| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | #ifndef _ASM_GENERIC_DIV64_H | 
 | #define _ASM_GENERIC_DIV64_H | 
 | /* | 
 |  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> | 
 |  * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h | 
 |  * | 
 |  * Optimization for constant divisors on 32-bit machines: | 
 |  * Copyright (C) 2006-2015 Nicolas Pitre | 
 |  * | 
 |  * The semantics of do_div() is, in C++ notation, observing that the name | 
 |  * is a function-like macro and the n parameter has the semantics of a C++ | 
 |  * reference: | 
 |  * | 
 |  * uint32_t do_div(uint64_t &n, uint32_t base) | 
 |  * { | 
 |  * 	uint32_t remainder = n % base; | 
 |  * 	n = n / base; | 
 |  * 	return remainder; | 
 |  * } | 
 |  * | 
 |  * NOTE: macro parameter n is evaluated multiple times, | 
 |  *       beware of side effects! | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/compiler.h> | 
 |  | 
 | #if BITS_PER_LONG == 64 | 
 |  | 
 | /** | 
 |  * do_div - returns 2 values: calculate remainder and update new dividend | 
 |  * @n: uint64_t dividend (will be updated) | 
 |  * @base: uint32_t divisor | 
 |  * | 
 |  * Summary: | 
 |  * ``uint32_t remainder = n % base;`` | 
 |  * ``n = n / base;`` | 
 |  * | 
 |  * Return: (uint32_t)remainder | 
 |  * | 
 |  * NOTE: macro parameter @n is evaluated multiple times, | 
 |  * beware of side effects! | 
 |  */ | 
 | # define do_div(n,base) ({					\ | 
 | 	uint32_t __base = (base);				\ | 
 | 	uint32_t __rem;						\ | 
 | 	__rem = ((uint64_t)(n)) % __base;			\ | 
 | 	(n) = ((uint64_t)(n)) / __base;				\ | 
 | 	__rem;							\ | 
 |  }) | 
 |  | 
 | #elif BITS_PER_LONG == 32 | 
 |  | 
 | #include <linux/log2.h> | 
 |  | 
 | /* | 
 |  * If the divisor happens to be constant, we determine the appropriate | 
 |  * inverse at compile time to turn the division into a few inline | 
 |  * multiplications which ought to be much faster. | 
 |  * | 
 |  * (It is unfortunate that gcc doesn't perform all this internally.) | 
 |  */ | 
 |  | 
 | #define __div64_const32(n, ___b)					\ | 
 | ({									\ | 
 | 	/*								\ | 
 | 	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\ | 
 | 	 *								\ | 
 | 	 * We rely on the fact that most of this code gets optimized	\ | 
 | 	 * away at compile time due to constant propagation and only	\ | 
 | 	 * a few multiplication instructions should remain.		\ | 
 | 	 * Hence this monstrous macro (static inline doesn't always	\ | 
 | 	 * do the trick here).						\ | 
 | 	 */								\ | 
 | 	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\ | 
 | 	uint32_t ___p, ___bias;						\ | 
 | 									\ | 
 | 	/* determine MSB of b */					\ | 
 | 	___p = 1 << ilog2(___b);					\ | 
 | 									\ | 
 | 	/* compute m = ((p << 64) + b - 1) / b */			\ | 
 | 	___m = (~0ULL / ___b) * ___p;					\ | 
 | 	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\ | 
 | 									\ | 
 | 	/* one less than the dividend with highest result */		\ | 
 | 	___x = ~0ULL / ___b * ___b - 1;					\ | 
 | 									\ | 
 | 	/* test our ___m with res = m * x / (p << 64) */		\ | 
 | 	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\ | 
 | 	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\ | 
 | 	___res += (___x & 0xffffffff) * (___m >> 32);			\ | 
 | 	___t = (___res < ___t) ? (1ULL << 32) : 0;			\ | 
 | 	___res = (___res >> 32) + ___t;					\ | 
 | 	___res += (___m >> 32) * (___x >> 32);				\ | 
 | 	___res /= ___p;							\ | 
 | 									\ | 
 | 	/* Now sanitize and optimize what we've got. */			\ | 
 | 	if (~0ULL % (___b / (___b & -___b)) == 0) {			\ | 
 | 		/* special case, can be simplified to ... */		\ | 
 | 		___n /= (___b & -___b);					\ | 
 | 		___m = ~0ULL / (___b / (___b & -___b));			\ | 
 | 		___p = 1;						\ | 
 | 		___bias = 1;						\ | 
 | 	} else if (___res != ___x / ___b) {				\ | 
 | 		/*							\ | 
 | 		 * We can't get away without a bias to compensate	\ | 
 | 		 * for bit truncation errors.  To avoid it we'd need an	\ | 
 | 		 * additional bit to represent m which would overflow	\ | 
 | 		 * a 64-bit variable.					\ | 
 | 		 *							\ | 
 | 		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\ | 
 | 		 */							\ | 
 | 		___bias = 1;						\ | 
 | 		/* Compute m = (p << 64) / b */				\ | 
 | 		___m = (~0ULL / ___b) * ___p;				\ | 
 | 		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\ | 
 | 	} else {							\ | 
 | 		/*							\ | 
 | 		 * Reduce m / p, and try to clear bit 31 of m when	\ | 
