|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * VMware vSockets Driver | 
|  | * | 
|  | * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. | 
|  | */ | 
|  |  | 
|  | /* Implementation notes: | 
|  | * | 
|  | * - There are two kinds of sockets: those created by user action (such as | 
|  | * calling socket(2)) and those created by incoming connection request packets. | 
|  | * | 
|  | * - There are two "global" tables, one for bound sockets (sockets that have | 
|  | * specified an address that they are responsible for) and one for connected | 
|  | * sockets (sockets that have established a connection with another socket). | 
|  | * These tables are "global" in that all sockets on the system are placed | 
|  | * within them. - Note, though, that the bound table contains an extra entry | 
|  | * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in | 
|  | * that list. The bound table is used solely for lookup of sockets when packets | 
|  | * are received and that's not necessary for SOCK_DGRAM sockets since we create | 
|  | * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM | 
|  | * sockets out of the bound hash buckets will reduce the chance of collisions | 
|  | * when looking for SOCK_STREAM sockets and prevents us from having to check the | 
|  | * socket type in the hash table lookups. | 
|  | * | 
|  | * - Sockets created by user action will either be "client" sockets that | 
|  | * initiate a connection or "server" sockets that listen for connections; we do | 
|  | * not support simultaneous connects (two "client" sockets connecting). | 
|  | * | 
|  | * - "Server" sockets are referred to as listener sockets throughout this | 
|  | * implementation because they are in the TCP_LISTEN state.  When a | 
|  | * connection request is received (the second kind of socket mentioned above), | 
|  | * we create a new socket and refer to it as a pending socket.  These pending | 
|  | * sockets are placed on the pending connection list of the listener socket. | 
|  | * When future packets are received for the address the listener socket is | 
|  | * bound to, we check if the source of the packet is from one that has an | 
|  | * existing pending connection.  If it does, we process the packet for the | 
|  | * pending socket.  When that socket reaches the connected state, it is removed | 
|  | * from the listener socket's pending list and enqueued in the listener | 
|  | * socket's accept queue.  Callers of accept(2) will accept connected sockets | 
|  | * from the listener socket's accept queue.  If the socket cannot be accepted | 
|  | * for some reason then it is marked rejected.  Once the connection is | 
|  | * accepted, it is owned by the user process and the responsibility for cleanup | 
|  | * falls with that user process. | 
|  | * | 
|  | * - It is possible that these pending sockets will never reach the connected | 
|  | * state; in fact, we may never receive another packet after the connection | 
|  | * request.  Because of this, we must schedule a cleanup function to run in the | 
|  | * future, after some amount of time passes where a connection should have been | 
|  | * established.  This function ensures that the socket is off all lists so it | 
|  | * cannot be retrieved, then drops all references to the socket so it is cleaned | 
|  | * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this | 
|  | * function will also cleanup rejected sockets, those that reach the connected | 
|  | * state but leave it before they have been accepted. | 
|  | * | 
|  | * - Lock ordering for pending or accept queue sockets is: | 
|  | * | 
|  | *     lock_sock(listener); | 
|  | *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING); | 
|  | * | 
|  | * Using explicit nested locking keeps lockdep happy since normally only one | 
|  | * lock of a given class may be taken at a time. | 
|  | * | 
|  | * - Sockets created by user action will be cleaned up when the user process | 
|  | * calls close(2), causing our release implementation to be called. Our release | 
|  | * implementation will perform some cleanup then drop the last reference so our | 
|  | * sk_destruct implementation is invoked.  Our sk_destruct implementation will | 
|  | * perform additional cleanup that's common for both types of sockets. | 
|  | * | 
|  | * - A socket's reference count is what ensures that the structure won't be | 
|  | * freed.  Each entry in a list (such as the "global" bound and connected tables | 
|  | * and the listener socket's pending list and connected queue) ensures a | 
|  | * reference.  When we defer work until process context and pass a socket as our | 
|  | * argument, we must ensure the reference count is increased to ensure the | 
|  | * socket isn't freed before the function is run; the deferred function will | 
|  | * then drop the reference. | 
|  | * | 
|  | * - sk->sk_state uses the TCP state constants because they are widely used by | 
|  | * other address families and exposed to userspace tools like ss(8): | 
|  | * | 
|  | *   TCP_CLOSE - unconnected | 
|  | *   TCP_SYN_SENT - connecting | 
|  | *   TCP_ESTABLISHED - connected | 
|  | *   TCP_CLOSING - disconnecting | 
|  | *   TCP_LISTEN - listening | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/af_vsock.h> | 
|  |  | 
|  | static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); | 
|  | static void vsock_sk_destruct(struct sock *sk); | 
|  | static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); | 
|  |  | 
|  | /* Protocol family. */ | 
|  | static struct proto vsock_proto = { | 
|  | .name = "AF_VSOCK", | 
|  | .owner = THIS_MODULE, | 
|  | .obj_size = sizeof(struct vsock_sock), | 
|  | }; | 
|  |  | 
|  | /* The default peer timeout indicates how long we will wait for a peer response | 
|  | * to a control message. | 
|  | */ | 
|  | #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) | 
|  |  | 
|  | #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256) | 
|  | #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) | 
|  | #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 | 
|  |  | 
|  | /* Transport used for host->guest communication */ | 
|  | static const struct vsock_transport *transport_h2g; | 
|  | /* Transport used for guest->host communication */ | 
|  | static const struct vsock_transport *transport_g2h; | 
|  | /* Transport used for DGRAM communication */ | 
|  | static const struct vsock_transport *transport_dgram; | 
|  | /* Transport used for local communication */ | 
|  | static const struct vsock_transport *transport_local; | 
|  | static DEFINE_MUTEX(vsock_register_mutex); | 
|  |  | 
|  | /**** UTILS ****/ | 
|  |  | 
|  | /* Each bound VSocket is stored in the bind hash table and each connected | 
|  | * VSocket is stored in the connected hash table. | 
|  | * | 
|  | * Unbound sockets are all put on the same list attached to the end of the hash | 
|  | * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in | 
|  | * the bucket that their local address hashes to (vsock_bound_sockets(addr) | 
|  | * represents the list that addr hashes to). | 
|  | * | 
|  | * Specifically, we initialize the vsock_bind_table array to a size of | 
|  | * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through | 
|  | * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and | 
|  | * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function | 
|  | * mods with VSOCK_HASH_SIZE to ensure this. | 
|  | */ | 
|  | #define MAX_PORT_RETRIES        24 | 
|  |  | 
|  | #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE) | 
|  | #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) | 
|  | #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE]) | 
|  |  | 
|  | /* XXX This can probably be implemented in a better way. */ | 
|  | #define VSOCK_CONN_HASH(src, dst)				\ | 
|  | (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) | 
|  | #define vsock_connected_sockets(src, dst)		\ | 
|  | (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) | 
|  | #define vsock_connected_sockets_vsk(vsk)				\ | 
|  | vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) | 
|  |  | 
|  | struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; | 
|  | EXPORT_SYMBOL_GPL(vsock_bind_table); | 
|  | struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; | 
|  | EXPORT_SYMBOL_GPL(vsock_connected_table); | 
|  | DEFINE_SPINLOCK(vsock_table_lock); | 
|  | EXPORT_SYMBOL_GPL(vsock_table_lock); | 
|  |  | 
|  | /* Autobind this socket to the local address if necessary. */ | 
|  | static int vsock_auto_bind(struct vsock_sock *vsk) | 
|  | { | 
|  | struct sock *sk = sk_vsock(vsk); | 
|  | struct sockaddr_vm local_addr; | 
|  |  | 
|  | if (vsock_addr_bound(&vsk->local_addr)) | 
