| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Generic Reed Solomon encoder / decoder library | 
 |  * | 
 |  * Copyright 2002, Phil Karn, KA9Q | 
 |  * May be used under the terms of the GNU General Public License (GPL) | 
 |  * | 
 |  * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) | 
 |  * | 
 |  * Generic data width independent code which is included by the wrappers. | 
 |  */ | 
 | { | 
 | 	struct rs_codec *rs = rsc->codec; | 
 | 	int deg_lambda, el, deg_omega; | 
 | 	int i, j, r, k, pad; | 
 | 	int nn = rs->nn; | 
 | 	int nroots = rs->nroots; | 
 | 	int fcr = rs->fcr; | 
 | 	int prim = rs->prim; | 
 | 	int iprim = rs->iprim; | 
 | 	uint16_t *alpha_to = rs->alpha_to; | 
 | 	uint16_t *index_of = rs->index_of; | 
 | 	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error; | 
 | 	int count = 0; | 
 | 	int num_corrected; | 
 | 	uint16_t msk = (uint16_t) rs->nn; | 
 |  | 
 | 	/* | 
 | 	 * The decoder buffers are in the rs control struct. They are | 
 | 	 * arrays sized [nroots + 1] | 
 | 	 */ | 
 | 	uint16_t *lambda = rsc->buffers + RS_DECODE_LAMBDA * (nroots + 1); | 
 | 	uint16_t *syn = rsc->buffers + RS_DECODE_SYN * (nroots + 1); | 
 | 	uint16_t *b = rsc->buffers + RS_DECODE_B * (nroots + 1); | 
 | 	uint16_t *t = rsc->buffers + RS_DECODE_T * (nroots + 1); | 
 | 	uint16_t *omega = rsc->buffers + RS_DECODE_OMEGA * (nroots + 1); | 
 | 	uint16_t *root = rsc->buffers + RS_DECODE_ROOT * (nroots + 1); | 
 | 	uint16_t *reg = rsc->buffers + RS_DECODE_REG * (nroots + 1); | 
 | 	uint16_t *loc = rsc->buffers + RS_DECODE_LOC * (nroots + 1); | 
 |  | 
 | 	/* Check length parameter for validity */ | 
 | 	pad = nn - nroots - len; | 
 | 	BUG_ON(pad < 0 || pad >= nn - nroots); | 
 |  | 
 | 	/* Does the caller provide the syndrome ? */ | 
 | 	if (s != NULL) { | 
 | 		for (i = 0; i < nroots; i++) { | 
 | 			/* The syndrome is in index form, | 
 | 			 * so nn represents zero | 
 | 			 */ | 
 | 			if (s[i] != nn) | 
 | 				goto decode; | 
 | 		} | 
 |  | 
 | 		/* syndrome is zero, no errors to correct  */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* form the syndromes; i.e., evaluate data(x) at roots of | 
 | 	 * g(x) */ | 
 | 	for (i = 0; i < nroots; i++) | 
 | 		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk; | 
 |  | 
 | 	for (j = 1; j < len; j++) { | 
 | 		for (i = 0; i < nroots; i++) { | 
 | 			if (syn[i] == 0) { | 
 | 				syn[i] = (((uint16_t) data[j]) ^ | 
 | 					  invmsk) & msk; | 
 | 			} else { | 
 | 				syn[i] = ((((uint16_t) data[j]) ^ | 
 | 					   invmsk) & msk) ^ | 
 | 					alpha_to[rs_modnn(rs, index_of[syn[i]] + | 
 | 						       (fcr + i) * prim)]; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (j = 0; j < nroots; j++) { | 
 | 		for (i = 0; i < nroots; i++) { | 
 | 			if (syn[i] == 0) { | 
 | 				syn[i] = ((uint16_t) par[j]) & msk; | 
 | 			} else { | 
 | 				syn[i] = (((uint16_t) par[j]) & msk) ^ | 
 | 					alpha_to[rs_modnn(rs, index_of[syn[i]] + | 
 | 						       (fcr+i)*prim)]; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	s = syn; | 
 |  | 
 | 	/* Convert syndromes to index form, checking for nonzero condition */ | 
 | 	syn_error = 0; | 
 | 	for (i = 0; i < nroots; i++) { | 
 | 		syn_error |= s[i]; | 
 | 		s[i] = index_of[s[i]]; | 
 | 	} | 
 |  | 
 | 	if (!syn_error) { | 
 | 		/* if syndrome is zero, data[] is a codeword and there are no | 
 | 		 * errors to correct. So return data[] unmodified | 
