|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_extfree_item.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_rmap.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_log_recover.h" | 
|  |  | 
|  | kmem_zone_t	*xfs_efi_zone; | 
|  | kmem_zone_t	*xfs_efd_zone; | 
|  |  | 
|  | static const struct xfs_item_ops xfs_efi_item_ops; | 
|  |  | 
|  | static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_efi_log_item, efi_item); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efi_item_free( | 
|  | struct xfs_efi_log_item	*efip) | 
|  | { | 
|  | kmem_free(efip->efi_item.li_lv_shadow); | 
|  | if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) | 
|  | kmem_free(efip); | 
|  | else | 
|  | kmem_cache_free(xfs_efi_zone, efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing the efi requires that we remove it from the AIL if it has already | 
|  | * been placed there. However, the EFI may not yet have been placed in the AIL | 
|  | * when called by xfs_efi_release() from EFD processing due to the ordering of | 
|  | * committed vs unpin operations in bulk insert operations. Hence the reference | 
|  | * count to ensure only the last caller frees the EFI. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_release( | 
|  | struct xfs_efi_log_item	*efip) | 
|  | { | 
|  | ASSERT(atomic_read(&efip->efi_refcount) > 0); | 
|  | if (atomic_dec_and_test(&efip->efi_refcount)) { | 
|  | xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); | 
|  | xfs_efi_item_free(efip); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given efi item. | 
|  | * We only need 1 iovec for an efi item.  It just logs the efi_log_format | 
|  | * structure. | 
|  | */ | 
|  | static inline int | 
|  | xfs_efi_item_sizeof( | 
|  | struct xfs_efi_log_item *efip) | 
|  | { | 
|  | return sizeof(struct xfs_efi_log_format) + | 
|  | (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efi_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efi log item. We use only 1 iovec, and we point that | 
|  | * at the efi_log_format structure embedded in the efi item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efi item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(atomic_read(&efip->efi_next_extent) == | 
|  | efip->efi_format.efi_nextents); | 
|  |  | 
|  | efip->efi_format.efi_type = XFS_LI_EFI; | 
|  | efip->efi_format.efi_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, | 
|  | &efip->efi_format, | 
|  | xfs_efi_item_sizeof(efip)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The unpin operation is the last place an EFI is manipulated in the log. It is | 
|  | * either inserted in the AIL or aborted in the event of a log I/O error. In | 
|  | * either case, the EFI transaction has been successfully committed to make it | 
|  | * this far. Therefore, we expect whoever committed the EFI to either construct | 
|  | * and commit the EFD or drop the EFD's reference in the event of error. Simply | 
|  | * drop the log's EFI reference now that the log is done with it. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_unpin( | 
|  | struct xfs_log_item	*lip, | 
|  | int			remove) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  | xfs_efi_release(efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFI has been either committed or aborted if the transaction has been | 
|  | * cancelled. If the transaction was cancelled, an EFD isn't going to be | 
|  | * constructed and thus we free the EFI here directly. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_release( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | xfs_efi_release(EFI_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an efi item with the given number of extents. | 
|  | */ | 
|  | STATIC struct xfs_efi_log_item * | 
|  | xfs_efi_init( | 
|  | struct xfs_mount	*mp, | 
|  | uint			nextents) | 
|  |  | 
|  | { | 
|  | struct xfs_efi_log_item	*efip; | 
|  | uint			size; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | size = (uint)(sizeof(struct xfs_efi_log_item) + | 
|  | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | efip = kmem_zalloc(size, 0); | 
|  | } else { | 
|  | efip = kmem_cache_zalloc(xfs_efi_zone, | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | } | 
|  |  | 
|  | xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); | 
|  | efip->efi_format.efi_nextents = nextents; | 
|  | efip->efi_format.efi_id = (uintptr_t)(void *)efip; | 
|  | atomic_set(&efip->efi_next_extent, 0); | 
|  | atomic_set(&efip->efi_refcount, 2); | 
|  |  | 
|  | return efip; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an EFI format buffer from the given buf, and into the destination | 
