prev; | 
 | 	mddev->raid_disks = conf->geo.raid_disks; | 
 | 	rdev_for_each(rdev, mddev) | 
 | 		rdev->new_data_offset = rdev->data_offset; | 
 | 	smp_wmb(); | 
 | 	conf->reshape_progress = MaxSector; | 
 | 	conf->reshape_safe = MaxSector; | 
 | 	mddev->reshape_position = MaxSector; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Calculate the last device-address that could contain | 
 |  * any block from the chunk that includes the array-address 's' | 
 |  * and report the next address. | 
 |  * i.e. the address returned will be chunk-aligned and after | 
 |  * any data that is in the chunk containing 's'. | 
 |  */ | 
 | static sector_t last_dev_address(sector_t s, struct geom *geo) | 
 | { | 
 | 	s = (s | geo->chunk_mask) + 1; | 
 | 	s >>= geo->chunk_shift; | 
 | 	s *= geo->near_copies; | 
 | 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); | 
 | 	s *= geo->far_copies; | 
 | 	s <<= geo->chunk_shift; | 
 | 	return s; | 
 | } | 
 |  | 
 | /* Calculate the first device-address that could contain | 
 |  * any block from the chunk that includes the array-address 's'. | 
 |  * This too will be the start of a chunk | 
 |  */ | 
 | static sector_t first_dev_address(sector_t s, struct geom *geo) | 
 | { | 
 | 	s >>= geo->chunk_shift; | 
 | 	s *= geo->near_copies; | 
 | 	sector_div(s, geo->raid_disks); | 
 | 	s *= geo->far_copies; | 
 | 	s <<= geo->chunk_shift; | 
 | 	return s; | 
 | } | 
 |  | 
 | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, | 
 | 				int *skipped) | 
 | { | 
 | 	/* We simply copy at most one chunk (smallest of old and new) | 
 | 	 * at a time, possibly less if that exceeds RESYNC_PAGES, | 
 | 	 * or we hit a bad block or something. | 
 | 	 * This might mean we pause for normal IO in the middle of | 
 | 	 * a chunk, but that is not a problem as mddev->reshape_position | 
 | 	 * can record any location. | 
 | 	 * | 
 | 	 * If we will want to write to a location that isn't | 
 | 	 * yet recorded as 'safe' (i.e. in metadata on disk) then | 
 | 	 * we need to flush all reshape requests and update the metadata. | 
 | 	 * | 
 | 	 * When reshaping forwards (e.g. to more devices), we interpret | 
 | 	 * 'safe' as the earliest block which might not have been copied | 
 | 	 * down yet.  We divide this by previous stripe size and multiply | 
 | 	 * by previous stripe length to get lowest device offset that we | 
 | 	 * cannot write to yet. | 
 | 	 * We interpret 'sector_nr' as an address that we want to write to. | 
 | 	 * From this we use last_device_address() to find where we might | 
 | 	 * write to, and first_device_address on the  'safe' position. | 
 | 	 * If this 'next' write position is after the 'safe' position, | 
 | 	 * we must update the metadata to increase the 'safe' position. | 
 | 	 * | 
 | 	 * When reshaping backwards, we round in the opposite direction | 
 | 	 * and perform the reverse test:  next write position must not be | 
 | 	 * less than current safe position. | 
 | 	 * | 
 | 	 * In all this the minimum difference in data offsets | 
 | 	 * (conf->offset_diff - always positive) allows a bit of slack, | 
 | 	 * so next can be after 'safe', but not by more than offset_diff | 
 | 	 * | 
 | 	 * We need to prepare all the bios here before we start any IO | 
 | 	 * to ensure the size we choose is acceptable to all devices. | 
 | 	 * The means one for each copy for write-out and an extra one for | 
 | 	 * read-in. | 
 | 	 * We store the read-in bio in ->master_bio and the others in | 
 | 	 * ->devs[x].bio and ->devs[x].repl_bio. | 
 | 	 */ | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct r10bio *r10_bio; | 
 | 	sector_t next, safe, last; | 
 | 	int max_sectors; | 
 | 	int nr_sectors; | 
 | 	int s; | 
 | 	struct md_rdev *rdev; | 
 | 	int need_flush = 0; | 
 | 	struct bio *blist; | 
 | 	struct bio *bio, *read_bio; | 
 | 	int sectors_done = 0; | 
 | 	struct page **pages; | 
 |  | 
 | 	if (sector_nr == 0) { | 
 | 		/* If restarting in the middle, skip the initial sectors */ | 
