|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * RTC class driver for "CMOS RTC":  PCs, ACPI, etc | 
|  | * | 
|  | * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) | 
|  | * Copyright (C) 2006 David Brownell (convert to new framework) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The original "cmos clock" chip was an MC146818 chip, now obsolete. | 
|  | * That defined the register interface now provided by all PCs, some | 
|  | * non-PC systems, and incorporated into ACPI.  Modern PC chipsets | 
|  | * integrate an MC146818 clone in their southbridge, and boards use | 
|  | * that instead of discrete clones like the DS12887 or M48T86.  There | 
|  | * are also clones that connect using the LPC bus. | 
|  | * | 
|  | * That register API is also used directly by various other drivers | 
|  | * (notably for integrated NVRAM), infrastructure (x86 has code to | 
|  | * bypass the RTC framework, directly reading the RTC during boot | 
|  | * and updating minutes/seconds for systems using NTP synch) and | 
|  | * utilities (like userspace 'hwclock', if no /dev node exists). | 
|  | * | 
|  | * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with | 
|  | * interrupts disabled, holding the global rtc_lock, to exclude those | 
|  | * other drivers and utilities on correctly configured systems. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_platform.h> | 
|  | #ifdef CONFIG_X86 | 
|  | #include <asm/i8259.h> | 
|  | #include <asm/processor.h> | 
|  | #include <linux/dmi.h> | 
|  | #endif | 
|  |  | 
|  | /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ | 
|  | #include <linux/mc146818rtc.h> | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* | 
|  | * Use ACPI SCI to replace HPET interrupt for RTC Alarm event | 
|  | * | 
|  | * If cleared, ACPI SCI is only used to wake up the system from suspend | 
|  | * | 
|  | * If set, ACPI SCI is used to handle UIE/AIE and system wakeup | 
|  | */ | 
|  |  | 
|  | static bool use_acpi_alarm; | 
|  | module_param(use_acpi_alarm, bool, 0444); | 
|  |  | 
|  | static inline int cmos_use_acpi_alarm(void) | 
|  | { | 
|  | return use_acpi_alarm; | 
|  | } | 
|  | #else /* !CONFIG_ACPI */ | 
|  |  | 
|  | static inline int cmos_use_acpi_alarm(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct cmos_rtc { | 
|  | struct rtc_device	*rtc; | 
|  | struct device		*dev; | 
|  | int			irq; | 
|  | struct resource		*iomem; | 
|  | time64_t		alarm_expires; | 
|  |  | 
|  | void			(*wake_on)(struct device *); | 
|  | void			(*wake_off)(struct device *); | 
|  |  | 
|  | u8			enabled_wake; | 
|  | u8			suspend_ctrl; | 
|  |  | 
|  | /* newer hardware extends the original register set */ | 
|  | u8			day_alrm; | 
|  | u8			mon_alrm; | 
|  | u8			century; | 
|  |  | 
|  | struct rtc_wkalrm	saved_wkalrm; | 
|  | }; | 
|  |  | 
|  | /* both platform and pnp busses use negative numbers for invalid irqs */ | 
|  | #define is_valid_irq(n)		((n) > 0) | 
|  |  | 
|  | static const char driver_name[] = "rtc_cmos"; | 
|  |  | 
|  | /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; | 
|  | * always mask it against the irq enable bits in RTC_CONTROL.  Bit values | 
|  | * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. | 
|  | */ | 
|  | #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF) | 
|  |  | 
|  | static inline int is_intr(u8 rtc_intr) | 
|  | { | 
|  | if (!(rtc_intr & RTC_IRQF)) | 
|  | return 0; | 
|  | return rtc_intr & RTC_IRQMASK; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because | 
|  | * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly | 
|  | * used in a broken "legacy replacement" mode.  The breakage includes | 
|  | * HPET #1 hijacking the IRQ for this RTC, and being unavailable for | 
|  | * other (better) use. | 
|  | * | 
|  | * When that broken mode is in use, platform glue provides a partial | 
|  | * emulation of hardware RTC IRQ facilities using HPET #1.  We don't | 
|  | * want to use HPET for anything except those IRQs though... | 
|  | */ | 
|  | #ifdef CONFIG_HPET_EMULATE_RTC | 
|  | #include <asm/hpet.h> | 
|  | #else | 
|  |  | 
|  | static inline int is_hpet_enabled(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int hpet_mask_rtc_irq_bit(unsigned long mask) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int hpet_set_rtc_irq_bit(unsigned long mask) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int hpet_set_periodic_freq(unsigned long freq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int hpet_rtc_dropped_irq(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int hpet_rtc_timer_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extern irq_handler_t hpet_rtc_interrupt; | 
|  |  | 
|  | static inline int hpet_register_irq_handler(irq_handler_t handler) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int hpet_unregister_irq_handler(irq_handler_t handler) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ | 
|  | static inline int use_hpet_alarm(void) | 
|  | { | 
|  | return is_hpet_enabled() && !cmos_use_acpi_alarm(); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | #ifdef RTC_PORT | 
|  |  | 
|  | /* Most newer x86 systems have two register banks, the first used | 
|  | * for RTC and NVRAM and the second only for NVRAM.  Caller must | 
|  | * own rtc_lock ... and we won't worry about access during NMI. | 
|  | */ | 
|  | #define can_bank2	true | 
|  |  | 
|  | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
|  | { | 
|  | outb(addr, RTC_PORT(2)); | 
|  | return inb(RTC_PORT(3)); | 
|  | } | 
|  |  | 
|  | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
|  | { | 
|  | outb(addr, RTC_PORT(2)); | 
|  | outb(val, RTC_PORT(3)); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define can_bank2	false | 
|  |  | 
