|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef _LINUX_CPUSET_H | 
|  | #define _LINUX_CPUSET_H | 
|  | /* | 
|  | *  cpuset interface | 
|  | * | 
|  | *  Copyright (C) 2003 BULL SA | 
|  | *  Copyright (C) 2004-2006 Silicon Graphics, Inc. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/topology.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/jump_label.h> | 
|  |  | 
|  | #ifdef CONFIG_CPUSETS | 
|  |  | 
|  | /* | 
|  | * Static branch rewrites can happen in an arbitrary order for a given | 
|  | * key. In code paths where we need to loop with read_mems_allowed_begin() and | 
|  | * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need | 
|  | * to ensure that begin() always gets rewritten before retry() in the | 
|  | * disabled -> enabled transition. If not, then if local irqs are disabled | 
|  | * around the loop, we can deadlock since retry() would always be | 
|  | * comparing the latest value of the mems_allowed seqcount against 0 as | 
|  | * begin() still would see cpusets_enabled() as false. The enabled -> disabled | 
|  | * transition should happen in reverse order for the same reasons (want to stop | 
|  | * looking at real value of mems_allowed.sequence in retry() first). | 
|  | */ | 
|  | extern struct static_key_false cpusets_pre_enable_key; | 
|  | extern struct static_key_false cpusets_enabled_key; | 
|  | static inline bool cpusets_enabled(void) | 
|  | { | 
|  | return static_branch_unlikely(&cpusets_enabled_key); | 
|  | } | 
|  |  | 
|  | static inline void cpuset_inc(void) | 
|  | { | 
|  | static_branch_inc_cpuslocked(&cpusets_pre_enable_key); | 
|  | static_branch_inc_cpuslocked(&cpusets_enabled_key); | 
|  | } | 
|  |  | 
|  | static inline void cpuset_dec(void) | 
|  | { | 
|  | static_branch_dec_cpuslocked(&cpusets_enabled_key); | 
|  | static_branch_dec_cpuslocked(&cpusets_pre_enable_key); | 
|  | } | 
|  |  | 
|  | extern int cpuset_init(void); | 
|  | extern void cpuset_init_smp(void); | 
|  | extern void cpuset_force_rebuild(void); | 
|  | extern void cpuset_update_active_cpus(void); | 
|  | extern void cpuset_wait_for_hotplug(void); | 
|  | extern void cpuset_read_lock(void); | 
|  | extern void cpuset_read_unlock(void); | 
|  | extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); | 
|  | extern void cpuset_cpus_allowed_fallback(struct task_struct *p); | 
|  | extern nodemask_t cpuset_mems_allowed(struct task_struct *p); | 
|  | #define cpuset_current_mems_allowed (current->mems_allowed) | 
|  | void cpuset_init_current_mems_allowed(void); | 
|  | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); | 
|  |  | 
|  | extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask); | 
|  |  | 
|  | static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) | 
|  | { | 
|  | if (cpusets_enabled()) | 
|  | return __cpuset_node_allowed(node, gfp_mask); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) | 
|  | { | 
|  | return __cpuset_node_allowed(zone_to_nid(z), gfp_mask); | 
|  | } | 
|  |  | 
|  | static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) | 
|  | { | 
|  | if (cpusets_enabled()) | 
|  | return __cpuset_zone_allowed(z, gfp_mask); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
|  | const struct task_struct *tsk2); | 
|  |  | 
|  | #define cpuset_memory_pressure_bump() 				\ | 
|  | do {							\ | 
|  | if (cpuset_memory_pressure_enabled)		\ | 
|  | __cpuset_memory_pressure_bump();	\ | 
|  | } while (0) | 
|  | extern int cpuset_memory_pressure_enabled; | 
|  | extern void __cpuset_memory_pressure_bump(void); | 
|  |  | 
|  | extern void cpuset_task_status_allowed(struct seq_file *m, | 
|  | struct task_struct *task); | 
|  | extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, | 
|  | struct pid *pid, struct task_struct *tsk); | 
|  |  | 
|  | extern int cpuset_mem_spread_node(void); | 
|  | extern int cpuset_slab_spread_node(void); | 
|  |  | 
|  | static inline int cpuset_do_page_mem_spread(void) | 
|  | { | 
|  | return task_spread_page(current); | 
|  | } | 
|  |  | 
|  | static inline int cpuset_do_slab_mem_spread(void) | 
|  | { | 
|  | return task_spread_slab(current); | 
|  | } | 
|  |  | 
|  | extern bool current_cpuset_is_being_rebound(void); | 
|  |  | 
