|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2018 Stefan Agner <stefan@agner.ch> | 
|  | * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de> | 
|  | * Copyright (C) 2012 Avionic Design GmbH | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/mtd/rawnand.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/reset.h> | 
|  |  | 
|  | #include <soc/tegra/common.h> | 
|  |  | 
|  | #define COMMAND					0x00 | 
|  | #define   COMMAND_GO				BIT(31) | 
|  | #define   COMMAND_CLE				BIT(30) | 
|  | #define   COMMAND_ALE				BIT(29) | 
|  | #define   COMMAND_PIO				BIT(28) | 
|  | #define   COMMAND_TX				BIT(27) | 
|  | #define   COMMAND_RX				BIT(26) | 
|  | #define   COMMAND_SEC_CMD			BIT(25) | 
|  | #define   COMMAND_AFT_DAT			BIT(24) | 
|  | #define   COMMAND_TRANS_SIZE(size)		((((size) - 1) & 0xf) << 20) | 
|  | #define   COMMAND_A_VALID			BIT(19) | 
|  | #define   COMMAND_B_VALID			BIT(18) | 
|  | #define   COMMAND_RD_STATUS_CHK			BIT(17) | 
|  | #define   COMMAND_RBSY_CHK			BIT(16) | 
|  | #define   COMMAND_CE(x)				BIT(8 + ((x) & 0x7)) | 
|  | #define   COMMAND_CLE_SIZE(size)		((((size) - 1) & 0x3) << 4) | 
|  | #define   COMMAND_ALE_SIZE(size)		((((size) - 1) & 0xf) << 0) | 
|  |  | 
|  | #define STATUS					0x04 | 
|  |  | 
|  | #define ISR					0x08 | 
|  | #define   ISR_CORRFAIL_ERR			BIT(24) | 
|  | #define   ISR_UND				BIT(7) | 
|  | #define   ISR_OVR				BIT(6) | 
|  | #define   ISR_CMD_DONE				BIT(5) | 
|  | #define   ISR_ECC_ERR				BIT(4) | 
|  |  | 
|  | #define IER					0x0c | 
|  | #define   IER_ERR_TRIG_VAL(x)			(((x) & 0xf) << 16) | 
|  | #define   IER_UND				BIT(7) | 
|  | #define   IER_OVR				BIT(6) | 
|  | #define   IER_CMD_DONE				BIT(5) | 
|  | #define   IER_ECC_ERR				BIT(4) | 
|  | #define   IER_GIE				BIT(0) | 
|  |  | 
|  | #define CONFIG					0x10 | 
|  | #define   CONFIG_HW_ECC				BIT(31) | 
|  | #define   CONFIG_ECC_SEL			BIT(30) | 
|  | #define   CONFIG_ERR_COR			BIT(29) | 
|  | #define   CONFIG_PIPE_EN			BIT(28) | 
|  | #define   CONFIG_TVAL_4				(0 << 24) | 
|  | #define   CONFIG_TVAL_6				(1 << 24) | 
|  | #define   CONFIG_TVAL_8				(2 << 24) | 
|  | #define   CONFIG_SKIP_SPARE			BIT(23) | 
|  | #define   CONFIG_BUS_WIDTH_16			BIT(21) | 
|  | #define   CONFIG_COM_BSY			BIT(20) | 
|  | #define   CONFIG_PS_256				(0 << 16) | 
|  | #define   CONFIG_PS_512				(1 << 16) | 
|  | #define   CONFIG_PS_1024			(2 << 16) | 
|  | #define   CONFIG_PS_2048			(3 << 16) | 
|  | #define   CONFIG_PS_4096			(4 << 16) | 
|  | #define   CONFIG_SKIP_SPARE_SIZE_4		(0 << 14) | 
|  | #define   CONFIG_SKIP_SPARE_SIZE_8		(1 << 14) | 
|  | #define   CONFIG_SKIP_SPARE_SIZE_12		(2 << 14) | 
|  | #define   CONFIG_SKIP_SPARE_SIZE_16		(3 << 14) | 
|  | #define   CONFIG_TAG_BYTE_SIZE(x)			((x) & 0xff) | 
|  |  | 
|  | #define TIMING_1				0x14 | 
|  | #define   TIMING_TRP_RESP(x)			(((x) & 0xf) << 28) | 
|  | #define   TIMING_TWB(x)				(((x) & 0xf) << 24) | 
|  | #define   TIMING_TCR_TAR_TRR(x)			(((x) & 0xf) << 20) | 
|  | #define   TIMING_TWHR(x)			(((x) & 0xf) << 16) | 
|  | #define   TIMING_TCS(x)				(((x) & 0x3) << 14) | 
|  | #define   TIMING_TWH(x)				(((x) & 0x3) << 12) | 
|  | #define   TIMING_TWP(x)				(((x) & 0xf) <<  8) | 
|  | #define   TIMING_TRH(x)				(((x) & 0x3) <<  4) | 
|  | #define   TIMING_TRP(x)				(((x) & 0xf) <<  0) | 
|  |  | 
|  | #define RESP					0x18 | 
|  |  | 
|  | #define TIMING_2				0x1c | 
|  | #define   TIMING_TADL(x)			((x) & 0xf) | 
|  |  | 
|  | #define CMD_REG1				0x20 | 
|  | #define CMD_REG2				0x24 | 
|  | #define ADDR_REG1				0x28 | 
|  | #define ADDR_REG2				0x2c | 
|  |  | 
|  | #define DMA_MST_CTRL				0x30 | 
|  | #define   DMA_MST_CTRL_GO			BIT(31) | 
|  | #define   DMA_MST_CTRL_IN			(0 << 30) | 
|  | #define   DMA_MST_CTRL_OUT			BIT(30) | 
|  | #define   DMA_MST_CTRL_PERF_EN			BIT(29) | 
|  | #define   DMA_MST_CTRL_IE_DONE			BIT(28) | 
|  | #define   DMA_MST_CTRL_REUSE			BIT(27) | 
|  | #define   DMA_MST_CTRL_BURST_1			(2 << 24) | 
|  | #define   DMA_MST_CTRL_BURST_4			(3 << 24) | 
|  | #define   DMA_MST_CTRL_BURST_8			(4 << 24) | 
|  | #define   DMA_MST_CTRL_BURST_16			(5 << 24) | 
|  | #define   DMA_MST_CTRL_IS_DONE			BIT(20) | 
|  | #define   DMA_MST_CTRL_EN_A			BIT(2) | 
|  | #define   DMA_MST_CTRL_EN_B			BIT(1) | 
|  |  | 
|  | #define DMA_CFG_A				0x34 | 
|  | #define DMA_CFG_B				0x38 | 
|  |  | 
|  | #define FIFO_CTRL				0x3c | 
|  | #define   FIFO_CTRL_CLR_ALL			BIT(3) | 
|  |  | 
|  | #define DATA_PTR				0x40 | 
|  | #define TAG_PTR					0x44 | 
|  | #define ECC_PTR					0x48 | 
|  |  | 
|  | #define DEC_STATUS				0x4c | 
|  | #define   DEC_STATUS_A_ECC_FAIL			BIT(1) | 
|  | #define   DEC_STATUS_ERR_COUNT_MASK		0x00ff0000 | 
|  | #define   DEC_STATUS_ERR_COUNT_SHIFT		16 | 
|  |  | 
|  | #define HWSTATUS_CMD				0x50 | 
|  | #define HWSTATUS_MASK				0x54 | 
|  | #define   HWSTATUS_RDSTATUS_MASK(x)		(((x) & 0xff) << 24) | 
|  | #define   HWSTATUS_RDSTATUS_VALUE(x)		(((x) & 0xff) << 16) | 
|  | #define   HWSTATUS_RBSY_MASK(x)			(((x) & 0xff) << 8) | 