|  | return 0; | 
|  | vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
|  | return __vsock_bind(sk, &local_addr); | 
|  | } | 
|  |  | 
|  | static void vsock_init_tables(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) | 
|  | INIT_LIST_HEAD(&vsock_bind_table[i]); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) | 
|  | INIT_LIST_HEAD(&vsock_connected_table[i]); | 
|  | } | 
|  |  | 
|  | static void __vsock_insert_bound(struct list_head *list, | 
|  | struct vsock_sock *vsk) | 
|  | { | 
|  | sock_hold(&vsk->sk); | 
|  | list_add(&vsk->bound_table, list); | 
|  | } | 
|  |  | 
|  | static void __vsock_insert_connected(struct list_head *list, | 
|  | struct vsock_sock *vsk) | 
|  | { | 
|  | sock_hold(&vsk->sk); | 
|  | list_add(&vsk->connected_table, list); | 
|  | } | 
|  |  | 
|  | static void __vsock_remove_bound(struct vsock_sock *vsk) | 
|  | { | 
|  | list_del_init(&vsk->bound_table); | 
|  | sock_put(&vsk->sk); | 
|  | } | 
|  |  | 
|  | static void __vsock_remove_connected(struct vsock_sock *vsk) | 
|  | { | 
|  | list_del_init(&vsk->connected_table); | 
|  | sock_put(&vsk->sk); | 
|  | } | 
|  |  | 
|  | static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) | 
|  | { | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { | 
|  | if (vsock_addr_equals_addr(addr, &vsk->local_addr)) | 
|  | return sk_vsock(vsk); | 
|  |  | 
|  | if (addr->svm_port == vsk->local_addr.svm_port && | 
|  | (vsk->local_addr.svm_cid == VMADDR_CID_ANY || | 
|  | addr->svm_cid == VMADDR_CID_ANY)) | 
|  | return sk_vsock(vsk); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, | 
|  | struct sockaddr_vm *dst) | 
|  | { | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | list_for_each_entry(vsk, vsock_connected_sockets(src, dst), | 
|  | connected_table) { | 
|  | if (vsock_addr_equals_addr(src, &vsk->remote_addr) && | 
|  | dst->svm_port == vsk->local_addr.svm_port) { | 
|  | return sk_vsock(vsk); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void vsock_insert_unbound(struct vsock_sock *vsk) | 
|  | { | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | __vsock_insert_bound(vsock_unbound_sockets, vsk); | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  | } | 
|  |  | 
|  | void vsock_insert_connected(struct vsock_sock *vsk) | 
|  | { | 
|  | struct list_head *list = vsock_connected_sockets( | 
|  | &vsk->remote_addr, &vsk->local_addr); | 
|  |  | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | __vsock_insert_connected(list, vsk); | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_insert_connected); | 
|  |  | 
|  | void vsock_remove_bound(struct vsock_sock *vsk) | 
|  | { | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | if (__vsock_in_bound_table(vsk)) | 
|  | __vsock_remove_bound(vsk); | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_remove_bound); | 
|  |  | 
|  | void vsock_remove_connected(struct vsock_sock *vsk) | 
|  | { | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | if (__vsock_in_connected_table(vsk)) | 
|  | __vsock_remove_connected(vsk); | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_remove_connected); | 
|  |  | 
|  | struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | sk = __vsock_find_bound_socket(addr); | 
|  | if (sk) | 
|  | sock_hold(sk); | 
|  |  | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  |  | 
|  | return sk; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_find_bound_socket); | 
|  |  | 
|  | struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, | 
|  | struct sockaddr_vm *dst) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | sk = __vsock_find_connected_socket(src, dst); | 
|  | if (sk) | 
|  | sock_hold(sk); | 
|  |  | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  |  | 
|  | return sk; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_find_connected_socket); | 
|  |  | 
|  | void vsock_remove_sock(struct vsock_sock *vsk) | 
|  | { | 
|  | vsock_remove_bound(vsk); | 
|  | vsock_remove_connected(vsk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_remove_sock); | 
|  |  | 
|  | void vsock_for_each_connected_socket(struct vsock_transport *transport, | 
|  | void (*fn)(struct sock *sk)) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { | 
|  | struct vsock_sock *vsk; | 
|  | list_for_each_entry(vsk, &vsock_connected_table[i], | 
|  | connected_table) { | 
|  | if (vsk->transport != transport) | 
|  | continue; | 
|  |  | 
|  | fn(sk_vsock(vsk)); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); | 
|  |  | 
|  | void vsock_add_pending(struct sock *listener, struct sock *pending) | 
|  | { | 
|  | struct vsock_sock *vlistener; | 
|  | struct vsock_sock *vpending; | 
|  |  | 
|  | vlistener = vsock_sk(listener); | 
|  | vpending = vsock_sk(pending); | 
|  |  | 
|  | sock_hold(pending); | 
|  | sock_hold(listener); | 
|  | list_add_tail(&vpending->pending_links, &vlistener->pending_links); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_add_pending); | 
|  |  | 
|  | void vsock_remove_pending(struct sock *listener, struct sock *pending) | 
|  | { | 
|  | struct vsock_sock *vpending = vsock_sk(pending); | 
|  |  | 
|  | list_del_init(&vpending->pending_links); | 
|  | sock_put(listener); | 
|  | sock_put(pending); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_remove_pending); | 
|  |  | 
|  | void vsock_enqueue_accept(struct sock *listener, struct sock *connected) | 
|  | { | 
|  | struct vsock_sock *vlistener; | 
|  | struct vsock_sock *vconnected; | 
|  |  | 
|  | vlistener = vsock_sk(listener); | 
|  | vconnected = vsock_sk(connected); | 
|  |  | 
|  | sock_hold(connected); | 
|  | sock_hold(listener); | 
|  | list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_enqueue_accept); | 
|  |  | 
|  | static bool vsock_use_local_transport(unsigned int remote_cid) | 
|  | { | 
|  | if (!transport_local) | 
|  | return false; | 
|  |  | 
|  | if (remote_cid == VMADDR_CID_LOCAL) | 
|  | return true; | 
|  |  | 
|  | if (transport_g2h) { | 
|  | return remote_cid == transport_g2h->get_local_cid(); | 
|  | } else { | 
|  | return remote_cid == VMADDR_CID_HOST; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vsock_deassign_transport(struct vsock_sock *vsk) | 
|  | { | 
|  | if (!vsk->transport) | 
|  | return; | 
|  |  | 
|  | vsk->transport->destruct(vsk); | 
|  | module_put(vsk->transport->module); | 
|  | vsk->transport = NULL; | 
|  | } | 
|  |  | 
|  | /* Assign a transport to a socket and call the .init transport callback. | 
|  | * | 
|  | * Note: for connection oriented socket this must be called when vsk->remote_addr | 
|  | * is set (e.g. during the connect() or when a connection request on a listener | 
|  | * socket is received). | 
|  | * The vsk->remote_addr is used to decide which transport to use: | 
|  | *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if | 
|  | *    g2h is not loaded, will use local transport; | 
|  | *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field | 
|  | *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; | 
|  | *  - remote CID > VMADDR_CID_HOST will use host->guest transport; | 
|  | */ | 
|  | int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) | 
|  | { | 
|  | const struct vsock_transport *new_transport; | 
|  | struct sock *sk = sk_vsock(vsk); | 
|  | unsigned int remote_cid = vsk->remote_addr.svm_cid; | 
|  | __u8 remote_flags; | 
|  | int ret; | 
|  |  | 
|  | /* If the packet is coming with the source and destination CIDs higher | 
|  | * than VMADDR_CID_HOST, then a vsock channel where all the packets are | 
|  | * forwarded to the host should be established. Then the host will | 
|  | * need to forward the packets to the guest. | 
|  | * | 
|  | * The flag is set on the (listen) receive path (psk is not NULL). On | 
|  | * the connect path the flag can be set by the user space application. | 
|  | */ | 
|  | if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && | 
|  | vsk->remote_addr.svm_cid > VMADDR_CID_HOST) | 
|  | vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; | 
|  |  | 
|  | remote_flags = vsk->remote_addr.svm_flags; | 
|  |  | 
|  | switch (sk->sk_type) { | 
|  | case SOCK_DGRAM: | 
|  | new_transport = transport_dgram; | 
|  | break; | 
|  | case SOCK_STREAM: | 
|  | case SOCK_SEQPACKET: | 
|  | if (vsock_use_local_transport(remote_cid)) | 
|  | new_transport = transport_local; | 
|  | else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || | 
|  | (remote_flags & VMADDR_FLAG_TO_HOST)) | 
|  | new_transport = transport_g2h; | 
|  | else | 
|  | new_transport = transport_h2g; | 
|  | break; | 
|  | default: | 
|  | return -ESOCKTNOSUPPORT; | 
|  | } | 
|  |  | 
|  | if (vsk->transport) { | 
|  | if (vsk->transport == new_transport) | 
