|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Perf support for the Statistical Profiling Extension, introduced as | 
|  | * part of ARMv8.2. | 
|  | * | 
|  | * Copyright (C) 2016 ARM Limited | 
|  | * | 
|  | * Author: Will Deacon <will.deacon@arm.com> | 
|  | */ | 
|  |  | 
|  | #define PMUNAME					"arm_spe" | 
|  | #define DRVNAME					PMUNAME "_pmu" | 
|  | #define pr_fmt(fmt)				DRVNAME ": " fmt | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/cpuhotplug.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/perf/arm_pmu.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | #include <asm/barrier.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/sysreg.h> | 
|  |  | 
|  | /* | 
|  | * Cache if the event is allowed to trace Context information. | 
|  | * This allows us to perform the check, i.e, perfmon_capable(), | 
|  | * in the context of the event owner, once, during the event_init(). | 
|  | */ | 
|  | #define SPE_PMU_HW_FLAGS_CX			0x00001 | 
|  |  | 
|  | static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX); | 
|  |  | 
|  | static void set_spe_event_has_cx(struct perf_event *event) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable()) | 
|  | event->hw.flags |= SPE_PMU_HW_FLAGS_CX; | 
|  | } | 
|  |  | 
|  | static bool get_spe_event_has_cx(struct perf_event *event) | 
|  | { | 
|  | return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX); | 
|  | } | 
|  |  | 
|  | #define ARM_SPE_BUF_PAD_BYTE			0 | 
|  |  | 
|  | struct arm_spe_pmu_buf { | 
|  | int					nr_pages; | 
|  | bool					snapshot; | 
|  | void					*base; | 
|  | }; | 
|  |  | 
|  | struct arm_spe_pmu { | 
|  | struct pmu				pmu; | 
|  | struct platform_device			*pdev; | 
|  | cpumask_t				supported_cpus; | 
|  | struct hlist_node			hotplug_node; | 
|  |  | 
|  | int					irq; /* PPI */ | 
|  | u16					pmsver; | 
|  | u16					min_period; | 
|  | u16					counter_sz; | 
|  |  | 
|  | #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0) | 
|  | #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1) | 
|  | #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2) | 
|  | #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3) | 
|  | #define SPE_PMU_FEAT_LDS			(1UL << 4) | 
|  | #define SPE_PMU_FEAT_ERND			(1UL << 5) | 
|  | #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63) | 
|  | u64					features; | 
|  |  | 
|  | u16					max_record_sz; | 
|  | u16					align; | 
|  | struct perf_output_handle __percpu	*handle; | 
|  | }; | 
|  |  | 
|  | #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) | 
|  |  | 
|  | /* Convert a free-running index from perf into an SPE buffer offset */ | 
|  | #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT)) | 
|  |  | 
|  | /* Keep track of our dynamic hotplug state */ | 
|  | static enum cpuhp_state arm_spe_pmu_online; | 
|  |  | 
|  | enum arm_spe_pmu_buf_fault_action { | 
|  | SPE_PMU_BUF_FAULT_ACT_SPURIOUS, | 
|  | SPE_PMU_BUF_FAULT_ACT_FATAL, | 
|  | SPE_PMU_BUF_FAULT_ACT_OK, | 
|  | }; | 
|  |  | 
|  | /* This sysfs gunk was really good fun to write. */ | 
|  | enum arm_spe_pmu_capabilities { | 
|  | SPE_PMU_CAP_ARCH_INST = 0, | 
|  | SPE_PMU_CAP_ERND, | 
|  | SPE_PMU_CAP_FEAT_MAX, | 
|  | SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, | 
|  | SPE_PMU_CAP_MIN_IVAL, | 
|  | }; | 
|  |  | 
|  | static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { | 
|  | [SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST, | 
|  | [SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND, | 
|  | }; | 
|  |  | 
|  | static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) | 
|  | { | 
|  | if (cap < SPE_PMU_CAP_FEAT_MAX) | 
|  | return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); | 
|  |  | 
|  | switch (cap) { | 
|  | case SPE_PMU_CAP_CNT_SZ: | 
|  | return spe_pmu->counter_sz; | 
|  | case SPE_PMU_CAP_MIN_IVAL: | 
|  | return spe_pmu->min_period; | 
|  | default: | 
|  | WARN(1, "unknown cap %d\n", cap); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t arm_spe_pmu_cap_show(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); | 
|  | struct dev_ext_attribute *ea = | 
|  | container_of(attr, struct dev_ext_attribute, attr); | 
|  | int cap = (long)ea->var; | 
|  |  | 
|  | return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap)); | 
|  | } | 
|  |  | 
|  | #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\ | 
|  | &((struct dev_ext_attribute[]) {				\ | 
|  | { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\ | 
|  | })[0].attr.attr | 
|  |  | 
|  | #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\ | 
|  | SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) | 
|  |  | 
|  | static struct attribute *arm_spe_pmu_cap_attr[] = { | 
|  | SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), | 
|  | SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), | 
|  | SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), | 
