| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  */ | 
 | #include <linux/log2.h> | 
 | #include <linux/iversion.h> | 
 |  | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_defer.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_da_format.h" | 
 | #include "xfs_da_btree.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_attr_sf.h" | 
 | #include "xfs_attr.h" | 
 | #include "xfs_trans_space.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_bmap_util.h" | 
 | #include "xfs_errortag.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_filestream.h" | 
 | #include "xfs_cksum.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_symlink.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_reflink.h" | 
 | #include "xfs_dir2_priv.h" | 
 |  | 
 | kmem_zone_t *xfs_inode_zone; | 
 |  | 
 | /* | 
 |  * Used in xfs_itruncate_extents().  This is the maximum number of extents | 
 |  * freed from a file in a single transaction. | 
 |  */ | 
 | #define	XFS_ITRUNC_MAX_EXTENTS	2 | 
 |  | 
 | STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); | 
 | STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); | 
 | STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); | 
 |  | 
 | /* | 
 |  * helper function to extract extent size hint from inode | 
 |  */ | 
 | xfs_extlen_t | 
 | xfs_get_extsz_hint( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) | 
 | 		return ip->i_d.di_extsize; | 
 | 	if (XFS_IS_REALTIME_INODE(ip)) | 
 | 		return ip->i_mount->m_sb.sb_rextsize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to extract CoW extent size hint from inode. | 
 |  * Between the extent size hint and the CoW extent size hint, we | 
 |  * return the greater of the two.  If the value is zero (automatic), | 
 |  * use the default size. | 
 |  */ | 
 | xfs_extlen_t | 
 | xfs_get_cowextsz_hint( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	xfs_extlen_t		a, b; | 
 |  | 
 | 	a = 0; | 
 | 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) | 
 | 		a = ip->i_d.di_cowextsize; | 
 | 	b = xfs_get_extsz_hint(ip); | 
 |  | 
 | 	a = max(a, b); | 
 | 	if (a == 0) | 
 | 		return XFS_DEFAULT_COWEXTSZ_HINT; | 
 | 	return a; | 
 | } | 
 |  | 
 | /* | 
 |  * These two are wrapper routines around the xfs_ilock() routine used to | 
 |  * centralize some grungy code.  They are used in places that wish to lock the | 
 |  * inode solely for reading the extents.  The reason these places can't just | 
 |  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to | 
 |  * bringing in of the extents from disk for a file in b-tree format.  If the | 
 |  * inode is in b-tree format, then we need to lock the inode exclusively until | 
 |  * the extents are read in.  Locking it exclusively all the time would limit | 
 |  * our parallelism unnecessarily, though.  What we do instead is check to see | 
 |  * if the extents have been read in yet, and only lock the inode exclusively | 
 |  * if they have not. | 
 |  * | 
 |  * The functions return a value which should be given to the corresponding | 
 |  * xfs_iunlock() call. | 
 |  */ | 
 | uint | 
 | xfs_ilock_data_map_shared( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	uint			lock_mode = XFS_ILOCK_SHARED; | 
 |  | 
 | 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && | 
 | 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) | 
 | 		lock_mode = XFS_ILOCK_EXCL; | 
 | 	xfs_ilock(ip, lock_mode); | 
 | 	return lock_mode; | 
 | } | 
 |  | 
 | uint | 
 | xfs_ilock_attr_map_shared( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	uint			lock_mode = XFS_ILOCK_SHARED; | 
 |  | 
 | 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && | 
 | 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) | 
 | 		lock_mode = XFS_ILOCK_EXCL; | 
 | 	xfs_ilock(ip, lock_mode); | 
 | 	return lock_mode; | 
 | } | 
 |  | 
 | /* | 
 |  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 | 
 |  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows | 
 |  * various combinations of the locks to be obtained. | 
 |  * | 
 |  * The 3 locks should always be ordered so that the IO lock is obtained first, | 
 |  * the mmap lock second and the ilock last in order to prevent deadlock. | 
 |  * | 
 |  * Basic locking order: | 
 |  * | 
 |  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock | 
 |  * | 
 |  * mmap_sem locking order: | 
 |  * | 
 |  * i_rwsem -> page lock -> mmap_sem | 
 |  * mmap_sem -> i_mmap_lock -> page_lock | 
 |  * | 
 |  * The difference in mmap_sem locking order mean that we cannot hold the | 
 |  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can | 
 |  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem | 
 |  * in get_user_pages() to map the user pages into the kernel address space for | 
 |  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because | 
 |  * page faults already hold the mmap_sem. | 
 |  * | 
 |  * Hence to serialise fully against both syscall and mmap based IO, we need to | 
 |  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both | 
 |  * taken in places where we need to invalidate the page cache in a race | 
 |  * free manner (e.g. truncate, hole punch and other extent manipulation | 
 |  * functions). | 
 |  */ | 
 | void | 
 | xfs_ilock( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	trace_xfs_ilock(ip, lock_flags, _RET_IP_); | 
 |  | 
 | 	/* | 
 | 	 * You can't set both SHARED and EXCL for the same lock, | 
 | 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
 | 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
 | 	 */ | 
 | 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
 | 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
 | 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
 | 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
 | 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
 |  | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) { | 
 | 		down_write_nested(&VFS_I(ip)->i_rwsem, | 
 | 				  XFS_IOLOCK_DEP(lock_flags)); | 
 | 	} else if (lock_flags & XFS_IOLOCK_SHARED) { | 
 | 		down_read_nested(&VFS_I(ip)->i_rwsem, | 
 | 				 XFS_IOLOCK_DEP(lock_flags)); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); | 
 | 	else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
 | 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) | 
 | 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
 | 	else if (lock_flags & XFS_ILOCK_SHARED) | 
 | 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
 | } | 
 |  | 
 | /* | 
 |  * This is just like xfs_ilock(), except that the caller | 
 |  * is guaranteed not to sleep.  It returns 1 if it gets | 
 |  * the requested locks and 0 otherwise.  If the IO lock is | 
 |  * obtained but the inode lock cannot be, then the IO lock | 
 |  * is dropped before returning. | 
 |  * | 
 |  * ip -- the inode being locked | 
 |  * lock_flags -- this parameter indicates the inode's locks to be | 
 |  *       to be locked.  See the comment for xfs_ilock() for a list | 
 |  *	 of valid values. | 
 |  */ | 
 | int | 
 | xfs_ilock_nowait( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); | 
 |  | 
 | 	/* | 
 | 	 * You can't set both SHARED and EXCL for the same lock, | 
 | 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
 | 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
 | 	 */ | 
 | 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
 | 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
 | 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
 | 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
 | 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
 |  | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) { | 
 | 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) | 
 | 			goto out; | 
 | 	} else if (lock_flags & XFS_IOLOCK_SHARED) { | 
 | 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) { | 
 | 		if (!mrtryupdate(&ip->i_mmaplock)) | 
 | 			goto out_undo_iolock; | 
 | 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) { | 
 | 		if (!mrtryaccess(&ip->i_mmaplock)) | 
 | 			goto out_undo_iolock; | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) { | 
 | 		if (!mrtryupdate(&ip->i_lock)) | 
 | 			goto out_undo_mmaplock; | 
 | 	} else if (lock_flags & XFS_ILOCK_SHARED) { | 
 | 		if (!mrtryaccess(&ip->i_lock)) | 
 | 			goto out_undo_mmaplock; | 
 | 	} | 
 | 	return 1; | 
 |  | 
 | out_undo_mmaplock: | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		mrunlock_excl(&ip->i_mmaplock); | 
 | 	else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
 | 		mrunlock_shared(&ip->i_mmaplock); | 
 | out_undo_iolock: | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) | 
 | 		up_write(&VFS_I(ip)->i_rwsem); | 
 | 	else if (lock_flags & XFS_IOLOCK_SHARED) | 
 | 		up_read(&VFS_I(ip)->i_rwsem); | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_iunlock() is used to drop the inode locks acquired with | 
 |  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass | 
 |  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | 
 |  * that we know which locks to drop. | 
 |  * | 
 |  * ip -- the inode being unlocked | 
 |  * lock_flags -- this parameter indicates the inode's locks to be | 
 |  *       to be unlocked.  See the comment for xfs_ilock() for a list | 
 |  *	 of valid values for this parameter. | 
 |  * | 
 |  */ | 
 | void | 
 | xfs_iunlock( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	/* | 
 | 	 * You can't set both SHARED and EXCL for the same lock, | 
 | 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
 | 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
 | 	 */ | 
 | 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
 | 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
 | 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
 | 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
 | 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
 | 	ASSERT(lock_flags != 0); | 
 |  | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) | 
 | 		up_write(&VFS_I(ip)->i_rwsem); | 
 | 	else if (lock_flags & XFS_IOLOCK_SHARED) | 
 | 		up_read(&VFS_I(ip)->i_rwsem); | 
 |  | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		mrunlock_excl(&ip->i_mmaplock); | 
 | 	else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
 | 		mrunlock_shared(&ip->i_mmaplock); | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) | 
 | 		mrunlock_excl(&ip->i_lock); | 
 | 	else if (lock_flags & XFS_ILOCK_SHARED) | 
 | 		mrunlock_shared(&ip->i_lock); | 
 |  | 
 | 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_); | 
 | } | 
 |  | 
 | /* | 
 |  * give up write locks.  the i/o lock cannot be held nested | 
 |  * if it is being demoted. | 
 |  */ | 
 | void | 
 | xfs_ilock_demote( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); | 
 | 	ASSERT((lock_flags & | 
 | 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) | 
 | 		mrdemote(&ip->i_lock); | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		mrdemote(&ip->i_mmaplock); | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) | 
 | 		downgrade_write(&VFS_I(ip)->i_rwsem); | 
 |  | 
 | 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); | 
 | } | 
 |  | 
 | #if defined(DEBUG) || defined(XFS_WARN) | 
 | int | 
 | xfs_isilocked( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { | 
 | 		if (!(lock_flags & XFS_ILOCK_SHARED)) | 
 | 			return !!ip->i_lock.mr_writer; | 
 | 		return rwsem_is_locked(&ip->i_lock.mr_lock); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { | 
 | 		if (!(lock_flags & XFS_MMAPLOCK_SHARED)) | 
 | 			return !!ip->i_mmaplock.mr_writer; | 
 | 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { | 
 | 		if (!(lock_flags & XFS_IOLOCK_SHARED)) | 
 | 			return !debug_locks || | 
 | 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); | 
 | 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem); | 
 | 	} | 
 |  | 
 | 	ASSERT(0); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when | 
 |  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined | 
 |  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build | 
 |  * errors and warnings. | 
 |  */ | 
 | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) | 
 | static bool | 
 | xfs_lockdep_subclass_ok( | 
 | 	int subclass) | 
 | { | 
 | 	return subclass < MAX_LOCKDEP_SUBCLASSES; | 
 | } | 
 | #else | 
 | #define xfs_lockdep_subclass_ok(subclass)	(true) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different | 
 |  * value. This can be called for any type of inode lock combination, including | 
 |  * parent locking. Care must be taken to ensure we don't overrun the subclass | 
 |  * storage fields in the class mask we build. | 
 |  */ | 
 | static inline int | 
 | xfs_lock_inumorder(int lock_mode, int subclass) | 
 | { | 
 | 	int	class = 0; | 
 |  | 
 | 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | | 
 | 			      XFS_ILOCK_RTSUM))); | 
 | 	ASSERT(xfs_lockdep_subclass_ok(subclass)); | 
 |  | 
 | 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { | 
 | 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); | 
 | 		class += subclass << XFS_IOLOCK_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { | 
 | 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); | 
 | 		class += subclass << XFS_MMAPLOCK_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { | 
 | 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); | 
 | 		class += subclass << XFS_ILOCK_SHIFT; | 
 | 	} | 
 |  | 
 | 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; | 
 | } | 
 |  | 
 | /* | 
 |  * The following routine will lock n inodes in exclusive mode.  We assume the | 
 |  * caller calls us with the inodes in i_ino order. | 
 |  * | 
 |  * We need to detect deadlock where an inode that we lock is in the AIL and we | 
 |  * start waiting for another inode that is locked by a thread in a long running | 
 |  * transaction (such as truncate). This can result in deadlock since the long | 
 |  * running trans might need to wait for the inode we just locked in order to | 
 |  * push the tail and free space in the log. | 
 |  * | 
 |  * xfs_lock_inodes() can only be used to lock one type of lock at a time - | 