|  | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int cmos_read_time(struct device *dev, struct rtc_time *t) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If pm_trace abused the RTC for storage, set the timespec to 0, | 
|  | * which tells the caller that this RTC value is unusable. | 
|  | */ | 
|  | if (!pm_trace_rtc_valid()) | 
|  | return -EIO; | 
|  |  | 
|  | ret = mc146818_get_time(t, 1000); | 
|  | if (ret < 0) { | 
|  | dev_err_ratelimited(dev, "unable to read current time\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cmos_set_time(struct device *dev, struct rtc_time *t) | 
|  | { | 
|  | /* NOTE: this ignores the issue whereby updating the seconds | 
|  | * takes effect exactly 500ms after we write the register. | 
|  | * (Also queueing and other delays before we get this far.) | 
|  | */ | 
|  | return mc146818_set_time(t); | 
|  | } | 
|  |  | 
|  | struct cmos_read_alarm_callback_param { | 
|  | struct cmos_rtc *cmos; | 
|  | struct rtc_time *time; | 
|  | unsigned char	rtc_control; | 
|  | }; | 
|  |  | 
|  | static void cmos_read_alarm_callback(unsigned char __always_unused seconds, | 
|  | void *param_in) | 
|  | { | 
|  | struct cmos_read_alarm_callback_param *p = | 
|  | (struct cmos_read_alarm_callback_param *)param_in; | 
|  | struct rtc_time *time = p->time; | 
|  |  | 
|  | time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | 
|  | time->tm_min = CMOS_READ(RTC_MINUTES_ALARM); | 
|  | time->tm_hour = CMOS_READ(RTC_HOURS_ALARM); | 
|  |  | 
|  | if (p->cmos->day_alrm) { | 
|  | /* ignore upper bits on readback per ACPI spec */ | 
|  | time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f; | 
|  | if (!time->tm_mday) | 
|  | time->tm_mday = -1; | 
|  |  | 
|  | if (p->cmos->mon_alrm) { | 
|  | time->tm_mon = CMOS_READ(p->cmos->mon_alrm); | 
|  | if (!time->tm_mon) | 
|  | time->tm_mon = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | p->rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | } | 
|  |  | 
|  | static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | struct cmos_read_alarm_callback_param p = { | 
|  | .cmos = cmos, | 
|  | .time = &t->time, | 
|  | }; | 
|  |  | 
|  | /* This not only a rtc_op, but also called directly */ | 
|  | if (!is_valid_irq(cmos->irq)) | 
|  | return -ETIMEDOUT; | 
|  |  | 
|  | /* Basic alarms only support hour, minute, and seconds fields. | 
|  | * Some also support day and month, for alarms up to a year in | 
|  | * the future. | 
|  | */ | 
|  |  | 
|  | /* Some Intel chipsets disconnect the alarm registers when the clock | 
|  | * update is in progress - during this time reads return bogus values | 
|  | * and writes may fail silently. See for example "7th Generation Intel® | 
|  | * Processor Family I/O for U/Y Platforms [...] Datasheet", section | 
|  | * 27.7.1 | 
|  | * | 
|  | * Use the mc146818_avoid_UIP() function to avoid this. | 
|  | */ | 
|  | if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p)) | 
|  | return -EIO; | 
|  |  | 
|  | if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | if (((unsigned)t->time.tm_sec) < 0x60) | 
|  | t->time.tm_sec = bcd2bin(t->time.tm_sec); | 
|  | else | 
|  | t->time.tm_sec = -1; | 
|  | if (((unsigned)t->time.tm_min) < 0x60) | 
|  | t->time.tm_min = bcd2bin(t->time.tm_min); | 
|  | else | 
|  | t->time.tm_min = -1; | 
|  | if (((unsigned)t->time.tm_hour) < 0x24) | 
|  | t->time.tm_hour = bcd2bin(t->time.tm_hour); | 
|  | else | 
|  | t->time.tm_hour = -1; | 
|  |  | 
|  | if (cmos->day_alrm) { | 
|  | if (((unsigned)t->time.tm_mday) <= 0x31) | 
|  | t->time.tm_mday = bcd2bin(t->time.tm_mday); | 
|  | else | 
|  | t->time.tm_mday = -1; | 
|  |  | 
|  | if (cmos->mon_alrm) { | 
|  | if (((unsigned)t->time.tm_mon) <= 0x12) | 
|  | t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; | 
|  | else | 
|  | t->time.tm_mon = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | t->enabled = !!(p.rtc_control & RTC_AIE); | 
|  | t->pending = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) | 
|  | { | 
|  | unsigned char	rtc_intr; | 
|  |  | 
|  | /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; | 
|  | * allegedly some older rtcs need that to handle irqs properly | 
|  | */ | 
|  | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); | 
|  |  | 
|  | if (use_hpet_alarm()) | 
|  | return; | 
|  |  | 
|  | rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
|  | if (is_intr(rtc_intr)) | 
|  | rtc_update_irq(cmos->rtc, 1, rtc_intr); | 
|  | } | 
|  |  | 
|  | static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) | 
|  | { | 
|  | unsigned char	rtc_control; | 
|  |  | 
|  | /* flush any pending IRQ status, notably for update irqs, | 
|  | * before we enable new IRQs | 
|  | */ | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | cmos_checkintr(cmos, rtc_control); | 
|  |  | 
|  | rtc_control |= mask; | 
|  | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | if (use_hpet_alarm()) | 
|  | hpet_set_rtc_irq_bit(mask); | 
|  |  | 
|  | if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { | 
|  | if (cmos->wake_on) | 
|  | cmos->wake_on(cmos->dev); | 
|  | } | 
|  |  | 
|  | cmos_checkintr(cmos, rtc_control); | 
|  | } | 
|  |  | 
|  | static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) | 
|  | { | 
|  | unsigned char	rtc_control; | 
|  |  | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | rtc_control &= ~mask; | 
|  | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | if (use_hpet_alarm()) | 
|  | hpet_mask_rtc_irq_bit(mask); | 
|  |  | 
|  | if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { | 
|  | if (cmos->wake_off) | 
|  | cmos->wake_off(cmos->dev); | 
|  | } | 
|  |  | 
|  | cmos_checkintr(cmos, rtc_control); | 
|  | } | 
|  |  | 
|  | static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | { | 
|  | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | struct rtc_time now; | 
|  |  | 