|  | #define   HWSTATUS_RBSY_VALUE(x)		(((x) & 0xff) << 0) | 
|  |  | 
|  | #define BCH_CONFIG				0xcc | 
|  | #define   BCH_ENABLE				BIT(0) | 
|  | #define   BCH_TVAL_4				(0 << 4) | 
|  | #define   BCH_TVAL_8				(1 << 4) | 
|  | #define   BCH_TVAL_14				(2 << 4) | 
|  | #define   BCH_TVAL_16				(3 << 4) | 
|  |  | 
|  | #define DEC_STAT_RESULT				0xd0 | 
|  | #define DEC_STAT_BUF				0xd4 | 
|  | #define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK	0xff000000 | 
|  | #define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT	24 | 
|  | #define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK	0x00ff0000 | 
|  | #define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT	16 | 
|  | #define   DEC_STAT_BUF_MAX_CORR_CNT_MASK	0x00001f00 | 
|  | #define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT	8 | 
|  |  | 
|  | #define OFFSET(val, off)	((val) < (off) ? 0 : (val) - (off)) | 
|  |  | 
|  | #define SKIP_SPARE_BYTES	4 | 
|  | #define BITS_PER_STEP_RS	18 | 
|  | #define BITS_PER_STEP_BCH	13 | 
|  |  | 
|  | #define INT_MASK		(IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) | 
|  | #define HWSTATUS_CMD_DEFAULT	NAND_STATUS_READY | 
|  | #define HWSTATUS_MASK_DEFAULT	(HWSTATUS_RDSTATUS_MASK(1) | \ | 
|  | HWSTATUS_RDSTATUS_VALUE(0) | \ | 
|  | HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ | 
|  | HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) | 
|  |  | 
|  | struct tegra_nand_controller { | 
|  | struct nand_controller controller; | 
|  | struct device *dev; | 
|  | void __iomem *regs; | 
|  | int irq; | 
|  | struct clk *clk; | 
|  | struct completion command_complete; | 
|  | struct completion dma_complete; | 
|  | bool last_read_error; | 
|  | int cur_cs; | 
|  | struct nand_chip *chip; | 
|  | }; | 
|  |  | 
|  | struct tegra_nand_chip { | 
|  | struct nand_chip chip; | 
|  | struct gpio_desc *wp_gpio; | 
|  | struct mtd_oob_region ecc; | 
|  | u32 config; | 
|  | u32 config_ecc; | 
|  | u32 bch_config; | 
|  | int cs[1]; | 
|  | }; | 
|  |  | 
|  | static inline struct tegra_nand_controller * | 
|  | to_tegra_ctrl(struct nand_controller *hw_ctrl) | 
|  | { | 
|  | return container_of(hw_ctrl, struct tegra_nand_controller, controller); | 
|  | } | 
|  |  | 
|  | static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) | 
|  | { | 
|  | return container_of(chip, struct tegra_nand_chip, chip); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, | 
|  | BITS_PER_BYTE); | 
|  |  | 
|  | if (section > 0) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = SKIP_SPARE_BYTES; | 
|  | oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { | 
|  | .ecc = tegra_nand_ooblayout_rs_ecc, | 
|  | .free = tegra_nand_ooblayout_no_free, | 
|  | }; | 
|  |  | 
|  | static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, | 
|  | BITS_PER_BYTE); | 
|  |  | 
|  | if (section > 0) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = SKIP_SPARE_BYTES; | 
|  | oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { | 
|  | .ecc = tegra_nand_ooblayout_bch_ecc, | 
|  | .free = tegra_nand_ooblayout_no_free, | 
|  | }; | 
|  |  | 
|  | static irqreturn_t tegra_nand_irq(int irq, void *data) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = data; | 
|  | u32 isr, dma; | 
|  |  | 
|  | isr = readl_relaxed(ctrl->regs + ISR); | 
|  | dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); | 
|  | dev_dbg(ctrl->dev, "isr %08x\n", isr); | 
|  |  | 
|  | if (!isr && !(dma & DMA_MST_CTRL_IS_DONE)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* | 
|  | * The bit name is somewhat missleading: This is also set when | 
|  | * HW ECC was successful. The data sheet states: | 
|  | * Correctable OR Un-correctable errors occurred in the DMA transfer... | 
|  | */ | 
|  | if (isr & ISR_CORRFAIL_ERR) | 
|  | ctrl->last_read_error = true; | 
|  |  | 
|  | if (isr & ISR_CMD_DONE) | 
|  | complete(&ctrl->command_complete); | 
|  |  | 
|  | if (isr & ISR_UND) | 
|  | dev_err(ctrl->dev, "FIFO underrun\n"); | 
|  |  | 
|  | if (isr & ISR_OVR) | 
|  | dev_err(ctrl->dev, "FIFO overrun\n"); | 
|  |  | 
|  | /* handle DMA interrupts */ | 
|  | if (dma & DMA_MST_CTRL_IS_DONE) { | 
|  | writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); | 
|  | complete(&ctrl->dma_complete); | 
|  | } | 
|  |  | 
|  | /* clear interrupts */ | 
|  | writel_relaxed(isr, ctrl->regs + ISR); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static const char * const tegra_nand_reg_names[] = { | 
|  | "COMMAND", | 
|  | "STATUS", | 
|  | "ISR", | 
|  | "IER", | 
|  | "CONFIG", | 
|  | "TIMING", | 
|  | NULL, | 
|  | "TIMING2", | 
|  | "CMD_REG1", | 
|  | "CMD_REG2", | 
|  | "ADDR_REG1", | 
|  | "ADDR_REG2", | 
|  | "DMA_MST_CTRL", | 
|  | "DMA_CFG_A", | 
|  | "DMA_CFG_B", | 
|  | "FIFO_CTRL", | 
|  | }; | 
|  |  | 
|  | static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) | 
|  | { | 
|  | u32 reg; | 
|  | int i; | 
|  |  | 
|  | dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); | 