 |  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we | 
 |  * lock more than one at a time, lockdep will report false positives saying we | 
 |  * have violated locking orders. | 
 |  */ | 
 | static void | 
 | xfs_lock_inodes( | 
 | 	xfs_inode_t	**ips, | 
 | 	int		inodes, | 
 | 	uint		lock_mode) | 
 | { | 
 | 	int		attempts = 0, i, j, try_lock; | 
 | 	xfs_log_item_t	*lp; | 
 |  | 
 | 	/* | 
 | 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We | 
 | 	 * support an arbitrary depth of locking here, but absolute limits on | 
 | 	 * inodes depend on the the type of locking and the limits placed by | 
 | 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by | 
 | 	 * the asserts. | 
 | 	 */ | 
 | 	ASSERT(ips && inodes >= 2 && inodes <= 5); | 
 | 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | | 
 | 			    XFS_ILOCK_EXCL)); | 
 | 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | | 
 | 			      XFS_ILOCK_SHARED))); | 
 | 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || | 
 | 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); | 
 | 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || | 
 | 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); | 
 |  | 
 | 	if (lock_mode & XFS_IOLOCK_EXCL) { | 
 | 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); | 
 | 	} else if (lock_mode & XFS_MMAPLOCK_EXCL) | 
 | 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); | 
 |  | 
 | 	try_lock = 0; | 
 | 	i = 0; | 
 | again: | 
 | 	for (; i < inodes; i++) { | 
 | 		ASSERT(ips[i]); | 
 |  | 
 | 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */ | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If try_lock is not set yet, make sure all locked inodes are | 
 | 		 * not in the AIL.  If any are, set try_lock to be used later. | 
 | 		 */ | 
 | 		if (!try_lock) { | 
 | 			for (j = (i - 1); j >= 0 && !try_lock; j--) { | 
 | 				lp = (xfs_log_item_t *)ips[j]->i_itemp; | 
 | 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) | 
 | 					try_lock++; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If any of the previous locks we have locked is in the AIL, | 
 | 		 * we must TRY to get the second and subsequent locks. If | 
 | 		 * we can't get any, we must release all we have | 
 | 		 * and try again. | 
 | 		 */ | 
 | 		if (!try_lock) { | 
 | 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* try_lock means we have an inode locked that is in the AIL. */ | 
 | 		ASSERT(i != 0); | 
 | 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Unlock all previous guys and try again.  xfs_iunlock will try | 
 | 		 * to push the tail if the inode is in the AIL. | 
 | 		 */ | 
 | 		attempts++; | 
 | 		for (j = i - 1; j >= 0; j--) { | 
 | 			/* | 
 | 			 * Check to see if we've already unlocked this one.  Not | 
 | 			 * the first one going back, and the inode ptr is the | 
 | 			 * same. | 
 | 			 */ | 
 | 			if (j != (i - 1) && ips[j] == ips[j + 1]) | 
 | 				continue; | 
 |  | 
 | 			xfs_iunlock(ips[j], lock_mode); | 
 | 		} | 
 |  | 
 | 		if ((attempts % 5) == 0) { | 
 | 			delay(1); /* Don't just spin the CPU */ | 
 | 		} | 
 | 		i = 0; | 
 | 		try_lock = 0; | 
 | 		goto again; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - | 
 |  * the mmaplock or the ilock, but not more than one type at a time. If we lock | 
 |  * more than one at a time, lockdep will report false positives saying we have | 
 |  * violated locking orders.  The iolock must be double-locked separately since | 
 |  * we use i_rwsem for that.  We now support taking one lock EXCL and the other | 
 |  * SHARED. | 
 |  */ | 
 | void | 
 | xfs_lock_two_inodes( | 
 | 	struct xfs_inode	*ip0, | 
 | 	uint			ip0_mode, | 
 | 	struct xfs_inode	*ip1, | 
 | 	uint			ip1_mode) | 
 | { | 
 | 	struct xfs_inode	*temp; | 
 | 	uint			mode_temp; | 
 | 	int			attempts = 0; | 
 | 	xfs_log_item_t		*lp; | 
 |  | 
 | 	ASSERT(hweight32(ip0_mode) == 1); | 
 | 	ASSERT(hweight32(ip1_mode) == 1); | 
 | 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
 | 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
 | 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
 | 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
 | 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
 | 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
 | 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
 | 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
 | 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
 | 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
 |  | 
 | 	ASSERT(ip0->i_ino != ip1->i_ino); | 
 |  | 
 | 	if (ip0->i_ino > ip1->i_ino) { | 
 | 		temp = ip0; | 
 | 		ip0 = ip1; | 
 | 		ip1 = temp; | 
 | 		mode_temp = ip0_mode; | 
 | 		ip0_mode = ip1_mode; | 
 | 		ip1_mode = mode_temp; | 
 | 	} | 
 |  | 
 |  again: | 
 | 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); | 
 |  | 
 | 	/* | 
 | 	 * If the first lock we have locked is in the AIL, we must TRY to get | 
 | 	 * the second lock. If we can't get it, we must release the first one | 
 | 	 * and try again. | 
 | 	 */ | 
 | 	lp = (xfs_log_item_t *)ip0->i_itemp; | 
 | 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { | 
 | 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { | 
 | 			xfs_iunlock(ip0, ip0_mode); | 
 | 			if ((++attempts % 5) == 0) | 
 | 				delay(1); /* Don't just spin the CPU */ | 
 | 			goto again; | 
 | 		} | 
 | 	} else { | 
 | 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | __xfs_iflock( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); | 
 | 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); | 
 |  | 
 | 	do { | 
 | 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 		if (xfs_isiflocked(ip)) | 
 | 			io_schedule(); | 
 | 	} while (!xfs_iflock_nowait(ip)); | 
 |  | 
 | 	finish_wait(wq, &wait.wq_entry); | 
 | } | 
 |  | 
 | STATIC uint | 
 | _xfs_dic2xflags( | 
 | 	uint16_t		di_flags, | 
 | 	uint64_t		di_flags2, | 
 | 	bool			has_attr) | 
 | { | 
 | 	uint			flags = 0; | 
 |  | 
 | 	if (di_flags & XFS_DIFLAG_ANY) { | 
 | 		if (di_flags & XFS_DIFLAG_REALTIME) | 
 | 			flags |= FS_XFLAG_REALTIME; | 
 | 		if (di_flags & XFS_DIFLAG_PREALLOC) | 
 | 			flags |= FS_XFLAG_PREALLOC; | 
 | 		if (di_flags & XFS_DIFLAG_IMMUTABLE) | 
 | 			flags |= FS_XFLAG_IMMUTABLE; | 
 | 		if (di_flags & XFS_DIFLAG_APPEND) | 
 | 			flags |= FS_XFLAG_APPEND; | 
 | 		if (di_flags & XFS_DIFLAG_SYNC) | 
 | 			flags |= FS_XFLAG_SYNC; | 
 | 		if (di_flags & XFS_DIFLAG_NOATIME) | 
 | 			flags |= FS_XFLAG_NOATIME; | 
 | 		if (di_flags & XFS_DIFLAG_NODUMP) | 
 | 			flags |= FS_XFLAG_NODUMP; | 
 | 		if (di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 			flags |= FS_XFLAG_RTINHERIT; | 
 | 		if (di_flags & XFS_DIFLAG_PROJINHERIT) | 
 | 			flags |= FS_XFLAG_PROJINHERIT; | 
 | 		if (di_flags & XFS_DIFLAG_NOSYMLINKS) | 
 | 			flags |= FS_XFLAG_NOSYMLINKS; | 
 | 		if (di_flags & XFS_DIFLAG_EXTSIZE) | 
 | 			flags |= FS_XFLAG_EXTSIZE; | 
 | 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT) | 
 | 			flags |= FS_XFLAG_EXTSZINHERIT; | 
 | 		if (di_flags & XFS_DIFLAG_NODEFRAG) | 
 | 			flags |= FS_XFLAG_NODEFRAG; | 
 | 		if (di_flags & XFS_DIFLAG_FILESTREAM) | 
 | 			flags |= FS_XFLAG_FILESTREAM; | 
 | 	} | 
 |  | 
 | 	if (di_flags2 & XFS_DIFLAG2_ANY) { | 
 | 		if (di_flags2 & XFS_DIFLAG2_DAX) | 
 | 			flags |= FS_XFLAG_DAX; | 
 | 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) | 
 | 			flags |= FS_XFLAG_COWEXTSIZE; | 
 | 	} | 
 |  | 
 | 	if (has_attr) | 
 | 		flags |= FS_XFLAG_HASATTR; | 
 |  | 
 | 	return flags; | 
 | } | 
 |  | 
 | uint | 
 | xfs_ip2xflags( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_icdinode	*dic = &ip->i_d; | 
 |  | 
 | 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); | 
 | } | 
 |  | 
 | /* | 
 |  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match | 
 |  * is allowed, otherwise it has to be an exact match. If a CI match is found, | 
 |  * ci_name->name will point to a the actual name (caller must free) or | 
 |  * will be set to NULL if an exact match is found. | 
 |  */ | 
 | int | 
 | xfs_lookup( | 
 | 	xfs_inode_t		*dp, | 
 | 	struct xfs_name		*name, | 
 | 	xfs_inode_t		**ipp, | 
 | 	struct xfs_name		*ci_name) | 
 | { | 
 | 	xfs_ino_t		inum; | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_lookup(dp, name); | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(dp->i_mount)) | 
 | 		return -EIO; | 
 |  | 
 | 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); | 
 | 	if (error) | 
 | 		goto out_unlock; | 
 |  | 
 | 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); | 
 | 	if (error) | 
 | 		goto out_free_name; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_name: | 
 | 	if (ci_name) | 
 | 		kmem_free(ci_name->name); | 
 | out_unlock: | 
 | 	*ipp = NULL; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate an inode on disk and return a copy of its in-core version. | 
 |  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev | 
 |  * appropriately within the inode.  The uid and gid for the inode are | 
 |  * set according to the contents of the given cred structure. | 
 |  * | 
 |  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | 
 |  * has a free inode available, call xfs_iget() to obtain the in-core | 
 |  * version of the allocated inode.  Finally, fill in the inode and | 
 |  * log its initial contents.  In this case, ialloc_context would be | 
 |  * set to NULL. | 
 |  * | 
 |  * If xfs_dialloc() does not have an available inode, it will replenish | 
 |  * its supply by doing an allocation. Since we can only do one | 
 |  * allocation within a transaction without deadlocks, we must commit | 
 |  * the current transaction before returning the inode itself. | 
 |  * In this case, therefore, we will set ialloc_context and return. | 
 |  * The caller should then commit the current transaction, start a new | 
 |  * transaction, and call xfs_ialloc() again to actually get the inode. | 
 |  * | 
 |  * To ensure that some other process does not grab the inode that | 
 |  * was allocated during the first call to xfs_ialloc(), this routine | 
 |  * also returns the [locked] bp pointing to the head of the freelist | 
 |  * as ialloc_context.  The caller should hold this buffer across | 
 |  * the commit and pass it back into this routine on the second call. | 
 |  * | 
 |  * If we are allocating quota inodes, we do not have a parent inode | 
 |  * to attach to or associate with (i.e. pip == NULL) because they | 
 |  * are not linked into the directory structure - they are attached | 
 |  * directly to the superblock - and so have no parent. | 
 |  */ | 
 | static int | 
 | xfs_ialloc( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*pip, | 
 | 	umode_t		mode, | 
 | 	xfs_nlink_t	nlink, | 
 | 	dev_t		rdev, | 
 | 	prid_t		prid, | 
 | 	xfs_buf_t	**ialloc_context, | 
 | 	xfs_inode_t	**ipp) | 
 | { | 
 | 	struct xfs_mount *mp = tp->t_mountp; | 
 | 	xfs_ino_t	ino; | 
 | 	xfs_inode_t	*ip; | 
 | 	uint		flags; | 
 | 	int		error; | 
 | 	struct timespec64 tv; | 
 | 	struct inode	*inode; | 
 |  | 
 | 	/* | 
 | 	 * Call the space management code to pick | 
 | 	 * the on-disk inode to be allocated. | 
 | 	 */ | 
 | 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, | 
 | 			    ialloc_context, &ino); | 
 | 	if (error) | 
 | 		return error; | 
 | 	if (*ialloc_context || ino == NULLFSINO) { | 
 | 		*ipp = NULL; | 
 | 		return 0; | 
 | 	} | 
 | 	ASSERT(*ialloc_context == NULL); | 
 |  | 
 | 	/* | 
 | 	 * Protect against obviously corrupt allocation btree records. Later | 
 | 	 * xfs_iget checks will catch re-allocation of other active in-memory | 
 | 	 * and on-disk inodes. If we don't catch reallocating the parent inode | 
 | 	 * here we will deadlock in xfs_iget() so we have to do these checks | 
 | 	 * first. | 
 | 	 */ | 
 | 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { | 
 | 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the in-core inode with the lock held exclusively. | 
 | 	 * This is because we're setting fields here we need | 
 | 	 * to prevent others from looking at until we're done. | 
 | 	 */ | 
 | 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, | 
 | 			 XFS_ILOCK_EXCL, &ip); | 
 | 	if (error) | 
 | 		return error; | 
 | 	ASSERT(ip != NULL); | 
 | 	inode = VFS_I(ip); | 
 |  | 
 | 	/* | 
 | 	 * We always convert v1 inodes to v2 now - we only support filesystems | 
 | 	 * with >= v2 inode capability, so there is no reason for ever leaving | 
 | 	 * an inode in v1 format. | 
 | 	 */ | 
 | 	if (ip->i_d.di_version == 1) | 
 | 		ip->i_d.di_version = 2; | 
 |  | 
 | 	inode->i_mode = mode; | 
 | 	set_nlink(inode, nlink); | 
 | 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); | 
 | 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); | 
 | 	inode->i_rdev = rdev; | 
 | 	xfs_set_projid(ip, prid); | 
 |  | 
 | 	if (pip && XFS_INHERIT_GID(pip)) { | 
 | 		ip->i_d.di_gid = pip->i_d.di_gid; | 
 | 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) | 
 | 			inode->i_mode |= S_ISGID; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the group ID of the new file does not match the effective group | 
 | 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | 
 | 	 * (and only if the irix_sgid_inherit compatibility variable is set). | 
 | 	 */ | 
 | 	if ((irix_sgid_inherit) && | 
 | 	    (inode->i_mode & S_ISGID) && | 
 | 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) | 
 | 		inode->i_mode &= ~S_ISGID; | 
 |  | 
 | 	ip->i_d.di_size = 0; | 
 | 	ip->i_d.di_nextents = 0; | 
 | 	ASSERT(ip->i_d.di_nblocks == 0); | 
 |  | 
 | 	tv = current_time(inode); | 
 | 	inode->i_mtime = tv; | 
 | 	inode->i_atime = tv; | 
 | 	inode->i_ctime = tv; | 
 |  | 
 | 	ip->i_d.di_extsize = 0; | 
 | 	ip->i_d.di_dmevmask = 0; | 
 | 	ip->i_d.di_dmstate = 0; | 
 | 	ip->i_d.di_flags = 0; | 
 |  | 
 | 	if (ip->i_d.di_version == 3) { | 
 | 		inode_set_iversion(inode, 1); | 
 | 		ip->i_d.di_flags2 = 0; | 
 | 		ip->i_d.di_cowextsize = 0; | 
 | 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; | 
 | 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; | 
 | 	} | 
 |  | 
 |  | 
 | 	flags = XFS_ILOG_CORE; | 
 | 	switch (mode & S_IFMT) { | 
 | 	case S_IFIFO: | 