|  | SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group arm_spe_pmu_cap_group = { | 
|  | .name	= "caps", | 
|  | .attrs	= arm_spe_pmu_cap_attr, | 
|  | }; | 
|  |  | 
|  | /* User ABI */ | 
|  | #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */ | 
|  | #define ATTR_CFG_FLD_ts_enable_LO		0 | 
|  | #define ATTR_CFG_FLD_ts_enable_HI		0 | 
|  | #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */ | 
|  | #define ATTR_CFG_FLD_pa_enable_LO		1 | 
|  | #define ATTR_CFG_FLD_pa_enable_HI		1 | 
|  | #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */ | 
|  | #define ATTR_CFG_FLD_pct_enable_LO		2 | 
|  | #define ATTR_CFG_FLD_pct_enable_HI		2 | 
|  | #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */ | 
|  | #define ATTR_CFG_FLD_jitter_LO			16 | 
|  | #define ATTR_CFG_FLD_jitter_HI			16 | 
|  | #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */ | 
|  | #define ATTR_CFG_FLD_branch_filter_LO		32 | 
|  | #define ATTR_CFG_FLD_branch_filter_HI		32 | 
|  | #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */ | 
|  | #define ATTR_CFG_FLD_load_filter_LO		33 | 
|  | #define ATTR_CFG_FLD_load_filter_HI		33 | 
|  | #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */ | 
|  | #define ATTR_CFG_FLD_store_filter_LO		34 | 
|  | #define ATTR_CFG_FLD_store_filter_HI		34 | 
|  |  | 
|  | #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */ | 
|  | #define ATTR_CFG_FLD_event_filter_LO		0 | 
|  | #define ATTR_CFG_FLD_event_filter_HI		63 | 
|  |  | 
|  | #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */ | 
|  | #define ATTR_CFG_FLD_min_latency_LO		0 | 
|  | #define ATTR_CFG_FLD_min_latency_HI		11 | 
|  |  | 
|  | /* Why does everything I do descend into this? */ | 
|  | #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\ | 
|  | (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi | 
|  |  | 
|  | #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\ | 
|  | __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) | 
|  |  | 
|  | #define GEN_PMU_FORMAT_ATTR(name)					\ | 
|  | PMU_FORMAT_ATTR(name,						\ | 
|  | _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\ | 
|  | ATTR_CFG_FLD_##name##_LO,			\ | 
|  | ATTR_CFG_FLD_##name##_HI)) | 
|  |  | 
|  | #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\ | 
|  | ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) | 
|  |  | 
|  | #define ATTR_CFG_GET_FLD(attr, name)					\ | 
|  | _ATTR_CFG_GET_FLD(attr,						\ | 
|  | ATTR_CFG_FLD_##name##_CFG,			\ | 
|  | ATTR_CFG_FLD_##name##_LO,			\ | 
|  | ATTR_CFG_FLD_##name##_HI) | 
|  |  | 
|  | GEN_PMU_FORMAT_ATTR(ts_enable); | 
|  | GEN_PMU_FORMAT_ATTR(pa_enable); | 
|  | GEN_PMU_FORMAT_ATTR(pct_enable); | 
|  | GEN_PMU_FORMAT_ATTR(jitter); | 
|  | GEN_PMU_FORMAT_ATTR(branch_filter); | 
|  | GEN_PMU_FORMAT_ATTR(load_filter); | 
|  | GEN_PMU_FORMAT_ATTR(store_filter); | 
|  | GEN_PMU_FORMAT_ATTR(event_filter); | 
|  | GEN_PMU_FORMAT_ATTR(min_latency); | 
|  |  | 
|  | static struct attribute *arm_spe_pmu_formats_attr[] = { | 
|  | &format_attr_ts_enable.attr, | 
|  | &format_attr_pa_enable.attr, | 
|  | &format_attr_pct_enable.attr, | 
|  | &format_attr_jitter.attr, | 
|  | &format_attr_branch_filter.attr, | 
|  | &format_attr_load_filter.attr, | 
|  | &format_attr_store_filter.attr, | 
|  | &format_attr_event_filter.attr, | 
|  | &format_attr_min_latency.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group arm_spe_pmu_format_group = { | 
|  | .name	= "format", | 
|  | .attrs	= arm_spe_pmu_formats_attr, | 
|  | }; | 
|  |  | 
|  | static ssize_t cpumask_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); | 
|  |  | 
|  | return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); | 
|  | } | 
|  | static DEVICE_ATTR_RO(cpumask); | 
|  |  | 
|  | static struct attribute *arm_spe_pmu_attrs[] = { | 
|  | &dev_attr_cpumask.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group arm_spe_pmu_group = { | 
|  | .attrs	= arm_spe_pmu_attrs, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *arm_spe_pmu_attr_groups[] = { | 
|  | &arm_spe_pmu_group, | 
|  | &arm_spe_pmu_cap_group, | 
|  | &arm_spe_pmu_format_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | /* Convert between user ABI and register values */ | 
|  | static u64 arm_spe_event_to_pmscr(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | u64 reg = 0; | 
|  |  | 
|  | reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; | 
|  | reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; | 
|  | reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; | 
|  |  | 
|  | if (!attr->exclude_user) | 
|  | reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); | 
|  |  | 
|  | if (!attr->exclude_kernel) | 
|  | reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); | 
|  |  | 
|  | if (get_spe_event_has_cx(event)) | 
|  | reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static void arm_spe_event_sanitise_period(struct perf_event *event) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); | 