|  | for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { | 
|  | const char *reg_name = tegra_nand_reg_names[i]; | 
|  |  | 
|  | if (!reg_name) | 
|  | continue; | 
|  |  | 
|  | reg = readl_relaxed(ctrl->regs + (i * 4)); | 
|  | dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl) | 
|  | { | 
|  | u32 isr, dma; | 
|  |  | 
|  | disable_irq(ctrl->irq); | 
|  |  | 
|  | /* Abort current command/DMA operation */ | 
|  | writel_relaxed(0, ctrl->regs + DMA_MST_CTRL); | 
|  | writel_relaxed(0, ctrl->regs + COMMAND); | 
|  |  | 
|  | /* clear interrupts */ | 
|  | isr = readl_relaxed(ctrl->regs + ISR); | 
|  | writel_relaxed(isr, ctrl->regs + ISR); | 
|  | dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); | 
|  | writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); | 
|  |  | 
|  | reinit_completion(&ctrl->command_complete); | 
|  | reinit_completion(&ctrl->dma_complete); | 
|  |  | 
|  | enable_irq(ctrl->irq); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_cmd(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | const struct nand_op_instr *instr; | 
|  | const struct nand_op_instr *instr_data_in = NULL; | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  | unsigned int op_id, size = 0, offset = 0; | 
|  | bool first_cmd = true; | 
|  | u32 reg, cmd = 0; | 
|  | int ret; | 
|  |  | 
|  | for (op_id = 0; op_id < subop->ninstrs; op_id++) { | 
|  | unsigned int naddrs, i; | 
|  | const u8 *addrs; | 
|  | u32 addr1 = 0, addr2 = 0; | 
|  |  | 
|  | instr = &subop->instrs[op_id]; | 
|  |  | 
|  | switch (instr->type) { | 
|  | case NAND_OP_CMD_INSTR: | 
|  | if (first_cmd) { | 
|  | cmd |= COMMAND_CLE; | 
|  | writel_relaxed(instr->ctx.cmd.opcode, | 
|  | ctrl->regs + CMD_REG1); | 
|  | } else { | 
|  | cmd |= COMMAND_SEC_CMD; | 
|  | writel_relaxed(instr->ctx.cmd.opcode, | 
|  | ctrl->regs + CMD_REG2); | 
|  | } | 
|  | first_cmd = false; | 
|  | break; | 
|  |  | 
|  | case NAND_OP_ADDR_INSTR: | 
|  | offset = nand_subop_get_addr_start_off(subop, op_id); | 
|  | naddrs = nand_subop_get_num_addr_cyc(subop, op_id); | 
|  | addrs = &instr->ctx.addr.addrs[offset]; | 
|  |  | 
|  | cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs); | 
|  | for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) | 
|  | addr1 |= *addrs++ << (BITS_PER_BYTE * i); | 
|  | naddrs -= i; | 
|  | for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) | 
|  | addr2 |= *addrs++ << (BITS_PER_BYTE * i); | 
|  |  | 
|  | writel_relaxed(addr1, ctrl->regs + ADDR_REG1); | 
|  | writel_relaxed(addr2, ctrl->regs + ADDR_REG2); | 
|  | break; | 
|  |  | 
|  | case NAND_OP_DATA_IN_INSTR: | 
|  | size = nand_subop_get_data_len(subop, op_id); | 
|  | offset = nand_subop_get_data_start_off(subop, op_id); | 
|  |  | 
|  | cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | | 
|  | COMMAND_RX | COMMAND_A_VALID; | 
|  |  | 
|  | instr_data_in = instr; | 
|  | break; | 
|  |  | 
|  | case NAND_OP_DATA_OUT_INSTR: | 
|  | size = nand_subop_get_data_len(subop, op_id); | 
|  | offset = nand_subop_get_data_start_off(subop, op_id); | 
|  |  | 
|  | cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | | 
|  | COMMAND_TX | COMMAND_A_VALID; | 
|  | memcpy(®, instr->ctx.data.buf.out + offset, size); | 
|  |  | 
|  | writel_relaxed(reg, ctrl->regs + RESP); | 
|  | break; | 
|  |  | 
|  | case NAND_OP_WAITRDY_INSTR: | 
|  | cmd |= COMMAND_RBSY_CHK; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs); | 
|  | writel_relaxed(cmd, ctrl->regs + COMMAND); | 
|  | ret = wait_for_completion_timeout(&ctrl->command_complete, | 
|  | msecs_to_jiffies(500)); | 
|  | if (!ret) { | 
|  | dev_err(ctrl->dev, "COMMAND timeout\n"); | 
|  | tegra_nand_dump_reg(ctrl); | 
|  | tegra_nand_controller_abort(ctrl); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | if (instr_data_in) { | 
|  | reg = readl_relaxed(ctrl->regs + RESP); | 
|  | memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( | 
|  | NAND_OP_PARSER_PATTERN(tegra_nand_cmd, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), | 
|  | NAND_OP_PARSER_PATTERN(tegra_nand_cmd, | 
|  | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), | 
|  | NAND_OP_PARSER_PATTERN(tegra_nand_cmd, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), | 
|  | ); | 
|  |  | 
|  | static void tegra_nand_select_target(struct nand_chip *chip, | 
|  | unsigned int die_nr) | 
|  | { | 
|  | struct tegra_nand_chip *nand = to_tegra_chip(chip); | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  |  | 
|  | ctrl->cur_cs = nand->cs[die_nr]; | 
|  | } | 
|  |  | 
|  | static int tegra_nand_exec_op(struct nand_chip *chip, | 
|  | const struct nand_operation *op, | 
|  | bool check_only) | 
|  | { | 
|  | if (!check_only) | 
|  | tegra_nand_select_target(chip, op->cs); | 
|  |  | 
|  | return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, | 
|  | check_only); | 
|  | } | 
|  |  | 
|  | static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, | 
|  | struct nand_chip *chip, bool enable) | 