 | 		 * possible, otherwise that'll need extra overflow	\ | 
 | 		 * handling later.					\ | 
 | 		 */							\ | 
 | 		uint32_t ___bits = -(___m & -___m);			\ | 
 | 		___bits |= ___m >> 32;					\ | 
 | 		___bits = (~___bits) << 1;				\ | 
 | 		/*							\ | 
 | 		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\ | 
 | 		 * Simply apply the maximum possible reduction in that	\ | 
 | 		 * case. Otherwise the MSB of ___bits indicates the	\ | 
 | 		 * best reduction we should apply.			\ | 
 | 		 */							\ | 
 | 		if (!___bits) {						\ | 
 | 			___p /= (___m & -___m);				\ | 
 | 			___m /= (___m & -___m);				\ | 
 | 		} else {						\ | 
 | 			___p >>= ilog2(___bits);			\ | 
 | 			___m >>= ilog2(___bits);			\ | 
 | 		}							\ | 
 | 		/* No bias needed. */					\ | 
 | 		___bias = 0;						\ | 
 | 	}								\ | 
 | 									\ | 
 | 	/*								\ | 
 | 	 * Now we have a combination of 2 conditions:			\ | 
 | 	 *								\ | 
 | 	 * 1) whether or not we need to apply a bias, and		\ | 
 | 	 *								\ | 
 | 	 * 2) whether or not there might be an overflow in the cross	\ | 
 | 	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\ | 
 | 	 *								\ | 
 | 	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\ | 
 | 	 * From now on there will be actual runtime code generated.	\ | 
 | 	 */								\ | 
 | 	___res = __arch_xprod_64(___m, ___n, ___bias);			\ | 
 | 									\ | 
 | 	___res /= ___p;							\ | 
 | }) | 
 |  | 
 | #ifndef __arch_xprod_64 | 
 | /* | 
 |  * Default C implementation for __arch_xprod_64() | 
 |  * | 
 |  * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) | 
 |  * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64 | 
 |  * | 
 |  * The product is a 128-bit value, scaled down to 64 bits. | 
 |  * Assuming constant propagation to optimize away unused conditional code. | 
 |  * Architectures may provide their own optimized assembly implementation. | 
 |  */ | 
 | static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) | 
 | { | 
 | 	uint32_t m_lo = m; | 
 | 	uint32_t m_hi = m >> 32; | 
 | 	uint32_t n_lo = n; | 
 | 	uint32_t n_hi = n >> 32; | 
 | 	uint64_t res; | 
 | 	uint32_t res_lo, res_hi, tmp; | 
 |  | 
 | 	if (!bias) { | 
 | 		res = ((uint64_t)m_lo * n_lo) >> 32; | 
 | 	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { | 
 | 		/* there can't be any overflow here */ | 
 | 		res = (m + (uint64_t)m_lo * n_lo) >> 32; | 
 | 	} else { | 
 | 		res = m + (uint64_t)m_lo * n_lo; | 
 | 		res_lo = res >> 32; | 
 | 		res_hi = (res_lo < m_hi); | 
 | 		res = res_lo | ((uint64_t)res_hi << 32); | 
 | 	} | 
 |  | 
 | 	if (!(m & ((1ULL << 63) | (1ULL << 31)))) { | 
 | 		/* there can't be any overflow here */ | 
 | 		res += (uint64_t)m_lo * n_hi; | 
 | 		res += (uint64_t)m_hi * n_lo; | 
 | 		res >>= 32; | 
 | 	} else { | 
 | 		res += (uint64_t)m_lo * n_hi; | 
 | 		tmp = res >> 32; | 
 | 		res += (uint64_t)m_hi * n_lo; | 
 | 		res_lo = res >> 32; | 
 | 		res_hi = (res_lo < tmp); | 
 | 		res = res_lo | ((uint64_t)res_hi << 32); | 
 | 	} | 
 |  | 
 | 	res += (uint64_t)m_hi * n_hi; | 
 |  | 
 | 	return res; | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef __div64_32 | 
 | extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); | 
 | #endif | 
 |  | 
 | /* The unnecessary pointer compare is there | 
 |  * to check for type safety (n must be 64bit) | 
 |  */ | 
 | # define do_div(n,base) ({				\ | 
 | 	uint32_t __base = (base);			\ | 
 | 	uint32_t __rem;					\ | 
 | 	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\ | 
 | 	if (__builtin_constant_p(__base) &&		\ | 
 | 	    is_power_of_2(__base)) {			\ | 
 | 		__rem = (n) & (__base - 1);		\ | 
 | 		(n) >>= ilog2(__base);			\ | 
 | 	} else if (__builtin_constant_p(__base) &&	\ | 
 | 		   __base != 0) {			\ | 
 | 		uint32_t __res_lo, __n_lo = (n);	\ | 
 | 		(n) = __div64_const32(n, __base);	\ | 
 | 		/* the remainder can be computed with 32-bit regs */ \ | 
 | 		__res_lo = (n);				\ | 
 | 		__rem = __n_lo - __res_lo * __base;	\ | 
 | 	} else if (likely(((n) >> 32) == 0)) {		\ | 
 | 		__rem = (uint32_t)(n) % __base;		\ | 
 | 		(n) = (uint32_t)(n) / __base;		\ | 
 | 	} else {					\ | 
 | 		__rem = __div64_32(&(n), __base);	\ | 
 | 	}						\ | 
 | 	__rem;						\ | 
 |  }) | 
 |  | 
 | #else /* BITS_PER_LONG == ?? */ | 
 |  | 
 | # error do_div() does not yet support the C64 | 
 |  | 
 | #endif /* BITS_PER_LONG */ | 
 |  | 
 | #endif /* _ASM_GENERIC_DIV64_H */ |