|  | u64 period = event->hw.sample_period; | 
|  | u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK | 
|  | << SYS_PMSIRR_EL1_INTERVAL_SHIFT; | 
|  |  | 
|  | if (period < spe_pmu->min_period) | 
|  | period = spe_pmu->min_period; | 
|  | else if (period > max_period) | 
|  | period = max_period; | 
|  | else | 
|  | period &= max_period; | 
|  |  | 
|  | event->hw.sample_period = period; | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_event_to_pmsirr(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | u64 reg = 0; | 
|  |  | 
|  | arm_spe_event_sanitise_period(event); | 
|  |  | 
|  | reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; | 
|  | reg |= event->hw.sample_period; | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | u64 reg = 0; | 
|  |  | 
|  | reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; | 
|  | reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; | 
|  | reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; | 
|  |  | 
|  | if (reg) | 
|  | reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); | 
|  |  | 
|  | if (ATTR_CFG_GET_FLD(attr, event_filter)) | 
|  | reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); | 
|  |  | 
|  | if (ATTR_CFG_GET_FLD(attr, min_latency)) | 
|  | reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | return ATTR_CFG_GET_FLD(attr, event_filter); | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | return ATTR_CFG_GET_FLD(attr, min_latency) | 
|  | << SYS_PMSLATFR_EL1_MINLAT_SHIFT; | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) | 
|  | { | 
|  | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); | 
|  | u64 head = PERF_IDX2OFF(handle->head, buf); | 
|  |  | 
|  | memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); | 
|  | if (!buf->snapshot) | 
|  | perf_aux_output_skip(handle, len); | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) | 
|  | { | 
|  | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); | 
|  | u64 head = PERF_IDX2OFF(handle->head, buf); | 
|  | u64 limit = buf->nr_pages * PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * The trace format isn't parseable in reverse, so clamp | 
|  | * the limit to half of the buffer size in snapshot mode | 
|  | * so that the worst case is half a buffer of records, as | 
|  | * opposed to a single record. | 
|  | */ | 
|  | if (head < limit >> 1) | 
|  | limit >>= 1; | 
|  |  | 
|  | /* | 
|  | * If we're within max_record_sz of the limit, we must | 
|  | * pad, move the head index and recompute the limit. | 
|  | */ | 
|  | if (limit - head < spe_pmu->max_record_sz) { | 
|  | arm_spe_pmu_pad_buf(handle, limit - head); | 
|  | handle->head = PERF_IDX2OFF(limit, buf); | 
|  | limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; | 
|  | } | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); | 
|  | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); | 
|  | const u64 bufsize = buf->nr_pages * PAGE_SIZE; | 
|  | u64 limit = bufsize; | 
|  | u64 head, tail, wakeup; | 
|  |  | 
|  | /* | 
|  | * The head can be misaligned for two reasons: | 
|  | * | 
|  | * 1. The hardware left PMBPTR pointing to the first byte after | 
|  | *    a record when generating a buffer management event. | 
|  | * | 
|  | * 2. We used perf_aux_output_skip to consume handle->size bytes | 
|  | *    and CIRC_SPACE was used to compute the size, which always | 
|  | *    leaves one entry free. | 
|  | * | 
|  | * Deal with this by padding to the next alignment boundary and | 
|  | * moving the head index. If we run out of buffer space, we'll | 
|  | * reduce handle->size to zero and end up reporting truncation. | 
|  | */ | 
|  | head = PERF_IDX2OFF(handle->head, buf); | 
|  | if (!IS_ALIGNED(head, spe_pmu->align)) { | 
|  | unsigned long delta = roundup(head, spe_pmu->align) - head; | 
|  |  | 
|  | delta = min(delta, handle->size); | 
|  | arm_spe_pmu_pad_buf(handle, delta); | 
|  | head = PERF_IDX2OFF(handle->head, buf); | 
|  | } | 
|  |  | 
|  | /* If we've run out of free space, then nothing more to do */ | 
|  | if (!handle->size) | 
|  | goto no_space; | 
|  |  | 
|  | /* Compute the tail and wakeup indices now that we've aligned head */ | 
|  | tail = PERF_IDX2OFF(handle->head + handle->size, buf); | 
|  | wakeup = PERF_IDX2OFF(handle->wakeup, buf); | 
|  |  | 
|  | /* | 
|  | * Avoid clobbering unconsumed data. We know we have space, so | 
|  | * if we see head == tail we know that the buffer is empty. If | 
|  | * head > tail, then there's nothing to clobber prior to | 
|  | * wrapping. | 
|  | */ | 
|  | if (head < tail) | 
|  | limit = round_down(tail, PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Wakeup may be arbitrarily far into the future. If it's not in | 
|  | * the current generation, either we'll wrap before hitting it, | 
|  | * or it's in the past and has been handled already. | 
|  | * | 
|  | * If there's a wakeup before we wrap, arrange to be woken up by | 
|  | * the page boundary following it. Keep the tail boundary if | 