|  | { | 
|  | struct tegra_nand_chip *nand = to_tegra_chip(chip); | 
|  |  | 
|  | if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable) | 
|  | writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG); | 
|  | else | 
|  | writel_relaxed(0, ctrl->regs + BCH_CONFIG); | 
|  |  | 
|  | if (enable) | 
|  | writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG); | 
|  | else | 
|  | writel_relaxed(nand->config, ctrl->regs + CONFIG); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | void *buf, void *oob_buf, int oob_len, int page, | 
|  | bool read) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  | enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
|  | dma_addr_t dma_addr = 0, dma_addr_oob = 0; | 
|  | u32 addr1, cmd, dma_ctrl; | 
|  | int ret; | 
|  |  | 
|  | tegra_nand_select_target(chip, chip->cur_cs); | 
|  |  | 
|  | if (read) { | 
|  | writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1); | 
|  | writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2); | 
|  | } else { | 
|  | writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1); | 
|  | writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2); | 
|  | } | 
|  | cmd = COMMAND_CLE | COMMAND_SEC_CMD; | 
|  |  | 
|  | /* Lower 16-bits are column, by default 0 */ | 
|  | addr1 = page << 16; | 
|  |  | 
|  | if (!buf) | 
|  | addr1 |= mtd->writesize; | 
|  | writel_relaxed(addr1, ctrl->regs + ADDR_REG1); | 
|  |  | 
|  | if (chip->options & NAND_ROW_ADDR_3) { | 
|  | writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2); | 
|  | cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5); | 
|  | } else { | 
|  | cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4); | 
|  | } | 
|  |  | 
|  | if (buf) { | 
|  | dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir); | 
|  | ret = dma_mapping_error(ctrl->dev, dma_addr); | 
|  | if (ret) { | 
|  | dev_err(ctrl->dev, "dma mapping error\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); | 
|  | writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); | 
|  | } | 
|  |  | 
|  | if (oob_buf) { | 
|  | dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize, | 
|  | dir); | 
|  | ret = dma_mapping_error(ctrl->dev, dma_addr_oob); | 
|  | if (ret) { | 
|  | dev_err(ctrl->dev, "dma mapping error\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_unmap_dma_page; | 
|  | } | 
|  |  | 
|  | writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B); | 
|  | writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR); | 
|  | } | 
|  |  | 
|  | dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN | | 
|  | DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE | | 
|  | DMA_MST_CTRL_BURST_16; | 
|  |  | 
|  | if (buf) | 
|  | dma_ctrl |= DMA_MST_CTRL_EN_A; | 
|  | if (oob_buf) | 
|  | dma_ctrl |= DMA_MST_CTRL_EN_B; | 
|  |  | 
|  | if (read) | 
|  | dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE; | 
|  | else | 
|  | dma_ctrl |= DMA_MST_CTRL_OUT; | 
|  |  | 
|  | writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL); | 
|  |  | 
|  | cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) | | 
|  | COMMAND_CE(ctrl->cur_cs); | 
|  |  | 
|  | if (buf) | 
|  | cmd |= COMMAND_A_VALID; | 
|  | if (oob_buf) | 
|  | cmd |= COMMAND_B_VALID; | 
|  |  | 
|  | if (read) | 
|  | cmd |= COMMAND_RX; | 
|  | else | 
|  | cmd |= COMMAND_TX | COMMAND_AFT_DAT; | 
|  |  | 
|  | writel_relaxed(cmd, ctrl->regs + COMMAND); | 
|  |  | 
|  | ret = wait_for_completion_timeout(&ctrl->command_complete, | 
|  | msecs_to_jiffies(500)); | 
|  | if (!ret) { | 
|  | dev_err(ctrl->dev, "COMMAND timeout\n"); | 
|  | tegra_nand_dump_reg(ctrl); | 
|  | tegra_nand_controller_abort(ctrl); | 
|  | ret = -ETIMEDOUT; | 
|  | goto err_unmap_dma; | 
|  | } | 
|  |  | 
|  | ret = wait_for_completion_timeout(&ctrl->dma_complete, | 
|  | msecs_to_jiffies(500)); | 
|  | if (!ret) { | 
|  | dev_err(ctrl->dev, "DMA timeout\n"); | 
|  | tegra_nand_dump_reg(ctrl); | 
|  | tegra_nand_controller_abort(ctrl); | 
|  | ret = -ETIMEDOUT; | 
|  | goto err_unmap_dma; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | err_unmap_dma: | 
|  | if (oob_buf) | 
|  | dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir); | 
|  | err_unmap_dma_page: | 
|  | if (buf) | 
|  | dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | void *oob_buf = oob_required ? chip->oob_poi : NULL; | 
|  |  | 
|  | return tegra_nand_page_xfer(mtd, chip, buf, oob_buf, | 
|  | mtd->oobsize, page, true); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | void *oob_buf = oob_required ? chip->oob_poi : NULL; | 
|  |  | 
|  | return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, | 
|  | mtd->oobsize, page, false); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_read_oob(struct nand_chip *chip, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  |  | 
|  | return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, | 