|  | return 0; | 
|  |  | 
|  | /* transport->release() must be called with sock lock acquired. | 
|  | * This path can only be taken during vsock_connect(), where we | 
|  | * have already held the sock lock. In the other cases, this | 
|  | * function is called on a new socket which is not assigned to | 
|  | * any transport. | 
|  | */ | 
|  | vsk->transport->release(vsk); | 
|  | vsock_deassign_transport(vsk); | 
|  | } | 
|  |  | 
|  | /* We increase the module refcnt to prevent the transport unloading | 
|  | * while there are open sockets assigned to it. | 
|  | */ | 
|  | if (!new_transport || !try_module_get(new_transport->module)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (sk->sk_type == SOCK_SEQPACKET) { | 
|  | if (!new_transport->seqpacket_allow || | 
|  | !new_transport->seqpacket_allow(remote_cid)) { | 
|  | module_put(new_transport->module); | 
|  | return -ESOCKTNOSUPPORT; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = new_transport->init(vsk, psk); | 
|  | if (ret) { | 
|  | module_put(new_transport->module); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | vsk->transport = new_transport; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_assign_transport); | 
|  |  | 
|  | bool vsock_find_cid(unsigned int cid) | 
|  | { | 
|  | if (transport_g2h && cid == transport_g2h->get_local_cid()) | 
|  | return true; | 
|  |  | 
|  | if (transport_h2g && cid == VMADDR_CID_HOST) | 
|  | return true; | 
|  |  | 
|  | if (transport_local && cid == VMADDR_CID_LOCAL) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_find_cid); | 
|  |  | 
|  | static struct sock *vsock_dequeue_accept(struct sock *listener) | 
|  | { | 
|  | struct vsock_sock *vlistener; | 
|  | struct vsock_sock *vconnected; | 
|  |  | 
|  | vlistener = vsock_sk(listener); | 
|  |  | 
|  | if (list_empty(&vlistener->accept_queue)) | 
|  | return NULL; | 
|  |  | 
|  | vconnected = list_entry(vlistener->accept_queue.next, | 
|  | struct vsock_sock, accept_queue); | 
|  |  | 
|  | list_del_init(&vconnected->accept_queue); | 
|  | sock_put(listener); | 
|  | /* The caller will need a reference on the connected socket so we let | 
|  | * it call sock_put(). | 
|  | */ | 
|  |  | 
|  | return sk_vsock(vconnected); | 
|  | } | 
|  |  | 
|  | static bool vsock_is_accept_queue_empty(struct sock *sk) | 
|  | { | 
|  | struct vsock_sock *vsk = vsock_sk(sk); | 
|  | return list_empty(&vsk->accept_queue); | 
|  | } | 
|  |  | 
|  | static bool vsock_is_pending(struct sock *sk) | 
|  | { | 
|  | struct vsock_sock *vsk = vsock_sk(sk); | 
|  | return !list_empty(&vsk->pending_links); | 
|  | } | 
|  |  | 
|  | static int vsock_send_shutdown(struct sock *sk, int mode) | 
|  | { | 
|  | struct vsock_sock *vsk = vsock_sk(sk); | 
|  |  | 
|  | if (!vsk->transport) | 
|  | return -ENODEV; | 
|  |  | 
|  | return vsk->transport->shutdown(vsk, mode); | 
|  | } | 
|  |  | 
|  | static void vsock_pending_work(struct work_struct *work) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct sock *listener; | 
|  | struct vsock_sock *vsk; | 
|  | bool cleanup; | 
|  |  | 
|  | vsk = container_of(work, struct vsock_sock, pending_work.work); | 
|  | sk = sk_vsock(vsk); | 
|  | listener = vsk->listener; | 
|  | cleanup = true; | 
|  |  | 
|  | lock_sock(listener); | 
|  | lock_sock_nested(sk, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | if (vsock_is_pending(sk)) { | 
|  | vsock_remove_pending(listener, sk); | 
|  |  | 
|  | sk_acceptq_removed(listener); | 
|  | } else if (!vsk->rejected) { | 
|  | /* We are not on the pending list and accept() did not reject | 
|  | * us, so we must have been accepted by our user process.  We | 
|  | * just need to drop our references to the sockets and be on | 
|  | * our way. | 
|  | */ | 
|  | cleanup = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We need to remove ourself from the global connected sockets list so | 
|  | * incoming packets can't find this socket, and to reduce the reference | 
|  | * count. | 
|  | */ | 
|  | vsock_remove_connected(vsk); | 
|  |  | 
|  | sk->sk_state = TCP_CLOSE; | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | release_sock(listener); | 
|  | if (cleanup) | 
|  | sock_put(sk); | 
|  |  | 
|  | sock_put(sk); | 
|  | sock_put(listener); | 
|  | } | 
|  |  | 
|  | /**** SOCKET OPERATIONS ****/ | 
|  |  | 
|  | static int __vsock_bind_connectible(struct vsock_sock *vsk, | 
|  | struct sockaddr_vm *addr) | 
|  | { | 
|  | static u32 port; | 
|  | struct sockaddr_vm new_addr; | 
|  |  | 
|  | if (!port) | 
|  | port = LAST_RESERVED_PORT + 1 + | 
|  | prandom_u32_max(U32_MAX - LAST_RESERVED_PORT); | 
|  |  | 
|  | vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); | 
|  |  | 
|  | if (addr->svm_port == VMADDR_PORT_ANY) { | 
|  | bool found = false; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < MAX_PORT_RETRIES; i++) { | 
|  | if (port <= LAST_RESERVED_PORT) | 
|  | port = LAST_RESERVED_PORT + 1; | 
|  |  | 
|  | new_addr.svm_port = port++; | 
|  |  | 
|  | if (!__vsock_find_bound_socket(&new_addr)) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) | 
|  | return -EADDRNOTAVAIL; | 
|  | } else { | 
|  | /* If port is in reserved range, ensure caller | 
|  | * has necessary privileges. | 
|  | */ | 
|  | if (addr->svm_port <= LAST_RESERVED_PORT && | 
|  | !capable(CAP_NET_BIND_SERVICE)) { | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (__vsock_find_bound_socket(&new_addr)) | 
|  | return -EADDRINUSE; | 
|  | } | 
|  |  | 
|  | vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); | 
|  |  | 
|  | /* Remove connection oriented sockets from the unbound list and add them | 
|  | * to the hash table for easy lookup by its address.  The unbound list | 
|  | * is simply an extra entry at the end of the hash table, a trick used | 
|  | * by AF_UNIX. | 
|  | */ | 
|  | __vsock_remove_bound(vsk); | 
|  | __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __vsock_bind_dgram(struct vsock_sock *vsk, | 
|  | struct sockaddr_vm *addr) | 
|  | { | 
|  | return vsk->transport->dgram_bind(vsk, addr); | 
|  | } | 
|  |  | 
|  | static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) | 
|  | { | 
|  | struct vsock_sock *vsk = vsock_sk(sk); | 
|  | int retval; | 
|  |  | 
|  | /* First ensure this socket isn't already bound. */ | 
|  | if (vsock_addr_bound(&vsk->local_addr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Now bind to the provided address or select appropriate values if | 
|  | * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that | 
|  | * like AF_INET prevents binding to a non-local IP address (in most | 
|  | * cases), we only allow binding to a local CID. | 
|  | */ | 
|  | if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | switch (sk->sk_socket->type) { | 
|  | case SOCK_STREAM: | 
|  | case SOCK_SEQPACKET: | 
|  | spin_lock_bh(&vsock_table_lock); | 
|  | retval = __vsock_bind_connectible(vsk, addr); | 
|  | spin_unlock_bh(&vsock_table_lock); | 
|  | break; | 
|  |  | 
|  | case SOCK_DGRAM: | 
|  | retval = __vsock_bind_dgram(vsk, addr); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void vsock_connect_timeout(struct work_struct *work); | 
|  |  | 
|  | static struct sock *__vsock_create(struct net *net, | 
|  | struct socket *sock, | 
|  | struct sock *parent, | 
|  | gfp_t priority, | 
|  | unsigned short type, | 
|  | int kern) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct vsock_sock *psk; | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); | 
|  | if (!sk) | 
|  | return NULL; | 
|  |  | 
|  | sock_init_data(sock, sk); | 
|  |  | 
|  | /* sk->sk_type is normally set in sock_init_data, but only if sock is | 
|  | * non-NULL. We make sure that our sockets always have a type by | 
|  | * setting it here if needed. | 
|  | */ | 
|  | if (!sock) | 
|  | sk->sk_type = type; | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  | vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
|  | vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
|  |  | 
|  | sk->sk_destruct = vsock_sk_destruct; | 
|  | sk->sk_backlog_rcv = vsock_queue_rcv_skb; | 
|  | sock_reset_flag(sk, SOCK_DONE); | 
|  |  | 
|  | INIT_LIST_HEAD(&vsk->bound_table); | 
|  | INIT_LIST_HEAD(&vsk->connected_table); | 
|  | vsk->listener = NULL; | 
|  | INIT_LIST_HEAD(&vsk->pending_links); | 
|  | INIT_LIST_HEAD(&vsk->accept_queue); | 
|  | vsk->rejected = false; | 
|  | vsk->sent_request = false; | 
|  | vsk->ignore_connecting_rst = false; | 
|  | vsk->peer_shutdown = 0; | 
|  | INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); | 
|  | INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); | 
|  |  | 
|  | psk = parent ? vsock_sk(parent) : NULL; | 
|  | if (parent) { | 
|  | vsk->trusted = psk->trusted; | 