|  | cmos_read_time(dev, &now); | 
|  |  | 
|  | if (!cmos->day_alrm) { | 
|  | time64_t t_max_date; | 
|  | time64_t t_alrm; | 
|  |  | 
|  | t_max_date = rtc_tm_to_time64(&now); | 
|  | t_max_date += 24 * 60 * 60 - 1; | 
|  | t_alrm = rtc_tm_to_time64(&t->time); | 
|  | if (t_alrm > t_max_date) { | 
|  | dev_err(dev, | 
|  | "Alarms can be up to one day in the future\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (!cmos->mon_alrm) { | 
|  | struct rtc_time max_date = now; | 
|  | time64_t t_max_date; | 
|  | time64_t t_alrm; | 
|  | int max_mday; | 
|  |  | 
|  | if (max_date.tm_mon == 11) { | 
|  | max_date.tm_mon = 0; | 
|  | max_date.tm_year += 1; | 
|  | } else { | 
|  | max_date.tm_mon += 1; | 
|  | } | 
|  | max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); | 
|  | if (max_date.tm_mday > max_mday) | 
|  | max_date.tm_mday = max_mday; | 
|  |  | 
|  | t_max_date = rtc_tm_to_time64(&max_date); | 
|  | t_max_date -= 1; | 
|  | t_alrm = rtc_tm_to_time64(&t->time); | 
|  | if (t_alrm > t_max_date) { | 
|  | dev_err(dev, | 
|  | "Alarms can be up to one month in the future\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | struct rtc_time max_date = now; | 
|  | time64_t t_max_date; | 
|  | time64_t t_alrm; | 
|  | int max_mday; | 
|  |  | 
|  | max_date.tm_year += 1; | 
|  | max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); | 
|  | if (max_date.tm_mday > max_mday) | 
|  | max_date.tm_mday = max_mday; | 
|  |  | 
|  | t_max_date = rtc_tm_to_time64(&max_date); | 
|  | t_max_date -= 1; | 
|  | t_alrm = rtc_tm_to_time64(&t->time); | 
|  | if (t_alrm > t_max_date) { | 
|  | dev_err(dev, | 
|  | "Alarms can be up to one year in the future\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct cmos_set_alarm_callback_param { | 
|  | struct cmos_rtc *cmos; | 
|  | unsigned char mon, mday, hrs, min, sec; | 
|  | struct rtc_wkalrm *t; | 
|  | }; | 
|  |  | 
|  | /* Note: this function may be executed by mc146818_avoid_UIP() more then | 
|  | *	 once | 
|  | */ | 
|  | static void cmos_set_alarm_callback(unsigned char __always_unused seconds, | 
|  | void *param_in) | 
|  | { | 
|  | struct cmos_set_alarm_callback_param *p = | 
|  | (struct cmos_set_alarm_callback_param *)param_in; | 
|  |  | 
|  | /* next rtc irq must not be from previous alarm setting */ | 
|  | cmos_irq_disable(p->cmos, RTC_AIE); | 
|  |  | 
|  | /* update alarm */ | 
|  | CMOS_WRITE(p->hrs, RTC_HOURS_ALARM); | 
|  | CMOS_WRITE(p->min, RTC_MINUTES_ALARM); | 
|  | CMOS_WRITE(p->sec, RTC_SECONDS_ALARM); | 
|  |  | 
|  | /* the system may support an "enhanced" alarm */ | 
|  | if (p->cmos->day_alrm) { | 
|  | CMOS_WRITE(p->mday, p->cmos->day_alrm); | 
|  | if (p->cmos->mon_alrm) | 
|  | CMOS_WRITE(p->mon, p->cmos->mon_alrm); | 
|  | } | 
|  |  | 
|  | if (use_hpet_alarm()) { | 
|  | /* | 
|  | * FIXME the HPET alarm glue currently ignores day_alrm | 
|  | * and mon_alrm ... | 
|  | */ | 
|  | hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min, | 
|  | p->t->time.tm_sec); | 
|  | } | 
|  |  | 
|  | if (p->t->enabled) | 
|  | cmos_irq_enable(p->cmos, RTC_AIE); | 
|  | } | 
|  |  | 
|  | static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | struct cmos_set_alarm_callback_param p = { | 
|  | .cmos = cmos, | 
|  | .t = t | 
|  | }; | 
|  | unsigned char rtc_control; | 
|  | int ret; | 
|  |  | 
|  | /* This not only a rtc_op, but also called directly */ | 
|  | if (!is_valid_irq(cmos->irq)) | 
|  | return -EIO; | 
|  |  | 
|  | ret = cmos_validate_alarm(dev, t); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | p.mon = t->time.tm_mon + 1; | 
|  | p.mday = t->time.tm_mday; | 
|  | p.hrs = t->time.tm_hour; | 
|  | p.min = t->time.tm_min; | 
|  | p.sec = t->time.tm_sec; | 
|  |  | 
|  | spin_lock_irq(&rtc_lock); | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | spin_unlock_irq(&rtc_lock); | 
|  |  | 
|  | if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | /* Writing 0xff means "don't care" or "match all".  */ | 
|  | p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff; | 
|  | p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff; | 
|  | p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff; | 
|  | p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff; | 
|  | p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some Intel chipsets disconnect the alarm registers when the clock | 
|  | * update is in progress - during this time writes fail silently. | 
|  | * | 
|  | * Use mc146818_avoid_UIP() to avoid this. | 
|  | */ | 
|  | if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p)) | 
|  | return -ETIMEDOUT; | 
|  |  | 
|  | cmos->alarm_expires = rtc_tm_to_time64(&t->time); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | unsigned long	flags; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  |  | 
|  | if (enabled) | 
|  | cmos_irq_enable(cmos, RTC_AIE); | 
|  | else | 
|  | cmos_irq_disable(cmos, RTC_AIE); | 
|  |  | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_RTC_INTF_PROC) | 
|  |  | 
|  | static int cmos_procfs(struct device *dev, struct seq_file *seq) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | unsigned char	rtc_control, valid; | 
|  |  | 
|  | spin_lock_irq(&rtc_lock); | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | valid = CMOS_READ(RTC_VALID); | 
|  | spin_unlock_irq(&rtc_lock); | 
|  |  | 
|  | /* NOTE:  at least ICH6 reports battery status using a different | 
|  | * (non-RTC) bit; and SQWE is ignored on many current systems. | 
|  | */ | 
|  | seq_printf(seq, | 
|  | "periodic_IRQ\t: %s\n" | 
|  | "update_IRQ\t: %s\n" | 
|  | "HPET_emulated\t: %s\n" | 
|  | // "square_wave\t: %s\n" | 
|  | "BCD\t\t: %s\n" | 
|  | "DST_enable\t: %s\n" | 
|  | "periodic_freq\t: %d\n" | 
|  | "batt_status\t: %s\n", | 
|  | (rtc_control & RTC_PIE) ? "yes" : "no", | 
|  | (rtc_control & RTC_UIE) ? "yes" : "no", | 