 | 	case S_IFCHR: | 
 | 	case S_IFBLK: | 
 | 	case S_IFSOCK: | 
 | 		ip->i_d.di_format = XFS_DINODE_FMT_DEV; | 
 | 		ip->i_df.if_flags = 0; | 
 | 		flags |= XFS_ILOG_DEV; | 
 | 		break; | 
 | 	case S_IFREG: | 
 | 	case S_IFDIR: | 
 | 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { | 
 | 			uint		di_flags = 0; | 
 |  | 
 | 			if (S_ISDIR(mode)) { | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 					di_flags |= XFS_DIFLAG_RTINHERIT; | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { | 
 | 					di_flags |= XFS_DIFLAG_EXTSZINHERIT; | 
 | 					ip->i_d.di_extsize = pip->i_d.di_extsize; | 
 | 				} | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | 
 | 					di_flags |= XFS_DIFLAG_PROJINHERIT; | 
 | 			} else if (S_ISREG(mode)) { | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 					di_flags |= XFS_DIFLAG_REALTIME; | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { | 
 | 					di_flags |= XFS_DIFLAG_EXTSIZE; | 
 | 					ip->i_d.di_extsize = pip->i_d.di_extsize; | 
 | 				} | 
 | 			} | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | 
 | 			    xfs_inherit_noatime) | 
 | 				di_flags |= XFS_DIFLAG_NOATIME; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && | 
 | 			    xfs_inherit_nodump) | 
 | 				di_flags |= XFS_DIFLAG_NODUMP; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && | 
 | 			    xfs_inherit_sync) | 
 | 				di_flags |= XFS_DIFLAG_SYNC; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && | 
 | 			    xfs_inherit_nosymlinks) | 
 | 				di_flags |= XFS_DIFLAG_NOSYMLINKS; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && | 
 | 			    xfs_inherit_nodefrag) | 
 | 				di_flags |= XFS_DIFLAG_NODEFRAG; | 
 | 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) | 
 | 				di_flags |= XFS_DIFLAG_FILESTREAM; | 
 |  | 
 | 			ip->i_d.di_flags |= di_flags; | 
 | 		} | 
 | 		if (pip && | 
 | 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && | 
 | 		    pip->i_d.di_version == 3 && | 
 | 		    ip->i_d.di_version == 3) { | 
 | 			uint64_t	di_flags2 = 0; | 
 |  | 
 | 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { | 
 | 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; | 
 | 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; | 
 | 			} | 
 | 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) | 
 | 				di_flags2 |= XFS_DIFLAG2_DAX; | 
 |  | 
 | 			ip->i_d.di_flags2 |= di_flags2; | 
 | 		} | 
 | 		/* FALLTHROUGH */ | 
 | 	case S_IFLNK: | 
 | 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
 | 		ip->i_df.if_flags = XFS_IFEXTENTS; | 
 | 		ip->i_df.if_bytes = 0; | 
 | 		ip->i_df.if_u1.if_root = NULL; | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 	} | 
 | 	/* | 
 | 	 * Attribute fork settings for new inode. | 
 | 	 */ | 
 | 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
 | 	ip->i_d.di_anextents = 0; | 
 |  | 
 | 	/* | 
 | 	 * Log the new values stuffed into the inode. | 
 | 	 */ | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_log_inode(tp, ip, flags); | 
 |  | 
 | 	/* now that we have an i_mode we can setup the inode structure */ | 
 | 	xfs_setup_inode(ip); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocates a new inode from disk and return a pointer to the | 
 |  * incore copy. This routine will internally commit the current | 
 |  * transaction and allocate a new one if the Space Manager needed | 
 |  * to do an allocation to replenish the inode free-list. | 
 |  * | 
 |  * This routine is designed to be called from xfs_create and | 
 |  * xfs_create_dir. | 
 |  * | 
 |  */ | 
 | int | 
 | xfs_dir_ialloc( | 
 | 	xfs_trans_t	**tpp,		/* input: current transaction; | 
 | 					   output: may be a new transaction. */ | 
 | 	xfs_inode_t	*dp,		/* directory within whose allocate | 
 | 					   the inode. */ | 
 | 	umode_t		mode, | 
 | 	xfs_nlink_t	nlink, | 
 | 	dev_t		rdev, | 
 | 	prid_t		prid,		/* project id */ | 
 | 	xfs_inode_t	**ipp)		/* pointer to inode; it will be | 
 | 					   locked. */ | 
 | { | 
 | 	xfs_trans_t	*tp; | 
 | 	xfs_inode_t	*ip; | 
 | 	xfs_buf_t	*ialloc_context = NULL; | 
 | 	int		code; | 
 | 	void		*dqinfo; | 
 | 	uint		tflags; | 
 |  | 
 | 	tp = *tpp; | 
 | 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
 |  | 
 | 	/* | 
 | 	 * xfs_ialloc will return a pointer to an incore inode if | 
 | 	 * the Space Manager has an available inode on the free | 
 | 	 * list. Otherwise, it will do an allocation and replenish | 
 | 	 * the freelist.  Since we can only do one allocation per | 
 | 	 * transaction without deadlocks, we will need to commit the | 
 | 	 * current transaction and start a new one.  We will then | 
 | 	 * need to call xfs_ialloc again to get the inode. | 
 | 	 * | 
 | 	 * If xfs_ialloc did an allocation to replenish the freelist, | 
 | 	 * it returns the bp containing the head of the freelist as | 
 | 	 * ialloc_context. We will hold a lock on it across the | 
 | 	 * transaction commit so that no other process can steal | 
 | 	 * the inode(s) that we've just allocated. | 
 | 	 */ | 
 | 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, | 
 | 			&ip); | 
 |  | 
 | 	/* | 
 | 	 * Return an error if we were unable to allocate a new inode. | 
 | 	 * This should only happen if we run out of space on disk or | 
 | 	 * encounter a disk error. | 
 | 	 */ | 
 | 	if (code) { | 
 | 		*ipp = NULL; | 
 | 		return code; | 
 | 	} | 
 | 	if (!ialloc_context && !ip) { | 
 | 		*ipp = NULL; | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the AGI buffer is non-NULL, then we were unable to get an | 
 | 	 * inode in one operation.  We need to commit the current | 
 | 	 * transaction and call xfs_ialloc() again.  It is guaranteed | 
 | 	 * to succeed the second time. | 
 | 	 */ | 
 | 	if (ialloc_context) { | 
 | 		/* | 
 | 		 * Normally, xfs_trans_commit releases all the locks. | 
 | 		 * We call bhold to hang on to the ialloc_context across | 
 | 		 * the commit.  Holding this buffer prevents any other | 
 | 		 * processes from doing any allocations in this | 
 | 		 * allocation group. | 
 | 		 */ | 
 | 		xfs_trans_bhold(tp, ialloc_context); | 
 |  | 
 | 		/* | 
 | 		 * We want the quota changes to be associated with the next | 
 | 		 * transaction, NOT this one. So, detach the dqinfo from this | 
 | 		 * and attach it to the next transaction. | 
 | 		 */ | 
 | 		dqinfo = NULL; | 
 | 		tflags = 0; | 
 | 		if (tp->t_dqinfo) { | 
 | 			dqinfo = (void *)tp->t_dqinfo; | 
 | 			tp->t_dqinfo = NULL; | 
 | 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; | 
 | 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); | 
 | 		} | 
 |  | 
 | 		code = xfs_trans_roll(&tp); | 
 |  | 
 | 		/* | 
 | 		 * Re-attach the quota info that we detached from prev trx. | 
 | 		 */ | 
 | 		if (dqinfo) { | 
 | 			tp->t_dqinfo = dqinfo; | 
 | 			tp->t_flags |= tflags; | 
 | 		} | 
 |  | 
 | 		if (code) { | 
 | 			xfs_buf_relse(ialloc_context); | 
 | 			*tpp = tp; | 
 | 			*ipp = NULL; | 
 | 			return code; | 
 | 		} | 
 | 		xfs_trans_bjoin(tp, ialloc_context); | 
 |  | 
 | 		/* | 
 | 		 * Call ialloc again. Since we've locked out all | 
 | 		 * other allocations in this allocation group, | 
 | 		 * this call should always succeed. | 
 | 		 */ | 
 | 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, | 
 | 				  &ialloc_context, &ip); | 
 |  | 
 | 		/* | 
 | 		 * If we get an error at this point, return to the caller | 
 | 		 * so that the current transaction can be aborted. | 
 | 		 */ | 
 | 		if (code) { | 
 | 			*tpp = tp; | 
 | 			*ipp = NULL; | 
 | 			return code; | 
 | 		} | 
 | 		ASSERT(!ialloc_context && ip); | 
 |  | 
 | 	} | 
 |  | 
 | 	*ipp = ip; | 
 | 	*tpp = tp; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Decrement the link count on an inode & log the change.  If this causes the | 
 |  * link count to go to zero, move the inode to AGI unlinked list so that it can | 
 |  * be freed when the last active reference goes away via xfs_inactive(). | 
 |  */ | 
 | static int			/* error */ | 
 | xfs_droplink( | 
 | 	xfs_trans_t *tp, | 
 | 	xfs_inode_t *ip) | 
 | { | 
 | 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | 
 |  | 
 | 	drop_nlink(VFS_I(ip)); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	if (VFS_I(ip)->i_nlink) | 
 | 		return 0; | 
 |  | 
 | 	return xfs_iunlink(tp, ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Increment the link count on an inode & log the change. | 
 |  */ | 
 | static int | 
 | xfs_bumplink( | 
 | 	xfs_trans_t *tp, | 
 | 	xfs_inode_t *ip) | 
 | { | 
 | 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | 
 |  | 
 | 	ASSERT(ip->i_d.di_version > 1); | 
 | 	inc_nlink(VFS_I(ip)); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | xfs_create( | 
 | 	xfs_inode_t		*dp, | 
 | 	struct xfs_name		*name, | 
 | 	umode_t			mode, | 
 | 	dev_t			rdev, | 
 | 	xfs_inode_t		**ipp) | 
 | { | 
 | 	int			is_dir = S_ISDIR(mode); | 
 | 	struct xfs_mount	*mp = dp->i_mount; | 
 | 	struct xfs_inode	*ip = NULL; | 
 | 	struct xfs_trans	*tp = NULL; | 
 | 	int			error; | 
 | 	bool                    unlock_dp_on_error = false; | 
 | 	prid_t			prid; | 
 | 	struct xfs_dquot	*udqp = NULL; | 
 | 	struct xfs_dquot	*gdqp = NULL; | 
 | 	struct xfs_dquot	*pdqp = NULL; | 
 | 	struct xfs_trans_res	*tres; | 
 | 	uint			resblks; | 
 |  | 
 | 	trace_xfs_create(dp, name); | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	prid = xfs_get_initial_prid(dp); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that we have allocated dquot(s) on disk. | 
 | 	 */ | 
 | 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), | 
 | 					xfs_kgid_to_gid(current_fsgid()), prid, | 
 | 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | 
 | 					&udqp, &gdqp, &pdqp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (is_dir) { | 
 | 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len); | 
 | 		tres = &M_RES(mp)->tr_mkdir; | 
 | 	} else { | 
 | 		resblks = XFS_CREATE_SPACE_RES(mp, name->len); | 
 | 		tres = &M_RES(mp)->tr_create; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initially assume that the file does not exist and | 
 | 	 * reserve the resources for that case.  If that is not | 
 | 	 * the case we'll drop the one we have and get a more | 
 | 	 * appropriate transaction later. | 
 | 	 */ | 
 | 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); | 
 | 	if (error == -ENOSPC) { | 
 | 		/* flush outstanding delalloc blocks and retry */ | 
 | 		xfs_flush_inodes(mp); | 
 | 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); | 
 | 	} | 
 | 	if (error) | 
 | 		goto out_release_inode; | 
 |  | 
 | 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); | 
 | 	unlock_dp_on_error = true; | 
 |  | 
 | 	/* | 
 | 	 * Reserve disk quota and the inode. | 
 | 	 */ | 
 | 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, | 
 | 						pdqp, resblks, 1, 0); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	/* | 
 | 	 * A newly created regular or special file just has one directory | 
 | 	 * entry pointing to them, but a directory also the "." entry | 
 | 	 * pointing to itself. | 
 | 	 */ | 
 | 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	/* | 
 | 	 * Now we join the directory inode to the transaction.  We do not do it | 
 | 	 * earlier because xfs_dir_ialloc might commit the previous transaction | 
 | 	 * (and release all the locks).  An error from here on will result in | 
 | 	 * the transaction cancel unlocking dp so don't do it explicitly in the | 
 | 	 * error path. | 
 | 	 */ | 
 | 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); | 
 | 	unlock_dp_on_error = false; | 
 |  | 
 | 	error = xfs_dir_createname(tp, dp, name, ip->i_ino, | 
 | 				   resblks ? | 
 | 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0); | 
 | 	if (error) { | 
 | 		ASSERT(error != -ENOSPC); | 
 | 		goto out_trans_cancel; | 
 | 	} | 
 | 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | 
 |  | 
 | 	if (is_dir) { | 
 | 		error = xfs_dir_init(tp, ip, dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		error = xfs_bumplink(tp, dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the | 
 | 	 * create transaction goes to disk before returning to | 
 | 	 * the user. | 
 | 	 */ | 
 | 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	/* | 
 | 	 * Attach the dquot(s) to the inodes and modify them incore. | 
 | 	 * These ids of the inode couldn't have changed since the new | 
 | 	 * inode has been locked ever since it was created. | 
 | 	 */ | 
 | 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out_release_inode; | 
 |  | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 |  | 
 |  out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 |  out_release_inode: | 
 | 	/* | 
 | 	 * Wait until after the current transaction is aborted to finish the | 
 | 	 * setup of the inode and release the inode.  This prevents recursive | 
 | 	 * transactions and deadlocks from xfs_inactive. | 
 | 	 */ | 
 | 	if (ip) { | 
 | 		xfs_finish_inode_setup(ip); | 
 | 		xfs_irele(ip); | 
 | 	} | 
 |  | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	if (unlock_dp_on_error) | 
 | 		xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_create_tmpfile( | 
 | 	struct xfs_inode	*dp, | 
 | 	umode_t			mode, | 
 | 	struct xfs_inode	**ipp) | 
 | { | 
 | 	struct xfs_mount	*mp = dp->i_mount; | 
 | 	struct xfs_inode	*ip = NULL; | 
 | 	struct xfs_trans	*tp = NULL; | 
 | 	int			error; | 
 | 	prid_t                  prid; | 
 | 	struct xfs_dquot	*udqp = NULL; | 
 | 	struct xfs_dquot	*gdqp = NULL; | 
 | 	struct xfs_dquot	*pdqp = NULL; | 
 | 	struct xfs_trans_res	*tres; | 
 | 	uint			resblks; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	prid = xfs_get_initial_prid(dp); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that we have allocated dquot(s) on disk. | 
 | 	 */ | 
 | 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), | 
 | 				xfs_kgid_to_gid(current_fsgid()), prid, | 
 | 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | 
 | 				&udqp, &gdqp, &pdqp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	resblks = XFS_IALLOC_SPACE_RES(mp); | 
 | 	tres = &M_RES(mp)->tr_create_tmpfile; | 
 |  | 
 | 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); | 