|  | vsk->owner = get_cred(psk->owner); | 
|  | vsk->connect_timeout = psk->connect_timeout; | 
|  | vsk->buffer_size = psk->buffer_size; | 
|  | vsk->buffer_min_size = psk->buffer_min_size; | 
|  | vsk->buffer_max_size = psk->buffer_max_size; | 
|  | security_sk_clone(parent, sk); | 
|  | } else { | 
|  | vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); | 
|  | vsk->owner = get_current_cred(); | 
|  | vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; | 
|  | vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; | 
|  | vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; | 
|  | vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; | 
|  | } | 
|  |  | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static bool sock_type_connectible(u16 type) | 
|  | { | 
|  | return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); | 
|  | } | 
|  |  | 
|  | static void __vsock_release(struct sock *sk, int level) | 
|  | { | 
|  | if (sk) { | 
|  | struct sock *pending; | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  | pending = NULL;	/* Compiler warning. */ | 
|  |  | 
|  | /* When "level" is SINGLE_DEPTH_NESTING, use the nested | 
|  | * version to avoid the warning "possible recursive locking | 
|  | * detected". When "level" is 0, lock_sock_nested(sk, level) | 
|  | * is the same as lock_sock(sk). | 
|  | */ | 
|  | lock_sock_nested(sk, level); | 
|  |  | 
|  | if (vsk->transport) | 
|  | vsk->transport->release(vsk); | 
|  | else if (sock_type_connectible(sk->sk_type)) | 
|  | vsock_remove_sock(vsk); | 
|  |  | 
|  | sock_orphan(sk); | 
|  | sk->sk_shutdown = SHUTDOWN_MASK; | 
|  |  | 
|  | skb_queue_purge(&sk->sk_receive_queue); | 
|  |  | 
|  | /* Clean up any sockets that never were accepted. */ | 
|  | while ((pending = vsock_dequeue_accept(sk)) != NULL) { | 
|  | __vsock_release(pending, SINGLE_DEPTH_NESTING); | 
|  | sock_put(pending); | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | sock_put(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vsock_sk_destruct(struct sock *sk) | 
|  | { | 
|  | struct vsock_sock *vsk = vsock_sk(sk); | 
|  |  | 
|  | vsock_deassign_transport(vsk); | 
|  |  | 
|  | /* When clearing these addresses, there's no need to set the family and | 
|  | * possibly register the address family with the kernel. | 
|  | */ | 
|  | vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
|  | vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
|  |  | 
|  | put_cred(vsk->owner); | 
|  | } | 
|  |  | 
|  | static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sock_queue_rcv_skb(sk, skb); | 
|  | if (err) | 
|  | kfree_skb(skb); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct sock *vsock_create_connected(struct sock *parent) | 
|  | { | 
|  | return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, | 
|  | parent->sk_type, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_create_connected); | 
|  |  | 
|  | s64 vsock_stream_has_data(struct vsock_sock *vsk) | 
|  | { | 
|  | return vsk->transport->stream_has_data(vsk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_stream_has_data); | 
|  |  | 
|  | static s64 vsock_connectible_has_data(struct vsock_sock *vsk) | 
|  | { | 
|  | struct sock *sk = sk_vsock(vsk); | 
|  |  | 
|  | if (sk->sk_type == SOCK_SEQPACKET) | 
|  | return vsk->transport->seqpacket_has_data(vsk); | 
|  | else | 
|  | return vsock_stream_has_data(vsk); | 
|  | } | 
|  |  | 
|  | s64 vsock_stream_has_space(struct vsock_sock *vsk) | 
|  | { | 
|  | return vsk->transport->stream_has_space(vsk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_stream_has_space); | 
|  |  | 
|  | static int vsock_release(struct socket *sock) | 
|  | { | 
|  | __vsock_release(sock->sk, 0); | 
|  | sock->sk = NULL; | 
|  | sock->state = SS_FREE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct sockaddr_vm *vm_addr; | 
|  |  | 
|  | sk = sock->sk; | 
|  |  | 
|  | if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | lock_sock(sk); | 
|  | err = __vsock_bind(sk, vm_addr); | 
|  | release_sock(sk); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_getname(struct socket *sock, | 
|  | struct sockaddr *addr, int peer) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | struct sockaddr_vm *vm_addr; | 
|  |  | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  | err = 0; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (peer) { | 
|  | if (sock->state != SS_CONNECTED) { | 
|  | err = -ENOTCONN; | 
|  | goto out; | 
|  | } | 
|  | vm_addr = &vsk->remote_addr; | 
|  | } else { | 
|  | vm_addr = &vsk->local_addr; | 
|  | } | 
|  |  | 
|  | if (!vm_addr) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* sys_getsockname() and sys_getpeername() pass us a | 
|  | * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately | 
|  | * that macro is defined in socket.c instead of .h, so we hardcode its | 
|  | * value here. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(*vm_addr) > 128); | 
|  | memcpy(addr, vm_addr, sizeof(*vm_addr)); | 
|  | err = sizeof(*vm_addr); | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_shutdown(struct socket *sock, int mode) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  |  | 
|  | /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses | 
|  | * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode | 
|  | * here like the other address families do.  Note also that the | 
|  | * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), | 
|  | * which is what we want. | 
|  | */ | 
|  | mode++; | 
|  |  | 
|  | if ((mode & ~SHUTDOWN_MASK) || !mode) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* If this is a connection oriented socket and it is not connected then | 
|  | * bail out immediately.  If it is a DGRAM socket then we must first | 
|  | * kick the socket so that it wakes up from any sleeping calls, for | 
|  | * example recv(), and then afterwards return the error. | 
|  | */ | 
|  |  | 
|  | sk = sock->sk; | 
|  |  | 
|  | lock_sock(sk); | 
|  | if (sock->state == SS_UNCONNECTED) { | 
|  | err = -ENOTCONN; | 
|  | if (sock_type_connectible(sk->sk_type)) | 
|  | goto out; | 
|  | } else { | 
|  | sock->state = SS_DISCONNECTING; | 
|  | err = 0; | 
|  | } | 
|  |  | 
|  | /* Receive and send shutdowns are treated alike. */ | 
|  | mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); | 
|  | if (mode) { | 
|  | sk->sk_shutdown |= mode; | 
|  | sk->sk_state_change(sk); | 
|  |  | 
|  | if (sock_type_connectible(sk->sk_type)) { | 
|  | sock_reset_flag(sk, SOCK_DONE); | 
|  | vsock_send_shutdown(sk, mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static __poll_t vsock_poll(struct file *file, struct socket *sock, | 
|  | poll_table *wait) | 
|  | { | 
|  | struct sock *sk; | 
|  | __poll_t mask; | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | poll_wait(file, sk_sleep(sk), wait); | 
|  | mask = 0; | 
|  |  | 
|  | if (sk->sk_err) | 
|  | /* Signify that there has been an error on this socket. */ | 
|  | mask |= EPOLLERR; | 
|  |  | 
|  | /* INET sockets treat local write shutdown and peer write shutdown as a | 
|  | * case of EPOLLHUP set. | 
|  | */ | 
|  | if ((sk->sk_shutdown == SHUTDOWN_MASK) || | 
|  | ((sk->sk_shutdown & SEND_SHUTDOWN) && | 
|  | (vsk->peer_shutdown & SEND_SHUTDOWN))) { | 
|  | mask |= EPOLLHUP; | 
|  | } | 
|  |  | 
|  | if (sk->sk_shutdown & RCV_SHUTDOWN || | 
|  | vsk->peer_shutdown & SEND_SHUTDOWN) { | 
|  | mask |= EPOLLRDHUP; | 
|  | } | 
|  |  | 
|  | if (sock->type == SOCK_DGRAM) { | 
|  | /* For datagram sockets we can read if there is something in | 
|  | * the queue and write as long as the socket isn't shutdown for | 
|  | * sending. | 
|  | */ | 
|  | if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || | 
|  | (sk->sk_shutdown & RCV_SHUTDOWN)) { | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  | } | 
|  |  | 
|  | if (!(sk->sk_shutdown & SEND_SHUTDOWN)) | 
|  | mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; | 
|  |  | 
|  | } else if (sock_type_connectible(sk->sk_type)) { | 
|  | const struct vsock_transport *transport; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | transport = vsk->transport; | 
|  |  | 
|  | /* Listening sockets that have connections in their accept | 
|  | * queue can be read. | 
|  | */ | 
|  | if (sk->sk_state == TCP_LISTEN | 
|  | && !vsock_is_accept_queue_empty(sk)) | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | /* If there is something in the queue then we can read. */ | 
|  | if (transport && transport->stream_is_active(vsk) && | 
|  | !(sk->sk_shutdown & RCV_SHUTDOWN)) { | 
|  | bool data_ready_now = false; | 
|  | int ret = transport->notify_poll_in( | 
|  | vsk, 1, &data_ready_now); | 
|  | if (ret < 0) { | 
|  | mask |= EPOLLERR; | 