|  | * that's lower. | 
|  | */ | 
|  | if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) | 
|  | limit = min(limit, round_up(wakeup, PAGE_SIZE)); | 
|  |  | 
|  | if (limit > head) | 
|  | return limit; | 
|  |  | 
|  | arm_spe_pmu_pad_buf(handle, handle->size); | 
|  | no_space: | 
|  | perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); | 
|  | perf_aux_output_end(handle, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) | 
|  | { | 
|  | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); | 
|  | u64 limit = __arm_spe_pmu_next_off(handle); | 
|  | u64 head = PERF_IDX2OFF(handle->head, buf); | 
|  |  | 
|  | /* | 
|  | * If the head has come too close to the end of the buffer, | 
|  | * then pad to the end and recompute the limit. | 
|  | */ | 
|  | if (limit && (limit - head < spe_pmu->max_record_sz)) { | 
|  | arm_spe_pmu_pad_buf(handle, limit - head); | 
|  | limit = __arm_spe_pmu_next_off(handle); | 
|  | } | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, | 
|  | struct perf_event *event) | 
|  | { | 
|  | u64 base, limit; | 
|  | struct arm_spe_pmu_buf *buf; | 
|  |  | 
|  | /* Start a new aux session */ | 
|  | buf = perf_aux_output_begin(handle, event); | 
|  | if (!buf) { | 
|  | event->hw.state |= PERF_HES_STOPPED; | 
|  | /* | 
|  | * We still need to clear the limit pointer, since the | 
|  | * profiler might only be disabled by virtue of a fault. | 
|  | */ | 
|  | limit = 0; | 
|  | goto out_write_limit; | 
|  | } | 
|  |  | 
|  | limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) | 
|  | : arm_spe_pmu_next_off(handle); | 
|  | if (limit) | 
|  | limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); | 
|  |  | 
|  | limit += (u64)buf->base; | 
|  | base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); | 
|  | write_sysreg_s(base, SYS_PMBPTR_EL1); | 
|  |  | 
|  | out_write_limit: | 
|  | write_sysreg_s(limit, SYS_PMBLIMITR_EL1); | 
|  | } | 
|  |  | 
|  | static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) | 
|  | { | 
|  | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); | 
|  | u64 offset, size; | 
|  |  | 
|  | offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; | 
|  | size = offset - PERF_IDX2OFF(handle->head, buf); | 
|  |  | 
|  | if (buf->snapshot) | 
|  | handle->head = offset; | 
|  |  | 
|  | perf_aux_output_end(handle, size); | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_disable_and_drain_local(void) | 
|  | { | 
|  | /* Disable profiling at EL0 and EL1 */ | 
|  | write_sysreg_s(0, SYS_PMSCR_EL1); | 
|  | isb(); | 
|  |  | 
|  | /* Drain any buffered data */ | 
|  | psb_csync(); | 
|  | dsb(nsh); | 
|  |  | 
|  | /* Disable the profiling buffer */ | 
|  | write_sysreg_s(0, SYS_PMBLIMITR_EL1); | 
|  | isb(); | 
|  | } | 
|  |  | 
|  | /* IRQ handling */ | 
|  | static enum arm_spe_pmu_buf_fault_action | 
|  | arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) | 
|  | { | 
|  | const char *err_str; | 
|  | u64 pmbsr; | 
|  | enum arm_spe_pmu_buf_fault_action ret; | 
|  |  | 
|  | /* | 
|  | * Ensure new profiling data is visible to the CPU and any external | 
|  | * aborts have been resolved. | 
|  | */ | 
|  | psb_csync(); | 
|  | dsb(nsh); | 
|  |  | 
|  | /* Ensure hardware updates to PMBPTR_EL1 are visible */ | 
|  | isb(); | 
|  |  | 
|  | /* Service required? */ | 
|  | pmbsr = read_sysreg_s(SYS_PMBSR_EL1); | 
|  | if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) | 
|  | return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; | 
|  |  | 
|  | /* | 
|  | * If we've lost data, disable profiling and also set the PARTIAL | 
|  | * flag to indicate that the last record is corrupted. | 
|  | */ | 
|  | if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) | 
|  | perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | | 
|  | PERF_AUX_FLAG_PARTIAL); | 
|  |  | 
|  | /* Report collisions to userspace so that it can up the period */ | 
|  | if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) | 
|  | perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); | 
|  |  | 
|  | /* We only expect buffer management events */ | 
|  | switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { | 
|  | case SYS_PMBSR_EL1_EC_BUF: | 
|  | /* Handled below */ | 
|  | break; | 
|  | case SYS_PMBSR_EL1_EC_FAULT_S1: | 
|  | case SYS_PMBSR_EL1_EC_FAULT_S2: | 
|  | err_str = "Unexpected buffer fault"; | 
|  | goto out_err; | 
|  | default: | 
|  | err_str = "Unknown error code"; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* Buffer management event */ | 
|  | switch (pmbsr & | 
|  | (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { | 
|  | case SYS_PMBSR_EL1_BUF_BSC_FULL: | 
|  | ret = SPE_PMU_BUF_FAULT_ACT_OK; | 
|  | goto out_stop; | 
|  | default: | 
|  | err_str = "Unknown buffer status code"; | 
|  | } | 
|  |  | 
|  | out_err: | 
|  | pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", | 