|  | use_hpet_alarm() ? "yes" : "no", | 
|  | // (rtc_control & RTC_SQWE) ? "yes" : "no", | 
|  | (rtc_control & RTC_DM_BINARY) ? "no" : "yes", | 
|  | (rtc_control & RTC_DST_EN) ? "yes" : "no", | 
|  | cmos->rtc->irq_freq, | 
|  | (valid & RTC_VRT) ? "okay" : "dead"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define	cmos_procfs	NULL | 
|  | #endif | 
|  |  | 
|  | static const struct rtc_class_ops cmos_rtc_ops = { | 
|  | .read_time		= cmos_read_time, | 
|  | .set_time		= cmos_set_time, | 
|  | .read_alarm		= cmos_read_alarm, | 
|  | .set_alarm		= cmos_set_alarm, | 
|  | .proc			= cmos_procfs, | 
|  | .alarm_irq_enable	= cmos_alarm_irq_enable, | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * All these chips have at least 64 bytes of address space, shared by | 
|  | * RTC registers and NVRAM.  Most of those bytes of NVRAM are used | 
|  | * by boot firmware.  Modern chips have 128 or 256 bytes. | 
|  | */ | 
|  |  | 
|  | #define NVRAM_OFFSET	(RTC_REG_D + 1) | 
|  |  | 
|  | static int cmos_nvram_read(void *priv, unsigned int off, void *val, | 
|  | size_t count) | 
|  | { | 
|  | unsigned char *buf = val; | 
|  |  | 
|  | off += NVRAM_OFFSET; | 
|  | for (; count; count--, off++, buf++) { | 
|  | guard(spinlock_irq)(&rtc_lock); | 
|  | if (off < 128) | 
|  | *buf = CMOS_READ(off); | 
|  | else if (can_bank2) | 
|  | *buf = cmos_read_bank2(off); | 
|  | else | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cmos_nvram_write(void *priv, unsigned int off, void *val, | 
|  | size_t count) | 
|  | { | 
|  | struct cmos_rtc	*cmos = priv; | 
|  | unsigned char	*buf = val; | 
|  |  | 
|  | /* NOTE:  on at least PCs and Ataris, the boot firmware uses a | 
|  | * checksum on part of the NVRAM data.  That's currently ignored | 
|  | * here.  If userspace is smart enough to know what fields of | 
|  | * NVRAM to update, updating checksums is also part of its job. | 
|  | */ | 
|  | off += NVRAM_OFFSET; | 
|  | for (; count; count--, off++, buf++) { | 
|  | /* don't trash RTC registers */ | 
|  | if (off == cmos->day_alrm | 
|  | || off == cmos->mon_alrm | 
|  | || off == cmos->century) | 
|  | continue; | 
|  |  | 
|  | guard(spinlock_irq)(&rtc_lock); | 
|  | if (off < 128) | 
|  | CMOS_WRITE(*buf, off); | 
|  | else if (can_bank2) | 
|  | cmos_write_bank2(*buf, off); | 
|  | else | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static struct cmos_rtc	cmos_rtc; | 
|  |  | 
|  | static irqreturn_t cmos_interrupt(int irq, void *p) | 
|  | { | 
|  | u8		irqstat; | 
|  | u8		rtc_control; | 
|  |  | 
|  | spin_lock(&rtc_lock); | 
|  |  | 
|  | /* When the HPET interrupt handler calls us, the interrupt | 
|  | * status is passed as arg1 instead of the irq number.  But | 
|  | * always clear irq status, even when HPET is in the way. | 
|  | * | 
|  | * Note that HPET and RTC are almost certainly out of phase, | 
|  | * giving different IRQ status ... | 
|  | */ | 
|  | irqstat = CMOS_READ(RTC_INTR_FLAGS); | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | if (use_hpet_alarm()) | 
|  | irqstat = (unsigned long)irq & 0xF0; | 
|  |  | 
|  | /* If we were suspended, RTC_CONTROL may not be accurate since the | 
|  | * bios may have cleared it. | 
|  | */ | 
|  | if (!cmos_rtc.suspend_ctrl) | 
|  | irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
|  | else | 
|  | irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; | 
|  |  | 
|  | /* All Linux RTC alarms should be treated as if they were oneshot. | 
|  | * Similar code may be needed in system wakeup paths, in case the | 
|  | * alarm woke the system. | 
|  | */ | 
|  | if (irqstat & RTC_AIE) { | 
|  | cmos_rtc.suspend_ctrl &= ~RTC_AIE; | 
|  | rtc_control &= ~RTC_AIE; | 
|  | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | if (use_hpet_alarm()) | 
|  | hpet_mask_rtc_irq_bit(RTC_AIE); | 
|  | CMOS_READ(RTC_INTR_FLAGS); | 
|  | } | 
|  | spin_unlock(&rtc_lock); | 
|  |  | 
|  | if (is_intr(irqstat)) { | 
|  | rtc_update_irq(p, 1, irqstat); | 
|  | return IRQ_HANDLED; | 
|  | } else | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | #ifdef	CONFIG_ACPI | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  |  | 
|  | static u32 rtc_handler(void *context) | 
|  | { | 
|  | struct device *dev = context; | 
|  | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | unsigned char rtc_control = 0; | 
|  | unsigned char rtc_intr; | 
|  | unsigned long flags; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Always update rtc irq when ACPI is used as RTC Alarm. | 
|  | * Or else, ACPI SCI is enabled during suspend/resume only, | 
|  | * update rtc irq in that case. | 
|  | */ | 
|  | if (cmos_use_acpi_alarm()) | 
|  | cmos_interrupt(0, (void *)cmos->rtc); | 
|  | else { | 
|  | /* Fix me: can we use cmos_interrupt() here as well? */ | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | if (cmos_rtc.suspend_ctrl) | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | if (rtc_control & RTC_AIE) { | 
|  | cmos_rtc.suspend_ctrl &= ~RTC_AIE; | 
|  | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); | 
|  | rtc_update_irq(cmos->rtc, 1, rtc_intr); | 
|  | } | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | } | 
|  |  | 
|  | pm_wakeup_hard_event(dev); | 
|  | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | return ACPI_INTERRUPT_HANDLED; | 
|  | } | 
|  |  | 
|  | static void acpi_rtc_event_setup(struct device *dev) | 
|  | { | 
|  | if (acpi_disabled) | 
|  | return; | 
|  |  | 
|  | acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); | 
|  | /* | 
|  | * After the RTC handler is installed, the Fixed_RTC event should | 
|  | * be disabled. Only when the RTC alarm is set will it be enabled. | 
|  | */ | 
|  | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | } | 
|  |  | 
|  | static void acpi_rtc_event_cleanup(void) | 