 | 		if (mddev->reshape_backwards && | 
 | 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) { | 
 | 			sector_nr = (raid10_size(mddev, 0, 0) | 
 | 				     - conf->reshape_progress); | 
 | 		} else if (!mddev->reshape_backwards && | 
 | 			   conf->reshape_progress > 0) | 
 | 			sector_nr = conf->reshape_progress; | 
 | 		if (sector_nr) { | 
 | 			mddev->curr_resync_completed = sector_nr; | 
 | 			sysfs_notify_dirent_safe(mddev->sysfs_completed); | 
 | 			*skipped = 1; | 
 | 			return sector_nr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* We don't use sector_nr to track where we are up to | 
 | 	 * as that doesn't work well for ->reshape_backwards. | 
 | 	 * So just use ->reshape_progress. | 
 | 	 */ | 
 | 	if (mddev->reshape_backwards) { | 
 | 		/* 'next' is the earliest device address that we might | 
 | 		 * write to for this chunk in the new layout | 
 | 		 */ | 
 | 		next = first_dev_address(conf->reshape_progress - 1, | 
 | 					 &conf->geo); | 
 |  | 
 | 		/* 'safe' is the last device address that we might read from | 
 | 		 * in the old layout after a restart | 
 | 		 */ | 
 | 		safe = last_dev_address(conf->reshape_safe - 1, | 
 | 					&conf->prev); | 
 |  | 
 | 		if (next + conf->offset_diff < safe) | 
 | 			need_flush = 1; | 
 |  | 
 | 		last = conf->reshape_progress - 1; | 
 | 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask | 
 | 					       & conf->prev.chunk_mask); | 
 | 		if (sector_nr + RESYNC_SECTORS < last) | 
 | 			sector_nr = last + 1 - RESYNC_SECTORS; | 
 | 	} else { | 
 | 		/* 'next' is after the last device address that we | 
 | 		 * might write to for this chunk in the new layout | 
 | 		 */ | 
 | 		next = last_dev_address(conf->reshape_progress, &conf->geo); | 
 |  | 
 | 		/* 'safe' is the earliest device address that we might | 
 | 		 * read from in the old layout after a restart | 
 | 		 */ | 
 | 		safe = first_dev_address(conf->reshape_safe, &conf->prev); | 
 |  | 
 | 		/* Need to update metadata if 'next' might be beyond 'safe' | 
 | 		 * as that would possibly corrupt data | 
 | 		 */ | 
 | 		if (next > safe + conf->offset_diff) | 
 | 			need_flush = 1; | 
 |  | 
 | 		sector_nr = conf->reshape_progress; | 
 | 		last  = sector_nr | (conf->geo.chunk_mask | 
 | 				     & conf->prev.chunk_mask); | 
 |  | 
 | 		if (sector_nr + RESYNC_SECTORS <= last) | 
 | 			last = sector_nr + RESYNC_SECTORS - 1; | 
 | 	} | 
 |  | 
 | 	if (need_flush || | 
 | 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { | 
 | 		/* Need to update reshape_position in metadata */ | 
 | 		wait_barrier(conf, false); | 
 | 		mddev->reshape_position = conf->reshape_progress; | 
 | 		if (mddev->reshape_backwards) | 
 | 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0) | 
 | 				- conf->reshape_progress; | 
 | 		else | 
 | 			mddev->curr_resync_completed = conf->reshape_progress; | 
 | 		conf->reshape_checkpoint = jiffies; | 
 | 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 || | 
 | 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery)); | 
 | 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { | 
 | 			allow_barrier(conf); | 
 | 			return sectors_done; | 
 | 		} | 
 | 		conf->reshape_safe = mddev->reshape_position; | 
 | 		allow_barrier(conf); | 
 | 	} | 
 |  | 
 | 	raise_barrier(conf, 0); | 
 | read_more: | 
 | 	/* Now schedule reads for blocks from sector_nr to last */ | 
 | 	r10_bio = raid10_alloc_init_r10buf(conf); | 
 | 	r10_bio->state = 0; | 
 | 	raise_barrier(conf, 1); | 
 | 	atomic_set(&r10_bio->remaining, 0); | 
 | 	r10_bio->mddev = mddev; | 
 | 	r10_bio->sector = sector_nr; | 
 | 	set_bit(R10BIO_IsReshape, &r10_bio->state); | 
 | 	r10_bio->sectors = last - sector_nr + 1; | 
 | 	rdev = read_balance(conf, r10_bio, &max_sectors); | 
 | 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); | 
 |  | 
 | 	if (!rdev) { | 
 | 		/* Cannot read from here, so need to record bad blocks | 
 | 		 * on all the target devices. | 