 | 	if (error) | 
 | 		goto out_release_inode; | 
 |  | 
 | 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, | 
 | 						pdqp, resblks, 1, 0); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	if (mp->m_flags & XFS_MOUNT_WSYNC) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	/* | 
 | 	 * Attach the dquot(s) to the inodes and modify them incore. | 
 | 	 * These ids of the inode couldn't have changed since the new | 
 | 	 * inode has been locked ever since it was created. | 
 | 	 */ | 
 | 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
 |  | 
 | 	error = xfs_iunlink(tp, ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out_release_inode; | 
 |  | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 |  | 
 |  out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 |  out_release_inode: | 
 | 	/* | 
 | 	 * Wait until after the current transaction is aborted to finish the | 
 | 	 * setup of the inode and release the inode.  This prevents recursive | 
 | 	 * transactions and deadlocks from xfs_inactive. | 
 | 	 */ | 
 | 	if (ip) { | 
 | 		xfs_finish_inode_setup(ip); | 
 | 		xfs_irele(ip); | 
 | 	} | 
 |  | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_link( | 
 | 	xfs_inode_t		*tdp, | 
 | 	xfs_inode_t		*sip, | 
 | 	struct xfs_name		*target_name) | 
 | { | 
 | 	xfs_mount_t		*mp = tdp->i_mount; | 
 | 	xfs_trans_t		*tp; | 
 | 	int			error; | 
 | 	int			resblks; | 
 |  | 
 | 	trace_xfs_link(tdp, target_name); | 
 |  | 
 | 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	error = xfs_qm_dqattach(sip); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	error = xfs_qm_dqattach(tdp); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len); | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); | 
 | 	if (error == -ENOSPC) { | 
 | 		resblks = 0; | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); | 
 | 	} | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); | 
 |  | 
 | 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * If we are using project inheritance, we only allow hard link | 
 | 	 * creation in our tree when the project IDs are the same; else | 
 | 	 * the tree quota mechanism could be circumvented. | 
 | 	 */ | 
 | 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && | 
 | 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { | 
 | 		error = -EXDEV; | 
 | 		goto error_return; | 
 | 	} | 
 |  | 
 | 	if (!resblks) { | 
 | 		error = xfs_dir_canenter(tp, tdp, target_name); | 
 | 		if (error) | 
 | 			goto error_return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Handle initial link state of O_TMPFILE inode | 
 | 	 */ | 
 | 	if (VFS_I(sip)->i_nlink == 0) { | 
 | 		error = xfs_iunlink_remove(tp, sip); | 
 | 		if (error) | 
 | 			goto error_return; | 
 | 	} | 
 |  | 
 | 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, | 
 | 				   resblks); | 
 | 	if (error) | 
 | 		goto error_return; | 
 | 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); | 
 |  | 
 | 	error = xfs_bumplink(tp, sip); | 
 | 	if (error) | 
 | 		goto error_return; | 
 |  | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the | 
 | 	 * link transaction goes to disk before returning to | 
 | 	 * the user. | 
 | 	 */ | 
 | 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	return xfs_trans_commit(tp); | 
 |  | 
 |  error_return: | 
 | 	xfs_trans_cancel(tp); | 
 |  std_return: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Clear the reflink flag and the cowblocks tag if possible. */ | 
 | static void | 
 | xfs_itruncate_clear_reflink_flags( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_ifork	*dfork; | 
 | 	struct xfs_ifork	*cfork; | 
 |  | 
 | 	if (!xfs_is_reflink_inode(ip)) | 
 | 		return; | 
 | 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); | 
 | 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); | 
 | 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0) | 
 | 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; | 
 | 	if (cfork->if_bytes == 0) | 
 | 		xfs_inode_clear_cowblocks_tag(ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Free up the underlying blocks past new_size.  The new size must be smaller | 
 |  * than the current size.  This routine can be used both for the attribute and | 
 |  * data fork, and does not modify the inode size, which is left to the caller. | 
 |  * | 
 |  * The transaction passed to this routine must have made a permanent log | 
 |  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the | 
 |  * given transaction and start new ones, so make sure everything involved in | 
 |  * the transaction is tidy before calling here.  Some transaction will be | 
 |  * returned to the caller to be committed.  The incoming transaction must | 
 |  * already include the inode, and both inode locks must be held exclusively. | 
 |  * The inode must also be "held" within the transaction.  On return the inode | 
 |  * will be "held" within the returned transaction.  This routine does NOT | 
 |  * require any disk space to be reserved for it within the transaction. | 
 |  * | 
 |  * If we get an error, we must return with the inode locked and linked into the | 
 |  * current transaction. This keeps things simple for the higher level code, | 
 |  * because it always knows that the inode is locked and held in the transaction | 
 |  * that returns to it whether errors occur or not.  We don't mark the inode | 
 |  * dirty on error so that transactions can be easily aborted if possible. | 
 |  */ | 
 | int | 
 | xfs_itruncate_extents_flags( | 
 | 	struct xfs_trans	**tpp, | 
 | 	struct xfs_inode	*ip, | 
 | 	int			whichfork, | 
 | 	xfs_fsize_t		new_size, | 
 | 	int			flags) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp = *tpp; | 
 | 	xfs_fileoff_t		first_unmap_block; | 
 | 	xfs_fileoff_t		last_block; | 
 | 	xfs_filblks_t		unmap_len; | 
 | 	int			error = 0; | 
 | 	int			done = 0; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) || | 
 | 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL)); | 
 | 	ASSERT(new_size <= XFS_ISIZE(ip)); | 
 | 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
 | 	ASSERT(ip->i_itemp != NULL); | 
 | 	ASSERT(ip->i_itemp->ili_lock_flags == 0); | 
 | 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); | 
 |  | 
 | 	trace_xfs_itruncate_extents_start(ip, new_size); | 
 |  | 
 | 	flags |= xfs_bmapi_aflag(whichfork); | 
 |  | 
 | 	/* | 
 | 	 * Since it is possible for space to become allocated beyond | 
 | 	 * the end of the file (in a crash where the space is allocated | 
 | 	 * but the inode size is not yet updated), simply remove any | 
 | 	 * blocks which show up between the new EOF and the maximum | 
 | 	 * possible file size.  If the first block to be removed is | 
 | 	 * beyond the maximum file size (ie it is the same as last_block), | 
 | 	 * then there is nothing to do. | 
 | 	 */ | 
 | 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
 | 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); | 
 | 	if (first_unmap_block == last_block) | 
 | 		return 0; | 
 |  | 
 | 	ASSERT(first_unmap_block < last_block); | 
 | 	unmap_len = last_block - first_unmap_block + 1; | 
 | 	while (!done) { | 
 | 		ASSERT(tp->t_firstblock == NULLFSBLOCK); | 
 | 		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, | 
 | 				    XFS_ITRUNC_MAX_EXTENTS, &done); | 
 | 		if (error) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * Duplicate the transaction that has the permanent | 
 | 		 * reservation and commit the old transaction. | 
 | 		 */ | 
 | 		error = xfs_defer_finish(&tp); | 
 | 		if (error) | 
 | 			goto out; | 
 |  | 
 | 		error = xfs_trans_roll_inode(&tp, ip); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (whichfork == XFS_DATA_FORK) { | 
 | 		/* Remove all pending CoW reservations. */ | 
 | 		error = xfs_reflink_cancel_cow_blocks(ip, &tp, | 
 | 				first_unmap_block, last_block, true); | 
 | 		if (error) | 
 | 			goto out; | 
 |  | 
 | 		xfs_itruncate_clear_reflink_flags(ip); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Always re-log the inode so that our permanent transaction can keep | 
 | 	 * on rolling it forward in the log. | 
 | 	 */ | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	trace_xfs_itruncate_extents_end(ip, new_size); | 
 |  | 
 | out: | 
 | 	*tpp = tp; | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_release( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_mount_t	*mp = ip->i_mount; | 
 | 	int		error; | 
 |  | 
 | 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) | 
 | 		return 0; | 
 |  | 
 | 	/* If this is a read-only mount, don't do this (would generate I/O) */ | 
 | 	if (mp->m_flags & XFS_MOUNT_RDONLY) | 
 | 		return 0; | 
 |  | 
 | 	if (!XFS_FORCED_SHUTDOWN(mp)) { | 
 | 		int truncated; | 
 |  | 
 | 		/* | 
 | 		 * If we previously truncated this file and removed old data | 
 | 		 * in the process, we want to initiate "early" writeout on | 
 | 		 * the last close.  This is an attempt to combat the notorious | 
 | 		 * NULL files problem which is particularly noticeable from a | 
 | 		 * truncate down, buffered (re-)write (delalloc), followed by | 
 | 		 * a crash.  What we are effectively doing here is | 
 | 		 * significantly reducing the time window where we'd otherwise | 
 | 		 * be exposed to that problem. | 
 | 		 */ | 
 | 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); | 
 | 		if (truncated) { | 
 | 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); | 
 | 			if (ip->i_delayed_blks > 0) { | 
 | 				error = filemap_flush(VFS_I(ip)->i_mapping); | 
 | 				if (error) | 
 | 					return error; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (VFS_I(ip)->i_nlink == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (xfs_can_free_eofblocks(ip, false)) { | 
 |  | 
 | 		/* | 
 | 		 * Check if the inode is being opened, written and closed | 
 | 		 * frequently and we have delayed allocation blocks outstanding | 
 | 		 * (e.g. streaming writes from the NFS server), truncating the | 
 | 		 * blocks past EOF will cause fragmentation to occur. | 
 | 		 * | 
 | 		 * In this case don't do the truncation, but we have to be | 
 | 		 * careful how we detect this case. Blocks beyond EOF show up as | 
 | 		 * i_delayed_blks even when the inode is clean, so we need to | 
 | 		 * truncate them away first before checking for a dirty release. | 
 | 		 * Hence on the first dirty close we will still remove the | 
 | 		 * speculative allocation, but after that we will leave it in | 
 | 		 * place. | 
 | 		 */ | 
 | 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * If we can't get the iolock just skip truncating the blocks | 
 | 		 * past EOF because we could deadlock with the mmap_sem | 
 | 		 * otherwise. We'll get another chance to drop them once the | 
 | 		 * last reference to the inode is dropped, so we'll never leak | 
 | 		 * blocks permanently. | 
 | 		 */ | 
 | 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { | 
 | 			error = xfs_free_eofblocks(ip); | 
 | 			xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
 | 			if (error) | 
 | 				return error; | 
 | 		} | 
 |  | 
 | 		/* delalloc blocks after truncation means it really is dirty */ | 
 | 		if (ip->i_delayed_blks) | 
 | 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_inactive_truncate | 
 |  * | 
 |  * Called to perform a truncate when an inode becomes unlinked. | 
 |  */ | 
 | STATIC int | 
 | xfs_inactive_truncate( | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); | 
 | 	if (error) { | 
 | 		ASSERT(XFS_FORCED_SHUTDOWN(mp)); | 
 | 		return error; | 
 | 	} | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	/* | 
 | 	 * Log the inode size first to prevent stale data exposure in the event | 
 | 	 * of a system crash before the truncate completes. See the related | 
 | 	 * comment in xfs_vn_setattr_size() for details. | 
 | 	 */ | 
 | 	ip->i_d.di_size = 0; | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); | 
 | 	if (error) | 
 | 		goto error_trans_cancel; | 
 |  | 
 | 	ASSERT(ip->i_d.di_nextents == 0); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto error_unlock; | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return 0; | 
 |  | 
 | error_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | error_unlock: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_inactive_ifree() | 
 |  * | 
 |  * Perform the inode free when an inode is unlinked. | 
 |  */ | 
 | STATIC int | 
 | xfs_inactive_ifree( | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	/* | 
 | 	 * We try to use a per-AG reservation for any block needed by the finobt | 
 | 	 * tree, but as the finobt feature predates the per-AG reservation | 
 | 	 * support a degraded file system might not have enough space for the | 
 | 	 * reservation at mount time.  In that case try to dip into the reserved | 
 | 	 * pool and pray. | 
 | 	 * | 
 | 	 * Send a warning if the reservation does happen to fail, as the inode | 
 | 	 * now remains allocated and sits on the unlinked list until the fs is | 
 | 	 * repaired. | 
 | 	 */ | 
 | 	if (unlikely(mp->m_finobt_nores)) { | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, | 
 | 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, | 
 | 				&tp); | 
 | 	} else { | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); | 
 | 	} | 
 | 	if (error) { | 
 | 		if (error == -ENOSPC) { | 
 | 			xfs_warn_ratelimited(mp, | 
 | 			"Failed to remove inode(s) from unlinked list. " | 
 | 			"Please free space, unmount and run xfs_repair."); | 
 | 		} else { | 
 | 			ASSERT(XFS_FORCED_SHUTDOWN(mp)); | 
 | 		} | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do not hold the inode locked across the entire rolling transaction | 
 | 	 * here. We only need to hold it for the first transaction that | 
 | 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the | 
 | 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode | 
 | 	 * here breaks the relationship between cluster buffer invalidation and | 
 | 	 * stale inode invalidation on cluster buffer item journal commit | 
 | 	 * completion, and can result in leaving dirty stale inodes hanging | 
 | 	 * around in memory. | 
 | 	 * | 