|  | { | 
|  | if (acpi_disabled) | 
|  | return; | 
|  |  | 
|  | acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler); | 
|  | } | 
|  |  | 
|  | static void rtc_wake_on(struct device *dev) | 
|  | { | 
|  | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | acpi_enable_event(ACPI_EVENT_RTC, 0); | 
|  | } | 
|  |  | 
|  | static void rtc_wake_off(struct device *dev) | 
|  | { | 
|  | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86 | 
|  | static void use_acpi_alarm_quirks(void) | 
|  | { | 
|  | switch (boot_cpu_data.x86_vendor) { | 
|  | case X86_VENDOR_INTEL: | 
|  | if (dmi_get_bios_year() < 2015) | 
|  | return; | 
|  | break; | 
|  | case X86_VENDOR_AMD: | 
|  | case X86_VENDOR_HYGON: | 
|  | if (dmi_get_bios_year() < 2021) | 
|  | return; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | if (!is_hpet_enabled()) | 
|  | return; | 
|  |  | 
|  | use_acpi_alarm = true; | 
|  | } | 
|  | #else | 
|  | static inline void use_acpi_alarm_quirks(void) { } | 
|  | #endif | 
|  |  | 
|  | static void acpi_cmos_wake_setup(struct device *dev) | 
|  | { | 
|  | if (acpi_disabled) | 
|  | return; | 
|  |  | 
|  | use_acpi_alarm_quirks(); | 
|  |  | 
|  | cmos_rtc.wake_on = rtc_wake_on; | 
|  | cmos_rtc.wake_off = rtc_wake_off; | 
|  |  | 
|  | /* ACPI tables bug workaround. */ | 
|  | if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { | 
|  | dev_dbg(dev, "bogus FADT month_alarm (%d)\n", | 
|  | acpi_gbl_FADT.month_alarm); | 
|  | acpi_gbl_FADT.month_alarm = 0; | 
|  | } | 
|  |  | 
|  | cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm; | 
|  | cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm; | 
|  | cmos_rtc.century = acpi_gbl_FADT.century; | 
|  |  | 
|  | if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) | 
|  | dev_info(dev, "RTC can wake from S4\n"); | 
|  |  | 
|  | /* RTC always wakes from S1/S2/S3, and often S4/STD */ | 
|  | device_init_wakeup(dev, 1); | 
|  | } | 
|  |  | 
|  | static void cmos_check_acpi_rtc_status(struct device *dev, | 
|  | unsigned char *rtc_control) | 
|  | { | 
|  | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | acpi_event_status rtc_status; | 
|  | acpi_status status; | 
|  |  | 
|  | if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) | 
|  | return; | 
|  |  | 
|  | status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | dev_err(dev, "Could not get RTC status\n"); | 
|  | } else if (rtc_status & ACPI_EVENT_FLAG_SET) { | 
|  | unsigned char mask; | 
|  | *rtc_control &= ~RTC_AIE; | 
|  | CMOS_WRITE(*rtc_control, RTC_CONTROL); | 
|  | mask = CMOS_READ(RTC_INTR_FLAGS); | 
|  | rtc_update_irq(cmos->rtc, 1, mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_ACPI */ | 
|  |  | 
|  | static inline void acpi_rtc_event_setup(struct device *dev) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void acpi_rtc_event_cleanup(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void acpi_cmos_wake_setup(struct device *dev) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void cmos_check_acpi_rtc_status(struct device *dev, | 
|  | unsigned char *rtc_control) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | #ifdef	CONFIG_PNP | 
|  | #define	INITSECTION | 
|  |  | 
|  | #else | 
|  | #define	INITSECTION	__init | 
|  | #endif | 
|  |  | 
|  | static int INITSECTION | 
|  | cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) | 
|  | { | 
|  | struct cmos_rtc_board_info	*info = dev_get_platdata(dev); | 
|  | int				retval = 0; | 
|  | unsigned char			rtc_control; | 
|  | unsigned			address_space; | 
|  | u32				flags = 0; | 
|  | struct nvmem_config nvmem_cfg = { | 
|  | .name = "cmos_nvram", | 
|  | .word_size = 1, | 
|  | .stride = 1, | 
|  | .reg_read = cmos_nvram_read, | 
|  | .reg_write = cmos_nvram_write, | 
|  | .priv = &cmos_rtc, | 
|  | }; | 
|  |  | 
|  | /* there can be only one ... */ | 
|  | if (cmos_rtc.dev) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!ports) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Claim I/O ports ASAP, minimizing conflict with legacy driver. | 
|  | * | 
|  | * REVISIT non-x86 systems may instead use memory space resources | 
|  | * (needing ioremap etc), not i/o space resources like this ... | 
|  | */ | 
|  | if (RTC_IOMAPPED) | 
|  | ports = request_region(ports->start, resource_size(ports), | 
|  | driver_name); | 
|  | else | 
|  | ports = request_mem_region(ports->start, resource_size(ports), | 
|  | driver_name); | 
|  | if (!ports) { | 
|  | dev_dbg(dev, "i/o registers already in use\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | cmos_rtc.irq = rtc_irq; | 
|  | cmos_rtc.iomem = ports; | 
|  |  | 
|  | /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM | 
|  | * driver did, but don't reject unknown configs.   Old hardware | 
|  | * won't address 128 bytes.  Newer chips have multiple banks, | 
|  | * though they may not be listed in one I/O resource. | 
|  | */ | 
|  | #if	defined(CONFIG_ATARI) | 
|  | address_space = 64; | 
|  | #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ | 
|  | || defined(__sparc__) || defined(__mips__) \ | 
|  | || defined(__powerpc__) | 
|  | address_space = 128; | 
|  | #else | 
|  | #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. | 
|  | address_space = 128; | 
|  | #endif | 
|  | if (can_bank2 && ports->end > (ports->start + 1)) | 
|  | address_space = 256; | 
|  |  | 
|  | /* For ACPI systems extension info comes from the FADT.  On others, | 
|  | * board specific setup provides it as appropriate.  Systems where | 
|  | * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and | 
|  | * some almost-clones) can provide hooks to make that behave. | 
|  | * | 
|  | * Note that ACPI doesn't preclude putting these registers into | 
|  | * "extended" areas of the chip, including some that we won't yet | 
|  | * expect CMOS_READ and friends to handle. | 