|  | * EFI format structure. | 
|  | * The given buffer can be in 32 bit or 64 bit form (which has different padding), | 
|  | * one of which will be the native format for this kernel. | 
|  | * It will handle the conversion of formats if necessary. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) | 
|  | { | 
|  | xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; | 
|  | uint i; | 
|  | uint len = sizeof(xfs_efi_log_format_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | uint len32 = sizeof(xfs_efi_log_format_32_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); | 
|  | uint len64 = sizeof(xfs_efi_log_format_64_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); | 
|  |  | 
|  | if (buf->i_len == len) { | 
|  | memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); | 
|  | return 0; | 
|  | } else if (buf->i_len == len32) { | 
|  | xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_32->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_32->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } else if (buf->i_len == len64) { | 
|  | xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_64->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_64->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_efd_log_item, efd_item); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_free(struct xfs_efd_log_item *efdp) | 
|  | { | 
|  | kmem_free(efdp->efd_item.li_lv_shadow); | 
|  | if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) | 
|  | kmem_free(efdp); | 
|  | else | 
|  | kmem_cache_free(xfs_efd_zone, efdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given efd item. | 
|  | * We only need 1 iovec for an efd item.  It just logs the efd_log_format | 
|  | * structure. | 
|  | */ | 
|  | static inline int | 
|  | xfs_efd_item_sizeof( | 
|  | struct xfs_efd_log_item *efdp) | 
|  | { | 
|  | return sizeof(xfs_efd_log_format_t) + | 
|  | (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efd log item. We use only 1 iovec, and we point that | 
|  | * at the efd_log_format structure embedded in the efd item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efd item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | 
|  |  | 
|  | efdp->efd_format.efd_type = XFS_LI_EFD; | 
|  | efdp->efd_format.efd_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, | 
|  | &efdp->efd_format, | 
|  | xfs_efd_item_sizeof(efdp)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFD is either committed or aborted if the transaction is cancelled. If | 
|  | * the transaction is cancelled, drop our reference to the EFI and free the EFD. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_release( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  |  | 
|  | xfs_efi_release(efdp->efd_efip); | 
|  | xfs_efd_item_free(efdp); | 
|  | } | 
|  |  | 
|  | static const struct xfs_item_ops xfs_efd_item_ops = { | 
|  | .flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED, | 
|  | .iop_size	= xfs_efd_item_size, | 
|  | .iop_format	= xfs_efd_item_format, | 
|  | .iop_release	= xfs_efd_item_release, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allocate an "extent free done" log item that will hold nextents worth of | 
|  | * extents.  The caller must use all nextents extents, because we are not | 
|  | * flexible about this at all. | 
|  | */ | 
|  | static struct xfs_efd_log_item * | 
|  | xfs_trans_get_efd( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_efi_log_item		*efip, | 
|  | unsigned int			nextents) | 
|  | { | 
|  | struct xfs_efd_log_item		*efdp; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  |  | 
|  | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + | 
|  | (nextents - 1) * sizeof(struct xfs_extent), | 
|  | 0); | 
|  | } else { | 
|  | efdp = kmem_cache_zalloc(xfs_efd_zone, | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | } | 
|  |  | 
|  | xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, | 
|  | &xfs_efd_item_ops); | 
|  | efdp->efd_efip = efip; | 
|  | efdp->efd_format.efd_nextents = nextents; | 
|  | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | 
|  |  | 
|  | xfs_trans_add_item(tp, &efdp->efd_item); | 
|  | return efdp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free an extent and log it to the EFD. Note that the transaction is marked | 
|  | * dirty regardless of whether the extent free succeeds or fails to support the | 
|  | * EFI/EFD lifecycle rules. | 
|  | */ | 
|  | static int | 
|  | xfs_trans_free_extent( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_efd_log_item		*efdp, | 
|  | xfs_fsblock_t			start_block, | 
|  | xfs_extlen_t			ext_len, | 