|  | err_str, smp_processor_id(), pmbsr, | 
|  | read_sysreg_s(SYS_PMBPTR_EL1), | 
|  | read_sysreg_s(SYS_PMBLIMITR_EL1)); | 
|  | ret = SPE_PMU_BUF_FAULT_ACT_FATAL; | 
|  |  | 
|  | out_stop: | 
|  | arm_spe_perf_aux_output_end(handle); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) | 
|  | { | 
|  | struct perf_output_handle *handle = dev; | 
|  | struct perf_event *event = handle->event; | 
|  | enum arm_spe_pmu_buf_fault_action act; | 
|  |  | 
|  | if (!perf_get_aux(handle)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | act = arm_spe_pmu_buf_get_fault_act(handle); | 
|  | if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* | 
|  | * Ensure perf callbacks have completed, which may disable the | 
|  | * profiling buffer in response to a TRUNCATION flag. | 
|  | */ | 
|  | irq_work_run(); | 
|  |  | 
|  | switch (act) { | 
|  | case SPE_PMU_BUF_FAULT_ACT_FATAL: | 
|  | /* | 
|  | * If a fatal exception occurred then leaving the profiling | 
|  | * buffer enabled is a recipe waiting to happen. Since | 
|  | * fatal faults don't always imply truncation, make sure | 
|  | * that the profiling buffer is disabled explicitly before | 
|  | * clearing the syndrome register. | 
|  | */ | 
|  | arm_spe_pmu_disable_and_drain_local(); | 
|  | break; | 
|  | case SPE_PMU_BUF_FAULT_ACT_OK: | 
|  | /* | 
|  | * We handled the fault (the buffer was full), so resume | 
|  | * profiling as long as we didn't detect truncation. | 
|  | * PMBPTR might be misaligned, but we'll burn that bridge | 
|  | * when we get to it. | 
|  | */ | 
|  | if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { | 
|  | arm_spe_perf_aux_output_begin(handle, event); | 
|  | isb(); | 
|  | } | 
|  | break; | 
|  | case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: | 
|  | /* We've seen you before, but GCC has the memory of a sieve. */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* The buffer pointers are now sane, so resume profiling. */ | 
|  | write_sysreg_s(0, SYS_PMBSR_EL1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static u64 arm_spe_pmsevfr_res0(u16 pmsver) | 
|  | { | 
|  | switch (pmsver) { | 
|  | case ID_AA64DFR0_EL1_PMSVer_IMP: | 
|  | return SYS_PMSEVFR_EL1_RES0_8_2; | 
|  | case ID_AA64DFR0_EL1_PMSVer_V1P1: | 
|  | /* Return the highest version we support in default */ | 
|  | default: | 
|  | return SYS_PMSEVFR_EL1_RES0_8_3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Perf callbacks */ | 
|  | static int arm_spe_pmu_event_init(struct perf_event *event) | 
|  | { | 
|  | u64 reg; | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); | 
|  |  | 
|  | /* This is, of course, deeply driver-specific */ | 
|  | if (attr->type != event->pmu->type) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (event->cpu >= 0 && | 
|  | !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (attr->exclude_idle) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * Feedback-directed frequency throttling doesn't work when we | 
|  | * have a buffer of samples. We'd need to manually count the | 
|  | * samples in the buffer when it fills up and adjust the event | 
|  | * count to reflect that. Instead, just force the user to specify | 
|  | * a sample period. | 
|  | */ | 
|  | if (attr->freq) | 
|  | return -EINVAL; | 
|  |  | 
|  | reg = arm_spe_event_to_pmsfcr(event); | 
|  | if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && | 
|  | !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && | 
|  | !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && | 
|  | !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | set_spe_event_has_cx(event); | 
|  | reg = arm_spe_event_to_pmscr(event); | 
|  | if (!perfmon_capable() && | 
|  | (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | | 
|  | BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) | 
|  | return -EACCES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | u64 reg; | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); | 
|  |  | 
|  | hwc->state = 0; | 
|  | arm_spe_perf_aux_output_begin(handle, event); | 
|  | if (hwc->state) | 
|  | return; | 
|  |  | 
|  | reg = arm_spe_event_to_pmsfcr(event); | 
|  | write_sysreg_s(reg, SYS_PMSFCR_EL1); | 
|  |  | 
|  | reg = arm_spe_event_to_pmsevfr(event); | 
|  | write_sysreg_s(reg, SYS_PMSEVFR_EL1); | 
|  |  | 
|  | reg = arm_spe_event_to_pmslatfr(event); | 
|  | write_sysreg_s(reg, SYS_PMSLATFR_EL1); | 
|  |  | 
|  | if (flags & PERF_EF_RELOAD) { | 
|  | reg = arm_spe_event_to_pmsirr(event); | 
|  | write_sysreg_s(reg, SYS_PMSIRR_EL1); | 
|  | isb(); | 
|  | reg = local64_read(&hwc->period_left); | 
|  | write_sysreg_s(reg, SYS_PMSICR_EL1); | 
|  | } | 
|  |  | 
|  | reg = arm_spe_event_to_pmscr(event); | 
|  | isb(); | 
|  | write_sysreg_s(reg, SYS_PMSCR_EL1); | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); | 
|  |  | 
|  | /* If we're already stopped, then nothing to do */ | 
|  | if (hwc->state & PERF_HES_STOPPED) | 
|  | return; | 
|  |  | 