|  | } else { | 
|  | if (data_ready_now) | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sockets whose connections have been closed, reset, or | 
|  | * terminated should also be considered read, and we check the | 
|  | * shutdown flag for that. | 
|  | */ | 
|  | if (sk->sk_shutdown & RCV_SHUTDOWN || | 
|  | vsk->peer_shutdown & SEND_SHUTDOWN) { | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  | } | 
|  |  | 
|  | /* Connected sockets that can produce data can be written. */ | 
|  | if (transport && sk->sk_state == TCP_ESTABLISHED) { | 
|  | if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { | 
|  | bool space_avail_now = false; | 
|  | int ret = transport->notify_poll_out( | 
|  | vsk, 1, &space_avail_now); | 
|  | if (ret < 0) { | 
|  | mask |= EPOLLERR; | 
|  | } else { | 
|  | if (space_avail_now) | 
|  | /* Remove EPOLLWRBAND since INET | 
|  | * sockets are not setting it. | 
|  | */ | 
|  | mask |= EPOLLOUT | EPOLLWRNORM; | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Simulate INET socket poll behaviors, which sets | 
|  | * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, | 
|  | * but local send is not shutdown. | 
|  | */ | 
|  | if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { | 
|  | if (!(sk->sk_shutdown & SEND_SHUTDOWN)) | 
|  | mask |= EPOLLOUT | EPOLLWRNORM; | 
|  |  | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, | 
|  | size_t len) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | struct sockaddr_vm *remote_addr; | 
|  | const struct vsock_transport *transport; | 
|  |  | 
|  | if (msg->msg_flags & MSG_OOB) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* For now, MSG_DONTWAIT is always assumed... */ | 
|  | err = 0; | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | transport = vsk->transport; | 
|  |  | 
|  | err = vsock_auto_bind(vsk); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  |  | 
|  | /* If the provided message contains an address, use that.  Otherwise | 
|  | * fall back on the socket's remote handle (if it has been connected). | 
|  | */ | 
|  | if (msg->msg_name && | 
|  | vsock_addr_cast(msg->msg_name, msg->msg_namelen, | 
|  | &remote_addr) == 0) { | 
|  | /* Ensure this address is of the right type and is a valid | 
|  | * destination. | 
|  | */ | 
|  |  | 
|  | if (remote_addr->svm_cid == VMADDR_CID_ANY) | 
|  | remote_addr->svm_cid = transport->get_local_cid(); | 
|  |  | 
|  | if (!vsock_addr_bound(remote_addr)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else if (sock->state == SS_CONNECTED) { | 
|  | remote_addr = &vsk->remote_addr; | 
|  |  | 
|  | if (remote_addr->svm_cid == VMADDR_CID_ANY) | 
|  | remote_addr->svm_cid = transport->get_local_cid(); | 
|  |  | 
|  | /* XXX Should connect() or this function ensure remote_addr is | 
|  | * bound? | 
|  | */ | 
|  | if (!vsock_addr_bound(&vsk->remote_addr)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!transport->dgram_allow(remote_addr->svm_cid, | 
|  | remote_addr->svm_port)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = transport->dgram_enqueue(vsk, remote_addr, msg, len); | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_dgram_connect(struct socket *sock, | 
|  | struct sockaddr *addr, int addr_len, int flags) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | struct sockaddr_vm *remote_addr; | 
|  |  | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | err = vsock_addr_cast(addr, addr_len, &remote_addr); | 
|  | if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { | 
|  | lock_sock(sk); | 
|  | vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, | 
|  | VMADDR_PORT_ANY); | 
|  | sock->state = SS_UNCONNECTED; | 
|  | release_sock(sk); | 
|  | return 0; | 
|  | } else if (err != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | err = vsock_auto_bind(vsk); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (!vsk->transport->dgram_allow(remote_addr->svm_cid, | 
|  | remote_addr->svm_port)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); | 
|  | sock->state = SS_CONNECTED; | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct vsock_sock *vsk = vsock_sk(sock->sk); | 
|  |  | 
|  | return vsk->transport->dgram_dequeue(vsk, msg, len, flags); | 
|  | } | 
|  |  | 
|  | static const struct proto_ops vsock_dgram_ops = { | 
|  | .family = PF_VSOCK, | 
|  | .owner = THIS_MODULE, | 
|  | .release = vsock_release, | 
|  | .bind = vsock_bind, | 
|  | .connect = vsock_dgram_connect, | 
|  | .socketpair = sock_no_socketpair, | 
|  | .accept = sock_no_accept, | 
|  | .getname = vsock_getname, | 
|  | .poll = vsock_poll, | 
|  | .ioctl = sock_no_ioctl, | 
|  | .listen = sock_no_listen, | 
|  | .shutdown = vsock_shutdown, | 
|  | .sendmsg = vsock_dgram_sendmsg, | 
|  | .recvmsg = vsock_dgram_recvmsg, | 
|  | .mmap = sock_no_mmap, | 
|  | .sendpage = sock_no_sendpage, | 
|  | }; | 
|  |  | 
|  | static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) | 
|  | { | 
|  | const struct vsock_transport *transport = vsk->transport; | 
|  |  | 
|  | if (!transport || !transport->cancel_pkt) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return transport->cancel_pkt(vsk); | 
|  | } | 
|  |  | 
|  | static void vsock_connect_timeout(struct work_struct *work) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | vsk = container_of(work, struct vsock_sock, connect_work.work); | 
|  | sk = sk_vsock(vsk); | 
|  |  | 
|  | lock_sock(sk); | 
|  | if (sk->sk_state == TCP_SYN_SENT && | 
|  | (sk->sk_shutdown != SHUTDOWN_MASK)) { | 
|  | sk->sk_state = TCP_CLOSE; | 
|  | sk->sk_err = ETIMEDOUT; | 
|  | sk_error_report(sk); | 
|  | vsock_transport_cancel_pkt(vsk); | 
|  | } | 
|  | release_sock(sk); | 
|  |  | 
|  | sock_put(sk); | 
|  | } | 
|  |  | 
|  | static int vsock_connect(struct socket *sock, struct sockaddr *addr, | 
|  | int addr_len, int flags) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | const struct vsock_transport *transport; | 
|  | struct sockaddr_vm *remote_addr; | 
|  | long timeout; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | err = 0; | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ | 
|  | switch (sock->state) { | 
|  | case SS_CONNECTED: | 
|  | err = -EISCONN; | 
|  | goto out; | 
|  | case SS_DISCONNECTING: | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | case SS_CONNECTING: | 
|  | /* This continues on so we can move sock into the SS_CONNECTED | 
|  | * state once the connection has completed (at which point err | 
|  | * will be set to zero also).  Otherwise, we will either wait | 
|  | * for the connection or return -EALREADY should this be a | 
|  | * non-blocking call. | 
|  | */ | 
|  | err = -EALREADY; | 
|  | if (flags & O_NONBLOCK) | 
|  | goto out; | 
|  | break; | 
|  | default: | 
|  | if ((sk->sk_state == TCP_LISTEN) || | 
|  | vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Set the remote address that we are connecting to. */ | 
|  | memcpy(&vsk->remote_addr, remote_addr, | 
|  | sizeof(vsk->remote_addr)); | 
|  |  | 
|  | err = vsock_assign_transport(vsk, NULL); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | transport = vsk->transport; | 
|  |  | 
|  | /* The hypervisor and well-known contexts do not have socket | 
|  | * endpoints. | 
|  | */ | 
|  | if (!transport || | 
|  | !transport->stream_allow(remote_addr->svm_cid, | 
|  | remote_addr->svm_port)) { | 
|  | err = -ENETUNREACH; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = vsock_auto_bind(vsk); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | sk->sk_state = TCP_SYN_SENT; | 
|  |  | 
|  | err = transport->connect(vsk); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Mark sock as connecting and set the error code to in | 
|  | * progress in case this is a non-blocking connect. | 
|  | */ | 
|  | sock->state = SS_CONNECTING; | 
|  | err = -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | /* The receive path will handle all communication until we are able to | 
|  | * enter the connected state.  Here we wait for the connection to be | 
|  | * completed or a notification of an error. | 
|  | */ | 
|  | timeout = vsk->connect_timeout; | 
|  | prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); | 
|  |  | 
|  | while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { | 
|  | if (flags & O_NONBLOCK) { | 
|  | /* If we're not going to block, we schedule a timeout | 
|  | * function to generate a timeout on the connection | 
|  | * attempt, in case the peer doesn't respond in a | 
|  | * timely manner. We hold on to the socket until the | 
|  | * timeout fires. | 
|  | */ | 
|  | sock_hold(sk); | 
|  | schedule_delayed_work(&vsk->connect_work, timeout); | 
|  |  | 
|  | /* Skip ahead to preserve error code set above. */ | 
