|  | /* Copyright (c) 2018, Mellanox Technologies All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <crypto/aead.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <net/dst.h> | 
|  | #include <net/inet_connection_sock.h> | 
|  | #include <net/tcp.h> | 
|  | #include <net/tls.h> | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | /* device_offload_lock is used to synchronize tls_dev_add | 
|  | * against NETDEV_DOWN notifications. | 
|  | */ | 
|  | static DECLARE_RWSEM(device_offload_lock); | 
|  |  | 
|  | static void tls_device_gc_task(struct work_struct *work); | 
|  |  | 
|  | static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); | 
|  | static LIST_HEAD(tls_device_gc_list); | 
|  | static LIST_HEAD(tls_device_list); | 
|  | static LIST_HEAD(tls_device_down_list); | 
|  | static DEFINE_SPINLOCK(tls_device_lock); | 
|  |  | 
|  | static void tls_device_free_ctx(struct tls_context *ctx) | 
|  | { | 
|  | if (ctx->tx_conf == TLS_HW) { | 
|  | kfree(tls_offload_ctx_tx(ctx)); | 
|  | kfree(ctx->tx.rec_seq); | 
|  | kfree(ctx->tx.iv); | 
|  | } | 
|  |  | 
|  | if (ctx->rx_conf == TLS_HW) | 
|  | kfree(tls_offload_ctx_rx(ctx)); | 
|  |  | 
|  | tls_ctx_free(NULL, ctx); | 
|  | } | 
|  |  | 
|  | static void tls_device_gc_task(struct work_struct *work) | 
|  | { | 
|  | struct tls_context *ctx, *tmp; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(gc_list); | 
|  |  | 
|  | spin_lock_irqsave(&tls_device_lock, flags); | 
|  | list_splice_init(&tls_device_gc_list, &gc_list); | 
|  | spin_unlock_irqrestore(&tls_device_lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(ctx, tmp, &gc_list, list) { | 
|  | struct net_device *netdev = ctx->netdev; | 
|  |  | 
|  | if (netdev && ctx->tx_conf == TLS_HW) { | 
|  | netdev->tlsdev_ops->tls_dev_del(netdev, ctx, | 
|  | TLS_OFFLOAD_CTX_DIR_TX); | 
|  | dev_put(netdev); | 
|  | ctx->netdev = NULL; | 
|  | } | 
|  |  | 
|  | list_del(&ctx->list); | 
|  | tls_device_free_ctx(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tls_device_queue_ctx_destruction(struct tls_context *ctx) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&tls_device_lock, flags); | 
|  | list_move_tail(&ctx->list, &tls_device_gc_list); | 
|  |  | 
|  | /* schedule_work inside the spinlock | 
|  | * to make sure tls_device_down waits for that work. | 
|  | */ | 
|  | schedule_work(&tls_device_gc_work); | 
|  |  | 
|  | spin_unlock_irqrestore(&tls_device_lock, flags); | 
|  | } | 
|  |  | 
|  | /* We assume that the socket is already connected */ | 
|  | static struct net_device *get_netdev_for_sock(struct sock *sk) | 
|  | { | 
|  | struct dst_entry *dst = sk_dst_get(sk); | 
|  | struct net_device *netdev = NULL; | 
|  |  | 
|  | if (likely(dst)) { | 
|  | netdev = netdev_sk_get_lowest_dev(dst->dev, sk); | 
|  | dev_hold(netdev); | 
|  | } | 
|  |  | 
|  | dst_release(dst); | 
|  |  | 
|  | return netdev; | 
|  | } | 
|  |  | 
|  | static void destroy_record(struct tls_record_info *record) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < record->num_frags; i++) | 
|  | __skb_frag_unref(&record->frags[i], false); | 
|  | kfree(record); | 
|  | } | 
|  |  | 
|  | static void delete_all_records(struct tls_offload_context_tx *offload_ctx) | 
|  | { | 
|  | struct tls_record_info *info, *temp; | 
|  |  | 
|  | list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { | 
|  | list_del(&info->list); | 
|  | destroy_record(info); | 
|  | } | 
|  |  | 
|  | offload_ctx->retransmit_hint = NULL; | 
|  | } | 
|  |  | 
|  | static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct tls_record_info *info, *temp; | 
|  | struct tls_offload_context_tx *ctx; | 
|  | u64 deleted_records = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!tls_ctx) | 
|  | return; | 
|  |  | 
|  | ctx = tls_offload_ctx_tx(tls_ctx); | 
|  |  | 
|  | spin_lock_irqsave(&ctx->lock, flags); | 
|  | info = ctx->retransmit_hint; | 
|  | if (info && !before(acked_seq, info->end_seq)) | 
|  | ctx->retransmit_hint = NULL; | 
|  |  | 
|  | list_for_each_entry_safe(info, temp, &ctx->records_list, list) { | 
|  | if (before(acked_seq, info->end_seq)) | 
|  | break; | 
|  | list_del(&info->list); | 
|  |  | 
|  | destroy_record(info); | 
|  | deleted_records++; | 
|  | } | 
|  |  | 
|  | ctx->unacked_record_sn += deleted_records; | 
|  | spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  |  | 
|  | /* At this point, there should be no references on this | 
|  | * socket and no in-flight SKBs associated with this | 
|  | * socket, so it is safe to free all the resources. | 
|  | */ | 
|  | void tls_device_sk_destruct(struct sock *sk) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); | 
|  |  | 
|  | tls_ctx->sk_destruct(sk); | 
|  |  | 
|  | if (tls_ctx->tx_conf == TLS_HW) { | 
|  | if (ctx->open_record) | 
|  | destroy_record(ctx->open_record); | 
|  | delete_all_records(ctx); | 
|  | crypto_free_aead(ctx->aead_send); | 
|  | clean_acked_data_disable(inet_csk(sk)); | 
|  | } | 
|  |  | 
|  | if (refcount_dec_and_test(&tls_ctx->refcount)) | 
|  | tls_device_queue_ctx_destruction(tls_ctx); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(tls_device_sk_destruct); | 
|  |  | 
|  | void tls_device_free_resources_tx(struct sock *sk) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  |  | 