|  | /* Stop all trace generation */ | 
|  | arm_spe_pmu_disable_and_drain_local(); | 
|  |  | 
|  | if (flags & PERF_EF_UPDATE) { | 
|  | /* | 
|  | * If there's a fault pending then ensure we contain it | 
|  | * to this buffer, since we might be on the context-switch | 
|  | * path. | 
|  | */ | 
|  | if (perf_get_aux(handle)) { | 
|  | enum arm_spe_pmu_buf_fault_action act; | 
|  |  | 
|  | act = arm_spe_pmu_buf_get_fault_act(handle); | 
|  | if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) | 
|  | arm_spe_perf_aux_output_end(handle); | 
|  | else | 
|  | write_sysreg_s(0, SYS_PMBSR_EL1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This may also contain ECOUNT, but nobody else should | 
|  | * be looking at period_left, since we forbid frequency | 
|  | * based sampling. | 
|  | */ | 
|  | local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); | 
|  | hwc->state |= PERF_HES_UPTODATE; | 
|  | } | 
|  |  | 
|  | hwc->state |= PERF_HES_STOPPED; | 
|  | } | 
|  |  | 
|  | static int arm_spe_pmu_add(struct perf_event *event, int flags) | 
|  | { | 
|  | int ret = 0; | 
|  | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) | 
|  | return -ENOENT; | 
|  |  | 
|  | hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; | 
|  |  | 
|  | if (flags & PERF_EF_START) { | 
|  | arm_spe_pmu_start(event, PERF_EF_RELOAD); | 
|  | if (hwc->state & PERF_HES_STOPPED) | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_del(struct perf_event *event, int flags) | 
|  | { | 
|  | arm_spe_pmu_stop(event, PERF_EF_UPDATE); | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_read(struct perf_event *event) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, | 
|  | int nr_pages, bool snapshot) | 
|  | { | 
|  | int i, cpu = event->cpu; | 
|  | struct page **pglist; | 
|  | struct arm_spe_pmu_buf *buf; | 
|  |  | 
|  | /* We need at least two pages for this to work. */ | 
|  | if (nr_pages < 2) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We require an even number of pages for snapshot mode, so that | 
|  | * we can effectively treat the buffer as consisting of two equal | 
|  | * parts and give userspace a fighting chance of getting some | 
|  | * useful data out of it. | 
|  | */ | 
|  | if (snapshot && (nr_pages & 1)) | 
|  | return NULL; | 
|  |  | 
|  | if (cpu == -1) | 
|  | cpu = raw_smp_processor_id(); | 
|  |  | 
|  | buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); | 
|  | if (!pglist) | 
|  | goto out_free_buf; | 
|  |  | 
|  | for (i = 0; i < nr_pages; ++i) | 
|  | pglist[i] = virt_to_page(pages[i]); | 
|  |  | 
|  | buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); | 
|  | if (!buf->base) | 
|  | goto out_free_pglist; | 
|  |  | 
|  | buf->nr_pages	= nr_pages; | 
|  | buf->snapshot	= snapshot; | 
|  |  | 
|  | kfree(pglist); | 
|  | return buf; | 
|  |  | 
|  | out_free_pglist: | 
|  | kfree(pglist); | 
|  | out_free_buf: | 
|  | kfree(buf); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_free_aux(void *aux) | 
|  | { | 
|  | struct arm_spe_pmu_buf *buf = aux; | 
|  |  | 
|  | vunmap(buf->base); | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | /* Initialisation and teardown functions */ | 
|  | static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) | 
|  | { | 
|  | static atomic_t pmu_idx = ATOMIC_INIT(-1); | 
|  |  | 
|  | int idx; | 
|  | char *name; | 
|  | struct device *dev = &spe_pmu->pdev->dev; | 
|  |  | 
|  | spe_pmu->pmu = (struct pmu) { | 
|  | .module = THIS_MODULE, | 
|  | .capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, | 
|  | .attr_groups	= arm_spe_pmu_attr_groups, | 
|  | /* | 
|  | * We hitch a ride on the software context here, so that | 
|  | * we can support per-task profiling (which is not possible | 
|  | * with the invalid context as it doesn't get sched callbacks). | 
|  | * This requires that userspace either uses a dummy event for | 
|  | * perf_event_open, since the aux buffer is not setup until | 
|  | * a subsequent mmap, or creates the profiling event in a | 
|  | * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it | 
|  | * once the buffer has been created. | 
|  | */ | 
|  | .task_ctx_nr	= perf_sw_context, | 
|  | .event_init	= arm_spe_pmu_event_init, | 
|  | .add		= arm_spe_pmu_add, | 
|  | .del		= arm_spe_pmu_del, | 
|  | .start		= arm_spe_pmu_start, | 
|  | .stop		= arm_spe_pmu_stop, | 
|  | .read		= arm_spe_pmu_read, | 
|  | .setup_aux	= arm_spe_pmu_setup_aux, | 
|  | .free_aux	= arm_spe_pmu_free_aux, | 
|  | }; | 
|  |  | 
|  | idx = atomic_inc_return(&pmu_idx); | 
|  | name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); | 
|  | if (!name) { | 
|  | dev_err(dev, "failed to allocate name for pmu %d\n", idx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return perf_pmu_register(&spe_pmu->pmu, name, -1); | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) | 
|  | { | 
|  | perf_pmu_unregister(&spe_pmu->pmu); | 
|  | } | 
|  |  | 
|  | static void __arm_spe_pmu_dev_probe(void *info) | 