|  | goto out_wait; | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | timeout = schedule_timeout(timeout); | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | err = sock_intr_errno(timeout); | 
|  | sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; | 
|  | sock->state = SS_UNCONNECTED; | 
|  | vsock_transport_cancel_pkt(vsk); | 
|  | vsock_remove_connected(vsk); | 
|  | goto out_wait; | 
|  | } else if (timeout == 0) { | 
|  | err = -ETIMEDOUT; | 
|  | sk->sk_state = TCP_CLOSE; | 
|  | sock->state = SS_UNCONNECTED; | 
|  | vsock_transport_cancel_pkt(vsk); | 
|  | goto out_wait; | 
|  | } | 
|  |  | 
|  | prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | if (sk->sk_err) { | 
|  | err = -sk->sk_err; | 
|  | sk->sk_state = TCP_CLOSE; | 
|  | sock->state = SS_UNCONNECTED; | 
|  | } else { | 
|  | err = 0; | 
|  | } | 
|  |  | 
|  | out_wait: | 
|  | finish_wait(sk_sleep(sk), &wait); | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, | 
|  | bool kern) | 
|  | { | 
|  | struct sock *listener; | 
|  | int err; | 
|  | struct sock *connected; | 
|  | struct vsock_sock *vconnected; | 
|  | long timeout; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | err = 0; | 
|  | listener = sock->sk; | 
|  |  | 
|  | lock_sock(listener); | 
|  |  | 
|  | if (!sock_type_connectible(sock->type)) { | 
|  | err = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (listener->sk_state != TCP_LISTEN) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Wait for children sockets to appear; these are the new sockets | 
|  | * created upon connection establishment. | 
|  | */ | 
|  | timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK); | 
|  | prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); | 
|  |  | 
|  | while ((connected = vsock_dequeue_accept(listener)) == NULL && | 
|  | listener->sk_err == 0) { | 
|  | release_sock(listener); | 
|  | timeout = schedule_timeout(timeout); | 
|  | finish_wait(sk_sleep(listener), &wait); | 
|  | lock_sock(listener); | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | err = sock_intr_errno(timeout); | 
|  | goto out; | 
|  | } else if (timeout == 0) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); | 
|  | } | 
|  | finish_wait(sk_sleep(listener), &wait); | 
|  |  | 
|  | if (listener->sk_err) | 
|  | err = -listener->sk_err; | 
|  |  | 
|  | if (connected) { | 
|  | sk_acceptq_removed(listener); | 
|  |  | 
|  | lock_sock_nested(connected, SINGLE_DEPTH_NESTING); | 
|  | vconnected = vsock_sk(connected); | 
|  |  | 
|  | /* If the listener socket has received an error, then we should | 
|  | * reject this socket and return.  Note that we simply mark the | 
|  | * socket rejected, drop our reference, and let the cleanup | 
|  | * function handle the cleanup; the fact that we found it in | 
|  | * the listener's accept queue guarantees that the cleanup | 
|  | * function hasn't run yet. | 
|  | */ | 
|  | if (err) { | 
|  | vconnected->rejected = true; | 
|  | } else { | 
|  | newsock->state = SS_CONNECTED; | 
|  | sock_graft(connected, newsock); | 
|  | } | 
|  |  | 
|  | release_sock(connected); | 
|  | sock_put(connected); | 
|  | } | 
|  |  | 
|  | out: | 
|  | release_sock(listener); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_listen(struct socket *sock, int backlog) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  |  | 
|  | sk = sock->sk; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (!sock_type_connectible(sk->sk_type)) { | 
|  | err = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sock->state != SS_UNCONNECTED) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | if (!vsock_addr_bound(&vsk->local_addr)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sk->sk_max_ack_backlog = backlog; | 
|  | sk->sk_state = TCP_LISTEN; | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void vsock_update_buffer_size(struct vsock_sock *vsk, | 
|  | const struct vsock_transport *transport, | 
|  | u64 val) | 
|  | { | 
|  | if (val > vsk->buffer_max_size) | 
|  | val = vsk->buffer_max_size; | 
|  |  | 
|  | if (val < vsk->buffer_min_size) | 
|  | val = vsk->buffer_min_size; | 
|  |  | 
|  | if (val != vsk->buffer_size && | 
|  | transport && transport->notify_buffer_size) | 
|  | transport->notify_buffer_size(vsk, &val); | 
|  |  | 
|  | vsk->buffer_size = val; | 
|  | } | 
|  |  | 
|  | static int vsock_connectible_setsockopt(struct socket *sock, | 
|  | int level, | 
|  | int optname, | 
|  | sockptr_t optval, | 
|  | unsigned int optlen) | 
|  | { | 
|  | int err; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | const struct vsock_transport *transport; | 
|  | u64 val; | 
|  |  | 
|  | if (level != AF_VSOCK) | 
|  | return -ENOPROTOOPT; | 
|  |  | 
|  | #define COPY_IN(_v)                                       \ | 
|  | do {						  \ | 
|  | if (optlen < sizeof(_v)) {		  \ | 
|  | err = -EINVAL;			  \ | 
|  | goto exit;			  \ | 
|  | }					  \ | 
|  | if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\ | 
|  | err = -EFAULT;					\ | 
|  | goto exit;					\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | err = 0; | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | transport = vsk->transport; | 
|  |  | 
|  | switch (optname) { | 
|  | case SO_VM_SOCKETS_BUFFER_SIZE: | 
|  | COPY_IN(val); | 
|  | vsock_update_buffer_size(vsk, transport, val); | 
|  | break; | 
|  |  | 
|  | case SO_VM_SOCKETS_BUFFER_MAX_SIZE: | 
|  | COPY_IN(val); | 
|  | vsk->buffer_max_size = val; | 
|  | vsock_update_buffer_size(vsk, transport, vsk->buffer_size); | 
|  | break; | 
|  |  | 
|  | case SO_VM_SOCKETS_BUFFER_MIN_SIZE: | 
|  | COPY_IN(val); | 
|  | vsk->buffer_min_size = val; | 
|  | vsock_update_buffer_size(vsk, transport, vsk->buffer_size); | 
|  | break; | 
|  |  | 
|  | case SO_VM_SOCKETS_CONNECT_TIMEOUT: { | 
|  | struct __kernel_old_timeval tv; | 
|  | COPY_IN(tv); | 
|  | if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && | 
|  | tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { | 
|  | vsk->connect_timeout = tv.tv_sec * HZ + | 
|  | DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); | 
|  | if (vsk->connect_timeout == 0) | 
|  | vsk->connect_timeout = | 
|  | VSOCK_DEFAULT_CONNECT_TIMEOUT; | 
|  |  | 
|  | } else { | 
|  | err = -ERANGE; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | err = -ENOPROTOOPT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | #undef COPY_IN | 
|  |  | 
|  | exit: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_connectible_getsockopt(struct socket *sock, | 
|  | int level, int optname, | 
|  | char __user *optval, | 
|  | int __user *optlen) | 
|  | { | 
|  | int err; | 
|  | int len; | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | u64 val; | 
|  |  | 
|  | if (level != AF_VSOCK) | 
|  | return -ENOPROTOOPT; | 
|  |  | 
|  | err = get_user(len, optlen); | 
|  | if (err != 0) | 
|  | return err; | 
|  |  | 
|  | #define COPY_OUT(_v)                            \ | 
|  | do {					\ | 
|  | if (len < sizeof(_v))		\ | 
|  | return -EINVAL;		\ | 
|  | \ | 
|  | len = sizeof(_v);		\ | 
|  | if (copy_to_user(optval, &_v, len) != 0)	\ | 
|  | return -EFAULT;				\ | 
|  | \ | 
|  | } while (0) | 
|  |  | 
|  | err = 0; | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | switch (optname) { | 
|  | case SO_VM_SOCKETS_BUFFER_SIZE: | 
|  | val = vsk->buffer_size; | 
|  | COPY_OUT(val); | 
|  | break; | 
|  |  | 
|  | case SO_VM_SOCKETS_BUFFER_MAX_SIZE: | 
|  | val = vsk->buffer_max_size; | 
|  | COPY_OUT(val); | 
|  | break; | 
|  |  | 
|  | case SO_VM_SOCKETS_BUFFER_MIN_SIZE: | 
|  | val = vsk->buffer_min_size; | 
|  | COPY_OUT(val); | 
|  | break; | 
|  |  | 
|  | case SO_VM_SOCKETS_CONNECT_TIMEOUT: { | 
|  | struct __kernel_old_timeval tv; | 
|  | tv.tv_sec = vsk->connect_timeout / HZ; | 
|  | tv.tv_usec = | 
|  | (vsk->connect_timeout - | 
|  | tv.tv_sec * HZ) * (1000000 / HZ); | 
|  | COPY_OUT(tv); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return -ENOPROTOOPT; | 
|  | } | 
|  |  | 
|  | err = put_user(len, optlen); | 
|  | if (err != 0) | 
|  | return -EFAULT; | 
|  |  | 
|  | #undef COPY_OUT | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, | 
|  | size_t len) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | const struct vsock_transport *transport; | 
|  | ssize_t total_written; | 
|  | long timeout; | 
|  | int err; | 
|  | struct vsock_transport_send_notify_data send_data; | 
|  | DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
|  |  | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  | total_written = 0; | 
|  | err = 0; | 
|  |  | 
|  | if (msg->msg_flags & MSG_OOB) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | transport = vsk->transport; | 
|  |  | 
|  | /* Callers should not provide a destination with connection oriented | 