|  | tls_free_partial_record(sk, tls_ctx); | 
|  | } | 
|  |  | 
|  | void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  |  | 
|  | trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); | 
|  | WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); | 
|  |  | 
|  | static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, | 
|  | u32 seq) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct sk_buff *skb; | 
|  | int err = 0; | 
|  | u8 *rcd_sn; | 
|  |  | 
|  | skb = tcp_write_queue_tail(sk); | 
|  | if (skb) | 
|  | TCP_SKB_CB(skb)->eor = 1; | 
|  |  | 
|  | rcd_sn = tls_ctx->tx.rec_seq; | 
|  |  | 
|  | trace_tls_device_tx_resync_send(sk, seq, rcd_sn); | 
|  | down_read(&device_offload_lock); | 
|  | netdev = tls_ctx->netdev; | 
|  | if (netdev) | 
|  | err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, | 
|  | rcd_sn, | 
|  | TLS_OFFLOAD_CTX_DIR_TX); | 
|  | up_read(&device_offload_lock); | 
|  | if (err) | 
|  | return; | 
|  |  | 
|  | clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); | 
|  | } | 
|  |  | 
|  | static void tls_append_frag(struct tls_record_info *record, | 
|  | struct page_frag *pfrag, | 
|  | int size) | 
|  | { | 
|  | skb_frag_t *frag; | 
|  |  | 
|  | frag = &record->frags[record->num_frags - 1]; | 
|  | if (skb_frag_page(frag) == pfrag->page && | 
|  | skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { | 
|  | skb_frag_size_add(frag, size); | 
|  | } else { | 
|  | ++frag; | 
|  | __skb_frag_set_page(frag, pfrag->page); | 
|  | skb_frag_off_set(frag, pfrag->offset); | 
|  | skb_frag_size_set(frag, size); | 
|  | ++record->num_frags; | 
|  | get_page(pfrag->page); | 
|  | } | 
|  |  | 
|  | pfrag->offset += size; | 
|  | record->len += size; | 
|  | } | 
|  |  | 
|  | static int tls_push_record(struct sock *sk, | 
|  | struct tls_context *ctx, | 
|  | struct tls_offload_context_tx *offload_ctx, | 
|  | struct tls_record_info *record, | 
|  | int flags) | 
|  | { | 
|  | struct tls_prot_info *prot = &ctx->prot_info; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | skb_frag_t *frag; | 
|  | int i; | 
|  |  | 
|  | record->end_seq = tp->write_seq + record->len; | 
|  | list_add_tail_rcu(&record->list, &offload_ctx->records_list); | 
|  | offload_ctx->open_record = NULL; | 
|  |  | 
|  | if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) | 
|  | tls_device_resync_tx(sk, ctx, tp->write_seq); | 
|  |  | 
|  | tls_advance_record_sn(sk, prot, &ctx->tx); | 
|  |  | 
|  | for (i = 0; i < record->num_frags; i++) { | 
|  | frag = &record->frags[i]; | 
|  | sg_unmark_end(&offload_ctx->sg_tx_data[i]); | 
|  | sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), | 
|  | skb_frag_size(frag), skb_frag_off(frag)); | 
|  | sk_mem_charge(sk, skb_frag_size(frag)); | 
|  | get_page(skb_frag_page(frag)); | 
|  | } | 
|  | sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); | 
|  |  | 
|  | /* all ready, send */ | 
|  | return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); | 
|  | } | 
|  |  | 
|  | static int tls_device_record_close(struct sock *sk, | 
|  | struct tls_context *ctx, | 
|  | struct tls_record_info *record, | 
|  | struct page_frag *pfrag, | 
|  | unsigned char record_type) | 
|  | { | 
|  | struct tls_prot_info *prot = &ctx->prot_info; | 
|  | int ret; | 
|  |  | 
|  | /* append tag | 
|  | * device will fill in the tag, we just need to append a placeholder | 
|  | * use socket memory to improve coalescing (re-using a single buffer | 
|  | * increases frag count) | 
|  | * if we can't allocate memory now, steal some back from data | 
|  | */ | 
|  | if (likely(skb_page_frag_refill(prot->tag_size, pfrag, | 
|  | sk->sk_allocation))) { | 
|  | ret = 0; | 
|  | tls_append_frag(record, pfrag, prot->tag_size); | 
|  | } else { | 
|  | ret = prot->tag_size; | 
|  | if (record->len <= prot->overhead_size) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* fill prepend */ | 
|  | tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), | 
|  | record->len - prot->overhead_size, | 
|  | record_type); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, | 
|  | struct page_frag *pfrag, | 
|  | size_t prepend_size) | 
|  | { | 
|  | struct tls_record_info *record; | 
|  | skb_frag_t *frag; | 
|  |  | 
|  | record = kmalloc(sizeof(*record), GFP_KERNEL); | 
|  | if (!record) | 
|  | return -ENOMEM; | 
|  |  | 
|  | frag = &record->frags[0]; | 
|  | __skb_frag_set_page(frag, pfrag->page); | 
|  | skb_frag_off_set(frag, pfrag->offset); | 
|  | skb_frag_size_set(frag, prepend_size); | 
|  |  | 
|  | get_page(pfrag->page); | 
|  | pfrag->offset += prepend_size; | 
|  |  | 
|  | record->num_frags = 1; | 
|  | record->len = prepend_size; | 
|  | offload_ctx->open_record = record; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tls_do_allocation(struct sock *sk, | 
|  | struct tls_offload_context_tx *offload_ctx, | 
|  | struct page_frag *pfrag, | 
|  | size_t prepend_size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!offload_ctx->open_record) { | 
|  | if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, | 
|  | sk->sk_allocation))) { | 
|  | READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); | 