|  | const struct xfs_owner_info	*oinfo, | 
|  | bool				skip_discard) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_extent		*extp; | 
|  | uint				next_extent; | 
|  | xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block); | 
|  | xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp, | 
|  | start_block); | 
|  | int				error; | 
|  |  | 
|  | trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); | 
|  |  | 
|  | error = __xfs_free_extent(tp, start_block, ext_len, | 
|  | oinfo, XFS_AG_RESV_NONE, skip_discard); | 
|  | /* | 
|  | * Mark the transaction dirty, even on error. This ensures the | 
|  | * transaction is aborted, which: | 
|  | * | 
|  | * 1.) releases the EFI and frees the EFD | 
|  | * 2.) shuts down the filesystem | 
|  | */ | 
|  | tp->t_flags |= XFS_TRANS_DIRTY; | 
|  | set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); | 
|  |  | 
|  | next_extent = efdp->efd_next_extent; | 
|  | ASSERT(next_extent < efdp->efd_format.efd_nextents); | 
|  | extp = &(efdp->efd_format.efd_extents[next_extent]); | 
|  | extp->ext_start = start_block; | 
|  | extp->ext_len = ext_len; | 
|  | efdp->efd_next_extent++; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Sort bmap items by AG. */ | 
|  | static int | 
|  | xfs_extent_free_diff_items( | 
|  | void				*priv, | 
|  | const struct list_head		*a, | 
|  | const struct list_head		*b) | 
|  | { | 
|  | struct xfs_mount		*mp = priv; | 
|  | struct xfs_extent_free_item	*ra; | 
|  | struct xfs_extent_free_item	*rb; | 
|  |  | 
|  | ra = container_of(a, struct xfs_extent_free_item, xefi_list); | 
|  | rb = container_of(b, struct xfs_extent_free_item, xefi_list); | 
|  | return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - | 
|  | XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); | 
|  | } | 
|  |  | 
|  | /* Log a free extent to the intent item. */ | 
|  | STATIC void | 
|  | xfs_extent_free_log_item( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_efi_log_item		*efip, | 
|  | struct xfs_extent_free_item	*free) | 
|  | { | 
|  | uint				next_extent; | 
|  | struct xfs_extent		*extp; | 
|  |  | 
|  | tp->t_flags |= XFS_TRANS_DIRTY; | 
|  | set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); | 
|  |  | 
|  | /* | 
|  | * atomic_inc_return gives us the value after the increment; | 
|  | * we want to use it as an array index so we need to subtract 1 from | 
|  | * it. | 
|  | */ | 
|  | next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; | 
|  | ASSERT(next_extent < efip->efi_format.efi_nextents); | 
|  | extp = &efip->efi_format.efi_extents[next_extent]; | 
|  | extp->ext_start = free->xefi_startblock; | 
|  | extp->ext_len = free->xefi_blockcount; | 
|  | } | 
|  |  | 
|  | static struct xfs_log_item * | 
|  | xfs_extent_free_create_intent( | 
|  | struct xfs_trans		*tp, | 
|  | struct list_head		*items, | 
|  | unsigned int			count, | 
|  | bool				sort) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count); | 
|  | struct xfs_extent_free_item	*free; | 
|  |  | 
|  | ASSERT(count > 0); | 
|  |  | 
|  | xfs_trans_add_item(tp, &efip->efi_item); | 
|  | if (sort) | 
|  | list_sort(mp, items, xfs_extent_free_diff_items); | 
|  | list_for_each_entry(free, items, xefi_list) | 
|  | xfs_extent_free_log_item(tp, efip, free); | 
|  | return &efip->efi_item; | 
|  | } | 
|  |  | 
|  | /* Get an EFD so we can process all the free extents. */ | 
|  | static struct xfs_log_item * | 
|  | xfs_extent_free_create_done( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*intent, | 
|  | unsigned int			count) | 
|  | { | 
|  | return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; | 
|  | } | 
|  |  | 
|  | /* Process a free extent. */ | 
|  | STATIC int | 
|  | xfs_extent_free_finish_item( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*done, | 
|  | struct list_head		*item, | 
|  | struct xfs_btree_cur		**state) | 
|  | { | 
|  | struct xfs_extent_free_item	*free; | 
|  | int				error; | 
|  |  | 
|  | free = container_of(item, struct xfs_extent_free_item, xefi_list); | 
|  | error = xfs_trans_free_extent(tp, EFD_ITEM(done), | 
|  | free->xefi_startblock, | 
|  | free->xefi_blockcount, | 
|  | &free->xefi_oinfo, free->xefi_skip_discard); | 
|  | kmem_free(free); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Abort all pending EFIs. */ | 
|  | STATIC void | 
|  | xfs_extent_free_abort_intent( | 
|  | struct xfs_log_item		*intent) | 
|  | { | 
|  | xfs_efi_release(EFI_ITEM(intent)); | 
|  | } | 
|  |  | 
|  | /* Cancel a free extent. */ | 
|  | STATIC void | 
|  | xfs_extent_free_cancel_item( | 
|  | struct list_head		*item) | 
|  | { | 
|  | struct xfs_extent_free_item	*free; | 