|  | mtd->oobsize, page, true); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_write_oob(struct nand_chip *chip, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  |  | 
|  | return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, | 
|  | mtd->oobsize, page, false); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  | struct tegra_nand_chip *nand = to_tegra_chip(chip); | 
|  | void *oob_buf = oob_required ? chip->oob_poi : NULL; | 
|  | u32 dec_stat, max_corr_cnt; | 
|  | unsigned long fail_sec_flag; | 
|  | int ret; | 
|  |  | 
|  | tegra_nand_hw_ecc(ctrl, chip, true); | 
|  | ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true); | 
|  | tegra_nand_hw_ecc(ctrl, chip, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* No correctable or un-correctable errors, page must have 0 bitflips */ | 
|  | if (!ctrl->last_read_error) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF | 
|  | * which contains information for all ECC selections. | 
|  | * | 
|  | * Note that since we do not use Command Queues DEC_RESULT does not | 
|  | * state the number of pages we can read from the DEC_STAT_BUF. But | 
|  | * since CORRFAIL_ERR did occur during page read we do have a valid | 
|  | * result in DEC_STAT_BUF. | 
|  | */ | 
|  | ctrl->last_read_error = false; | 
|  | dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); | 
|  |  | 
|  | fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> | 
|  | DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; | 
|  |  | 
|  | max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> | 
|  | DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; | 
|  |  | 
|  | if (fail_sec_flag) { | 
|  | int bit, max_bitflips = 0; | 
|  |  | 
|  | /* | 
|  | * Since we do not support subpage writes, a complete page | 
|  | * is either written or not. We can take a shortcut here by | 
|  | * checking wheather any of the sector has been successful | 
|  | * read. If at least one sectors has been read successfully, | 
|  | * the page must have been a written previously. It cannot | 
|  | * be an erased page. | 
|  | * | 
|  | * E.g. controller might return fail_sec_flag with 0x4, which | 
|  | * would mean only the third sector failed to correct. The | 
|  | * page must have been written and the third sector is really | 
|  | * not correctable anymore. | 
|  | */ | 
|  | if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { | 
|  | mtd->ecc_stats.failed += hweight8(fail_sec_flag); | 
|  | return max_corr_cnt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All sectors failed to correct, but the ECC isn't smart | 
|  | * enough to figure out if a page is really just erased. | 
|  | * Read OOB data and check whether data/OOB is completely | 
|  | * erased or if error correction just failed for all sub- | 
|  | * pages. | 
|  | */ | 
|  | ret = tegra_nand_read_oob(chip, page); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { | 
|  | u8 *data = buf + (chip->ecc.size * bit); | 
|  | u8 *oob = chip->oob_poi + nand->ecc.offset + | 
|  | (chip->ecc.bytes * bit); | 
|  |  | 
|  | ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, | 
|  | oob, chip->ecc.bytes, | 
|  | NULL, 0, | 
|  | chip->ecc.strength); | 
|  | if (ret < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += ret; | 
|  | max_bitflips = max(ret, max_bitflips); | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_t(unsigned int, max_corr_cnt, max_bitflips); | 
|  | } else { | 
|  | int corr_sec_flag; | 
|  |  | 
|  | corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> | 
|  | DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; | 
|  |  | 
|  | /* | 
|  | * The value returned in the register is the maximum of | 
|  | * bitflips encountered in any of the ECC regions. As there is | 
|  | * no way to get the number of bitflips in a specific regions | 
|  | * we are not able to deliver correct stats but instead | 
|  | * overestimate the number of corrected bitflips by assuming | 
|  | * that all regions where errors have been corrected | 
|  | * encountered the maximum number of bitflips. | 
|  | */ | 
|  | mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); | 
|  |  | 
|  | return max_corr_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  | void *oob_buf = oob_required ? chip->oob_poi : NULL; | 
|  | int ret; | 
|  |  | 
|  | tegra_nand_hw_ecc(ctrl, chip, true); | 
|  | ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, | 
|  | 0, page, false); | 
|  | tegra_nand_hw_ecc(ctrl, chip, false); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, | 
|  | const struct nand_sdr_timings *timings) | 
|  | { | 
|  | /* | 
|  | * The period (and all other timings in this function) is in ps, | 
|  | * so need to take care here to avoid integer overflows. | 
|  | */ | 
|  | unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; | 
|  | unsigned int period = DIV_ROUND_UP(1000000, rate); | 
|  | u32 val, reg = 0; | 
|  |  | 
|  | val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, | 
|  | timings->tRC_min), period); | 