|  | sk_stream_moderate_sndbuf(sk); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (pfrag->size > pfrag->offset) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!sk_page_frag_refill(sk, pfrag)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) | 
|  | { | 
|  | size_t pre_copy, nocache; | 
|  |  | 
|  | pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); | 
|  | if (pre_copy) { | 
|  | pre_copy = min(pre_copy, bytes); | 
|  | if (copy_from_iter(addr, pre_copy, i) != pre_copy) | 
|  | return -EFAULT; | 
|  | bytes -= pre_copy; | 
|  | addr += pre_copy; | 
|  | } | 
|  |  | 
|  | nocache = round_down(bytes, SMP_CACHE_BYTES); | 
|  | if (copy_from_iter_nocache(addr, nocache, i) != nocache) | 
|  | return -EFAULT; | 
|  | bytes -= nocache; | 
|  | addr += nocache; | 
|  |  | 
|  | if (bytes && copy_from_iter(addr, bytes, i) != bytes) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tls_push_data(struct sock *sk, | 
|  | struct iov_iter *msg_iter, | 
|  | size_t size, int flags, | 
|  | unsigned char record_type) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct tls_prot_info *prot = &tls_ctx->prot_info; | 
|  | struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); | 
|  | struct tls_record_info *record; | 
|  | int tls_push_record_flags; | 
|  | struct page_frag *pfrag; | 
|  | size_t orig_size = size; | 
|  | u32 max_open_record_len; | 
|  | bool more = false; | 
|  | bool done = false; | 
|  | int copy, rc = 0; | 
|  | long timeo; | 
|  |  | 
|  | if (flags & | 
|  | ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (unlikely(sk->sk_err)) | 
|  | return -sk->sk_err; | 
|  |  | 
|  | flags |= MSG_SENDPAGE_DECRYPTED; | 
|  | tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; | 
|  |  | 
|  | timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); | 
|  | if (tls_is_partially_sent_record(tls_ctx)) { | 
|  | rc = tls_push_partial_record(sk, tls_ctx, flags); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | pfrag = sk_page_frag(sk); | 
|  |  | 
|  | /* TLS_HEADER_SIZE is not counted as part of the TLS record, and | 
|  | * we need to leave room for an authentication tag. | 
|  | */ | 
|  | max_open_record_len = TLS_MAX_PAYLOAD_SIZE + | 
|  | prot->prepend_size; | 
|  | do { | 
|  | rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); | 
|  | if (unlikely(rc)) { | 
|  | rc = sk_stream_wait_memory(sk, &timeo); | 
|  | if (!rc) | 
|  | continue; | 
|  |  | 
|  | record = ctx->open_record; | 
|  | if (!record) | 
|  | break; | 
|  | handle_error: | 
|  | if (record_type != TLS_RECORD_TYPE_DATA) { | 
|  | /* avoid sending partial | 
|  | * record with type != | 
|  | * application_data | 
|  | */ | 
|  | size = orig_size; | 
|  | destroy_record(record); | 
|  | ctx->open_record = NULL; | 
|  | } else if (record->len > prot->prepend_size) { | 
|  | goto last_record; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | record = ctx->open_record; | 
|  | copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); | 
|  | copy = min_t(size_t, copy, (max_open_record_len - record->len)); | 
|  |  | 
|  | rc = tls_device_copy_data(page_address(pfrag->page) + | 
|  | pfrag->offset, copy, msg_iter); | 
|  | if (rc) | 
|  | goto handle_error; | 
|  | tls_append_frag(record, pfrag, copy); | 
|  |  | 
|  | size -= copy; | 
|  | if (!size) { | 
|  | last_record: | 
|  | tls_push_record_flags = flags; | 
|  | if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { | 
|  | more = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | done = true; | 
|  | } | 
|  |  | 
|  | if (done || record->len >= max_open_record_len || | 
|  | (record->num_frags >= MAX_SKB_FRAGS - 1)) { | 
|  | rc = tls_device_record_close(sk, tls_ctx, record, | 
|  | pfrag, record_type); | 
|  | if (rc) { | 
|  | if (rc > 0) { | 
|  | size += rc; | 
|  | } else { | 
|  | size = orig_size; | 
|  | destroy_record(record); | 
|  | ctx->open_record = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = tls_push_record(sk, | 
|  | tls_ctx, | 
|  | ctx, | 
|  | record, | 
|  | tls_push_record_flags); | 
|  | if (rc < 0) | 
|  | break; | 
|  | } | 
|  | } while (!done); | 
|  |  | 
|  | tls_ctx->pending_open_record_frags = more; | 
|  |  | 
|  | if (orig_size - size > 0) | 
|  | rc = orig_size - size; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) | 
|  | { | 
|  | unsigned char record_type = TLS_RECORD_TYPE_DATA; | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | int rc; | 
|  |  | 
|  | mutex_lock(&tls_ctx->tx_lock); | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (unlikely(msg->msg_controllen)) { | 
|  | rc = tls_proccess_cmsg(sk, msg, &record_type); | 
|  | if (rc) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = tls_push_data(sk, &msg->msg_iter, size, | 
|  | msg->msg_flags, record_type); | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | mutex_unlock(&tls_ctx->tx_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int tls_device_sendpage(struct sock *sk, struct page *page, | 
|  | int offset, size_t size, int flags) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct iov_iter	msg_iter; | 
|  | char *kaddr; | 
|  | struct kvec iov; | 
|  | int rc; | 
|  |  | 
|  | if (flags & MSG_SENDPAGE_NOTLAST) | 
|  | flags |= MSG_MORE; | 
|  |  | 
|  | mutex_lock(&tls_ctx->tx_lock); | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (flags & MSG_OOB) { | 