 | 		 */ | 
 | 		// FIXME | 
 | 		mempool_free(r10_bio, &conf->r10buf_pool); | 
 | 		set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 		return sectors_done; | 
 | 	} | 
 |  | 
 | 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, | 
 | 				    GFP_KERNEL, &mddev->bio_set); | 
 | 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr | 
 | 			       + rdev->data_offset); | 
 | 	read_bio->bi_private = r10_bio; | 
 | 	read_bio->bi_end_io = end_reshape_read; | 
 | 	r10_bio->master_bio = read_bio; | 
 | 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; | 
 |  | 
 | 	/* | 
 | 	 * Broadcast RESYNC message to other nodes, so all nodes would not | 
 | 	 * write to the region to avoid conflict. | 
 | 	*/ | 
 | 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { | 
 | 		struct mdp_superblock_1 *sb = NULL; | 
 | 		int sb_reshape_pos = 0; | 
 |  | 
 | 		conf->cluster_sync_low = sector_nr; | 
 | 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; | 
 | 		sb = page_address(rdev->sb_page); | 
 | 		if (sb) { | 
 | 			sb_reshape_pos = le64_to_cpu(sb->reshape_position); | 
 | 			/* | 
 | 			 * Set cluster_sync_low again if next address for array | 
 | 			 * reshape is less than cluster_sync_low. Since we can't | 
 | 			 * update cluster_sync_low until it has finished reshape. | 
 | 			 */ | 
 | 			if (sb_reshape_pos < conf->cluster_sync_low) | 
 | 				conf->cluster_sync_low = sb_reshape_pos; | 
 | 		} | 
 |  | 
 | 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, | 
 | 							  conf->cluster_sync_high); | 
 | 	} | 
 |  | 
 | 	/* Now find the locations in the new layout */ | 
 | 	__raid10_find_phys(&conf->geo, r10_bio); | 
 |  | 
 | 	blist = read_bio; | 
 | 	read_bio->bi_next = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (s = 0; s < conf->copies*2; s++) { | 
 | 		struct bio *b; | 
 | 		int d = r10_bio->devs[s/2].devnum; | 
 | 		struct md_rdev *rdev2; | 
 | 		if (s&1) { | 
 | 			rdev2 = rcu_dereference(conf->mirrors[d].replacement); | 
 | 			b = r10_bio->devs[s/2].repl_bio; | 
 | 		} else { | 
 | 			rdev2 = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			b = r10_bio->devs[s/2].bio; | 
 | 		} | 
 | 		if (!rdev2 || test_bit(Faulty, &rdev2->flags)) | 
 | 			continue; | 
 |  | 
 | 		bio_set_dev(b, rdev2->bdev); | 
 | 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + | 
 | 			rdev2->new_data_offset; | 
 | 		b->bi_end_io = end_reshape_write; | 
 | 		bio_set_op_attrs(b, REQ_OP_WRITE, 0); | 
 | 		b->bi_next = blist; | 
 | 		blist = b; | 
 | 	} | 
 |  | 
 | 	/* Now add as many pages as possible to all of these bios. */ | 
 |  | 
 | 	nr_sectors = 0; | 
 | 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages; | 
 | 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { | 
 | 		struct page *page = pages[s / (PAGE_SIZE >> 9)]; | 
 | 		int len = (max_sectors - s) << 9; | 
 | 		if (len > PAGE_SIZE) | 
 | 			len = PAGE_SIZE; | 
 | 		for (bio = blist; bio ; bio = bio->bi_next) { | 
 | 			/* | 
 | 			 * won't fail because the vec table is big enough | 
 | 			 * to hold all these pages | 
 | 			 */ | 
 | 			bio_add_page(bio, page, len, 0); | 
 | 		} | 
 | 		sector_nr += len >> 9; | 
 | 		nr_sectors += len >> 9; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	r10_bio->sectors = nr_sectors; | 
 |  | 
 | 	/* Now submit the read */ | 
 | 	md_sync_acct_bio(read_bio, r10_bio->sectors); | 
 | 	atomic_inc(&r10_bio->remaining); | 
 | 	read_bio->bi_next = NULL; | 
 | 	submit_bio_noacct(read_bio); | 
 | 	sectors_done += nr_sectors; | 
 | 	if (sector_nr <= last) | 
 | 		goto read_more; | 
 |  | 
 | 	lower_barrier(conf); | 
 |  | 
 | 	/* Now that we have done the whole section we can | 
 | 	 * update reshape_progress | 
 | 	 */ | 
 | 	if (mddev->reshape_backwards) | 
 | 		conf->reshape_progress -= sectors_done; | 
 | 	else | 
 | 		conf->reshape_progress += sectors_done; | 
 |  | 
 | 	return sectors_done; | 
 | } | 
 |  | 
 | static void end_reshape_request(struct r10bio *r10_bio); | 