|  | reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); | 
|  |  | 
|  | val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), | 
|  | max(timings->tALS_min, timings->tALH_min)), | 
|  | period); | 
|  | reg |= TIMING_TCS(OFFSET(val, 2)); | 
|  |  | 
|  | val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, | 
|  | period); | 
|  | reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); | 
|  |  | 
|  | reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); | 
|  | reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); | 
|  | reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); | 
|  | reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); | 
|  | reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); | 
|  |  | 
|  | writel_relaxed(reg, ctrl->regs + TIMING_1); | 
|  |  | 
|  | val = DIV_ROUND_UP(timings->tADL_min, period); | 
|  | reg = TIMING_TADL(OFFSET(val, 3)); | 
|  |  | 
|  | writel_relaxed(reg, ctrl->regs + TIMING_2); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_setup_interface(struct nand_chip *chip, int csline, | 
|  | const struct nand_interface_config *conf) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  | const struct nand_sdr_timings *timings; | 
|  |  | 
|  | timings = nand_get_sdr_timings(conf); | 
|  | if (IS_ERR(timings)) | 
|  | return PTR_ERR(timings); | 
|  |  | 
|  | if (csline == NAND_DATA_IFACE_CHECK_ONLY) | 
|  | return 0; | 
|  |  | 
|  | tegra_nand_setup_timing(ctrl, timings); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const int rs_strength_bootable[] = { 4 }; | 
|  | static const int rs_strength[] = { 4, 6, 8 }; | 
|  | static const int bch_strength_bootable[] = { 8, 16 }; | 
|  | static const int bch_strength[] = { 4, 8, 14, 16 }; | 
|  |  | 
|  | static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, | 
|  | int strength_len, int bits_per_step, | 
|  | int oobsize) | 
|  | { | 
|  | struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip)); | 
|  | const struct nand_ecc_props *requirements = | 
|  | nanddev_get_ecc_requirements(base); | 
|  | bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Loop through available strengths. Backwards in case we try to | 
|  | * maximize the BCH strength. | 
|  | */ | 
|  | for (i = 0; i < strength_len; i++) { | 
|  | int strength_sel, bytes_per_step, bytes_per_page; | 
|  |  | 
|  | if (maximize) { | 
|  | strength_sel = strength[strength_len - i - 1]; | 
|  | } else { | 
|  | strength_sel = strength[i]; | 
|  |  | 
|  | if (strength_sel < requirements->strength) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel, | 
|  | BITS_PER_BYTE); | 
|  | bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); | 
|  |  | 
|  | /* Check whether strength fits OOB */ | 
|  | if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) | 
|  | return strength_sel; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) | 
|  | { | 
|  | const int *strength; | 
|  | int strength_len, bits_per_step; | 
|  |  | 
|  | switch (chip->ecc.algo) { | 
|  | case NAND_ECC_ALGO_RS: | 
|  | bits_per_step = BITS_PER_STEP_RS; | 
|  | if (chip->options & NAND_IS_BOOT_MEDIUM) { | 
|  | strength = rs_strength_bootable; | 
|  | strength_len = ARRAY_SIZE(rs_strength_bootable); | 
|  | } else { | 
|  | strength = rs_strength; | 
|  | strength_len = ARRAY_SIZE(rs_strength); | 
|  | } | 
|  | break; | 
|  | case NAND_ECC_ALGO_BCH: | 
|  | bits_per_step = BITS_PER_STEP_BCH; | 
|  | if (chip->options & NAND_IS_BOOT_MEDIUM) { | 
|  | strength = bch_strength_bootable; | 
|  | strength_len = ARRAY_SIZE(bch_strength_bootable); | 
|  | } else { | 
|  | strength = bch_strength; | 
|  | strength_len = ARRAY_SIZE(bch_strength); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return tegra_nand_get_strength(chip, strength, strength_len, | 
|  | bits_per_step, oobsize); | 
|  | } | 
|  |  | 
|  | static int tegra_nand_attach_chip(struct nand_chip *chip) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); | 
|  | const struct nand_ecc_props *requirements = | 
|  | nanddev_get_ecc_requirements(&chip->base); | 
|  | struct tegra_nand_chip *nand = to_tegra_chip(chip); | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | int bits_per_step; | 
|  | int ret; | 
|  |  | 
|  | if (chip->bbt_options & NAND_BBT_USE_FLASH) | 
|  | chip->bbt_options |= NAND_BBT_NO_OOB; | 
|  |  | 
|  | chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; | 
|  | chip->ecc.size = 512; | 
|  | chip->ecc.steps = mtd->writesize / chip->ecc.size; | 
|  | if (requirements->step_size != 512) { | 
|  | dev_err(ctrl->dev, "Unsupported step size %d\n", | 
|  | requirements->step_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | chip->ecc.read_page = tegra_nand_read_page_hwecc; | 
|  | chip->ecc.write_page = tegra_nand_write_page_hwecc; | 
|  | chip->ecc.read_page_raw = tegra_nand_read_page_raw; | 
|  | chip->ecc.write_page_raw = tegra_nand_write_page_raw; | 
|  | chip->ecc.read_oob = tegra_nand_read_oob; | 
|  | chip->ecc.write_oob = tegra_nand_write_oob; | 
|  |  | 