|  | rc = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kaddr = kmap(page); | 
|  | iov.iov_base = kaddr + offset; | 
|  | iov.iov_len = size; | 
|  | iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); | 
|  | rc = tls_push_data(sk, &msg_iter, size, | 
|  | flags, TLS_RECORD_TYPE_DATA); | 
|  | kunmap(page); | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | mutex_unlock(&tls_ctx->tx_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, | 
|  | u32 seq, u64 *p_record_sn) | 
|  | { | 
|  | u64 record_sn = context->hint_record_sn; | 
|  | struct tls_record_info *info, *last; | 
|  |  | 
|  | info = context->retransmit_hint; | 
|  | if (!info || | 
|  | before(seq, info->end_seq - info->len)) { | 
|  | /* if retransmit_hint is irrelevant start | 
|  | * from the beginning of the list | 
|  | */ | 
|  | info = list_first_entry_or_null(&context->records_list, | 
|  | struct tls_record_info, list); | 
|  | if (!info) | 
|  | return NULL; | 
|  | /* send the start_marker record if seq number is before the | 
|  | * tls offload start marker sequence number. This record is | 
|  | * required to handle TCP packets which are before TLS offload | 
|  | * started. | 
|  | *  And if it's not start marker, look if this seq number | 
|  | * belongs to the list. | 
|  | */ | 
|  | if (likely(!tls_record_is_start_marker(info))) { | 
|  | /* we have the first record, get the last record to see | 
|  | * if this seq number belongs to the list. | 
|  | */ | 
|  | last = list_last_entry(&context->records_list, | 
|  | struct tls_record_info, list); | 
|  |  | 
|  | if (!between(seq, tls_record_start_seq(info), | 
|  | last->end_seq)) | 
|  | return NULL; | 
|  | } | 
|  | record_sn = context->unacked_record_sn; | 
|  | } | 
|  |  | 
|  | /* We just need the _rcu for the READ_ONCE() */ | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_from_rcu(info, &context->records_list, list) { | 
|  | if (before(seq, info->end_seq)) { | 
|  | if (!context->retransmit_hint || | 
|  | after(info->end_seq, | 
|  | context->retransmit_hint->end_seq)) { | 
|  | context->hint_record_sn = record_sn; | 
|  | context->retransmit_hint = info; | 
|  | } | 
|  | *p_record_sn = record_sn; | 
|  | goto exit_rcu_unlock; | 
|  | } | 
|  | record_sn++; | 
|  | } | 
|  | info = NULL; | 
|  |  | 
|  | exit_rcu_unlock: | 
|  | rcu_read_unlock(); | 
|  | return info; | 
|  | } | 
|  | EXPORT_SYMBOL(tls_get_record); | 
|  |  | 
|  | static int tls_device_push_pending_record(struct sock *sk, int flags) | 
|  | { | 
|  | struct iov_iter	msg_iter; | 
|  |  | 
|  | iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); | 
|  | return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); | 
|  | } | 
|  |  | 
|  | void tls_device_write_space(struct sock *sk, struct tls_context *ctx) | 
|  | { | 
|  | if (tls_is_partially_sent_record(ctx)) { | 
|  | gfp_t sk_allocation = sk->sk_allocation; | 
|  |  | 
|  | WARN_ON_ONCE(sk->sk_write_pending); | 
|  |  | 
|  | sk->sk_allocation = GFP_ATOMIC; | 
|  | tls_push_partial_record(sk, ctx, | 
|  | MSG_DONTWAIT | MSG_NOSIGNAL | | 
|  | MSG_SENDPAGE_DECRYPTED); | 
|  | sk->sk_allocation = sk_allocation; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tls_device_resync_rx(struct tls_context *tls_ctx, | 
|  | struct sock *sk, u32 seq, u8 *rcd_sn) | 
|  | { | 
|  | struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); | 
|  | struct net_device *netdev; | 
|  |  | 
|  | trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); | 
|  | rcu_read_lock(); | 
|  | netdev = READ_ONCE(tls_ctx->netdev); | 
|  | if (netdev) | 
|  | netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, | 
|  | TLS_OFFLOAD_CTX_DIR_RX); | 
|  | rcu_read_unlock(); | 
|  | TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, | 
|  | s64 resync_req, u32 *seq, u16 *rcd_delta) | 
|  | { | 
|  | u32 is_async = resync_req & RESYNC_REQ_ASYNC; | 
|  | u32 req_seq = resync_req >> 32; | 
|  | u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); | 
|  | u16 i; | 
|  |  | 
|  | *rcd_delta = 0; | 
|  |  | 
|  | if (is_async) { | 
|  | /* shouldn't get to wraparound: | 
|  | * too long in async stage, something bad happened | 
|  | */ | 
|  | if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) | 
|  | return false; | 
|  |  | 
|  | /* asynchronous stage: log all headers seq such that | 
|  | * req_seq <= seq <= end_seq, and wait for real resync request | 
|  | */ | 
|  | if (before(*seq, req_seq)) | 
|  | return false; | 
|  | if (!after(*seq, req_end) && | 
|  | resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) | 
|  | resync_async->log[resync_async->loglen++] = *seq; | 
|  |  | 
|  | resync_async->rcd_delta++; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* synchronous stage: check against the logged entries and | 
|  | * proceed to check the next entries if no match was found | 
|  | */ | 
|  | for (i = 0; i < resync_async->loglen; i++) | 
|  | if (req_seq == resync_async->log[i] && | 
|  | atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { | 
|  | *rcd_delta = resync_async->rcd_delta - i; | 
|  | *seq = req_seq; | 
|  | resync_async->loglen = 0; | 
|  | resync_async->rcd_delta = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | resync_async->loglen = 0; | 
|  | resync_async->rcd_delta = 0; | 
|  |  | 
|  | if (req_seq == *seq && | 