 | 	 * We have no need for serialising this inode operation against other | 
 | 	 * operations - we freed the inode and hence reallocation is required | 
 | 	 * and that will serialise on reallocating the space the deferops need | 
 | 	 * to free. Hence we can unlock the inode on the first commit of | 
 | 	 * the transaction rather than roll it right through the deferops. This | 
 | 	 * avoids relogging the XFS_ISTALE inode. | 
 | 	 * | 
 | 	 * We check that xfs_ifree() hasn't grown an internal transaction roll | 
 | 	 * by asserting that the inode is still locked when it returns. | 
 | 	 */ | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	error = xfs_ifree(tp, ip); | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * If we fail to free the inode, shut down.  The cancel | 
 | 		 * might do that, we need to make sure.  Otherwise the | 
 | 		 * inode might be lost for a long time or forever. | 
 | 		 */ | 
 | 		if (!XFS_FORCED_SHUTDOWN(mp)) { | 
 | 			xfs_notice(mp, "%s: xfs_ifree returned error %d", | 
 | 				__func__, error); | 
 | 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
 | 		} | 
 | 		xfs_trans_cancel(tp); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Credit the quota account(s). The inode is gone. | 
 | 	 */ | 
 | 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); | 
 |  | 
 | 	/* | 
 | 	 * Just ignore errors at this point.  There is nothing we can do except | 
 | 	 * to try to keep going. Make sure it's not a silent error. | 
 | 	 */ | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d", | 
 | 			__func__, error); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_inactive | 
 |  * | 
 |  * This is called when the vnode reference count for the vnode | 
 |  * goes to zero.  If the file has been unlinked, then it must | 
 |  * now be truncated.  Also, we clear all of the read-ahead state | 
 |  * kept for the inode here since the file is now closed. | 
 |  */ | 
 | void | 
 | xfs_inactive( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp; | 
 | 	int			error; | 
 | 	int			truncate = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the inode is already free, then there can be nothing | 
 | 	 * to clean up here. | 
 | 	 */ | 
 | 	if (VFS_I(ip)->i_mode == 0) { | 
 | 		ASSERT(ip->i_df.if_broot_bytes == 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mp = ip->i_mount; | 
 | 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); | 
 |  | 
 | 	/* If this is a read-only mount, don't do this (would generate I/O) */ | 
 | 	if (mp->m_flags & XFS_MOUNT_RDONLY) | 
 | 		return; | 
 |  | 
 | 	/* Try to clean out the cow blocks if there are any. */ | 
 | 	if (xfs_inode_has_cow_data(ip)) | 
 | 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); | 
 |  | 
 | 	if (VFS_I(ip)->i_nlink != 0) { | 
 | 		/* | 
 | 		 * force is true because we are evicting an inode from the | 
 | 		 * cache. Post-eof blocks must be freed, lest we end up with | 
 | 		 * broken free space accounting. | 
 | 		 * | 
 | 		 * Note: don't bother with iolock here since lockdep complains | 
 | 		 * about acquiring it in reclaim context. We have the only | 
 | 		 * reference to the inode at this point anyways. | 
 | 		 */ | 
 | 		if (xfs_can_free_eofblocks(ip, true)) | 
 | 			xfs_free_eofblocks(ip); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (S_ISREG(VFS_I(ip)->i_mode) && | 
 | 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || | 
 | 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) | 
 | 		truncate = 1; | 
 |  | 
 | 	error = xfs_qm_dqattach(ip); | 
 | 	if (error) | 
 | 		return; | 
 |  | 
 | 	if (S_ISLNK(VFS_I(ip)->i_mode)) | 
 | 		error = xfs_inactive_symlink(ip); | 
 | 	else if (truncate) | 
 | 		error = xfs_inactive_truncate(ip); | 
 | 	if (error) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If there are attributes associated with the file then blow them away | 
 | 	 * now.  The code calls a routine that recursively deconstructs the | 
 | 	 * attribute fork. If also blows away the in-core attribute fork. | 
 | 	 */ | 
 | 	if (XFS_IFORK_Q(ip)) { | 
 | 		error = xfs_attr_inactive(ip); | 
 | 		if (error) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	ASSERT(!ip->i_afp); | 
 | 	ASSERT(ip->i_d.di_anextents == 0); | 
 | 	ASSERT(ip->i_d.di_forkoff == 0); | 
 |  | 
 | 	/* | 
 | 	 * Free the inode. | 
 | 	 */ | 
 | 	error = xfs_inactive_ifree(ip); | 
 | 	if (error) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Release the dquots held by inode, if any. | 
 | 	 */ | 
 | 	xfs_qm_dqdetach(ip); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called when the inode's link count has gone to 0 or we are creating | 
 |  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0. | 
 |  * | 
 |  * We place the on-disk inode on a list in the AGI.  It will be pulled from this | 
 |  * list when the inode is freed. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink( | 
 | 	struct xfs_trans *tp, | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	xfs_mount_t	*mp = tp->t_mountp; | 
 | 	xfs_agi_t	*agi; | 
 | 	xfs_dinode_t	*dip; | 
 | 	xfs_buf_t	*agibp; | 
 | 	xfs_buf_t	*ibp; | 
 | 	xfs_agino_t	agino; | 
 | 	short		bucket_index; | 
 | 	int		offset; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(VFS_I(ip)->i_nlink == 0); | 
 | 	ASSERT(VFS_I(ip)->i_mode != 0); | 
 |  | 
 | 	/* | 
 | 	 * Get the agi buffer first.  It ensures lock ordering | 
 | 	 * on the list. | 
 | 	 */ | 
 | 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); | 
 | 	if (error) | 
 | 		return error; | 
 | 	agi = XFS_BUF_TO_AGI(agibp); | 
 |  | 
 | 	/* | 
 | 	 * Get the index into the agi hash table for the | 
 | 	 * list this inode will go on. | 
 | 	 */ | 
 | 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	ASSERT(agino != 0); | 
 | 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	ASSERT(agi->agi_unlinked[bucket_index]); | 
 | 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); | 
 |  | 
 | 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { | 
 | 		/* | 
 | 		 * There is already another inode in the bucket we need | 
 | 		 * to add ourselves to.  Add us at the front of the list. | 
 | 		 * Here we put the head pointer into our next pointer, | 
 | 		 * and then we fall through to point the head at us. | 
 | 		 */ | 
 | 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, | 
 | 				       0, 0); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); | 
 | 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; | 
 | 		offset = ip->i_imap.im_boffset + | 
 | 			offsetof(xfs_dinode_t, di_next_unlinked); | 
 |  | 
 | 		/* need to recalc the inode CRC if appropriate */ | 
 | 		xfs_dinode_calc_crc(mp, dip); | 
 |  | 
 | 		xfs_trans_inode_buf(tp, ibp); | 
 | 		xfs_trans_log_buf(tp, ibp, offset, | 
 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 		xfs_inobp_check(mp, ibp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Point the bucket head pointer at the inode being inserted. | 
 | 	 */ | 
 | 	ASSERT(agino != 0); | 
 | 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); | 
 | 	offset = offsetof(xfs_agi_t, agi_unlinked) + | 
 | 		(sizeof(xfs_agino_t) * bucket_index); | 
 | 	xfs_trans_log_buf(tp, agibp, offset, | 
 | 			  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Pull the on-disk inode from the AGI unlinked list. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink_remove( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_ino_t	next_ino; | 
 | 	xfs_mount_t	*mp; | 
 | 	xfs_agi_t	*agi; | 
 | 	xfs_dinode_t	*dip; | 
 | 	xfs_buf_t	*agibp; | 
 | 	xfs_buf_t	*ibp; | 
 | 	xfs_agnumber_t	agno; | 
 | 	xfs_agino_t	agino; | 
 | 	xfs_agino_t	next_agino; | 
 | 	xfs_buf_t	*last_ibp; | 
 | 	xfs_dinode_t	*last_dip = NULL; | 
 | 	short		bucket_index; | 
 | 	int		offset, last_offset = 0; | 
 | 	int		error; | 
 |  | 
 | 	mp = tp->t_mountp; | 
 | 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
 |  | 
 | 	/* | 
 | 	 * Get the agi buffer first.  It ensures lock ordering | 
 | 	 * on the list. | 
 | 	 */ | 
 | 	error = xfs_read_agi(mp, tp, agno, &agibp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	agi = XFS_BUF_TO_AGI(agibp); | 
 |  | 
 | 	/* | 
 | 	 * Get the index into the agi hash table for the | 
 | 	 * list this inode will go on. | 
 | 	 */ | 
 | 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	if (!xfs_verify_agino(mp, agno, agino)) | 
 | 		return -EFSCORRUPTED; | 
 | 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	if (!xfs_verify_agino(mp, agno, | 
 | 			be32_to_cpu(agi->agi_unlinked[bucket_index]))) { | 
 | 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
 | 				agi, sizeof(*agi)); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { | 
 | 		/* | 
 | 		 * We're at the head of the list.  Get the inode's on-disk | 
 | 		 * buffer to see if there is anyone after us on the list. | 
 | 		 * Only modify our next pointer if it is not already NULLAGINO. | 
 | 		 * This saves us the overhead of dealing with the buffer when | 
 | 		 * there is no need to change it. | 
 | 		 */ | 
 | 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, | 
 | 				       0, 0); | 
 | 		if (error) { | 
 | 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", | 
 | 				__func__, error); | 
 | 			return error; | 
 | 		} | 
 | 		next_agino = be32_to_cpu(dip->di_next_unlinked); | 
 | 		ASSERT(next_agino != 0); | 
 | 		if (next_agino != NULLAGINO) { | 
 | 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO); | 
 | 			offset = ip->i_imap.im_boffset + | 
 | 				offsetof(xfs_dinode_t, di_next_unlinked); | 
 |  | 
 | 			/* need to recalc the inode CRC if appropriate */ | 
 | 			xfs_dinode_calc_crc(mp, dip); | 
 |  | 
 | 			xfs_trans_inode_buf(tp, ibp); | 
 | 			xfs_trans_log_buf(tp, ibp, offset, | 
 | 					  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 			xfs_inobp_check(mp, ibp); | 
 | 		} else { | 
 | 			xfs_trans_brelse(tp, ibp); | 
 | 		} | 
 | 		/* | 
 | 		 * Point the bucket head pointer at the next inode. | 
 | 		 */ | 
 | 		ASSERT(next_agino != 0); | 
 | 		ASSERT(next_agino != agino); | 
 | 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); | 
 | 		offset = offsetof(xfs_agi_t, agi_unlinked) + | 
 | 			(sizeof(xfs_agino_t) * bucket_index); | 
 | 		xfs_trans_log_buf(tp, agibp, offset, | 
 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * We need to search the list for the inode being freed. | 
 | 		 */ | 
 | 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
 | 		last_ibp = NULL; | 
 | 		while (next_agino != agino) { | 
 | 			struct xfs_imap	imap; | 
 |  | 
 | 			if (last_ibp) | 
 | 				xfs_trans_brelse(tp, last_ibp); | 
 |  | 
 | 			imap.im_blkno = 0; | 
 | 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); | 
 |  | 
 | 			error = xfs_imap(mp, tp, next_ino, &imap, 0); | 
 | 			if (error) { | 
 | 				xfs_warn(mp, | 
 | 	"%s: xfs_imap returned error %d.", | 
 | 					 __func__, error); | 
 | 				return error; | 
 | 			} | 
 |  | 
 | 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, | 
 | 					       &last_ibp, 0, 0); | 
 | 			if (error) { | 
 | 				xfs_warn(mp, | 
 | 	"%s: xfs_imap_to_bp returned error %d.", | 
 | 					__func__, error); | 
 | 				return error; | 
 | 			} | 
 |  | 
 | 			last_offset = imap.im_boffset; | 
 | 			next_agino = be32_to_cpu(last_dip->di_next_unlinked); | 
 | 			if (!xfs_verify_agino(mp, agno, next_agino)) { | 
 | 				XFS_CORRUPTION_ERROR(__func__, | 
 | 						XFS_ERRLEVEL_LOW, mp, | 
 | 						last_dip, sizeof(*last_dip)); | 
 | 				return -EFSCORRUPTED; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now last_ibp points to the buffer previous to us on the | 
 | 		 * unlinked list.  Pull us from the list. | 
 | 		 */ | 
 | 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, | 
 | 				       0, 0); | 
 | 		if (error) { | 
 | 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", | 
 | 				__func__, error); | 
 | 			return error; | 
 | 		} | 
 | 		next_agino = be32_to_cpu(dip->di_next_unlinked); | 
 | 		ASSERT(next_agino != 0); | 
 | 		ASSERT(next_agino != agino); | 
 | 		if (next_agino != NULLAGINO) { | 
 | 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO); | 
 | 			offset = ip->i_imap.im_boffset + | 
 | 				offsetof(xfs_dinode_t, di_next_unlinked); | 
 |  | 
 | 			/* need to recalc the inode CRC if appropriate */ | 
 | 			xfs_dinode_calc_crc(mp, dip); | 
 |  | 
 | 			xfs_trans_inode_buf(tp, ibp); | 
 | 			xfs_trans_log_buf(tp, ibp, offset, | 
 | 					  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 			xfs_inobp_check(mp, ibp); | 
 | 		} else { | 
 | 			xfs_trans_brelse(tp, ibp); | 
 | 		} | 
 | 		/* | 
 | 		 * Point the previous inode on the list to the next inode. | 
 | 		 */ | 
 | 		last_dip->di_next_unlinked = cpu_to_be32(next_agino); | 
 | 		ASSERT(next_agino != 0); | 
 | 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | 
 |  | 
 | 		/* need to recalc the inode CRC if appropriate */ | 
 | 		xfs_dinode_calc_crc(mp, last_dip); | 
 |  | 
 | 		xfs_trans_inode_buf(tp, last_ibp); | 
 | 		xfs_trans_log_buf(tp, last_ibp, offset, | 
 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 		xfs_inobp_check(mp, last_ibp); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * A big issue when freeing the inode cluster is that we _cannot_ skip any | 
 |  * inodes that are in memory - they all must be marked stale and attached to | 
 |  * the cluster buffer. | 
 |  */ | 
 | STATIC int | 
 | xfs_ifree_cluster( | 
 | 	xfs_inode_t		*free_ip, | 
 | 	xfs_trans_t		*tp, | 
 | 	struct xfs_icluster	*xic) | 
 | { | 
 | 	xfs_mount_t		*mp = free_ip->i_mount; | 
 | 	int			blks_per_cluster; | 
 | 	int			inodes_per_cluster; | 
 | 	int			nbufs; | 
 | 	int			i, j; | 
 | 	int			ioffset; | 
 | 	xfs_daddr_t		blkno; | 
 | 	xfs_buf_t		*bp; | 
 | 	xfs_inode_t		*ip; | 
 | 	xfs_inode_log_item_t	*iip; | 
 | 	struct xfs_log_item	*lip; | 
 | 	struct xfs_perag	*pag; | 
 | 	xfs_ino_t		inum; | 
 |  | 
 | 	inum = xic->first_ino; | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); | 
 | 	blks_per_cluster = xfs_icluster_size_fsb(mp); | 
 | 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; | 
 | 	nbufs = mp->m_ialloc_blks / blks_per_cluster; | 
 |  | 
 | 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { | 