|  | */ | 
|  | if (info) { | 
|  | if (info->flags) | 
|  | flags = info->flags; | 
|  | if (info->address_space) | 
|  | address_space = info->address_space; | 
|  |  | 
|  | cmos_rtc.day_alrm = info->rtc_day_alarm; | 
|  | cmos_rtc.mon_alrm = info->rtc_mon_alarm; | 
|  | cmos_rtc.century = info->rtc_century; | 
|  |  | 
|  | if (info->wake_on && info->wake_off) { | 
|  | cmos_rtc.wake_on = info->wake_on; | 
|  | cmos_rtc.wake_off = info->wake_off; | 
|  | } | 
|  | } else { | 
|  | acpi_cmos_wake_setup(dev); | 
|  | } | 
|  |  | 
|  | if (cmos_rtc.day_alrm >= 128) | 
|  | cmos_rtc.day_alrm = 0; | 
|  |  | 
|  | if (cmos_rtc.mon_alrm >= 128) | 
|  | cmos_rtc.mon_alrm = 0; | 
|  |  | 
|  | if (cmos_rtc.century >= 128) | 
|  | cmos_rtc.century = 0; | 
|  |  | 
|  | cmos_rtc.dev = dev; | 
|  | dev_set_drvdata(dev, &cmos_rtc); | 
|  |  | 
|  | cmos_rtc.rtc = devm_rtc_allocate_device(dev); | 
|  | if (IS_ERR(cmos_rtc.rtc)) { | 
|  | retval = PTR_ERR(cmos_rtc.rtc); | 
|  | goto cleanup0; | 
|  | } | 
|  |  | 
|  | rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); | 
|  |  | 
|  | if (!mc146818_does_rtc_work()) { | 
|  | dev_warn(dev, "broken or not accessible\n"); | 
|  | retval = -ENXIO; | 
|  | goto cleanup1; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&rtc_lock); | 
|  |  | 
|  | if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { | 
|  | /* force periodic irq to CMOS reset default of 1024Hz; | 
|  | * | 
|  | * REVISIT it's been reported that at least one x86_64 ALI | 
|  | * mobo doesn't use 32KHz here ... for portability we might | 
|  | * need to do something about other clock frequencies. | 
|  | */ | 
|  | cmos_rtc.rtc->irq_freq = 1024; | 
|  | if (use_hpet_alarm()) | 
|  | hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); | 
|  | CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); | 
|  | } | 
|  |  | 
|  | /* disable irqs */ | 
|  | if (is_valid_irq(rtc_irq)) | 
|  | cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); | 
|  |  | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  |  | 
|  | spin_unlock_irq(&rtc_lock); | 
|  |  | 
|  | if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { | 
|  | dev_warn(dev, "only 24-hr supported\n"); | 
|  | retval = -ENXIO; | 
|  | goto cleanup1; | 
|  | } | 
|  |  | 
|  | if (use_hpet_alarm()) | 
|  | hpet_rtc_timer_init(); | 
|  |  | 
|  | if (is_valid_irq(rtc_irq)) { | 
|  | irq_handler_t rtc_cmos_int_handler; | 
|  |  | 
|  | if (use_hpet_alarm()) { | 
|  | rtc_cmos_int_handler = hpet_rtc_interrupt; | 
|  | retval = hpet_register_irq_handler(cmos_interrupt); | 
|  | if (retval) { | 
|  | hpet_mask_rtc_irq_bit(RTC_IRQMASK); | 
|  | dev_warn(dev, "hpet_register_irq_handler " | 
|  | " failed in rtc_init()."); | 
|  | goto cleanup1; | 
|  | } | 
|  | } else | 
|  | rtc_cmos_int_handler = cmos_interrupt; | 
|  |  | 
|  | retval = request_irq(rtc_irq, rtc_cmos_int_handler, | 
|  | 0, dev_name(&cmos_rtc.rtc->dev), | 
|  | cmos_rtc.rtc); | 
|  | if (retval < 0) { | 
|  | dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); | 
|  | goto cleanup1; | 
|  | } | 
|  | } else { | 
|  | clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features); | 
|  | } | 
|  |  | 
|  | cmos_rtc.rtc->ops = &cmos_rtc_ops; | 
|  |  | 
|  | retval = devm_rtc_register_device(cmos_rtc.rtc); | 
|  | if (retval) | 
|  | goto cleanup2; | 
|  |  | 
|  | /* Set the sync offset for the periodic 11min update correct */ | 
|  | cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2; | 
|  |  | 
|  | /* export at least the first block of NVRAM */ | 
|  | nvmem_cfg.size = address_space - NVRAM_OFFSET; | 
|  | devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg); | 
|  |  | 
|  | /* | 
|  | * Everything has gone well so far, so by default register a handler for | 
|  | * the ACPI RTC fixed event. | 
|  | */ | 
|  | if (!info) | 
|  | acpi_rtc_event_setup(dev); | 
|  |  | 
|  | dev_info(dev, "%s%s, %d bytes nvram%s\n", | 
|  | !is_valid_irq(rtc_irq) ? "no alarms" : | 
|  | cmos_rtc.mon_alrm ? "alarms up to one year" : | 
|  | cmos_rtc.day_alrm ? "alarms up to one month" : | 
|  | "alarms up to one day", | 
|  | cmos_rtc.century ? ", y3k" : "", | 
|  | nvmem_cfg.size, | 
|  | use_hpet_alarm() ? ", hpet irqs" : ""); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup2: | 
|  | if (is_valid_irq(rtc_irq)) | 
|  | free_irq(rtc_irq, cmos_rtc.rtc); | 
|  | cleanup1: | 
|  | cmos_rtc.dev = NULL; | 
|  | cleanup0: | 
|  | if (RTC_IOMAPPED) | 
|  | release_region(ports->start, resource_size(ports)); | 
|  | else | 
|  | release_mem_region(ports->start, resource_size(ports)); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void cmos_do_shutdown(int rtc_irq) | 
|  | { | 
|  | spin_lock_irq(&rtc_lock); | 
|  | if (is_valid_irq(rtc_irq)) | 
|  | cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); | 
|  | spin_unlock_irq(&rtc_lock); | 
|  | } | 
|  |  | 
|  | static void cmos_do_remove(struct device *dev) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | struct resource *ports; | 
|  |  | 
|  | cmos_do_shutdown(cmos->irq); | 
|  |  | 
|  | if (is_valid_irq(cmos->irq)) { | 
|  | free_irq(cmos->irq, cmos->rtc); | 
|  | if (use_hpet_alarm()) | 
|  | hpet_unregister_irq_handler(cmos_interrupt); | 
|  | } | 
|  |  | 
|  | if (!dev_get_platdata(dev)) | 
|  | acpi_rtc_event_cleanup(); | 
|  |  | 
|  | cmos->rtc = NULL; | 
|  |  | 
|  | ports = cmos->iomem; | 
|  | if (RTC_IOMAPPED) | 
|  | release_region(ports->start, resource_size(ports)); | 
|  | else | 
|  | release_mem_region(ports->start, resource_size(ports)); | 
|  | cmos->iomem = NULL; | 
|  |  | 
|  | cmos->dev = NULL; | 
|  | } | 
|  |  | 
|  | static int cmos_aie_poweroff(struct device *dev) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | struct rtc_time now; | 
|  | time64_t t_now; | 
|  | int retval = 0; | 