|  | atomic64_try_cmpxchg(&resync_async->req, | 
|  | &resync_req, 0)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct tls_offload_context_rx *rx_ctx; | 
|  | u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; | 
|  | u32 sock_data, is_req_pending; | 
|  | struct tls_prot_info *prot; | 
|  | s64 resync_req; | 
|  | u16 rcd_delta; | 
|  | u32 req_seq; | 
|  |  | 
|  | if (tls_ctx->rx_conf != TLS_HW) | 
|  | return; | 
|  | if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) | 
|  | return; | 
|  |  | 
|  | prot = &tls_ctx->prot_info; | 
|  | rx_ctx = tls_offload_ctx_rx(tls_ctx); | 
|  | memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); | 
|  |  | 
|  | switch (rx_ctx->resync_type) { | 
|  | case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: | 
|  | resync_req = atomic64_read(&rx_ctx->resync_req); | 
|  | req_seq = resync_req >> 32; | 
|  | seq += TLS_HEADER_SIZE - 1; | 
|  | is_req_pending = resync_req; | 
|  |  | 
|  | if (likely(!is_req_pending) || req_seq != seq || | 
|  | !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) | 
|  | return; | 
|  | break; | 
|  | case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: | 
|  | if (likely(!rx_ctx->resync_nh_do_now)) | 
|  | return; | 
|  |  | 
|  | /* head of next rec is already in, note that the sock_inq will | 
|  | * include the currently parsed message when called from parser | 
|  | */ | 
|  | sock_data = tcp_inq(sk); | 
|  | if (sock_data > rcd_len) { | 
|  | trace_tls_device_rx_resync_nh_delay(sk, sock_data, | 
|  | rcd_len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rx_ctx->resync_nh_do_now = 0; | 
|  | seq += rcd_len; | 
|  | tls_bigint_increment(rcd_sn, prot->rec_seq_size); | 
|  | break; | 
|  | case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: | 
|  | resync_req = atomic64_read(&rx_ctx->resync_async->req); | 
|  | is_req_pending = resync_req; | 
|  | if (likely(!is_req_pending)) | 
|  | return; | 
|  |  | 
|  | if (!tls_device_rx_resync_async(rx_ctx->resync_async, | 
|  | resync_req, &seq, &rcd_delta)) | 
|  | return; | 
|  | tls_bigint_subtract(rcd_sn, rcd_delta); | 
|  | break; | 
|  | } | 
|  |  | 
|  | tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); | 
|  | } | 
|  |  | 
|  | static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, | 
|  | struct tls_offload_context_rx *ctx, | 
|  | struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct strp_msg *rxm; | 
|  |  | 
|  | /* device will request resyncs by itself based on stream scan */ | 
|  | if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) | 
|  | return; | 
|  | /* already scheduled */ | 
|  | if (ctx->resync_nh_do_now) | 
|  | return; | 
|  | /* seen decrypted fragments since last fully-failed record */ | 
|  | if (ctx->resync_nh_reset) { | 
|  | ctx->resync_nh_reset = 0; | 
|  | ctx->resync_nh.decrypted_failed = 1; | 
|  | ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) | 
|  | return; | 
|  |  | 
|  | /* doing resync, bump the next target in case it fails */ | 
|  | if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) | 
|  | ctx->resync_nh.decrypted_tgt *= 2; | 
|  | else | 
|  | ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; | 
|  |  | 
|  | rxm = strp_msg(skb); | 
|  |  | 
|  | /* head of next rec is already in, parser will sync for us */ | 
|  | if (tcp_inq(sk) > rxm->full_len) { | 
|  | trace_tls_device_rx_resync_nh_schedule(sk); | 
|  | ctx->resync_nh_do_now = 1; | 
|  | } else { | 
|  | struct tls_prot_info *prot = &tls_ctx->prot_info; | 
|  | u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; | 
|  |  | 
|  | memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); | 
|  | tls_bigint_increment(rcd_sn, prot->rec_seq_size); | 
|  |  | 
|  | tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, | 
|  | rcd_sn); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct strp_msg *rxm = strp_msg(skb); | 
|  | int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; | 
|  | struct sk_buff *skb_iter, *unused; | 
|  | struct scatterlist sg[1]; | 
|  | char *orig_buf, *buf; | 
|  |  | 
|  | orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + | 
|  | TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); | 
|  | if (!orig_buf) | 
|  | return -ENOMEM; | 
|  | buf = orig_buf; | 
|  |  | 
|  | nsg = skb_cow_data(skb, 0, &unused); | 
|  | if (unlikely(nsg < 0)) { | 
|  | err = nsg; | 
|  | goto free_buf; | 
|  | } | 
|  |  | 
|  | sg_init_table(sg, 1); | 
|  | sg_set_buf(&sg[0], buf, | 
|  | rxm->full_len + TLS_HEADER_SIZE + | 
|  | TLS_CIPHER_AES_GCM_128_IV_SIZE); | 
|  | err = skb_copy_bits(skb, offset, buf, | 
|  | TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); | 
|  | if (err) | 
|  | goto free_buf; | 
|  |  | 
|  | /* We are interested only in the decrypted data not the auth */ | 
|  | err = decrypt_skb(sk, skb, sg); | 
|  | if (err != -EBADMSG) | 
|  | goto free_buf; | 
|  | else | 
|  | err = 0; | 
|  |  | 
|  | data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; | 
|  |  | 
|  | if (skb_pagelen(skb) > offset) { | 
|  | copy = min_t(int, skb_pagelen(skb) - offset, data_len); | 
|  |  | 
|  | if (skb->decrypted) { | 
|  | err = skb_store_bits(skb, offset, buf, copy); | 
|  | if (err) | 
|  | goto free_buf; | 
|  | } | 
|  |  | 