 | 		/* | 
 | 		 * The allocation bitmap tells us which inodes of the chunk were | 
 | 		 * physically allocated. Skip the cluster if an inode falls into | 
 | 		 * a sparse region. | 
 | 		 */ | 
 | 		ioffset = inum - xic->first_ino; | 
 | 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { | 
 | 			ASSERT(ioffset % inodes_per_cluster == 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
 | 					 XFS_INO_TO_AGBNO(mp, inum)); | 
 |  | 
 | 		/* | 
 | 		 * We obtain and lock the backing buffer first in the process | 
 | 		 * here, as we have to ensure that any dirty inode that we | 
 | 		 * can't get the flush lock on is attached to the buffer. | 
 | 		 * If we scan the in-memory inodes first, then buffer IO can | 
 | 		 * complete before we get a lock on it, and hence we may fail | 
 | 		 * to mark all the active inodes on the buffer stale. | 
 | 		 */ | 
 | 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | 
 | 					mp->m_bsize * blks_per_cluster, | 
 | 					XBF_UNMAPPED); | 
 |  | 
 | 		if (!bp) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		/* | 
 | 		 * This buffer may not have been correctly initialised as we | 
 | 		 * didn't read it from disk. That's not important because we are | 
 | 		 * only using to mark the buffer as stale in the log, and to | 
 | 		 * attach stale cached inodes on it. That means it will never be | 
 | 		 * dispatched for IO. If it is, we want to know about it, and we | 
 | 		 * want it to fail. We can acheive this by adding a write | 
 | 		 * verifier to the buffer. | 
 | 		 */ | 
 | 		 bp->b_ops = &xfs_inode_buf_ops; | 
 |  | 
 | 		/* | 
 | 		 * Walk the inodes already attached to the buffer and mark them | 
 | 		 * stale. These will all have the flush locks held, so an | 
 | 		 * in-memory inode walk can't lock them. By marking them all | 
 | 		 * stale first, we will not attempt to lock them in the loop | 
 | 		 * below as the XFS_ISTALE flag will be set. | 
 | 		 */ | 
 | 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { | 
 | 			if (lip->li_type == XFS_LI_INODE) { | 
 | 				iip = (xfs_inode_log_item_t *)lip; | 
 | 				ASSERT(iip->ili_logged == 1); | 
 | 				lip->li_cb = xfs_istale_done; | 
 | 				xfs_trans_ail_copy_lsn(mp->m_ail, | 
 | 							&iip->ili_flush_lsn, | 
 | 							&iip->ili_item.li_lsn); | 
 | 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE); | 
 | 			} | 
 | 		} | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * For each inode in memory attempt to add it to the inode | 
 | 		 * buffer and set it up for being staled on buffer IO | 
 | 		 * completion.  This is safe as we've locked out tail pushing | 
 | 		 * and flushing by locking the buffer. | 
 | 		 * | 
 | 		 * We have already marked every inode that was part of a | 
 | 		 * transaction stale above, which means there is no point in | 
 | 		 * even trying to lock them. | 
 | 		 */ | 
 | 		for (i = 0; i < inodes_per_cluster; i++) { | 
 | retry: | 
 | 			rcu_read_lock(); | 
 | 			ip = radix_tree_lookup(&pag->pag_ici_root, | 
 | 					XFS_INO_TO_AGINO(mp, (inum + i))); | 
 |  | 
 | 			/* Inode not in memory, nothing to do */ | 
 | 			if (!ip) { | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * because this is an RCU protected lookup, we could | 
 | 			 * find a recently freed or even reallocated inode | 
 | 			 * during the lookup. We need to check under the | 
 | 			 * i_flags_lock for a valid inode here. Skip it if it | 
 | 			 * is not valid, the wrong inode or stale. | 
 | 			 */ | 
 | 			spin_lock(&ip->i_flags_lock); | 
 | 			if (ip->i_ino != inum + i || | 
 | 			    __xfs_iflags_test(ip, XFS_ISTALE)) { | 
 | 				spin_unlock(&ip->i_flags_lock); | 
 | 				rcu_read_unlock(); | 
 | 				continue; | 
 | 			} | 
 | 			spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 			/* | 
 | 			 * Don't try to lock/unlock the current inode, but we | 
 | 			 * _cannot_ skip the other inodes that we did not find | 
 | 			 * in the list attached to the buffer and are not | 
 | 			 * already marked stale. If we can't lock it, back off | 
 | 			 * and retry. | 
 | 			 */ | 
 | 			if (ip != free_ip) { | 
 | 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
 | 					rcu_read_unlock(); | 
 | 					delay(1); | 
 | 					goto retry; | 
 | 				} | 
 |  | 
 | 				/* | 
 | 				 * Check the inode number again in case we're | 
 | 				 * racing with freeing in xfs_reclaim_inode(). | 
 | 				 * See the comments in that function for more | 
 | 				 * information as to why the initial check is | 
 | 				 * not sufficient. | 
 | 				 */ | 
 | 				if (ip->i_ino != inum + i) { | 
 | 					xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 					rcu_read_unlock(); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			xfs_iflock(ip); | 
 | 			xfs_iflags_set(ip, XFS_ISTALE); | 
 |  | 
 | 			/* | 
 | 			 * we don't need to attach clean inodes or those only | 
 | 			 * with unlogged changes (which we throw away, anyway). | 
 | 			 */ | 
 | 			iip = ip->i_itemp; | 
 | 			if (!iip || xfs_inode_clean(ip)) { | 
 | 				ASSERT(ip != free_ip); | 
 | 				xfs_ifunlock(ip); | 
 | 				xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			iip->ili_last_fields = iip->ili_fields; | 
 | 			iip->ili_fields = 0; | 
 | 			iip->ili_fsync_fields = 0; | 
 | 			iip->ili_logged = 1; | 
 | 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, | 
 | 						&iip->ili_item.li_lsn); | 
 |  | 
 | 			xfs_buf_attach_iodone(bp, xfs_istale_done, | 
 | 						  &iip->ili_item); | 
 |  | 
 | 			if (ip != free_ip) | 
 | 				xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 		} | 
 |  | 
 | 		xfs_trans_stale_inode_buf(tp, bp); | 
 | 		xfs_trans_binval(tp, bp); | 
 | 	} | 
 |  | 
 | 	xfs_perag_put(pag); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Free any local-format buffers sitting around before we reset to | 
 |  * extents format. | 
 |  */ | 
 | static inline void | 
 | xfs_ifree_local_data( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			whichfork) | 
 | { | 
 | 	struct xfs_ifork	*ifp; | 
 |  | 
 | 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) | 
 | 		return; | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to return an inode to the inode free list. | 
 |  * The inode should already be truncated to 0 length and have | 
 |  * no pages associated with it.  This routine also assumes that | 
 |  * the inode is already a part of the transaction. | 
 |  * | 
 |  * The on-disk copy of the inode will have been added to the list | 
 |  * of unlinked inodes in the AGI. We need to remove the inode from | 
 |  * that list atomically with respect to freeing it here. | 
 |  */ | 
 | int | 
 | xfs_ifree( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	int			error; | 
 | 	struct xfs_icluster	xic = { 0 }; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	ASSERT(VFS_I(ip)->i_nlink == 0); | 
 | 	ASSERT(ip->i_d.di_nextents == 0); | 
 | 	ASSERT(ip->i_d.di_anextents == 0); | 
 | 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); | 
 | 	ASSERT(ip->i_d.di_nblocks == 0); | 
 |  | 
 | 	/* | 
 | 	 * Pull the on-disk inode from the AGI unlinked list. | 
 | 	 */ | 
 | 	error = xfs_iunlink_remove(tp, ip); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	error = xfs_difree(tp, ip->i_ino, &xic); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	xfs_ifree_local_data(ip, XFS_DATA_FORK); | 
 | 	xfs_ifree_local_data(ip, XFS_ATTR_FORK); | 
 |  | 
 | 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */ | 
 | 	ip->i_d.di_flags = 0; | 
 | 	ip->i_d.di_flags2 = 0; | 
 | 	ip->i_d.di_dmevmask = 0; | 
 | 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */ | 
 | 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
 | 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
 |  | 
 | 	/* Don't attempt to replay owner changes for a deleted inode */ | 
 | 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); | 
 |  | 
 | 	/* | 
 | 	 * Bump the generation count so no one will be confused | 
 | 	 * by reincarnations of this inode. | 
 | 	 */ | 
 | 	VFS_I(ip)->i_generation++; | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	if (xic.deleted) | 
 | 		error = xfs_ifree_cluster(ip, tp, &xic); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to unpin an inode.  The caller must have the inode locked | 
 |  * in at least shared mode so that the buffer cannot be subsequently pinned | 
 |  * once someone is waiting for it to be unpinned. | 
 |  */ | 
 | static void | 
 | xfs_iunpin( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
 |  | 
 | 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_); | 
 |  | 
 | 	/* Give the log a push to start the unpinning I/O */ | 
 | 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | __xfs_iunpin_wait( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); | 
 | 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); | 
 |  | 
 | 	xfs_iunpin(ip); | 
 |  | 
 | 	do { | 
 | 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 		if (xfs_ipincount(ip)) | 
 | 			io_schedule(); | 
 | 	} while (xfs_ipincount(ip)); | 
 | 	finish_wait(wq, &wait.wq_entry); | 
 | } | 
 |  | 
 | void | 
 | xfs_iunpin_wait( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	if (xfs_ipincount(ip)) | 
 | 		__xfs_iunpin_wait(ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Removing an inode from the namespace involves removing the directory entry | 
 |  * and dropping the link count on the inode. Removing the directory entry can | 
 |  * result in locking an AGF (directory blocks were freed) and removing a link | 
 |  * count can result in placing the inode on an unlinked list which results in | 
 |  * locking an AGI. | 
 |  * | 
 |  * The big problem here is that we have an ordering constraint on AGF and AGI | 
 |  * locking - inode allocation locks the AGI, then can allocate a new extent for | 
 |  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode | 
 |  * removes the inode from the unlinked list, requiring that we lock the AGI | 
 |  * first, and then freeing the inode can result in an inode chunk being freed | 
 |  * and hence freeing disk space requiring that we lock an AGF. | 
 |  * | 
 |  * Hence the ordering that is imposed by other parts of the code is AGI before | 
 |  * AGF. This means we cannot remove the directory entry before we drop the inode | 
 |  * reference count and put it on the unlinked list as this results in a lock | 
 |  * order of AGF then AGI, and this can deadlock against inode allocation and | 
 |  * freeing. Therefore we must drop the link counts before we remove the | 
 |  * directory entry. | 
 |  * | 
 |  * This is still safe from a transactional point of view - it is not until we | 
 |  * get to xfs_defer_finish() that we have the possibility of multiple | 
 |  * transactions in this operation. Hence as long as we remove the directory | 
 |  * entry and drop the link count in the first transaction of the remove | 
 |  * operation, there are no transactional constraints on the ordering here. | 
 |  */ | 
 | int | 
 | xfs_remove( | 
 | 	xfs_inode_t             *dp, | 
 | 	struct xfs_name		*name, | 
 | 	xfs_inode_t		*ip) | 
 | { | 
 | 	xfs_mount_t		*mp = dp->i_mount; | 
 | 	xfs_trans_t             *tp = NULL; | 
 | 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode); | 
 | 	int                     error = 0; | 
 | 	uint			resblks; | 
 |  | 
 | 	trace_xfs_remove(dp, name); | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	error = xfs_qm_dqattach(dp); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	error = xfs_qm_dqattach(ip); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	/* | 
 | 	 * We try to get the real space reservation first, | 
 | 	 * allowing for directory btree deletion(s) implying | 
 | 	 * possible bmap insert(s).  If we can't get the space | 
 | 	 * reservation then we use 0 instead, and avoid the bmap | 
 | 	 * btree insert(s) in the directory code by, if the bmap | 
 | 	 * insert tries to happen, instead trimming the LAST | 
 | 	 * block from the directory. | 
 | 	 */ | 
 | 	resblks = XFS_REMOVE_SPACE_RES(mp); | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); | 
 | 	if (error == -ENOSPC) { | 
 | 		resblks = 0; | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, | 
 | 				&tp); | 
 | 	} | 
 | 	if (error) { | 
 | 		ASSERT(error != -ENOSPC); | 
 | 		goto std_return; | 
 | 	} | 
 |  | 
 | 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * If we're removing a directory perform some additional validation. | 
 | 	 */ | 
 | 	if (is_dir) { | 
 | 		ASSERT(VFS_I(ip)->i_nlink >= 2); | 
 | 		if (VFS_I(ip)->i_nlink != 2) { | 
 | 			error = -ENOTEMPTY; | 
 | 			goto out_trans_cancel; | 
 | 		} | 
 | 		if (!xfs_dir_isempty(ip)) { | 
 | 			error = -ENOTEMPTY; | 
 | 			goto out_trans_cancel; | 
 | 		} | 
 |  | 
 | 		/* Drop the link from ip's "..".  */ | 
 | 		error = xfs_droplink(tp, dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		/* Drop the "." link from ip to self.  */ | 
 | 		error = xfs_droplink(tp, ip); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} else { | 
 | 		/* | 
 | 		 * When removing a non-directory we need to log the parent | 
 | 		 * inode here.  For a directory this is done implicitly | 
 | 		 * by the xfs_droplink call for the ".." entry. | 
 | 		 */ | 
 | 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | 
 | 	} | 
 | 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 |  | 
 | 	/* Drop the link from dp to ip. */ | 
 | 	error = xfs_droplink(tp, ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); | 
 | 	if (error) { | 
 | 		ASSERT(error != -ENOENT); | 
 | 		goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the | 
 | 	 * remove transaction goes to disk before returning to | 
 | 	 * the user. | 
 | 	 */ | 
 | 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	if (is_dir && xfs_inode_is_filestream(ip)) | 
 | 		xfs_filestream_deassociate(ip); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 |  std_return: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Enter all inodes for a rename transaction into a sorted array. | 
 |  */ | 
 | #define __XFS_SORT_INODES	5 | 
 | STATIC void | 
 | xfs_sort_for_rename( | 