|  | unsigned char rtc_control; | 
|  |  | 
|  | if (!cmos->alarm_expires) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(&rtc_lock); | 
|  | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | spin_unlock_irq(&rtc_lock); | 
|  |  | 
|  | /* We only care about the situation where AIE is disabled. */ | 
|  | if (rtc_control & RTC_AIE) | 
|  | return -EBUSY; | 
|  |  | 
|  | cmos_read_time(dev, &now); | 
|  | t_now = rtc_tm_to_time64(&now); | 
|  |  | 
|  | /* | 
|  | * When enabling "RTC wake-up" in BIOS setup, the machine reboots | 
|  | * automatically right after shutdown on some buggy boxes. | 
|  | * This automatic rebooting issue won't happen when the alarm | 
|  | * time is larger than now+1 seconds. | 
|  | * | 
|  | * If the alarm time is equal to now+1 seconds, the issue can be | 
|  | * prevented by cancelling the alarm. | 
|  | */ | 
|  | if (cmos->alarm_expires == t_now + 1) { | 
|  | struct rtc_wkalrm alarm; | 
|  |  | 
|  | /* Cancel the AIE timer by configuring the past time. */ | 
|  | rtc_time64_to_tm(t_now - 1, &alarm.time); | 
|  | alarm.enabled = 0; | 
|  | retval = cmos_set_alarm(dev, &alarm); | 
|  | } else if (cmos->alarm_expires > t_now + 1) { | 
|  | retval = -EBUSY; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cmos_suspend(struct device *dev) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | unsigned char	tmp; | 
|  |  | 
|  | /* only the alarm might be a wakeup event source */ | 
|  | spin_lock_irq(&rtc_lock); | 
|  | cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); | 
|  | if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { | 
|  | unsigned char	mask; | 
|  |  | 
|  | if (device_may_wakeup(dev)) | 
|  | mask = RTC_IRQMASK & ~RTC_AIE; | 
|  | else | 
|  | mask = RTC_IRQMASK; | 
|  | tmp &= ~mask; | 
|  | CMOS_WRITE(tmp, RTC_CONTROL); | 
|  | if (use_hpet_alarm()) | 
|  | hpet_mask_rtc_irq_bit(mask); | 
|  | cmos_checkintr(cmos, tmp); | 
|  | } | 
|  | spin_unlock_irq(&rtc_lock); | 
|  |  | 
|  | if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { | 
|  | cmos->enabled_wake = 1; | 
|  | if (cmos->wake_on) | 
|  | cmos->wake_on(dev); | 
|  | else | 
|  | enable_irq_wake(cmos->irq); | 
|  | } | 
|  |  | 
|  | memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); | 
|  | cmos_read_alarm(dev, &cmos->saved_wkalrm); | 
|  |  | 
|  | dev_dbg(dev, "suspend%s, ctrl %02x\n", | 
|  | (tmp & RTC_AIE) ? ", alarm may wake" : "", | 
|  | tmp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even | 
|  | * after a detour through G3 "mechanical off", although the ACPI spec | 
|  | * says wakeup should only work from G1/S4 "hibernate".  To most users, | 
|  | * distinctions between S4 and S5 are pointless.  So when the hardware | 
|  | * allows, don't draw that distinction. | 
|  | */ | 
|  | static inline int cmos_poweroff(struct device *dev) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_PM)) | 
|  | return -ENOSYS; | 
|  |  | 
|  | return cmos_suspend(dev); | 
|  | } | 
|  |  | 
|  | static void cmos_check_wkalrm(struct device *dev) | 
|  | { | 
|  | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | struct rtc_wkalrm current_alarm; | 
|  | time64_t t_now; | 
|  | time64_t t_current_expires; | 
|  | time64_t t_saved_expires; | 
|  | struct rtc_time now; | 
|  |  | 
|  | /* Check if we have RTC Alarm armed */ | 
|  | if (!(cmos->suspend_ctrl & RTC_AIE)) | 
|  | return; | 
|  |  | 
|  | cmos_read_time(dev, &now); | 
|  | t_now = rtc_tm_to_time64(&now); | 
|  |  | 
|  | /* | 
|  | * ACPI RTC wake event is cleared after resume from STR, | 
|  | * ACK the rtc irq here | 
|  | */ | 
|  | if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { | 
|  | local_irq_disable(); | 
|  | cmos_interrupt(0, (void *)cmos->rtc); | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); | 
|  | cmos_read_alarm(dev, ¤t_alarm); | 
|  | t_current_expires = rtc_tm_to_time64(¤t_alarm.time); | 
|  | t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); | 
|  | if (t_current_expires != t_saved_expires || | 
|  | cmos->saved_wkalrm.enabled != current_alarm.enabled) { | 
|  | cmos_set_alarm(dev, &cmos->saved_wkalrm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __maybe_unused cmos_resume(struct device *dev) | 
|  | { | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | unsigned char tmp; | 
|  |  | 
|  | if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { | 
|  | if (cmos->wake_off) | 
|  | cmos->wake_off(dev); | 
|  | else | 
|  | disable_irq_wake(cmos->irq); | 
|  | cmos->enabled_wake = 0; | 
|  | } | 
|  |  | 
|  | /* The BIOS might have changed the alarm, restore it */ | 
|  | cmos_check_wkalrm(dev); | 
|  |  | 
|  | spin_lock_irq(&rtc_lock); | 
|  | tmp = cmos->suspend_ctrl; | 
|  | cmos->suspend_ctrl = 0; | 
|  | /* re-enable any irqs previously active */ | 
|  | if (tmp & RTC_IRQMASK) { | 
|  | unsigned char	mask; | 
|  |  | 
|  | if (device_may_wakeup(dev) && use_hpet_alarm()) | 
|  | hpet_rtc_timer_init(); | 
|  |  | 
|  | do { | 
|  | CMOS_WRITE(tmp, RTC_CONTROL); | 
|  | if (use_hpet_alarm()) | 
|  | hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); | 
|  |  | 
|  | mask = CMOS_READ(RTC_INTR_FLAGS); | 
|  | mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; | 
|  | if (!use_hpet_alarm() || !is_intr(mask)) | 
|  | break; | 
|  |  | 
|  | /* force one-shot behavior if HPET blocked | 
|  | * the wake alarm's irq | 
|  | */ | 
|  | rtc_update_irq(cmos->rtc, 1, mask); | 
|  | tmp &= ~RTC_AIE; | 
|  | hpet_mask_rtc_irq_bit(RTC_AIE); | 
|  | } while (mask & RTC_AIE); | 
|  |  | 
|  | if (tmp & RTC_AIE) | 
|  | cmos_check_acpi_rtc_status(dev, &tmp); | 
|  | } | 
|  | spin_unlock_irq(&rtc_lock); | 
|  |  | 
|  | dev_dbg(dev, "resume, ctrl %02x\n", tmp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. | 
|  | * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs | 