 | 		 */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 |  decode: | 
 | 	memset(&lambda[1], 0, nroots * sizeof(lambda[0])); | 
 | 	lambda[0] = 1; | 
 |  | 
 | 	if (no_eras > 0) { | 
 | 		/* Init lambda to be the erasure locator polynomial */ | 
 | 		lambda[1] = alpha_to[rs_modnn(rs, | 
 | 					prim * (nn - 1 - (eras_pos[0] + pad)))]; | 
 | 		for (i = 1; i < no_eras; i++) { | 
 | 			u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad))); | 
 | 			for (j = i + 1; j > 0; j--) { | 
 | 				tmp = index_of[lambda[j - 1]]; | 
 | 				if (tmp != nn) { | 
 | 					lambda[j] ^= | 
 | 						alpha_to[rs_modnn(rs, u + tmp)]; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nroots + 1; i++) | 
 | 		b[i] = index_of[lambda[i]]; | 
 |  | 
 | 	/* | 
 | 	 * Begin Berlekamp-Massey algorithm to determine error+erasure | 
 | 	 * locator polynomial | 
 | 	 */ | 
 | 	r = no_eras; | 
 | 	el = no_eras; | 
 | 	while (++r <= nroots) {	/* r is the step number */ | 
 | 		/* Compute discrepancy at the r-th step in poly-form */ | 
 | 		discr_r = 0; | 
 | 		for (i = 0; i < r; i++) { | 
 | 			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { | 
 | 				discr_r ^= | 
 | 					alpha_to[rs_modnn(rs, | 
 | 							  index_of[lambda[i]] + | 
 | 							  s[r - i - 1])]; | 
 | 			} | 
 | 		} | 
 | 		discr_r = index_of[discr_r];	/* Index form */ | 
 | 		if (discr_r == nn) { | 
 | 			/* 2 lines below: B(x) <-- x*B(x) */ | 
 | 			memmove (&b[1], b, nroots * sizeof (b[0])); | 
 | 			b[0] = nn; | 
 | 		} else { | 
 | 			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */ | 
 | 			t[0] = lambda[0]; | 
 | 			for (i = 0; i < nroots; i++) { | 
 | 				if (b[i] != nn) { | 
 | 					t[i + 1] = lambda[i + 1] ^ | 
 | 						alpha_to[rs_modnn(rs, discr_r + | 
 | 								  b[i])]; | 
 | 				} else | 
 | 					t[i + 1] = lambda[i + 1]; | 
 | 			} | 
 | 			if (2 * el <= r + no_eras - 1) { | 
 | 				el = r + no_eras - el; | 
 | 				/* | 
 | 				 * 2 lines below: B(x) <-- inv(discr_r) * | 
 | 				 * lambda(x) | 
 | 				 */ | 
 | 				for (i = 0; i <= nroots; i++) { | 
 | 					b[i] = (lambda[i] == 0) ? nn : | 
 | 						rs_modnn(rs, index_of[lambda[i]] | 
 | 							 - discr_r + nn); | 
 | 				} | 
 | 			} else { | 
 | 				/* 2 lines below: B(x) <-- x*B(x) */ | 
 | 				memmove(&b[1], b, nroots * sizeof(b[0])); | 
 | 				b[0] = nn; | 
 | 			} | 
 | 			memcpy(lambda, t, (nroots + 1) * sizeof(t[0])); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Convert lambda to index form and compute deg(lambda(x)) */ | 
 | 	deg_lambda = 0; | 
 | 	for (i = 0; i < nroots + 1; i++) { | 
 | 		lambda[i] = index_of[lambda[i]]; | 
 | 		if (lambda[i] != nn) | 
 | 			deg_lambda = i; | 
 | 	} | 
 |  | 
 | 	if (deg_lambda == 0) { | 
 | 		/* | 
 | 		 * deg(lambda) is zero even though the syndrome is non-zero | 
 | 		 * => uncorrectable error detected | 
 | 		 */ | 
 | 		return -EBADMSG; | 
 | 	} | 
 |  | 
 | 	/* Find roots of error+erasure locator polynomial by Chien search */ | 
 | 	memcpy(®[1], &lambda[1], nroots * sizeof(reg[0])); | 
 | 	count = 0;		/* Number of roots of lambda(x) */ | 
 | 	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) { | 
 | 		q = 1;		/* lambda[0] is always 0 */ | 
 | 		for (j = deg_lambda; j > 0; j--) { | 
 | 			if (reg[j] != nn) { | 
 | 				reg[j] = rs_modnn(rs, reg[j] + j); | 
 | 				q ^= alpha_to[reg[j]]; | 
 | 			} | 
 | 		} | 