|  |  | 
|  | free = container_of(item, struct xfs_extent_free_item, xefi_list); | 
|  | kmem_free(free); | 
|  | } | 
|  |  | 
|  | const struct xfs_defer_op_type xfs_extent_free_defer_type = { | 
|  | .max_items	= XFS_EFI_MAX_FAST_EXTENTS, | 
|  | .create_intent	= xfs_extent_free_create_intent, | 
|  | .abort_intent	= xfs_extent_free_abort_intent, | 
|  | .create_done	= xfs_extent_free_create_done, | 
|  | .finish_item	= xfs_extent_free_finish_item, | 
|  | .cancel_item	= xfs_extent_free_cancel_item, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * AGFL blocks are accounted differently in the reserve pools and are not | 
|  | * inserted into the busy extent list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_agfl_free_finish_item( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*done, | 
|  | struct list_head		*item, | 
|  | struct xfs_btree_cur		**state) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_efd_log_item		*efdp = EFD_ITEM(done); | 
|  | struct xfs_extent_free_item	*free; | 
|  | struct xfs_extent		*extp; | 
|  | struct xfs_buf			*agbp; | 
|  | int				error; | 
|  | xfs_agnumber_t			agno; | 
|  | xfs_agblock_t			agbno; | 
|  | uint				next_extent; | 
|  |  | 
|  | free = container_of(item, struct xfs_extent_free_item, xefi_list); | 
|  | ASSERT(free->xefi_blockcount == 1); | 
|  | agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); | 
|  | agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); | 
|  |  | 
|  | trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); | 
|  |  | 
|  | error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); | 
|  | if (!error) | 
|  | error = xfs_free_agfl_block(tp, agno, agbno, agbp, | 
|  | &free->xefi_oinfo); | 
|  |  | 
|  | /* | 
|  | * Mark the transaction dirty, even on error. This ensures the | 
|  | * transaction is aborted, which: | 
|  | * | 
|  | * 1.) releases the EFI and frees the EFD | 
|  | * 2.) shuts down the filesystem | 
|  | */ | 
|  | tp->t_flags |= XFS_TRANS_DIRTY; | 
|  | set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); | 
|  |  | 
|  | next_extent = efdp->efd_next_extent; | 
|  | ASSERT(next_extent < efdp->efd_format.efd_nextents); | 
|  | extp = &(efdp->efd_format.efd_extents[next_extent]); | 
|  | extp->ext_start = free->xefi_startblock; | 
|  | extp->ext_len = free->xefi_blockcount; | 
|  | efdp->efd_next_extent++; | 
|  |  | 
|  | kmem_free(free); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* sub-type with special handling for AGFL deferred frees */ | 
|  | const struct xfs_defer_op_type xfs_agfl_free_defer_type = { | 
|  | .max_items	= XFS_EFI_MAX_FAST_EXTENTS, | 
|  | .create_intent	= xfs_extent_free_create_intent, | 
|  | .abort_intent	= xfs_extent_free_abort_intent, | 
|  | .create_done	= xfs_extent_free_create_done, | 
|  | .finish_item	= xfs_agfl_free_finish_item, | 
|  | .cancel_item	= xfs_extent_free_cancel_item, | 
|  | }; | 
|  |  | 
|  | /* Is this recovered EFI ok? */ | 
|  | static inline bool | 
|  | xfs_efi_validate_ext( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_extent		*extp) | 
|  | { | 
|  | return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an extent free intent item that was recovered from | 
|  | * the log.  We need to free the extents that it describes. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_efi_item_recover( | 
|  | struct xfs_log_item		*lip, | 
|  | struct list_head		*capture_list) | 
|  | { | 
|  | struct xfs_efi_log_item		*efip = EFI_ITEM(lip); | 
|  | struct xfs_mount		*mp = lip->li_mountp; | 
|  | struct xfs_efd_log_item		*efdp; | 
|  | struct xfs_trans		*tp; | 
|  | struct xfs_extent		*extp; | 
|  | int				i; | 
|  | int				error = 0; | 
|  |  | 
|  | /* | 
|  | * First check the validity of the extents described by the | 
|  | * EFI.  If any are bad, then assume that all are bad and | 
|  | * just toss the EFI. | 
|  | */ | 
|  | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | 
|  | if (!xfs_efi_validate_ext(mp, | 
|  | &efip->efi_format.efi_extents[i])) { | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
|  | &efip->efi_format, | 
|  | sizeof(efip->efi_format)); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); | 
|  | if (error) | 
|  | return error; | 
|  | efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); | 
|  |  | 
|  | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | 
|  | extp = &efip->efi_format.efi_extents[i]; | 
|  | error = xfs_trans_free_extent(tp, efdp, extp->ext_start, | 
|  | extp->ext_len, | 
|  | &XFS_RMAP_OINFO_ANY_OWNER, false); | 
|  | if (error == -EFSCORRUPTED) | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