|  | * probably list them in similar PNPBIOS tables; so PNP is more common. | 
|  | * | 
|  | * We don't use legacy "poke at the hardware" probing.  Ancient PCs that | 
|  | * predate even PNPBIOS should set up platform_bus devices. | 
|  | */ | 
|  |  | 
|  | #ifdef	CONFIG_PNP | 
|  |  | 
|  | #include <linux/pnp.h> | 
|  |  | 
|  | static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { | 
|  | irq = 0; | 
|  | #ifdef CONFIG_X86 | 
|  | /* Some machines contain a PNP entry for the RTC, but | 
|  | * don't define the IRQ. It should always be safe to | 
|  | * hardcode it on systems with a legacy PIC. | 
|  | */ | 
|  | if (nr_legacy_irqs()) | 
|  | irq = RTC_IRQ; | 
|  | #endif | 
|  | } else { | 
|  | irq = pnp_irq(pnp, 0); | 
|  | } | 
|  |  | 
|  | return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); | 
|  | } | 
|  |  | 
|  | static void cmos_pnp_remove(struct pnp_dev *pnp) | 
|  | { | 
|  | cmos_do_remove(&pnp->dev); | 
|  | } | 
|  |  | 
|  | static void cmos_pnp_shutdown(struct pnp_dev *pnp) | 
|  | { | 
|  | struct device *dev = &pnp->dev; | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  |  | 
|  | if (system_state == SYSTEM_POWER_OFF) { | 
|  | int retval = cmos_poweroff(dev); | 
|  |  | 
|  | if (cmos_aie_poweroff(dev) < 0 && !retval) | 
|  | return; | 
|  | } | 
|  |  | 
|  | cmos_do_shutdown(cmos->irq); | 
|  | } | 
|  |  | 
|  | static const struct pnp_device_id rtc_ids[] = { | 
|  | { .id = "PNP0b00", }, | 
|  | { .id = "PNP0b01", }, | 
|  | { .id = "PNP0b02", }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pnp, rtc_ids); | 
|  |  | 
|  | static struct pnp_driver cmos_pnp_driver = { | 
|  | .name		= driver_name, | 
|  | .id_table	= rtc_ids, | 
|  | .probe		= cmos_pnp_probe, | 
|  | .remove		= cmos_pnp_remove, | 
|  | .shutdown	= cmos_pnp_shutdown, | 
|  |  | 
|  | /* flag ensures resume() gets called, and stops syslog spam */ | 
|  | .flags		= PNP_DRIVER_RES_DO_NOT_CHANGE, | 
|  | .driver		= { | 
|  | .pm = &cmos_pm_ops, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #endif	/* CONFIG_PNP */ | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static const struct of_device_id of_cmos_match[] = { | 
|  | { | 
|  | .compatible = "motorola,mc146818", | 
|  | }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, of_cmos_match); | 
|  |  | 
|  | static __init void cmos_of_init(struct platform_device *pdev) | 
|  | { | 
|  | struct device_node *node = pdev->dev.of_node; | 
|  | const __be32 *val; | 
|  |  | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | val = of_get_property(node, "ctrl-reg", NULL); | 
|  | if (val) | 
|  | CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); | 
|  |  | 
|  | val = of_get_property(node, "freq-reg", NULL); | 
|  | if (val) | 
|  | CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); | 
|  | } | 
|  | #else | 
|  | static inline void cmos_of_init(struct platform_device *pdev) {} | 
|  | #endif | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* Platform setup should have set up an RTC device, when PNP is | 
|  | * unavailable ... this could happen even on (older) PCs. | 
|  | */ | 
|  |  | 
|  | static int __init cmos_platform_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct resource *resource; | 
|  | int irq; | 
|  |  | 
|  | cmos_of_init(pdev); | 
|  |  | 
|  | if (RTC_IOMAPPED) | 
|  | resource = platform_get_resource(pdev, IORESOURCE_IO, 0); | 
|  | else | 
|  | resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) | 
|  | irq = -1; | 
|  |  | 
|  | return cmos_do_probe(&pdev->dev, resource, irq); | 
|  | } | 
|  |  | 
|  | static int cmos_platform_remove(struct platform_device *pdev) | 
|  | { | 
|  | cmos_do_remove(&pdev->dev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cmos_platform_shutdown(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  |  | 
|  | if (system_state == SYSTEM_POWER_OFF) { | 
|  | int retval = cmos_poweroff(dev); | 
|  |  | 
|  | if (cmos_aie_poweroff(dev) < 0 && !retval) | 
|  | return; | 
|  | } | 
|  |  | 
|  | cmos_do_shutdown(cmos->irq); | 
|  | } | 
|  |  | 
|  | /* work with hotplug and coldplug */ | 
|  | MODULE_ALIAS("platform:rtc_cmos"); | 
|  |  | 
|  | static struct platform_driver cmos_platform_driver = { | 
|  | .remove		= cmos_platform_remove, | 
|  | .shutdown	= cmos_platform_shutdown, | 
|  | .driver = { | 
|  | .name		= driver_name, | 
|  | .pm		= &cmos_pm_ops, | 
|  | .of_match_table = of_match_ptr(of_cmos_match), | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_PNP | 
|  | static bool pnp_driver_registered; | 
|  | #endif | 
|  | static bool platform_driver_registered; | 
|  |  | 
|  | static int __init cmos_init(void) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | #ifdef	CONFIG_PNP | 
|  | retval = pnp_register_driver(&cmos_pnp_driver); | 
|  | if (retval == 0) | 
|  | pnp_driver_registered = true; | 
|  | #endif | 
|  |  | 
|  | if (!cmos_rtc.dev) { | 
|  | retval = platform_driver_probe(&cmos_platform_driver, | 
|  | cmos_platform_probe); | 
|  | if (retval == 0) | 
|  | platform_driver_registered = true; | 
|  | } | 
|  |  | 
|  | if (retval == 0) | 
|  | return 0; | 
|  |  | 
|  | #ifdef	CONFIG_PNP | 
|  | if (pnp_driver_registered) | 
|  | pnp_unregister_driver(&cmos_pnp_driver); | 
|  | #endif | 
|  | return retval; | 
|  | } | 
|  | module_init(cmos_init); | 
|  |  | 
|  | static void __exit cmos_exit(void) | 
|  | { | 
|  | #ifdef	CONFIG_PNP | 
|  | if (pnp_driver_registered) | 
|  | pnp_unregister_driver(&cmos_pnp_driver); | 
|  | #endif | 
|  | if (platform_driver_registered) | 
|  | platform_driver_unregister(&cmos_platform_driver); | 
|  | } | 
|  | module_exit(cmos_exit); | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("David Brownell"); | 
|  | MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); | 
|  | MODULE_LICENSE("GPL"); |