|  | if (chip->options & NAND_BUSWIDTH_16) | 
|  | nand->config |= CONFIG_BUS_WIDTH_16; | 
|  |  | 
|  | if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { | 
|  | if (mtd->writesize < 2048) | 
|  | chip->ecc.algo = NAND_ECC_ALGO_RS; | 
|  | else | 
|  | chip->ecc.algo = NAND_ECC_ALGO_BCH; | 
|  | } | 
|  |  | 
|  | if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) { | 
|  | dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!chip->ecc.strength) { | 
|  | ret = tegra_nand_select_strength(chip, mtd->oobsize); | 
|  | if (ret < 0) { | 
|  | dev_err(ctrl->dev, | 
|  | "No valid strength found, minimum %d\n", | 
|  | requirements->strength); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | chip->ecc.strength = ret; | 
|  | } | 
|  |  | 
|  | nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE | | 
|  | CONFIG_SKIP_SPARE_SIZE_4; | 
|  |  | 
|  | switch (chip->ecc.algo) { | 
|  | case NAND_ECC_ALGO_RS: | 
|  | bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; | 
|  | mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); | 
|  | nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL | | 
|  | CONFIG_ERR_COR; | 
|  | switch (chip->ecc.strength) { | 
|  | case 4: | 
|  | nand->config_ecc |= CONFIG_TVAL_4; | 
|  | break; | 
|  | case 6: | 
|  | nand->config_ecc |= CONFIG_TVAL_6; | 
|  | break; | 
|  | case 8: | 
|  | nand->config_ecc |= CONFIG_TVAL_8; | 
|  | break; | 
|  | default: | 
|  | dev_err(ctrl->dev, "ECC strength %d not supported\n", | 
|  | chip->ecc.strength); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case NAND_ECC_ALGO_BCH: | 
|  | bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; | 
|  | mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); | 
|  | nand->bch_config = BCH_ENABLE; | 
|  | switch (chip->ecc.strength) { | 
|  | case 4: | 
|  | nand->bch_config |= BCH_TVAL_4; | 
|  | break; | 
|  | case 8: | 
|  | nand->bch_config |= BCH_TVAL_8; | 
|  | break; | 
|  | case 14: | 
|  | nand->bch_config |= BCH_TVAL_14; | 
|  | break; | 
|  | case 16: | 
|  | nand->bch_config |= BCH_TVAL_16; | 
|  | break; | 
|  | default: | 
|  | dev_err(ctrl->dev, "ECC strength %d not supported\n", | 
|  | chip->ecc.strength); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | dev_err(ctrl->dev, "ECC algorithm not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n", | 
|  | chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS", | 
|  | chip->ecc.strength); | 
|  |  | 
|  | chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); | 
|  |  | 
|  | switch (mtd->writesize) { | 
|  | case 256: | 
|  | nand->config |= CONFIG_PS_256; | 
|  | break; | 
|  | case 512: | 
|  | nand->config |= CONFIG_PS_512; | 
|  | break; | 
|  | case 1024: | 
|  | nand->config |= CONFIG_PS_1024; | 
|  | break; | 
|  | case 2048: | 
|  | nand->config |= CONFIG_PS_2048; | 
|  | break; | 
|  | case 4096: | 
|  | nand->config |= CONFIG_PS_4096; | 
|  | break; | 
|  | default: | 
|  | dev_err(ctrl->dev, "Unsupported writesize %d\n", | 
|  | mtd->writesize); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Store complete configuration for HW ECC in config_ecc */ | 
|  | nand->config_ecc |= nand->config; | 
|  |  | 
|  | /* Non-HW ECC read/writes complete OOB */ | 
|  | nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1); | 
|  | writel_relaxed(nand->config, ctrl->regs + CONFIG); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct nand_controller_ops tegra_nand_controller_ops = { | 
|  | .attach_chip = &tegra_nand_attach_chip, | 
|  | .exec_op = tegra_nand_exec_op, | 
|  | .setup_interface = tegra_nand_setup_interface, | 
|  | }; | 
|  |  | 
|  | static int tegra_nand_chips_init(struct device *dev, | 
|  | struct tegra_nand_controller *ctrl) | 
|  | { | 
|  | struct device_node *np = dev->of_node; | 
|  | struct device_node *np_nand; | 
|  | int nsels, nchips = of_get_child_count(np); | 
|  | struct tegra_nand_chip *nand; | 
|  | struct mtd_info *mtd; | 
|  | struct nand_chip *chip; | 
|  | int ret; | 
|  | u32 cs; | 
|  |  | 
|  | if (nchips != 1) { | 
|  | dev_err(dev, "Currently only one NAND chip supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | np_nand = of_get_next_child(np, NULL); | 
|  |  | 
|  | nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32)); | 
|  | if (nsels != 1) { | 
|  | dev_err(dev, "Missing/invalid reg property\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Retrieve CS id, currently only single die NAND supported */ | 
|  | ret = of_property_read_u32(np_nand, "reg", &cs); | 
|  | if (ret) { | 
|  | dev_err(dev, "could not retrieve reg property: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); | 
|  | if (!nand) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nand->cs[0] = cs; | 
|  |  | 
|  | nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); | 
|  |  | 
|  | if (IS_ERR(nand->wp_gpio)) { | 
|  | ret = PTR_ERR(nand->wp_gpio); | 
|  | dev_err(dev, "Failed to request WP GPIO: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | chip = &nand->chip; | 