|  | * sockets. | 
|  | */ | 
|  | if (msg->msg_namelen) { | 
|  | err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Send data only if both sides are not shutdown in the direction. */ | 
|  | if (sk->sk_shutdown & SEND_SHUTDOWN || | 
|  | vsk->peer_shutdown & RCV_SHUTDOWN) { | 
|  | err = -EPIPE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!transport || sk->sk_state != TCP_ESTABLISHED || | 
|  | !vsock_addr_bound(&vsk->local_addr)) { | 
|  | err = -ENOTCONN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!vsock_addr_bound(&vsk->remote_addr)) { | 
|  | err = -EDESTADDRREQ; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Wait for room in the produce queue to enqueue our user's data. */ | 
|  | timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); | 
|  |  | 
|  | err = transport->notify_send_init(vsk, &send_data); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | while (total_written < len) { | 
|  | ssize_t written; | 
|  |  | 
|  | add_wait_queue(sk_sleep(sk), &wait); | 
|  | while (vsock_stream_has_space(vsk) == 0 && | 
|  | sk->sk_err == 0 && | 
|  | !(sk->sk_shutdown & SEND_SHUTDOWN) && | 
|  | !(vsk->peer_shutdown & RCV_SHUTDOWN)) { | 
|  |  | 
|  | /* Don't wait for non-blocking sockets. */ | 
|  | if (timeout == 0) { | 
|  | err = -EAGAIN; | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = transport->notify_send_pre_block(vsk, &send_data); | 
|  | if (err < 0) { | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); | 
|  | lock_sock(sk); | 
|  | if (signal_pending(current)) { | 
|  | err = sock_intr_errno(timeout); | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  | goto out_err; | 
|  | } else if (timeout == 0) { | 
|  | err = -EAGAIN; | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  |  | 
|  | /* These checks occur both as part of and after the loop | 
|  | * conditional since we need to check before and after | 
|  | * sleeping. | 
|  | */ | 
|  | if (sk->sk_err) { | 
|  | err = -sk->sk_err; | 
|  | goto out_err; | 
|  | } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || | 
|  | (vsk->peer_shutdown & RCV_SHUTDOWN)) { | 
|  | err = -EPIPE; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = transport->notify_send_pre_enqueue(vsk, &send_data); | 
|  | if (err < 0) | 
|  | goto out_err; | 
|  |  | 
|  | /* Note that enqueue will only write as many bytes as are free | 
|  | * in the produce queue, so we don't need to ensure len is | 
|  | * smaller than the queue size.  It is the caller's | 
|  | * responsibility to check how many bytes we were able to send. | 
|  | */ | 
|  |  | 
|  | if (sk->sk_type == SOCK_SEQPACKET) { | 
|  | written = transport->seqpacket_enqueue(vsk, | 
|  | msg, len - total_written); | 
|  | } else { | 
|  | written = transport->stream_enqueue(vsk, | 
|  | msg, len - total_written); | 
|  | } | 
|  | if (written < 0) { | 
|  | err = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | total_written += written; | 
|  |  | 
|  | err = transport->notify_send_post_enqueue( | 
|  | vsk, written, &send_data); | 
|  | if (err < 0) | 
|  | goto out_err; | 
|  |  | 
|  | } | 
|  |  | 
|  | out_err: | 
|  | if (total_written > 0) { | 
|  | /* Return number of written bytes only if: | 
|  | * 1) SOCK_STREAM socket. | 
|  | * 2) SOCK_SEQPACKET socket when whole buffer is sent. | 
|  | */ | 
|  | if (sk->sk_type == SOCK_STREAM || total_written == len) | 
|  | err = total_written; | 
|  | } | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vsock_connectible_wait_data(struct sock *sk, | 
|  | struct wait_queue_entry *wait, | 
|  | long timeout, | 
|  | struct vsock_transport_recv_notify_data *recv_data, | 
|  | size_t target) | 
|  | { | 
|  | const struct vsock_transport *transport; | 
|  | struct vsock_sock *vsk; | 
|  | s64 data; | 
|  | int err; | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  | err = 0; | 
|  | transport = vsk->transport; | 
|  |  | 
|  | while ((data = vsock_connectible_has_data(vsk)) == 0) { | 
|  | prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); | 
|  |  | 
|  | if (sk->sk_err != 0 || | 
|  | (sk->sk_shutdown & RCV_SHUTDOWN) || | 
|  | (vsk->peer_shutdown & SEND_SHUTDOWN)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Don't wait for non-blocking sockets. */ | 
|  | if (timeout == 0) { | 
|  | err = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (recv_data) { | 
|  | err = transport->notify_recv_pre_block(vsk, target, recv_data); | 
|  | if (err < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | timeout = schedule_timeout(timeout); | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | err = sock_intr_errno(timeout); | 
|  | break; | 
|  | } else if (timeout == 0) { | 
|  | err = -EAGAIN; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | finish_wait(sk_sleep(sk), wait); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Internal transport error when checking for available | 
|  | * data. XXX This should be changed to a connection | 
|  | * reset in a later change. | 
|  | */ | 
|  | if (data < 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct vsock_transport_recv_notify_data recv_data; | 
|  | const struct vsock_transport *transport; | 
|  | struct vsock_sock *vsk; | 
|  | ssize_t copied; | 
|  | size_t target; | 
|  | long timeout; | 
|  | int err; | 
|  |  | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  | transport = vsk->transport; | 
|  |  | 
|  | /* We must not copy less than target bytes into the user's buffer | 
|  | * before returning successfully, so we wait for the consume queue to | 
|  | * have that much data to consume before dequeueing.  Note that this | 
|  | * makes it impossible to handle cases where target is greater than the | 
|  | * queue size. | 
|  | */ | 
|  | target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); | 
|  | if (target >= transport->stream_rcvhiwat(vsk)) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); | 
|  | copied = 0; | 
|  |  | 
|  | err = transport->notify_recv_init(vsk, target, &recv_data); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  |  | 
|  | while (1) { | 
|  | ssize_t read; | 
|  |  | 
|  | err = vsock_connectible_wait_data(sk, &wait, timeout, | 
|  | &recv_data, target); | 
|  | if (err <= 0) | 
|  | break; | 
|  |  | 
|  | err = transport->notify_recv_pre_dequeue(vsk, target, | 
|  | &recv_data); | 
|  | if (err < 0) | 
|  | break; | 
|  |  | 
|  | read = transport->stream_dequeue(vsk, msg, len - copied, flags); | 
|  | if (read < 0) { | 
|  | err = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | copied += read; | 
|  |  | 
|  | err = transport->notify_recv_post_dequeue(vsk, target, read, | 
|  | !(flags & MSG_PEEK), &recv_data); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | if (read >= target || flags & MSG_PEEK) | 
|  | break; | 
|  |  | 
|  | target -= read; | 
|  | } | 
|  |  | 
|  | if (sk->sk_err) | 
|  | err = -sk->sk_err; | 
|  | else if (sk->sk_shutdown & RCV_SHUTDOWN) | 
|  | err = 0; | 
|  |  | 
|  | if (copied > 0) | 
|  | err = copied; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, | 
|  | size_t len, int flags) | 
|  | { | 
|  | const struct vsock_transport *transport; | 
|  | struct vsock_sock *vsk; | 
|  | ssize_t msg_len; | 
|  | long timeout; | 
|  | int err = 0; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  | transport = vsk->transport; | 
|  |  | 
|  | timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); | 
|  |  | 
|  | err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); | 
|  | if (err <= 0) | 
|  | goto out; | 
|  |  | 
|  | msg_len = transport->seqpacket_dequeue(vsk, msg, flags); | 
|  |  | 
|  | if (msg_len < 0) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sk->sk_err) { | 
|  | err = -sk->sk_err; | 
|  | } else if (sk->sk_shutdown & RCV_SHUTDOWN) { | 
|  | err = 0; | 
|  | } else { | 
|  | /* User sets MSG_TRUNC, so return real length of | 
|  | * packet. | 
|  | */ | 
|  | if (flags & MSG_TRUNC) | 
|  | err = msg_len; | 
|  | else | 
|  | err = len - msg_data_left(msg); | 
|  |  | 
|  | /* Always set MSG_TRUNC if real length of packet is | 
|  | * bigger than user's buffer. | 
|  | */ | 
|  | if (msg_len > len) | 
|  | msg->msg_flags |= MSG_TRUNC; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, | 
|  | int flags) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct vsock_sock *vsk; | 
|  | const struct vsock_transport *transport; | 
|  | int err; | 
|  |  | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | sk = sock->sk; | 
|  | vsk = vsock_sk(sk); | 
|  | err = 0; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | transport = vsk->transport; | 
|  |  | 
|  | if (!transport || sk->sk_state != TCP_ESTABLISHED) { | 
|  | /* Recvmsg is supposed to return 0 if a peer performs an | 