|  | offset += copy; | 
|  | buf += copy; | 
|  | } | 
|  |  | 
|  | pos = skb_pagelen(skb); | 
|  | skb_walk_frags(skb, skb_iter) { | 
|  | int frag_pos; | 
|  |  | 
|  | /* Practically all frags must belong to msg if reencrypt | 
|  | * is needed with current strparser and coalescing logic, | 
|  | * but strparser may "get optimized", so let's be safe. | 
|  | */ | 
|  | if (pos + skb_iter->len <= offset) | 
|  | goto done_with_frag; | 
|  | if (pos >= data_len + rxm->offset) | 
|  | break; | 
|  |  | 
|  | frag_pos = offset - pos; | 
|  | copy = min_t(int, skb_iter->len - frag_pos, | 
|  | data_len + rxm->offset - offset); | 
|  |  | 
|  | if (skb_iter->decrypted) { | 
|  | err = skb_store_bits(skb_iter, frag_pos, buf, copy); | 
|  | if (err) | 
|  | goto free_buf; | 
|  | } | 
|  |  | 
|  | offset += copy; | 
|  | buf += copy; | 
|  | done_with_frag: | 
|  | pos += skb_iter->len; | 
|  | } | 
|  |  | 
|  | free_buf: | 
|  | kfree(orig_buf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, | 
|  | struct sk_buff *skb, struct strp_msg *rxm) | 
|  | { | 
|  | struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); | 
|  | int is_decrypted = skb->decrypted; | 
|  | int is_encrypted = !is_decrypted; | 
|  | struct sk_buff *skb_iter; | 
|  |  | 
|  | /* Check if all the data is decrypted already */ | 
|  | skb_walk_frags(skb, skb_iter) { | 
|  | is_decrypted &= skb_iter->decrypted; | 
|  | is_encrypted &= !skb_iter->decrypted; | 
|  | } | 
|  |  | 
|  | trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, | 
|  | tls_ctx->rx.rec_seq, rxm->full_len, | 
|  | is_encrypted, is_decrypted); | 
|  |  | 
|  | ctx->sw.decrypted |= is_decrypted; | 
|  |  | 
|  | if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { | 
|  | if (likely(is_encrypted || is_decrypted)) | 
|  | return 0; | 
|  |  | 
|  | /* After tls_device_down disables the offload, the next SKB will | 
|  | * likely have initial fragments decrypted, and final ones not | 
|  | * decrypted. We need to reencrypt that single SKB. | 
|  | */ | 
|  | return tls_device_reencrypt(sk, skb); | 
|  | } | 
|  |  | 
|  | /* Return immediately if the record is either entirely plaintext or | 
|  | * entirely ciphertext. Otherwise handle reencrypt partially decrypted | 
|  | * record. | 
|  | */ | 
|  | if (is_decrypted) { | 
|  | ctx->resync_nh_reset = 1; | 
|  | return 0; | 
|  | } | 
|  | if (is_encrypted) { | 
|  | tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ctx->resync_nh_reset = 1; | 
|  | return tls_device_reencrypt(sk, skb); | 
|  | } | 
|  |  | 
|  | static void tls_device_attach(struct tls_context *ctx, struct sock *sk, | 
|  | struct net_device *netdev) | 
|  | { | 
|  | if (sk->sk_destruct != tls_device_sk_destruct) { | 
|  | refcount_set(&ctx->refcount, 1); | 
|  | dev_hold(netdev); | 
|  | ctx->netdev = netdev; | 
|  | spin_lock_irq(&tls_device_lock); | 
|  | list_add_tail(&ctx->list, &tls_device_list); | 
|  | spin_unlock_irq(&tls_device_lock); | 
|  |  | 
|  | ctx->sk_destruct = sk->sk_destruct; | 
|  | smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); | 
|  | } | 
|  | } | 
|  |  | 
|  | int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) | 
|  | { | 
|  | u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct tls_prot_info *prot = &tls_ctx->prot_info; | 
|  | struct tls_record_info *start_marker_record; | 
|  | struct tls_offload_context_tx *offload_ctx; | 
|  | struct tls_crypto_info *crypto_info; | 
|  | struct net_device *netdev; | 
|  | char *iv, *rec_seq; | 
|  | struct sk_buff *skb; | 
|  | __be64 rcd_sn; | 
|  | int rc; | 
|  |  | 
|  | if (!ctx) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ctx->priv_ctx_tx) | 
|  | return -EEXIST; | 
|  |  | 
|  | start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); | 
|  | if (!start_marker_record) | 
|  | return -ENOMEM; | 
|  |  | 
|  | offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); | 
|  | if (!offload_ctx) { | 
|  | rc = -ENOMEM; | 
|  | goto free_marker_record; | 
|  | } | 
|  |  | 
|  | crypto_info = &ctx->crypto_send.info; | 
|  | if (crypto_info->version != TLS_1_2_VERSION) { | 
|  | rc = -EOPNOTSUPP; | 
|  | goto free_offload_ctx; | 
|  | } | 
|  |  | 
|  | switch (crypto_info->cipher_type) { | 
|  | case TLS_CIPHER_AES_GCM_128: | 
|  | nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; | 
|  | tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; | 
|  | iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; | 
|  | iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; | 
|  | rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; | 
|  | salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; | 
|  | rec_seq = | 
|  | ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; | 
|  | break; | 
|  | default: | 
|  | rc = -EINVAL; | 
|  | goto free_offload_ctx; | 
|  | } | 
|  |  | 
|  | /* Sanity-check the rec_seq_size for stack allocations */ | 
|  | if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { | 
|  | rc = -EINVAL; | 
|  | goto free_offload_ctx; | 
|  | } | 
|  |  | 
|  | prot->version = crypto_info->version; | 
|  | prot->cipher_type = crypto_info->cipher_type; | 
|  | prot->prepend_size = TLS_HEADER_SIZE + nonce_size; | 
|  | prot->tag_size = tag_size; | 
|  | prot->overhead_size = prot->prepend_size + prot->tag_size; | 