 | static int handle_reshape_read_error(struct mddev *mddev, | 
 | 				     struct r10bio *r10_bio); | 
 | static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	/* Reshape read completed.  Hopefully we have a block | 
 | 	 * to write out. | 
 | 	 * If we got a read error then we do sync 1-page reads from | 
 | 	 * elsewhere until we find the data - or give up. | 
 | 	 */ | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int s; | 
 |  | 
 | 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
 | 		if (handle_reshape_read_error(mddev, r10_bio) < 0) { | 
 | 			/* Reshape has been aborted */ | 
 | 			md_done_sync(mddev, r10_bio->sectors, 0); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 	/* We definitely have the data in the pages, schedule the | 
 | 	 * writes. | 
 | 	 */ | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 | 	for (s = 0; s < conf->copies*2; s++) { | 
 | 		struct bio *b; | 
 | 		int d = r10_bio->devs[s/2].devnum; | 
 | 		struct md_rdev *rdev; | 
 | 		rcu_read_lock(); | 
 | 		if (s&1) { | 
 | 			rdev = rcu_dereference(conf->mirrors[d].replacement); | 
 | 			b = r10_bio->devs[s/2].repl_bio; | 
 | 		} else { | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			b = r10_bio->devs[s/2].bio; | 
 | 		} | 
 | 		if (!rdev || test_bit(Faulty, &rdev->flags)) { | 
 | 			rcu_read_unlock(); | 
 | 			continue; | 
 | 		} | 
 | 		atomic_inc(&rdev->nr_pending); | 
 | 		rcu_read_unlock(); | 
 | 		md_sync_acct_bio(b, r10_bio->sectors); | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		b->bi_next = NULL; | 
 | 		submit_bio_noacct(b); | 
 | 	} | 
 | 	end_reshape_request(r10_bio); | 
 | } | 
 |  | 
 | static void end_reshape(struct r10conf *conf) | 
 | { | 
 | 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irq(&conf->device_lock); | 
 | 	conf->prev = conf->geo; | 
 | 	md_finish_reshape(conf->mddev); | 
 | 	smp_wmb(); | 
 | 	conf->reshape_progress = MaxSector; | 
 | 	conf->reshape_safe = MaxSector; | 
 | 	spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 	if (conf->mddev->queue) | 
 | 		raid10_set_io_opt(conf); | 
 | 	conf->fullsync = 0; | 
 | } | 
 |  | 
 | static void raid10_update_reshape_pos(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	sector_t lo, hi; | 
 |  | 
 | 	md_cluster_ops->resync_info_get(mddev, &lo, &hi); | 
 | 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) | 
 | 	    || mddev->reshape_position == MaxSector) | 
 | 		conf->reshape_progress = mddev->reshape_position; | 
 | 	else | 
 | 		WARN_ON_ONCE(1); | 
 | } | 
 |  | 
 | static int handle_reshape_read_error(struct mddev *mddev, | 
 | 				     struct r10bio *r10_bio) | 
 | { | 
 | 	/* Use sync reads to get the blocks from somewhere else */ | 
 | 	int sectors = r10_bio->sectors; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct r10bio *r10b; | 
 | 	int slot = 0; | 
 | 	int idx = 0; | 
 | 	struct page **pages; | 
 |  | 
 | 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); | 
 | 	if (!r10b) { | 
 | 		set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* reshape IOs share pages from .devs[0].bio */ | 
 | 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages; | 
 |  | 
 | 	r10b->sector = r10_bio->sector; | 
 | 	__raid10_find_phys(&conf->prev, r10b); | 
 |  | 
 | 	while (sectors) { | 
 | 		int s = sectors; | 
 | 		int success = 0; | 
 | 		int first_slot = slot; | 
 |  | 
 | 		if (s > (PAGE_SIZE >> 9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		while (!success) { | 
 | 			int d = r10b->devs[slot].devnum; | 
 | 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			sector_t addr; | 
 | 			if (rdev == NULL || | 
 | 			    test_bit(Faulty, &rdev->flags) || | 
 | 			    !test_bit(In_sync, &rdev->flags)) | 
 | 				goto failed; | 
 |  | 
 | 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE; | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 | 			success = sync_page_io(rdev, | 
 | 					       addr, | 
 | 					       s << 9, | 
 | 					       pages[idx], | 