|  | * orderly shutdown. Differentiate between that case and when a | 
|  | * peer has not connected or a local shutdown occurred with the | 
|  | * SOCK_DONE flag. | 
|  | */ | 
|  | if (sock_flag(sk, SOCK_DONE)) | 
|  | err = 0; | 
|  | else | 
|  | err = -ENOTCONN; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (flags & MSG_OOB) { | 
|  | err = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We don't check peer_shutdown flag here since peer may actually shut | 
|  | * down, but there can be data in the queue that a local socket can | 
|  | * receive. | 
|  | */ | 
|  | if (sk->sk_shutdown & RCV_SHUTDOWN) { | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* It is valid on Linux to pass in a zero-length receive buffer.  This | 
|  | * is not an error.  We may as well bail out now. | 
|  | */ | 
|  | if (!len) { | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sk->sk_type == SOCK_STREAM) | 
|  | err = __vsock_stream_recvmsg(sk, msg, len, flags); | 
|  | else | 
|  | err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct proto_ops vsock_stream_ops = { | 
|  | .family = PF_VSOCK, | 
|  | .owner = THIS_MODULE, | 
|  | .release = vsock_release, | 
|  | .bind = vsock_bind, | 
|  | .connect = vsock_connect, | 
|  | .socketpair = sock_no_socketpair, | 
|  | .accept = vsock_accept, | 
|  | .getname = vsock_getname, | 
|  | .poll = vsock_poll, | 
|  | .ioctl = sock_no_ioctl, | 
|  | .listen = vsock_listen, | 
|  | .shutdown = vsock_shutdown, | 
|  | .setsockopt = vsock_connectible_setsockopt, | 
|  | .getsockopt = vsock_connectible_getsockopt, | 
|  | .sendmsg = vsock_connectible_sendmsg, | 
|  | .recvmsg = vsock_connectible_recvmsg, | 
|  | .mmap = sock_no_mmap, | 
|  | .sendpage = sock_no_sendpage, | 
|  | }; | 
|  |  | 
|  | static const struct proto_ops vsock_seqpacket_ops = { | 
|  | .family = PF_VSOCK, | 
|  | .owner = THIS_MODULE, | 
|  | .release = vsock_release, | 
|  | .bind = vsock_bind, | 
|  | .connect = vsock_connect, | 
|  | .socketpair = sock_no_socketpair, | 
|  | .accept = vsock_accept, | 
|  | .getname = vsock_getname, | 
|  | .poll = vsock_poll, | 
|  | .ioctl = sock_no_ioctl, | 
|  | .listen = vsock_listen, | 
|  | .shutdown = vsock_shutdown, | 
|  | .setsockopt = vsock_connectible_setsockopt, | 
|  | .getsockopt = vsock_connectible_getsockopt, | 
|  | .sendmsg = vsock_connectible_sendmsg, | 
|  | .recvmsg = vsock_connectible_recvmsg, | 
|  | .mmap = sock_no_mmap, | 
|  | .sendpage = sock_no_sendpage, | 
|  | }; | 
|  |  | 
|  | static int vsock_create(struct net *net, struct socket *sock, | 
|  | int protocol, int kern) | 
|  | { | 
|  | struct vsock_sock *vsk; | 
|  | struct sock *sk; | 
|  | int ret; | 
|  |  | 
|  | if (!sock) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (protocol && protocol != PF_VSOCK) | 
|  | return -EPROTONOSUPPORT; | 
|  |  | 
|  | switch (sock->type) { | 
|  | case SOCK_DGRAM: | 
|  | sock->ops = &vsock_dgram_ops; | 
|  | break; | 
|  | case SOCK_STREAM: | 
|  | sock->ops = &vsock_stream_ops; | 
|  | break; | 
|  | case SOCK_SEQPACKET: | 
|  | sock->ops = &vsock_seqpacket_ops; | 
|  | break; | 
|  | default: | 
|  | return -ESOCKTNOSUPPORT; | 
|  | } | 
|  |  | 
|  | sock->state = SS_UNCONNECTED; | 
|  |  | 
|  | sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); | 
|  | if (!sk) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vsk = vsock_sk(sk); | 
|  |  | 
|  | if (sock->type == SOCK_DGRAM) { | 
|  | ret = vsock_assign_transport(vsk, NULL); | 
|  | if (ret < 0) { | 
|  | sock_put(sk); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | vsock_insert_unbound(vsk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct net_proto_family vsock_family_ops = { | 
|  | .family = AF_VSOCK, | 
|  | .create = vsock_create, | 
|  | .owner = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static long vsock_dev_do_ioctl(struct file *filp, | 
|  | unsigned int cmd, void __user *ptr) | 
|  | { | 
|  | u32 __user *p = ptr; | 
|  | u32 cid = VMADDR_CID_ANY; | 
|  | int retval = 0; | 
|  |  | 
|  | switch (cmd) { | 
|  | case IOCTL_VM_SOCKETS_GET_LOCAL_CID: | 
|  | /* To be compatible with the VMCI behavior, we prioritize the | 
|  | * guest CID instead of well-know host CID (VMADDR_CID_HOST). | 
|  | */ | 
|  | if (transport_g2h) | 
|  | cid = transport_g2h->get_local_cid(); | 
|  | else if (transport_h2g) | 
|  | cid = transport_h2g->get_local_cid(); | 
|  |  | 
|  | if (put_user(cid, p) != 0) | 
|  | retval = -EFAULT; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | retval = -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static long vsock_dev_ioctl(struct file *filp, | 
|  | unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static long vsock_dev_compat_ioctl(struct file *filp, | 
|  | unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct file_operations vsock_device_ops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .unlocked_ioctl	= vsock_dev_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= vsock_dev_compat_ioctl, | 
|  | #endif | 
|  | .open		= nonseekable_open, | 
|  | }; | 
|  |  | 
|  | static struct miscdevice vsock_device = { | 
|  | .name		= "vsock", | 
|  | .fops		= &vsock_device_ops, | 
|  | }; | 
|  |  | 
|  | static int __init vsock_init(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | vsock_init_tables(); | 
|  |  | 
|  | vsock_proto.owner = THIS_MODULE; | 
|  | vsock_device.minor = MISC_DYNAMIC_MINOR; | 
|  | err = misc_register(&vsock_device); | 
|  | if (err) { | 
|  | pr_err("Failed to register misc device\n"); | 
|  | goto err_reset_transport; | 
|  | } | 
|  |  | 
|  | err = proto_register(&vsock_proto, 1);	/* we want our slab */ | 
|  | if (err) { | 
|  | pr_err("Cannot register vsock protocol\n"); | 
|  | goto err_deregister_misc; | 
|  | } | 
|  |  | 
|  | err = sock_register(&vsock_family_ops); | 
|  | if (err) { | 
|  | pr_err("could not register af_vsock (%d) address family: %d\n", | 
|  | AF_VSOCK, err); | 
|  | goto err_unregister_proto; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unregister_proto: | 
|  | proto_unregister(&vsock_proto); | 
|  | err_deregister_misc: | 
|  | misc_deregister(&vsock_device); | 
|  | err_reset_transport: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit vsock_exit(void) | 
|  | { | 
|  | misc_deregister(&vsock_device); | 
|  | sock_unregister(AF_VSOCK); | 
|  | proto_unregister(&vsock_proto); | 
|  | } | 
|  |  | 
|  | const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) | 
|  | { | 
|  | return vsk->transport; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_core_get_transport); | 
|  |  | 
|  | int vsock_core_register(const struct vsock_transport *t, int features) | 
|  | { | 
|  | const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; | 
|  | int err = mutex_lock_interruptible(&vsock_register_mutex); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | t_h2g = transport_h2g; | 
|  | t_g2h = transport_g2h; | 
|  | t_dgram = transport_dgram; | 
|  | t_local = transport_local; | 
|  |  | 
|  | if (features & VSOCK_TRANSPORT_F_H2G) { | 
|  | if (t_h2g) { | 
|  | err = -EBUSY; | 
|  | goto err_busy; | 
|  | } | 
|  | t_h2g = t; | 
|  | } | 
|  |  | 
|  | if (features & VSOCK_TRANSPORT_F_G2H) { | 
|  | if (t_g2h) { | 
|  | err = -EBUSY; | 
|  | goto err_busy; | 
|  | } | 
|  | t_g2h = t; | 
|  | } | 
|  |  | 
|  | if (features & VSOCK_TRANSPORT_F_DGRAM) { | 
|  | if (t_dgram) { | 
|  | err = -EBUSY; | 
|  | goto err_busy; | 
|  | } | 
|  | t_dgram = t; | 
|  | } | 
|  |  | 
|  | if (features & VSOCK_TRANSPORT_F_LOCAL) { | 
|  | if (t_local) { | 
|  | err = -EBUSY; | 
|  | goto err_busy; | 
|  | } | 
|  | t_local = t; | 
|  | } | 
|  |  | 
|  | transport_h2g = t_h2g; | 
|  | transport_g2h = t_g2h; | 
|  | transport_dgram = t_dgram; | 
|  | transport_local = t_local; | 
|  |  | 
|  | err_busy: | 
|  | mutex_unlock(&vsock_register_mutex); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_core_register); | 
|  |  | 
|  | void vsock_core_unregister(const struct vsock_transport *t) | 
|  | { | 
|  | mutex_lock(&vsock_register_mutex); | 
|  |  | 
|  | if (transport_h2g == t) | 
|  | transport_h2g = NULL; | 
|  |  | 
|  | if (transport_g2h == t) | 
|  | transport_g2h = NULL; | 
|  |  | 
|  | if (transport_dgram == t) | 
|  | transport_dgram = NULL; | 
|  |  | 
|  | if (transport_local == t) | 
|  | transport_local = NULL; | 
|  |  | 
|  | mutex_unlock(&vsock_register_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vsock_core_unregister); | 
|  |  | 
|  | module_init(vsock_init); | 
|  | module_exit(vsock_exit); | 
|  |  | 
|  | MODULE_AUTHOR("VMware, Inc."); | 
|  | MODULE_DESCRIPTION("VMware Virtual Socket Family"); | 
|  | MODULE_VERSION("1.0.2.0-k"); | 
|  | MODULE_LICENSE("GPL v2"); |