|  | chip->controller = &ctrl->controller; | 
|  |  | 
|  | mtd = nand_to_mtd(chip); | 
|  |  | 
|  | mtd->dev.parent = dev; | 
|  | mtd->owner = THIS_MODULE; | 
|  |  | 
|  | nand_set_flash_node(chip, np_nand); | 
|  |  | 
|  | if (!mtd->name) | 
|  | mtd->name = "tegra_nand"; | 
|  |  | 
|  | chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA; | 
|  |  | 
|  | ret = nand_scan(chip, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mtd_ooblayout_ecc(mtd, 0, &nand->ecc); | 
|  |  | 
|  | ret = mtd_device_register(mtd, NULL, 0); | 
|  | if (ret) { | 
|  | dev_err(dev, "Failed to register mtd device: %d\n", ret); | 
|  | nand_cleanup(chip); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ctrl->chip = chip; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tegra_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct reset_control *rst; | 
|  | struct tegra_nand_controller *ctrl; | 
|  | int err = 0; | 
|  |  | 
|  | ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); | 
|  | if (!ctrl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctrl->dev = &pdev->dev; | 
|  | platform_set_drvdata(pdev, ctrl); | 
|  | nand_controller_init(&ctrl->controller); | 
|  | ctrl->controller.ops = &tegra_nand_controller_ops; | 
|  |  | 
|  | ctrl->regs = devm_platform_ioremap_resource(pdev, 0); | 
|  | if (IS_ERR(ctrl->regs)) | 
|  | return PTR_ERR(ctrl->regs); | 
|  |  | 
|  | rst = devm_reset_control_get(&pdev->dev, "nand"); | 
|  | if (IS_ERR(rst)) | 
|  | return PTR_ERR(rst); | 
|  |  | 
|  | ctrl->clk = devm_clk_get(&pdev->dev, "nand"); | 
|  | if (IS_ERR(ctrl->clk)) | 
|  | return PTR_ERR(ctrl->clk); | 
|  |  | 
|  | err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * This driver doesn't support active power management yet, | 
|  | * so we will simply keep device resumed. | 
|  | */ | 
|  | pm_runtime_enable(&pdev->dev); | 
|  | err = pm_runtime_resume_and_get(&pdev->dev); | 
|  | if (err) | 
|  | goto err_dis_pm; | 
|  |  | 
|  | err = reset_control_reset(rst); | 
|  | if (err) { | 
|  | dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); | 
|  | goto err_put_pm; | 
|  | } | 
|  |  | 
|  | writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD); | 
|  | writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK); | 
|  | writel_relaxed(INT_MASK, ctrl->regs + IER); | 
|  |  | 
|  | init_completion(&ctrl->command_complete); | 
|  | init_completion(&ctrl->dma_complete); | 
|  |  | 
|  | ctrl->irq = platform_get_irq(pdev, 0); | 
|  | if (ctrl->irq < 0) { | 
|  | err = ctrl->irq; | 
|  | goto err_put_pm; | 
|  | } | 
|  | err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0, | 
|  | dev_name(&pdev->dev), ctrl); | 
|  | if (err) { | 
|  | dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err); | 
|  | goto err_put_pm; | 
|  | } | 
|  |  | 
|  | writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL); | 
|  |  | 
|  | err = tegra_nand_chips_init(ctrl->dev, ctrl); | 
|  | if (err) | 
|  | goto err_put_pm; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_put_pm: | 
|  | pm_runtime_put_sync_suspend(ctrl->dev); | 
|  | pm_runtime_force_suspend(ctrl->dev); | 
|  | err_dis_pm: | 
|  | pm_runtime_disable(&pdev->dev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int tegra_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); | 
|  | struct nand_chip *chip = ctrl->chip; | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  |  | 
|  | WARN_ON(mtd_device_unregister(mtd)); | 
|  |  | 
|  | nand_cleanup(chip); | 
|  |  | 
|  | pm_runtime_put_sync_suspend(ctrl->dev); | 
|  | pm_runtime_force_suspend(ctrl->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused tegra_nand_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); | 
|  | int err; | 
|  |  | 
|  | err = clk_prepare_enable(ctrl->clk); | 
|  | if (err) { | 
|  | dev_err(dev, "Failed to enable clock: %d\n", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); | 
|  |  | 
|  | clk_disable_unprepare(ctrl->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops tegra_nand_pm = { | 
|  | SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume, | 
|  | NULL) | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id tegra_nand_of_match[] = { | 
|  | { .compatible = "nvidia,tegra20-nand" }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, tegra_nand_of_match); | 
|  |  | 
|  | static struct platform_driver tegra_nand_driver = { | 
|  | .driver = { | 
|  | .name = "tegra-nand", | 
|  | .of_match_table = tegra_nand_of_match, | 
|  | .pm = &tegra_nand_pm, | 
|  | }, | 
|  | .probe = tegra_nand_probe, | 
|  | .remove = tegra_nand_remove, | 
|  | }; | 
|  | module_platform_driver(tegra_nand_driver); | 
|  |  | 
|  | MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); | 
|  | MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>"); | 
|  | MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>"); | 
|  | MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>"); | 
|  | MODULE_LICENSE("GPL v2"); |