 | 					       REQ_OP_READ, false); | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 			if (success) | 
 | 				break; | 
 | 		failed: | 
 | 			slot++; | 
 | 			if (slot >= conf->copies) | 
 | 				slot = 0; | 
 | 			if (slot == first_slot) | 
 | 				break; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 		if (!success) { | 
 | 			/* couldn't read this block, must give up */ | 
 | 			set_bit(MD_RECOVERY_INTR, | 
 | 				&mddev->recovery); | 
 | 			kfree(r10b); | 
 | 			return -EIO; | 
 | 		} | 
 | 		sectors -= s; | 
 | 		idx++; | 
 | 	} | 
 | 	kfree(r10b); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void end_reshape_write(struct bio *bio) | 
 | { | 
 | 	struct r10bio *r10_bio = get_resync_r10bio(bio); | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int d; | 
 | 	int slot; | 
 | 	int repl; | 
 | 	struct md_rdev *rdev = NULL; | 
 |  | 
 | 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
 | 	if (repl) | 
 | 		rdev = conf->mirrors[d].replacement; | 
 | 	if (!rdev) { | 
 | 		smp_mb(); | 
 | 		rdev = conf->mirrors[d].rdev; | 
 | 	} | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		/* FIXME should record badblock */ | 
 | 		md_error(mddev, rdev); | 
 | 	} | 
 |  | 
 | 	rdev_dec_pending(rdev, mddev); | 
 | 	end_reshape_request(r10_bio); | 
 | } | 
 |  | 
 | static void end_reshape_request(struct r10bio *r10_bio) | 
 | { | 
 | 	if (!atomic_dec_and_test(&r10_bio->remaining)) | 
 | 		return; | 
 | 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); | 
 | 	bio_put(r10_bio->master_bio); | 
 | 	put_buf(r10_bio); | 
 | } | 
 |  | 
 | static void raid10_finish_reshape(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) | 
 | 		return; | 
 |  | 
 | 	if (mddev->delta_disks > 0) { | 
 | 		if (mddev->recovery_cp > mddev->resync_max_sectors) { | 
 | 			mddev->recovery_cp = mddev->resync_max_sectors; | 
 | 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
 | 		} | 
 | 		mddev->resync_max_sectors = mddev->array_sectors; | 
 | 	} else { | 
 | 		int d; | 
 | 		rcu_read_lock(); | 
 | 		for (d = conf->geo.raid_disks ; | 
 | 		     d < conf->geo.raid_disks - mddev->delta_disks; | 
 | 		     d++) { | 
 | 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev) | 
 | 				clear_bit(In_sync, &rdev->flags); | 
 | 			rdev = rcu_dereference(conf->mirrors[d].replacement); | 
 | 			if (rdev) | 
 | 				clear_bit(In_sync, &rdev->flags); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	mddev->layout = mddev->new_layout; | 
 | 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift; | 
 | 	mddev->reshape_position = MaxSector; | 
 | 	mddev->delta_disks = 0; | 
 | 	mddev->reshape_backwards = 0; | 
 | } | 
 |  | 
 | static struct md_personality raid10_personality = | 
 | { | 
 | 	.name		= "raid10", | 
 | 	.level		= 10, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= raid10_make_request, | 
 | 	.run		= raid10_run, | 
 | 	.free		= raid10_free, | 
 | 	.status		= raid10_status, | 
 | 	.error_handler	= raid10_error, | 
 | 	.hot_add_disk	= raid10_add_disk, | 
 | 	.hot_remove_disk= raid10_remove_disk, | 
 | 	.spare_active	= raid10_spare_active, | 
 | 	.sync_request	= raid10_sync_request, | 
 | 	.quiesce	= raid10_quiesce, | 
 | 	.size		= raid10_size, | 
 | 	.resize		= raid10_resize, | 
 | 	.takeover	= raid10_takeover, | 
 | 	.check_reshape	= raid10_check_reshape, | 
 | 	.start_reshape	= raid10_start_reshape, | 
 | 	.finish_reshape	= raid10_finish_reshape, | 
 | 	.update_reshape_pos = raid10_update_reshape_pos, | 
 | }; | 
 |  | 
 | static int __init raid_init(void) | 
 | { | 
 | 	return register_md_personality(&raid10_personality); | 
 | } | 
 |  | 
 | static void raid_exit(void) | 
 | { | 
 | 	unregister_md_personality(&raid10_personality); | 
 | } | 
 |  | 
 | module_init(raid_init); | 
 | module_exit(raid_exit); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); | 
 | MODULE_ALIAS("md-personality-9"); /* RAID10 */ | 
 | MODULE_ALIAS("md-raid10"); | 
 | MODULE_ALIAS("md-level-10"); |