|  | prot->iv_size = iv_size; | 
|  | prot->salt_size = salt_size; | 
|  | ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, | 
|  | GFP_KERNEL); | 
|  | if (!ctx->tx.iv) { | 
|  | rc = -ENOMEM; | 
|  | goto free_offload_ctx; | 
|  | } | 
|  |  | 
|  | memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); | 
|  |  | 
|  | prot->rec_seq_size = rec_seq_size; | 
|  | ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); | 
|  | if (!ctx->tx.rec_seq) { | 
|  | rc = -ENOMEM; | 
|  | goto free_iv; | 
|  | } | 
|  |  | 
|  | rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); | 
|  | if (rc) | 
|  | goto free_rec_seq; | 
|  |  | 
|  | /* start at rec_seq - 1 to account for the start marker record */ | 
|  | memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); | 
|  | offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; | 
|  |  | 
|  | start_marker_record->end_seq = tcp_sk(sk)->write_seq; | 
|  | start_marker_record->len = 0; | 
|  | start_marker_record->num_frags = 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&offload_ctx->records_list); | 
|  | list_add_tail(&start_marker_record->list, &offload_ctx->records_list); | 
|  | spin_lock_init(&offload_ctx->lock); | 
|  | sg_init_table(offload_ctx->sg_tx_data, | 
|  | ARRAY_SIZE(offload_ctx->sg_tx_data)); | 
|  |  | 
|  | clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); | 
|  | ctx->push_pending_record = tls_device_push_pending_record; | 
|  |  | 
|  | /* TLS offload is greatly simplified if we don't send | 
|  | * SKBs where only part of the payload needs to be encrypted. | 
|  | * So mark the last skb in the write queue as end of record. | 
|  | */ | 
|  | skb = tcp_write_queue_tail(sk); | 
|  | if (skb) | 
|  | TCP_SKB_CB(skb)->eor = 1; | 
|  |  | 
|  | netdev = get_netdev_for_sock(sk); | 
|  | if (!netdev) { | 
|  | pr_err_ratelimited("%s: netdev not found\n", __func__); | 
|  | rc = -EINVAL; | 
|  | goto disable_cad; | 
|  | } | 
|  |  | 
|  | if (!(netdev->features & NETIF_F_HW_TLS_TX)) { | 
|  | rc = -EOPNOTSUPP; | 
|  | goto release_netdev; | 
|  | } | 
|  |  | 
|  | /* Avoid offloading if the device is down | 
|  | * We don't want to offload new flows after | 
|  | * the NETDEV_DOWN event | 
|  | * | 
|  | * device_offload_lock is taken in tls_devices's NETDEV_DOWN | 
|  | * handler thus protecting from the device going down before | 
|  | * ctx was added to tls_device_list. | 
|  | */ | 
|  | down_read(&device_offload_lock); | 
|  | if (!(netdev->flags & IFF_UP)) { | 
|  | rc = -EINVAL; | 
|  | goto release_lock; | 
|  | } | 
|  |  | 
|  | ctx->priv_ctx_tx = offload_ctx; | 
|  | rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, | 
|  | &ctx->crypto_send.info, | 
|  | tcp_sk(sk)->write_seq); | 
|  | trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, | 
|  | tcp_sk(sk)->write_seq, rec_seq, rc); | 
|  | if (rc) | 
|  | goto release_lock; | 
|  |  | 
|  | tls_device_attach(ctx, sk, netdev); | 
|  | up_read(&device_offload_lock); | 
|  |  | 
|  | /* following this assignment tls_is_sk_tx_device_offloaded | 
|  | * will return true and the context might be accessed | 
|  | * by the netdev's xmit function. | 
|  | */ | 
|  | smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); | 
|  | dev_put(netdev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | release_lock: | 
|  | up_read(&device_offload_lock); | 
|  | release_netdev: | 
|  | dev_put(netdev); | 
|  | disable_cad: | 
|  | clean_acked_data_disable(inet_csk(sk)); | 
|  | crypto_free_aead(offload_ctx->aead_send); | 
|  | free_rec_seq: | 
|  | kfree(ctx->tx.rec_seq); | 
|  | free_iv: | 
|  | kfree(ctx->tx.iv); | 
|  | free_offload_ctx: | 
|  | kfree(offload_ctx); | 
|  | ctx->priv_ctx_tx = NULL; | 
|  | free_marker_record: | 
|  | kfree(start_marker_record); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) | 
|  | { | 
|  | struct tls12_crypto_info_aes_gcm_128 *info; | 
|  | struct tls_offload_context_rx *context; | 
|  | struct net_device *netdev; | 
|  | int rc = 0; | 
|  |  | 
|  | if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | netdev = get_netdev_for_sock(sk); | 
|  | if (!netdev) { | 
|  | pr_err_ratelimited("%s: netdev not found\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!(netdev->features & NETIF_F_HW_TLS_RX)) { | 
|  | rc = -EOPNOTSUPP; | 
|  | goto release_netdev; | 
|  | } | 
|  |  | 
|  | /* Avoid offloading if the device is down | 
|  | * We don't want to offload new flows after | 
|  | * the NETDEV_DOWN event | 
|  | * | 
|  | * device_offload_lock is taken in tls_devices's NETDEV_DOWN | 
|  | * handler thus protecting from the device going down before | 
|  | * ctx was added to tls_device_list. | 
|  | */ | 
|  | down_read(&device_offload_lock); | 
|  | if (!(netdev->flags & IFF_UP)) { | 
|  | rc = -EINVAL; | 
|  | goto release_lock; | 
|  | } | 
|  |  | 
|  | context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); | 
|  | if (!context) { | 
|  | rc = -ENOMEM; | 
|  | goto release_lock; | 
|  | } | 
|  | context->resync_nh_reset = 1; | 
|  |  | 
|  | ctx->priv_ctx_rx = context; | 
|  | rc = tls_set_sw_offload(sk, ctx, 0); | 
|  | if (rc) | 
|  | goto release_ctx; | 
|  |  | 
|  | rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, | 
|  | &ctx->crypto_recv.info, | 