 | 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */ | 
 | 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */ | 
 | 	struct xfs_inode	*ip1,	/* in: inode of old entry */ | 
 | 	struct xfs_inode	*ip2,	/* in: inode of new entry */ | 
 | 	struct xfs_inode	*wip,	/* in: whiteout inode */ | 
 | 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */ | 
 | 	int			*num_inodes)  /* in/out: inodes in array */ | 
 | { | 
 | 	int			i, j; | 
 |  | 
 | 	ASSERT(*num_inodes == __XFS_SORT_INODES); | 
 | 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); | 
 |  | 
 | 	/* | 
 | 	 * i_tab contains a list of pointers to inodes.  We initialize | 
 | 	 * the table here & we'll sort it.  We will then use it to | 
 | 	 * order the acquisition of the inode locks. | 
 | 	 * | 
 | 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2. | 
 | 	 */ | 
 | 	i = 0; | 
 | 	i_tab[i++] = dp1; | 
 | 	i_tab[i++] = dp2; | 
 | 	i_tab[i++] = ip1; | 
 | 	if (ip2) | 
 | 		i_tab[i++] = ip2; | 
 | 	if (wip) | 
 | 		i_tab[i++] = wip; | 
 | 	*num_inodes = i; | 
 |  | 
 | 	/* | 
 | 	 * Sort the elements via bubble sort.  (Remember, there are at | 
 | 	 * most 5 elements to sort, so this is adequate.) | 
 | 	 */ | 
 | 	for (i = 0; i < *num_inodes; i++) { | 
 | 		for (j = 1; j < *num_inodes; j++) { | 
 | 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { | 
 | 				struct xfs_inode *temp = i_tab[j]; | 
 | 				i_tab[j] = i_tab[j-1]; | 
 | 				i_tab[j-1] = temp; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | xfs_finish_rename( | 
 | 	struct xfs_trans	*tp) | 
 | { | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the rename transaction | 
 | 	 * goes to disk before returning to the user. | 
 | 	 */ | 
 | 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	return xfs_trans_commit(tp); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_cross_rename() | 
 |  * | 
 |  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall | 
 |  */ | 
 | STATIC int | 
 | xfs_cross_rename( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*dp1, | 
 | 	struct xfs_name		*name1, | 
 | 	struct xfs_inode	*ip1, | 
 | 	struct xfs_inode	*dp2, | 
 | 	struct xfs_name		*name2, | 
 | 	struct xfs_inode	*ip2, | 
 | 	int			spaceres) | 
 | { | 
 | 	int		error = 0; | 
 | 	int		ip1_flags = 0; | 
 | 	int		ip2_flags = 0; | 
 | 	int		dp2_flags = 0; | 
 |  | 
 | 	/* Swap inode number for dirent in first parent */ | 
 | 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); | 
 | 	if (error) | 
 | 		goto out_trans_abort; | 
 |  | 
 | 	/* Swap inode number for dirent in second parent */ | 
 | 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); | 
 | 	if (error) | 
 | 		goto out_trans_abort; | 
 |  | 
 | 	/* | 
 | 	 * If we're renaming one or more directories across different parents, | 
 | 	 * update the respective ".." entries (and link counts) to match the new | 
 | 	 * parents. | 
 | 	 */ | 
 | 	if (dp1 != dp2) { | 
 | 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
 |  | 
 | 		if (S_ISDIR(VFS_I(ip2)->i_mode)) { | 
 | 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, | 
 | 						dp1->i_ino, spaceres); | 
 | 			if (error) | 
 | 				goto out_trans_abort; | 
 |  | 
 | 			/* transfer ip2 ".." reference to dp1 */ | 
 | 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) { | 
 | 				error = xfs_droplink(tp, dp2); | 
 | 				if (error) | 
 | 					goto out_trans_abort; | 
 | 				error = xfs_bumplink(tp, dp1); | 
 | 				if (error) | 
 | 					goto out_trans_abort; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Although ip1 isn't changed here, userspace needs | 
 | 			 * to be warned about the change, so that applications | 
 | 			 * relying on it (like backup ones), will properly | 
 | 			 * notify the change | 
 | 			 */ | 
 | 			ip1_flags |= XFS_ICHGTIME_CHG; | 
 | 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
 | 		} | 
 |  | 
 | 		if (S_ISDIR(VFS_I(ip1)->i_mode)) { | 
 | 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, | 
 | 						dp2->i_ino, spaceres); | 
 | 			if (error) | 
 | 				goto out_trans_abort; | 
 |  | 
 | 			/* transfer ip1 ".." reference to dp2 */ | 
 | 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) { | 
 | 				error = xfs_droplink(tp, dp1); | 
 | 				if (error) | 
 | 					goto out_trans_abort; | 
 | 				error = xfs_bumplink(tp, dp2); | 
 | 				if (error) | 
 | 					goto out_trans_abort; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Although ip2 isn't changed here, userspace needs | 
 | 			 * to be warned about the change, so that applications | 
 | 			 * relying on it (like backup ones), will properly | 
 | 			 * notify the change | 
 | 			 */ | 
 | 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
 | 			ip2_flags |= XFS_ICHGTIME_CHG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ip1_flags) { | 
 | 		xfs_trans_ichgtime(tp, ip1, ip1_flags); | 
 | 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); | 
 | 	} | 
 | 	if (ip2_flags) { | 
 | 		xfs_trans_ichgtime(tp, ip2, ip2_flags); | 
 | 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); | 
 | 	} | 
 | 	if (dp2_flags) { | 
 | 		xfs_trans_ichgtime(tp, dp2, dp2_flags); | 
 | 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); | 
 | 	} | 
 | 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); | 
 | 	return xfs_finish_rename(tp); | 
 |  | 
 | out_trans_abort: | 
 | 	xfs_trans_cancel(tp); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_rename_alloc_whiteout() | 
 |  * | 
 |  * Return a referenced, unlinked, unlocked inode that that can be used as a | 
 |  * whiteout in a rename transaction. We use a tmpfile inode here so that if we | 
 |  * crash between allocating the inode and linking it into the rename transaction | 
 |  * recovery will free the inode and we won't leak it. | 
 |  */ | 
 | static int | 
 | xfs_rename_alloc_whiteout( | 
 | 	struct xfs_inode	*dp, | 
 | 	struct xfs_inode	**wip) | 
 | { | 
 | 	struct xfs_inode	*tmpfile; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * Prepare the tmpfile inode as if it were created through the VFS. | 
 | 	 * Complete the inode setup and flag it as linkable.  nlink is already | 
 | 	 * zero, so we can skip the drop_nlink. | 
 | 	 */ | 
 | 	xfs_setup_iops(tmpfile); | 
 | 	xfs_finish_inode_setup(tmpfile); | 
 | 	VFS_I(tmpfile)->i_state |= I_LINKABLE; | 
 |  | 
 | 	*wip = tmpfile; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_rename | 
 |  */ | 
 | int | 
 | xfs_rename( | 
 | 	struct xfs_inode	*src_dp, | 
 | 	struct xfs_name		*src_name, | 
 | 	struct xfs_inode	*src_ip, | 
 | 	struct xfs_inode	*target_dp, | 
 | 	struct xfs_name		*target_name, | 
 | 	struct xfs_inode	*target_ip, | 
 | 	unsigned int		flags) | 
 | { | 
 | 	struct xfs_mount	*mp = src_dp->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	struct xfs_inode	*wip = NULL;		/* whiteout inode */ | 
 | 	struct xfs_inode	*inodes[__XFS_SORT_INODES]; | 
 | 	int			num_inodes = __XFS_SORT_INODES; | 
 | 	bool			new_parent = (src_dp != target_dp); | 
 | 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); | 
 | 	int			spaceres; | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_rename(src_dp, target_dp, src_name, target_name); | 
 |  | 
 | 	if ((flags & RENAME_EXCHANGE) && !target_ip) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * If we are doing a whiteout operation, allocate the whiteout inode | 
 | 	 * we will be placing at the target and ensure the type is set | 
 | 	 * appropriately. | 
 | 	 */ | 
 | 	if (flags & RENAME_WHITEOUT) { | 
 | 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); | 
 | 		error = xfs_rename_alloc_whiteout(target_dp, &wip); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		/* setup target dirent info as whiteout */ | 
 | 		src_name->type = XFS_DIR3_FT_CHRDEV; | 
 | 	} | 
 |  | 
 | 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, | 
 | 				inodes, &num_inodes); | 
 |  | 
 | 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); | 
 | 	if (error == -ENOSPC) { | 
 | 		spaceres = 0; | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, | 
 | 				&tp); | 
 | 	} | 
 | 	if (error) | 
 | 		goto out_release_wip; | 
 |  | 
 | 	/* | 
 | 	 * Attach the dquots to the inodes | 
 | 	 */ | 
 | 	error = xfs_qm_vop_rename_dqattach(inodes); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	/* | 
 | 	 * Lock all the participating inodes. Depending upon whether | 
 | 	 * the target_name exists in the target directory, and | 
 | 	 * whether the target directory is the same as the source | 
 | 	 * directory, we can lock from 2 to 4 inodes. | 
 | 	 */ | 
 | 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * Join all the inodes to the transaction. From this point on, | 
 | 	 * we can rely on either trans_commit or trans_cancel to unlock | 
 | 	 * them. | 
 | 	 */ | 
 | 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); | 
 | 	if (new_parent) | 
 | 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); | 
 | 	if (target_ip) | 
 | 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); | 
 | 	if (wip) | 
 | 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * If we are using project inheritance, we only allow renames | 
 | 	 * into our tree when the project IDs are the same; else the | 
 | 	 * tree quota mechanism would be circumvented. | 
 | 	 */ | 
 | 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && | 
 | 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { | 
 | 		error = -EXDEV; | 
 | 		goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* RENAME_EXCHANGE is unique from here on. */ | 
 | 	if (flags & RENAME_EXCHANGE) | 
 | 		return xfs_cross_rename(tp, src_dp, src_name, src_ip, | 
 | 					target_dp, target_name, target_ip, | 
 | 					spaceres); | 
 |  | 
 | 	/* | 
 | 	 * Check for expected errors before we dirty the transaction | 
 | 	 * so we can return an error without a transaction abort. | 
 | 	 */ | 
 | 	if (target_ip == NULL) { | 
 | 		/* | 
 | 		 * If there's no space reservation, check the entry will | 
 | 		 * fit before actually inserting it. | 
 | 		 */ | 
 | 		if (!spaceres) { | 
 | 			error = xfs_dir_canenter(tp, target_dp, target_name); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * If target exists and it's a directory, check that whether | 
 | 		 * it can be destroyed. | 
 | 		 */ | 
 | 		if (S_ISDIR(VFS_I(target_ip)->i_mode) && | 
 | 		    (!xfs_dir_isempty(target_ip) || | 
 | 		     (VFS_I(target_ip)->i_nlink > 2))) { | 
 | 			error = -EEXIST; | 
 | 			goto out_trans_cancel; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Directory entry creation below may acquire the AGF. Remove | 
 | 	 * the whiteout from the unlinked list first to preserve correct | 
 | 	 * AGI/AGF locking order. This dirties the transaction so failures | 
 | 	 * after this point will abort and log recovery will clean up the | 
 | 	 * mess. | 
 | 	 * | 
 | 	 * For whiteouts, we need to bump the link count on the whiteout | 
 | 	 * inode. After this point, we have a real link, clear the tmpfile | 
 | 	 * state flag from the inode so it doesn't accidentally get misused | 
 | 	 * in future. | 
 | 	 */ | 
 | 	if (wip) { | 
 | 		ASSERT(VFS_I(wip)->i_nlink == 0); | 
 | 		error = xfs_iunlink_remove(tp, wip); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_bumplink(tp, wip); | 
 | 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); | 
 | 		VFS_I(wip)->i_state &= ~I_LINKABLE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set up the target. | 
 | 	 */ | 
 | 	if (target_ip == NULL) { | 
 | 		/* | 
 | 		 * If target does not exist and the rename crosses | 
 | 		 * directories, adjust the target directory link count | 
 | 		 * to account for the ".." reference from the new entry. | 
 | 		 */ | 
 | 		error = xfs_dir_createname(tp, target_dp, target_name, | 
 | 					   src_ip->i_ino, spaceres); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_trans_ichgtime(tp, target_dp, | 
 | 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 |  | 
 | 		if (new_parent && src_is_directory) { | 
 | 			error = xfs_bumplink(tp, target_dp); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} else { /* target_ip != NULL */ | 
 | 		/* | 
 | 		 * Link the source inode under the target name. | 
 | 		 * If the source inode is a directory and we are moving | 
 | 		 * it across directories, its ".." entry will be | 
 | 		 * inconsistent until we replace that down below. | 
 | 		 * | 
 | 		 * In case there is already an entry with the same | 
 | 		 * name at the destination directory, remove it first. | 
 | 		 */ | 
 | 		error = xfs_dir_replace(tp, target_dp, target_name, | 
 | 					src_ip->i_ino, spaceres); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_trans_ichgtime(tp, target_dp, | 
 | 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 |  | 
 | 		/* | 
 | 		 * Decrement the link count on the target since the target | 
 | 		 * dir no longer points to it. | 
 | 		 */ | 
 | 		error = xfs_droplink(tp, target_ip); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		if (src_is_directory) { | 
 | 			/* | 
 | 			 * Drop the link from the old "." entry. | 
 | 			 */ | 
 | 			error = xfs_droplink(tp, target_ip); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} /* target_ip != NULL */ | 
 |  | 
 | 	/* | 
 | 	 * Remove the source. | 
 | 	 */ | 
 | 	if (new_parent && src_is_directory) { | 
 | 		/* | 
 | 		 * Rewrite the ".." entry to point to the new | 
 | 		 * directory. | 
 | 		 */ | 
 | 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, | 
 | 					target_dp->i_ino, spaceres); | 
 | 		ASSERT(error != -EEXIST); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We always want to hit the ctime on the source inode. | 
 | 	 * | 
 | 	 * This isn't strictly required by the standards since the source | 
 | 	 * inode isn't really being changed, but old unix file systems did | 
 | 	 * it and some incremental backup programs won't work without it. | 
 | 	 */ | 
 | 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); | 
 |  | 
 | 	/* | 
 | 	 * Adjust the link count on src_dp.  This is necessary when | 
 | 	 * renaming a directory, either within one parent when | 
 | 	 * the target existed, or across two parent directories. | 
 | 	 */ | 