|  | extp, sizeof(*extp)); | 
|  | if (error) | 
|  | goto abort_error; | 
|  |  | 
|  | } | 
|  |  | 
|  | return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list); | 
|  |  | 
|  | abort_error: | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | STATIC bool | 
|  | xfs_efi_item_match( | 
|  | struct xfs_log_item	*lip, | 
|  | uint64_t		intent_id) | 
|  | { | 
|  | return EFI_ITEM(lip)->efi_format.efi_id == intent_id; | 
|  | } | 
|  |  | 
|  | /* Relog an intent item to push the log tail forward. */ | 
|  | static struct xfs_log_item * | 
|  | xfs_efi_item_relog( | 
|  | struct xfs_log_item		*intent, | 
|  | struct xfs_trans		*tp) | 
|  | { | 
|  | struct xfs_efd_log_item		*efdp; | 
|  | struct xfs_efi_log_item		*efip; | 
|  | struct xfs_extent		*extp; | 
|  | unsigned int			count; | 
|  |  | 
|  | count = EFI_ITEM(intent)->efi_format.efi_nextents; | 
|  | extp = EFI_ITEM(intent)->efi_format.efi_extents; | 
|  |  | 
|  | tp->t_flags |= XFS_TRANS_DIRTY; | 
|  | efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); | 
|  | efdp->efd_next_extent = count; | 
|  | memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); | 
|  | set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); | 
|  |  | 
|  | efip = xfs_efi_init(tp->t_mountp, count); | 
|  | memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); | 
|  | atomic_set(&efip->efi_next_extent, count); | 
|  | xfs_trans_add_item(tp, &efip->efi_item); | 
|  | set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); | 
|  | return &efip->efi_item; | 
|  | } | 
|  |  | 
|  | static const struct xfs_item_ops xfs_efi_item_ops = { | 
|  | .iop_size	= xfs_efi_item_size, | 
|  | .iop_format	= xfs_efi_item_format, | 
|  | .iop_unpin	= xfs_efi_item_unpin, | 
|  | .iop_release	= xfs_efi_item_release, | 
|  | .iop_recover	= xfs_efi_item_recover, | 
|  | .iop_match	= xfs_efi_item_match, | 
|  | .iop_relog	= xfs_efi_item_relog, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine is called to create an in-core extent free intent | 
|  | * item from the efi format structure which was logged on disk. | 
|  | * It allocates an in-core efi, copies the extents from the format | 
|  | * structure into it, and adds the efi to the AIL with the given | 
|  | * LSN. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_efi_commit_pass2( | 
|  | struct xlog			*log, | 
|  | struct list_head		*buffer_list, | 
|  | struct xlog_recover_item	*item, | 
|  | xfs_lsn_t			lsn) | 
|  | { | 
|  | struct xfs_mount		*mp = log->l_mp; | 
|  | struct xfs_efi_log_item		*efip; | 
|  | struct xfs_efi_log_format	*efi_formatp; | 
|  | int				error; | 
|  |  | 
|  | efi_formatp = item->ri_buf[0].i_addr; | 
|  |  | 
|  | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); | 
|  | error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); | 
|  | if (error) { | 
|  | xfs_efi_item_free(efip); | 
|  | return error; | 
|  | } | 
|  | atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); | 
|  | /* | 
|  | * Insert the intent into the AIL directly and drop one reference so | 
|  | * that finishing or canceling the work will drop the other. | 
|  | */ | 
|  | xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); | 
|  | xfs_efi_release(efip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct xlog_recover_item_ops xlog_efi_item_ops = { | 
|  | .item_type		= XFS_LI_EFI, | 
|  | .commit_pass2		= xlog_recover_efi_commit_pass2, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine is called when an EFD format structure is found in a committed | 
|  | * transaction in the log. Its purpose is to cancel the corresponding EFI if it | 
|  | * was still in the log. To do this it searches the AIL for the EFI with an id | 
|  | * equal to that in the EFD format structure. If we find it we drop the EFD | 
|  | * reference, which removes the EFI from the AIL and frees it. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_efd_commit_pass2( | 
|  | struct xlog			*log, | 
|  | struct list_head		*buffer_list, | 
|  | struct xlog_recover_item	*item, | 
|  | xfs_lsn_t			lsn) | 
|  | { | 
|  | struct xfs_efd_log_format	*efd_formatp; | 
|  |  | 
|  | efd_formatp = item->ri_buf[0].i_addr; | 
|  | ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + | 
|  | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || | 
|  | (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + | 
|  | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); | 
|  |  | 
|  | xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct xlog_recover_item_ops xlog_efd_item_ops = { | 
|  | .item_type		= XFS_LI_EFD, | 
|  | .commit_pass2		= xlog_recover_efd_commit_pass2, | 
|  | }; |