|  | { | 
|  | int fld; | 
|  | u64 reg; | 
|  | struct arm_spe_pmu *spe_pmu = info; | 
|  | struct device *dev = &spe_pmu->pdev->dev; | 
|  |  | 
|  | fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), | 
|  | ID_AA64DFR0_EL1_PMSVer_SHIFT); | 
|  | if (!fld) { | 
|  | dev_err(dev, | 
|  | "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", | 
|  | fld, smp_processor_id()); | 
|  | return; | 
|  | } | 
|  | spe_pmu->pmsver = (u16)fld; | 
|  |  | 
|  | /* Read PMBIDR first to determine whether or not we have access */ | 
|  | reg = read_sysreg_s(SYS_PMBIDR_EL1); | 
|  | if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { | 
|  | dev_err(dev, | 
|  | "profiling buffer owned by higher exception level\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Minimum alignment. If it's out-of-range, then fail the probe */ | 
|  | fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; | 
|  | spe_pmu->align = 1 << fld; | 
|  | if (spe_pmu->align > SZ_2K) { | 
|  | dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", | 
|  | fld, smp_processor_id()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* It's now safe to read PMSIDR and figure out what we've got */ | 
|  | reg = read_sysreg_s(SYS_PMSIDR_EL1); | 
|  | if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) | 
|  | spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; | 
|  |  | 
|  | if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) | 
|  | spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; | 
|  |  | 
|  | if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) | 
|  | spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; | 
|  |  | 
|  | if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) | 
|  | spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; | 
|  |  | 
|  | if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) | 
|  | spe_pmu->features |= SPE_PMU_FEAT_LDS; | 
|  |  | 
|  | if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) | 
|  | spe_pmu->features |= SPE_PMU_FEAT_ERND; | 
|  |  | 
|  | /* This field has a spaced out encoding, so just use a look-up */ | 
|  | fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; | 
|  | switch (fld) { | 
|  | case 0: | 
|  | spe_pmu->min_period = 256; | 
|  | break; | 
|  | case 2: | 
|  | spe_pmu->min_period = 512; | 
|  | break; | 
|  | case 3: | 
|  | spe_pmu->min_period = 768; | 
|  | break; | 
|  | case 4: | 
|  | spe_pmu->min_period = 1024; | 
|  | break; | 
|  | case 5: | 
|  | spe_pmu->min_period = 1536; | 
|  | break; | 
|  | case 6: | 
|  | spe_pmu->min_period = 2048; | 
|  | break; | 
|  | case 7: | 
|  | spe_pmu->min_period = 3072; | 
|  | break; | 
|  | default: | 
|  | dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", | 
|  | fld); | 
|  | fallthrough; | 
|  | case 8: | 
|  | spe_pmu->min_period = 4096; | 
|  | } | 
|  |  | 
|  | /* Maximum record size. If it's out-of-range, then fail the probe */ | 
|  | fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; | 
|  | spe_pmu->max_record_sz = 1 << fld; | 
|  | if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { | 
|  | dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", | 
|  | fld, smp_processor_id()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; | 
|  | switch (fld) { | 
|  | default: | 
|  | dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", | 
|  | fld); | 
|  | fallthrough; | 
|  | case 2: | 
|  | spe_pmu->counter_sz = 12; | 
|  | break; | 
|  | case 3: | 
|  | spe_pmu->counter_sz = 16; | 
|  | } | 
|  |  | 
|  | dev_info(dev, | 
|  | "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", | 
|  | cpumask_pr_args(&spe_pmu->supported_cpus), | 
|  | spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); | 
|  |  | 
|  | spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; | 
|  | } | 
|  |  | 
|  | static void __arm_spe_pmu_reset_local(void) | 
|  | { | 
|  | /* | 
|  | * This is probably overkill, as we have no idea where we're | 
|  | * draining any buffered data to... | 
|  | */ | 
|  | arm_spe_pmu_disable_and_drain_local(); | 
|  |  | 
|  | /* Reset the buffer base pointer */ | 
|  | write_sysreg_s(0, SYS_PMBPTR_EL1); | 
|  | isb(); | 
|  |  | 
|  | /* Clear any pending management interrupts */ | 
|  | write_sysreg_s(0, SYS_PMBSR_EL1); | 
|  | isb(); | 
|  | } | 
|  |  | 
|  | static void __arm_spe_pmu_setup_one(void *info) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = info; | 
|  |  | 
|  | __arm_spe_pmu_reset_local(); | 
|  | enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); | 
|  | } | 
|  |  | 
|  | static void __arm_spe_pmu_stop_one(void *info) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = info; | 
|  |  | 
|  | disable_percpu_irq(spe_pmu->irq); | 
|  | __arm_spe_pmu_reset_local(); | 
|  | } | 
|  |  | 
|  | static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu; | 
|  |  | 
|  | spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); | 