|  | tcp_sk(sk)->copied_seq); | 
|  | info = (void *)&ctx->crypto_recv.info; | 
|  | trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, | 
|  | tcp_sk(sk)->copied_seq, info->rec_seq, rc); | 
|  | if (rc) | 
|  | goto free_sw_resources; | 
|  |  | 
|  | tls_device_attach(ctx, sk, netdev); | 
|  | up_read(&device_offload_lock); | 
|  |  | 
|  | dev_put(netdev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_sw_resources: | 
|  | up_read(&device_offload_lock); | 
|  | tls_sw_free_resources_rx(sk); | 
|  | down_read(&device_offload_lock); | 
|  | release_ctx: | 
|  | ctx->priv_ctx_rx = NULL; | 
|  | release_lock: | 
|  | up_read(&device_offload_lock); | 
|  | release_netdev: | 
|  | dev_put(netdev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void tls_device_offload_cleanup_rx(struct sock *sk) | 
|  | { | 
|  | struct tls_context *tls_ctx = tls_get_ctx(sk); | 
|  | struct net_device *netdev; | 
|  |  | 
|  | down_read(&device_offload_lock); | 
|  | netdev = tls_ctx->netdev; | 
|  | if (!netdev) | 
|  | goto out; | 
|  |  | 
|  | netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, | 
|  | TLS_OFFLOAD_CTX_DIR_RX); | 
|  |  | 
|  | if (tls_ctx->tx_conf != TLS_HW) { | 
|  | dev_put(netdev); | 
|  | tls_ctx->netdev = NULL; | 
|  | } else { | 
|  | set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); | 
|  | } | 
|  | out: | 
|  | up_read(&device_offload_lock); | 
|  | tls_sw_release_resources_rx(sk); | 
|  | } | 
|  |  | 
|  | static int tls_device_down(struct net_device *netdev) | 
|  | { | 
|  | struct tls_context *ctx, *tmp; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | /* Request a write lock to block new offload attempts */ | 
|  | down_write(&device_offload_lock); | 
|  |  | 
|  | spin_lock_irqsave(&tls_device_lock, flags); | 
|  | list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { | 
|  | if (ctx->netdev != netdev || | 
|  | !refcount_inc_not_zero(&ctx->refcount)) | 
|  | continue; | 
|  |  | 
|  | list_move(&ctx->list, &list); | 
|  | } | 
|  | spin_unlock_irqrestore(&tls_device_lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(ctx, tmp, &list, list)	{ | 
|  | /* Stop offloaded TX and switch to the fallback. | 
|  | * tls_is_sk_tx_device_offloaded will return false. | 
|  | */ | 
|  | WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); | 
|  |  | 
|  | /* Stop the RX and TX resync. | 
|  | * tls_dev_resync must not be called after tls_dev_del. | 
|  | */ | 
|  | WRITE_ONCE(ctx->netdev, NULL); | 
|  |  | 
|  | /* Start skipping the RX resync logic completely. */ | 
|  | set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); | 
|  |  | 
|  | /* Sync with inflight packets. After this point: | 
|  | * TX: no non-encrypted packets will be passed to the driver. | 
|  | * RX: resync requests from the driver will be ignored. | 
|  | */ | 
|  | synchronize_net(); | 
|  |  | 
|  | /* Release the offload context on the driver side. */ | 
|  | if (ctx->tx_conf == TLS_HW) | 
|  | netdev->tlsdev_ops->tls_dev_del(netdev, ctx, | 
|  | TLS_OFFLOAD_CTX_DIR_TX); | 
|  | if (ctx->rx_conf == TLS_HW && | 
|  | !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) | 
|  | netdev->tlsdev_ops->tls_dev_del(netdev, ctx, | 
|  | TLS_OFFLOAD_CTX_DIR_RX); | 
|  |  | 
|  | dev_put(netdev); | 
|  |  | 
|  | /* Move the context to a separate list for two reasons: | 
|  | * 1. When the context is deallocated, list_del is called. | 
|  | * 2. It's no longer an offloaded context, so we don't want to | 
|  | *    run offload-specific code on this context. | 
|  | */ | 
|  | spin_lock_irqsave(&tls_device_lock, flags); | 
|  | list_move_tail(&ctx->list, &tls_device_down_list); | 
|  | spin_unlock_irqrestore(&tls_device_lock, flags); | 
|  |  | 
|  | /* Device contexts for RX and TX will be freed in on sk_destruct | 
|  | * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. | 
|  | */ | 
|  | } | 
|  |  | 
|  | up_write(&device_offload_lock); | 
|  |  | 
|  | flush_work(&tls_device_gc_work); | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static int tls_dev_event(struct notifier_block *this, unsigned long event, | 
|  | void *ptr) | 
|  | { | 
|  | struct net_device *dev = netdev_notifier_info_to_dev(ptr); | 
|  |  | 
|  | if (!dev->tlsdev_ops && | 
|  | !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | switch (event) { | 
|  | case NETDEV_REGISTER: | 
|  | case NETDEV_FEAT_CHANGE: | 
|  | if (netif_is_bond_master(dev)) | 
|  | return NOTIFY_DONE; | 
|  | if ((dev->features & NETIF_F_HW_TLS_RX) && | 
|  | !dev->tlsdev_ops->tls_dev_resync) | 
|  | return NOTIFY_BAD; | 
|  |  | 
|  | if  (dev->tlsdev_ops && | 
|  | dev->tlsdev_ops->tls_dev_add && | 
|  | dev->tlsdev_ops->tls_dev_del) | 
|  | return NOTIFY_DONE; | 
|  | else | 
|  | return NOTIFY_BAD; | 
|  | case NETDEV_DOWN: | 
|  | return tls_device_down(dev); | 
|  | } | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block tls_dev_notifier = { | 
|  | .notifier_call	= tls_dev_event, | 
|  | }; | 
|  |  | 
|  | void __init tls_device_init(void) | 
|  | { | 
|  | register_netdevice_notifier(&tls_dev_notifier); | 
|  | } | 
|  |  | 
|  | void __exit tls_device_cleanup(void) | 
|  | { | 
|  | unregister_netdevice_notifier(&tls_dev_notifier); | 
|  | flush_work(&tls_device_gc_work); | 
|  | clean_acked_data_flush(); | 
|  | } |