 | 		if (q != 0) | 
 | 			continue;	/* Not a root */ | 
 |  | 
 | 		if (k < pad) { | 
 | 			/* Impossible error location. Uncorrectable error. */ | 
 | 			return -EBADMSG; | 
 | 		} | 
 |  | 
 | 		/* store root (index-form) and error location number */ | 
 | 		root[count] = i; | 
 | 		loc[count] = k; | 
 | 		/* If we've already found max possible roots, | 
 | 		 * abort the search to save time | 
 | 		 */ | 
 | 		if (++count == deg_lambda) | 
 | 			break; | 
 | 	} | 
 | 	if (deg_lambda != count) { | 
 | 		/* | 
 | 		 * deg(lambda) unequal to number of roots => uncorrectable | 
 | 		 * error detected | 
 | 		 */ | 
 | 		return -EBADMSG; | 
 | 	} | 
 | 	/* | 
 | 	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | 
 | 	 * x**nroots). in index form. Also find deg(omega). | 
 | 	 */ | 
 | 	deg_omega = deg_lambda - 1; | 
 | 	for (i = 0; i <= deg_omega; i++) { | 
 | 		tmp = 0; | 
 | 		for (j = i; j >= 0; j--) { | 
 | 			if ((s[i - j] != nn) && (lambda[j] != nn)) | 
 | 				tmp ^= | 
 | 				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])]; | 
 | 		} | 
 | 		omega[i] = index_of[tmp]; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | 
 | 	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form | 
 | 	 * Note: we reuse the buffer for b to store the correction pattern | 
 | 	 */ | 
 | 	num_corrected = 0; | 
 | 	for (j = count - 1; j >= 0; j--) { | 
 | 		num1 = 0; | 
 | 		for (i = deg_omega; i >= 0; i--) { | 
 | 			if (omega[i] != nn) | 
 | 				num1 ^= alpha_to[rs_modnn(rs, omega[i] + | 
 | 							i * root[j])]; | 
 | 		} | 
 |  | 
 | 		if (num1 == 0) { | 
 | 			/* Nothing to correct at this position */ | 
 | 			b[j] = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; | 
 | 		den = 0; | 
 |  | 
 | 		/* lambda[i+1] for i even is the formal derivative | 
 | 		 * lambda_pr of lambda[i] */ | 
 | 		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { | 
 | 			if (lambda[i + 1] != nn) { | 
 | 				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + | 
 | 						       i * root[j])]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		b[j] = alpha_to[rs_modnn(rs, index_of[num1] + | 
 | 					       index_of[num2] + | 
 | 					       nn - index_of[den])]; | 
 | 		num_corrected++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We compute the syndrome of the 'error' and check that it matches | 
 | 	 * the syndrome of the received word | 
 | 	 */ | 
 | 	for (i = 0; i < nroots; i++) { | 
 | 		tmp = 0; | 
 | 		for (j = 0; j < count; j++) { | 
 | 			if (b[j] == 0) | 
 | 				continue; | 
 |  | 
 | 			k = (fcr + i) * prim * (nn-loc[j]-1); | 
 | 			tmp ^= alpha_to[rs_modnn(rs, index_of[b[j]] + k)]; | 
 | 		} | 
 |  | 
 | 		if (tmp != alpha_to[s[i]]) | 
 | 			return -EBADMSG; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Store the error correction pattern, if a | 
 | 	 * correction buffer is available | 
 | 	 */ | 
 | 	if (corr && eras_pos) { | 
 | 		j = 0; | 
 | 		for (i = 0; i < count; i++) { | 
 | 			if (b[i]) { | 
 | 				corr[j] = b[i]; | 
 | 				eras_pos[j++] = loc[i] - pad; | 
 | 			} | 
 | 		} | 
 | 	} else if (data && par) { | 
 | 		/* Apply error to data and parity */ | 
 | 		for (i = 0; i < count; i++) { | 
 | 			if (loc[i] < (nn - nroots)) | 
 | 				data[loc[i] - pad] ^= b[i]; | 
 | 			else | 
 | 				par[loc[i] - pad - len] ^= b[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return  num_corrected; | 
 | } |