|  | if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) | 
|  | return 0; | 
|  |  | 
|  | __arm_spe_pmu_setup_one(spe_pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu; | 
|  |  | 
|  | spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); | 
|  | if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) | 
|  | return 0; | 
|  |  | 
|  | __arm_spe_pmu_stop_one(spe_pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) | 
|  | { | 
|  | int ret; | 
|  | cpumask_t *mask = &spe_pmu->supported_cpus; | 
|  |  | 
|  | /* Make sure we probe the hardware on a relevant CPU */ | 
|  | ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1); | 
|  | if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Request our PPIs (note that the IRQ is still disabled) */ | 
|  | ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, | 
|  | spe_pmu->handle); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Register our hotplug notifier now so we don't miss any events. | 
|  | * This will enable the IRQ for any supported CPUs that are already | 
|  | * up. | 
|  | */ | 
|  | ret = cpuhp_state_add_instance(arm_spe_pmu_online, | 
|  | &spe_pmu->hotplug_node); | 
|  | if (ret) | 
|  | free_percpu_irq(spe_pmu->irq, spe_pmu->handle); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) | 
|  | { | 
|  | cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); | 
|  | free_percpu_irq(spe_pmu->irq, spe_pmu->handle); | 
|  | } | 
|  |  | 
|  | /* Driver and device probing */ | 
|  | static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) | 
|  | { | 
|  | struct platform_device *pdev = spe_pmu->pdev; | 
|  | int irq = platform_get_irq(pdev, 0); | 
|  |  | 
|  | if (irq < 0) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (!irq_is_percpu(irq)) { | 
|  | dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { | 
|  | dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spe_pmu->irq = irq; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id arm_spe_pmu_of_match[] = { | 
|  | { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, | 
|  | { /* Sentinel */ }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); | 
|  |  | 
|  | static const struct platform_device_id arm_spe_match[] = { | 
|  | { ARMV8_SPE_PDEV_NAME, 0}, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(platform, arm_spe_match); | 
|  |  | 
|  | static int arm_spe_pmu_device_probe(struct platform_device *pdev) | 
|  | { | 
|  | int ret; | 
|  | struct arm_spe_pmu *spe_pmu; | 
|  | struct device *dev = &pdev->dev; | 
|  |  | 
|  | /* | 
|  | * If kernelspace is unmapped when running at EL0, then the SPE | 
|  | * buffer will fault and prematurely terminate the AUX session. | 
|  | */ | 
|  | if (arm64_kernel_unmapped_at_el0()) { | 
|  | dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); | 
|  | if (!spe_pmu) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); | 
|  | if (!spe_pmu->handle) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spe_pmu->pdev = pdev; | 
|  | platform_set_drvdata(pdev, spe_pmu); | 
|  |  | 
|  | ret = arm_spe_pmu_irq_probe(spe_pmu); | 
|  | if (ret) | 
|  | goto out_free_handle; | 
|  |  | 
|  | ret = arm_spe_pmu_dev_init(spe_pmu); | 
|  | if (ret) | 
|  | goto out_free_handle; | 
|  |  | 
|  | ret = arm_spe_pmu_perf_init(spe_pmu); | 
|  | if (ret) | 
|  | goto out_teardown_dev; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_teardown_dev: | 
|  | arm_spe_pmu_dev_teardown(spe_pmu); | 
|  | out_free_handle: | 
|  | free_percpu(spe_pmu->handle); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int arm_spe_pmu_device_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); | 
|  |  | 
|  | arm_spe_pmu_perf_destroy(spe_pmu); | 
|  | arm_spe_pmu_dev_teardown(spe_pmu); | 
|  | free_percpu(spe_pmu->handle); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver arm_spe_pmu_driver = { | 
|  | .id_table = arm_spe_match, | 
|  | .driver	= { | 
|  | .name		= DRVNAME, | 
|  | .of_match_table	= of_match_ptr(arm_spe_pmu_of_match), | 
|  | .suppress_bind_attrs = true, | 
|  | }, | 
|  | .probe	= arm_spe_pmu_device_probe, | 
|  | .remove	= arm_spe_pmu_device_remove, | 
|  | }; | 
|  |  | 
|  | static int __init arm_spe_pmu_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, | 
|  | arm_spe_pmu_cpu_startup, | 
|  | arm_spe_pmu_cpu_teardown); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | arm_spe_pmu_online = ret; | 
|  |  | 
|  | ret = platform_driver_register(&arm_spe_pmu_driver); | 
|  | if (ret) | 
|  | cpuhp_remove_multi_state(arm_spe_pmu_online); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit arm_spe_pmu_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&arm_spe_pmu_driver); | 
|  | cpuhp_remove_multi_state(arm_spe_pmu_online); | 
|  | } | 
|  |  | 
|  | module_init(arm_spe_pmu_init); | 
|  | module_exit(arm_spe_pmu_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); | 
|  | MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); | 
|  | MODULE_LICENSE("GPL v2"); |