|  | extern void rebuild_sched_domains(void); | 
|  |  | 
|  | extern void cpuset_print_current_mems_allowed(void); | 
|  |  | 
|  | /* | 
|  | * read_mems_allowed_begin is required when making decisions involving | 
|  | * mems_allowed such as during page allocation. mems_allowed can be updated in | 
|  | * parallel and depending on the new value an operation can fail potentially | 
|  | * causing process failure. A retry loop with read_mems_allowed_begin and | 
|  | * read_mems_allowed_retry prevents these artificial failures. | 
|  | */ | 
|  | static inline unsigned int read_mems_allowed_begin(void) | 
|  | { | 
|  | if (!static_branch_unlikely(&cpusets_pre_enable_key)) | 
|  | return 0; | 
|  |  | 
|  | return read_seqcount_begin(¤t->mems_allowed_seq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this returns true, the operation that took place after | 
|  | * read_mems_allowed_begin may have failed artificially due to a concurrent | 
|  | * update of mems_allowed. It is up to the caller to retry the operation if | 
|  | * appropriate. | 
|  | */ | 
|  | static inline bool read_mems_allowed_retry(unsigned int seq) | 
|  | { | 
|  | if (!static_branch_unlikely(&cpusets_enabled_key)) | 
|  | return false; | 
|  |  | 
|  | return read_seqcount_retry(¤t->mems_allowed_seq, seq); | 
|  | } | 
|  |  | 
|  | static inline void set_mems_allowed(nodemask_t nodemask) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | task_lock(current); | 
|  | local_irq_save(flags); | 
|  | write_seqcount_begin(¤t->mems_allowed_seq); | 
|  | current->mems_allowed = nodemask; | 
|  | write_seqcount_end(¤t->mems_allowed_seq); | 
|  | local_irq_restore(flags); | 
|  | task_unlock(current); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_CPUSETS */ | 
|  |  | 
|  | static inline bool cpusets_enabled(void) { return false; } | 
|  |  | 
|  | static inline int cpuset_init(void) { return 0; } | 
|  | static inline void cpuset_init_smp(void) {} | 
|  |  | 
|  | static inline void cpuset_force_rebuild(void) { } | 
|  |  | 
|  | static inline void cpuset_update_active_cpus(void) | 
|  | { | 
|  | partition_sched_domains(1, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static inline void cpuset_wait_for_hotplug(void) { } | 
|  |  | 
|  | static inline void cpuset_read_lock(void) { } | 
|  | static inline void cpuset_read_unlock(void) { } | 
|  |  | 
|  | static inline void cpuset_cpus_allowed(struct task_struct *p, | 
|  | struct cpumask *mask) | 
|  | { | 
|  | cpumask_copy(mask, cpu_possible_mask); | 
|  | } | 
|  |  | 
|  | static inline void cpuset_cpus_allowed_fallback(struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) | 
|  | { | 
|  | return node_possible_map; | 
|  | } | 
|  |  | 
|  | #define cpuset_current_mems_allowed (node_states[N_MEMORY]) | 
|  | static inline void cpuset_init_current_mems_allowed(void) {} | 
|  |  | 
|  | static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
|  | const struct task_struct *tsk2) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void cpuset_memory_pressure_bump(void) {} | 
|  |  | 
|  | static inline void cpuset_task_status_allowed(struct seq_file *m, | 
|  | struct task_struct *task) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int cpuset_mem_spread_node(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int cpuset_slab_spread_node(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int cpuset_do_page_mem_spread(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int cpuset_do_slab_mem_spread(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool current_cpuset_is_being_rebound(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void rebuild_sched_domains(void) | 
|  | { | 
|  | partition_sched_domains(1, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static inline void cpuset_print_current_mems_allowed(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void set_mems_allowed(nodemask_t nodemask) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline unsigned int read_mems_allowed_begin(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool read_mems_allowed_retry(unsigned int seq) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_CPUSETS */ | 
|  |  | 
|  | #endif /* _LINUX_CPUSET_H */ |