 | 	if (src_is_directory && (new_parent || target_ip != NULL)) { | 
 |  | 
 | 		/* | 
 | 		 * Decrement link count on src_directory since the | 
 | 		 * entry that's moved no longer points to it. | 
 | 		 */ | 
 | 		error = xfs_droplink(tp, src_dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For whiteouts, we only need to update the source dirent with the | 
 | 	 * inode number of the whiteout inode rather than removing it | 
 | 	 * altogether. | 
 | 	 */ | 
 | 	if (wip) { | 
 | 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, | 
 | 					spaceres); | 
 | 	} else | 
 | 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, | 
 | 					   spaceres); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); | 
 | 	if (new_parent) | 
 | 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); | 
 |  | 
 | 	error = xfs_finish_rename(tp); | 
 | 	if (wip) | 
 | 		xfs_irele(wip); | 
 | 	return error; | 
 |  | 
 | out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | out_release_wip: | 
 | 	if (wip) | 
 | 		xfs_irele(wip); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_iflush_cluster( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_perag	*pag; | 
 | 	unsigned long		first_index, mask; | 
 | 	unsigned long		inodes_per_cluster; | 
 | 	int			cilist_size; | 
 | 	struct xfs_inode	**cilist; | 
 | 	struct xfs_inode	*cip; | 
 | 	int			nr_found; | 
 | 	int			clcount = 0; | 
 | 	int			i; | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 |  | 
 | 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | 
 | 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); | 
 | 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); | 
 | 	if (!cilist) | 
 | 		goto out_put; | 
 |  | 
 | 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); | 
 | 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; | 
 | 	rcu_read_lock(); | 
 | 	/* really need a gang lookup range call here */ | 
 | 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, | 
 | 					first_index, inodes_per_cluster); | 
 | 	if (nr_found == 0) | 
 | 		goto out_free; | 
 |  | 
 | 	for (i = 0; i < nr_found; i++) { | 
 | 		cip = cilist[i]; | 
 | 		if (cip == ip) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * because this is an RCU protected lookup, we could find a | 
 | 		 * recently freed or even reallocated inode during the lookup. | 
 | 		 * We need to check under the i_flags_lock for a valid inode | 
 | 		 * here. Skip it if it is not valid or the wrong inode. | 
 | 		 */ | 
 | 		spin_lock(&cip->i_flags_lock); | 
 | 		if (!cip->i_ino || | 
 | 		    __xfs_iflags_test(cip, XFS_ISTALE)) { | 
 | 			spin_unlock(&cip->i_flags_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Once we fall off the end of the cluster, no point checking | 
 | 		 * any more inodes in the list because they will also all be | 
 | 		 * outside the cluster. | 
 | 		 */ | 
 | 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { | 
 | 			spin_unlock(&cip->i_flags_lock); | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock(&cip->i_flags_lock); | 
 |  | 
 | 		/* | 
 | 		 * Do an un-protected check to see if the inode is dirty and | 
 | 		 * is a candidate for flushing.  These checks will be repeated | 
 | 		 * later after the appropriate locks are acquired. | 
 | 		 */ | 
 | 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Try to get locks.  If any are unavailable or it is pinned, | 
 | 		 * then this inode cannot be flushed and is skipped. | 
 | 		 */ | 
 |  | 
 | 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) | 
 | 			continue; | 
 | 		if (!xfs_iflock_nowait(cip)) { | 
 | 			xfs_iunlock(cip, XFS_ILOCK_SHARED); | 
 | 			continue; | 
 | 		} | 
 | 		if (xfs_ipincount(cip)) { | 
 | 			xfs_ifunlock(cip); | 
 | 			xfs_iunlock(cip, XFS_ILOCK_SHARED); | 
 | 			continue; | 
 | 		} | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * Check the inode number again, just to be certain we are not | 
 | 		 * racing with freeing in xfs_reclaim_inode(). See the comments | 
 | 		 * in that function for more information as to why the initial | 
 | 		 * check is not sufficient. | 
 | 		 */ | 
 | 		if (!cip->i_ino) { | 
 | 			xfs_ifunlock(cip); | 
 | 			xfs_iunlock(cip, XFS_ILOCK_SHARED); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * arriving here means that this inode can be flushed.  First | 
 | 		 * re-check that it's dirty before flushing. | 
 | 		 */ | 
 | 		if (!xfs_inode_clean(cip)) { | 
 | 			int	error; | 
 | 			error = xfs_iflush_int(cip, bp); | 
 | 			if (error) { | 
 | 				xfs_iunlock(cip, XFS_ILOCK_SHARED); | 
 | 				goto cluster_corrupt_out; | 
 | 			} | 
 | 			clcount++; | 
 | 		} else { | 
 | 			xfs_ifunlock(cip); | 
 | 		} | 
 | 		xfs_iunlock(cip, XFS_ILOCK_SHARED); | 
 | 	} | 
 |  | 
 | 	if (clcount) { | 
 | 		XFS_STATS_INC(mp, xs_icluster_flushcnt); | 
 | 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); | 
 | 	} | 
 |  | 
 | out_free: | 
 | 	rcu_read_unlock(); | 
 | 	kmem_free(cilist); | 
 | out_put: | 
 | 	xfs_perag_put(pag); | 
 | 	return 0; | 
 |  | 
 |  | 
 | cluster_corrupt_out: | 
 | 	/* | 
 | 	 * Corruption detected in the clustering loop.  Invalidate the | 
 | 	 * inode buffer and shut down the filesystem. | 
 | 	 */ | 
 | 	rcu_read_unlock(); | 
 | 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
 |  | 
 | 	/* | 
 | 	 * We'll always have an inode attached to the buffer for completion | 
 | 	 * process by the time we are called from xfs_iflush(). Hence we have | 
 | 	 * always need to do IO completion processing to abort the inodes | 
 | 	 * attached to the buffer.  handle them just like the shutdown case in | 
 | 	 * xfs_buf_submit(). | 
 | 	 */ | 
 | 	ASSERT(bp->b_iodone); | 
 | 	bp->b_flags &= ~XBF_DONE; | 
 | 	xfs_buf_stale(bp); | 
 | 	xfs_buf_ioerror(bp, -EIO); | 
 | 	xfs_buf_ioend(bp); | 
 |  | 
 | 	/* abort the corrupt inode, as it was not attached to the buffer */ | 
 | 	xfs_iflush_abort(cip, false); | 
 | 	kmem_free(cilist); | 
 | 	xfs_perag_put(pag); | 
 | 	return -EFSCORRUPTED; | 
 | } | 
 |  | 
 | /* | 
 |  * Flush dirty inode metadata into the backing buffer. | 
 |  * | 
 |  * The caller must have the inode lock and the inode flush lock held.  The | 
 |  * inode lock will still be held upon return to the caller, and the inode | 
 |  * flush lock will be released after the inode has reached the disk. | 
 |  * | 
 |  * The caller must write out the buffer returned in *bpp and release it. | 
 |  */ | 
 | int | 
 | xfs_iflush( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_buf		**bpp) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_buf		*bp = NULL; | 
 | 	struct xfs_dinode	*dip; | 
 | 	int			error; | 
 |  | 
 | 	XFS_STATS_INC(mp, xs_iflush_count); | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
 | 	ASSERT(xfs_isiflocked(ip)); | 
 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); | 
 |  | 
 | 	*bpp = NULL; | 
 |  | 
 | 	xfs_iunpin_wait(ip); | 
 |  | 
 | 	/* | 
 | 	 * For stale inodes we cannot rely on the backing buffer remaining | 
 | 	 * stale in cache for the remaining life of the stale inode and so | 
 | 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains | 
 | 	 * inodes below. We have to check this after ensuring the inode is | 
 | 	 * unpinned so that it is safe to reclaim the stale inode after the | 
 | 	 * flush call. | 
 | 	 */ | 
 | 	if (xfs_iflags_test(ip, XFS_ISTALE)) { | 
 | 		xfs_ifunlock(ip); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This may have been unpinned because the filesystem is shutting | 
 | 	 * down forcibly. If that's the case we must not write this inode | 
 | 	 * to disk, because the log record didn't make it to disk. | 
 | 	 * | 
 | 	 * We also have to remove the log item from the AIL in this case, | 
 | 	 * as we wait for an empty AIL as part of the unmount process. | 
 | 	 */ | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) { | 
 | 		error = -EIO; | 
 | 		goto abort_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the buffer containing the on-disk inode. We are doing a try-lock | 
 | 	 * operation here, so we may get  an EAGAIN error. In that case, we | 
 | 	 * simply want to return with the inode still dirty. | 
 | 	 * | 
 | 	 * If we get any other error, we effectively have a corruption situation | 
 | 	 * and we cannot flush the inode, so we treat it the same as failing | 
 | 	 * xfs_iflush_int(). | 
 | 	 */ | 
 | 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, | 
 | 			       0); | 
 | 	if (error == -EAGAIN) { | 
 | 		xfs_ifunlock(ip); | 
 | 		return error; | 
 | 	} | 
 | 	if (error) | 
 | 		goto corrupt_out; | 
 |  | 
 | 	/* | 
 | 	 * First flush out the inode that xfs_iflush was called with. | 
 | 	 */ | 
 | 	error = xfs_iflush_int(ip, bp); | 
 | 	if (error) | 
 | 		goto corrupt_out; | 
 |  | 
 | 	/* | 
 | 	 * If the buffer is pinned then push on the log now so we won't | 
 | 	 * get stuck waiting in the write for too long. | 
 | 	 */ | 
 | 	if (xfs_buf_ispinned(bp)) | 
 | 		xfs_log_force(mp, 0); | 
 |  | 
 | 	/* | 
 | 	 * inode clustering: try to gather other inodes into this write | 
 | 	 * | 
 | 	 * Note: Any error during clustering will result in the filesystem | 
 | 	 * being shut down and completion callbacks run on the cluster buffer. | 
 | 	 * As we have already flushed and attached this inode to the buffer, | 
 | 	 * it has already been aborted and released by xfs_iflush_cluster() and | 
 | 	 * so we have no further error handling to do here. | 
 | 	 */ | 
 | 	error = xfs_iflush_cluster(ip, bp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	*bpp = bp; | 
 | 	return 0; | 
 |  | 
 | corrupt_out: | 
 | 	if (bp) | 
 | 		xfs_buf_relse(bp); | 
 | 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
 | abort_out: | 
 | 	/* abort the corrupt inode, as it was not attached to the buffer */ | 
 | 	xfs_iflush_abort(ip, false); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * If there are inline format data / attr forks attached to this inode, | 
 |  * make sure they're not corrupt. | 
 |  */ | 
 | bool | 
 | xfs_inode_verify_forks( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_ifork	*ifp; | 
 | 	xfs_failaddr_t		fa; | 
 |  | 
 | 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); | 
 | 	if (fa) { | 
 | 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); | 
 | 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", | 
 | 				ifp->if_u1.if_data, ifp->if_bytes, fa); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); | 
 | 	if (fa) { | 
 | 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); | 
 | 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", | 
 | 				ifp ? ifp->if_u1.if_data : NULL, | 
 | 				ifp ? ifp->if_bytes : 0, fa); | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_iflush_int( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = ip->i_itemp; | 
 | 	struct xfs_dinode	*dip; | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
 | 	ASSERT(xfs_isiflocked(ip)); | 
 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); | 
 | 	ASSERT(iip != NULL && iip->ili_fields != 0); | 
 | 	ASSERT(ip->i_d.di_version > 1); | 
 |  | 
 | 	/* set *dip = inode's place in the buffer */ | 
 | 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); | 
 |  | 
 | 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), | 
 | 			       mp, XFS_ERRTAG_IFLUSH_1)) { | 
 | 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, | 
 | 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); | 
 | 		goto corrupt_out; | 
 | 	} | 
 | 	if (S_ISREG(VFS_I(ip)->i_mode)) { | 
 | 		if (XFS_TEST_ERROR( | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | 
 | 		    mp, XFS_ERRTAG_IFLUSH_3)) { | 
 | 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 				"%s: Bad regular inode %Lu, ptr "PTR_FMT, | 
 | 				__func__, ip->i_ino, ip); | 
 | 			goto corrupt_out; | 
 | 		} | 
 | 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) { | 
 | 		if (XFS_TEST_ERROR( | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | 
 | 		    mp, XFS_ERRTAG_IFLUSH_4)) { | 
 | 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 				"%s: Bad directory inode %Lu, ptr "PTR_FMT, | 
 | 				__func__, ip->i_ino, ip); | 
 | 			goto corrupt_out; | 
 | 		} | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | 
 | 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { | 
 | 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 			"%s: detected corrupt incore inode %Lu, " | 
 | 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT, | 
 | 			__func__, ip->i_ino, | 
 | 			ip->i_d.di_nextents + ip->i_d.di_anextents, | 
 | 			ip->i_d.di_nblocks, ip); | 
 | 		goto corrupt_out; | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | 
 | 				mp, XFS_ERRTAG_IFLUSH_6)) { | 
 | 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, | 
 | 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip); | 
 | 		goto corrupt_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Inode item log recovery for v2 inodes are dependent on the | 
 | 	 * di_flushiter count for correct sequencing. We bump the flush | 
 | 	 * iteration count so we can detect flushes which postdate a log record | 
 | 	 * during recovery. This is redundant as we now log every change and | 
 | 	 * hence this can't happen but we need to still do it to ensure | 
 | 	 * backwards compatibility with old kernels that predate logging all | 
 | 	 * inode changes. | 
 | 	 */ | 
 | 	if (ip->i_d.di_version < 3) | 
 | 		ip->i_d.di_flushiter++; | 
 |  | 
 | 	/* Check the inline fork data before we write out. */ | 
 | 	if (!xfs_inode_verify_forks(ip)) | 
 | 		goto corrupt_out; | 
 |  | 
 | 	/* | 
 | 	 * Copy the dirty parts of the inode into the on-disk inode.  We always | 
 | 	 * copy out the core of the inode, because if the inode is dirty at all | 
 | 	 * the core must be. | 
 | 	 */ | 
 | 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); | 
 |  | 
 | 	/* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
 | 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | 
 | 		ip->i_d.di_flushiter = 0; | 
 |  | 
 | 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); | 
 | 	if (XFS_IFORK_Q(ip)) | 
 | 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); | 
 | 	xfs_inobp_check(mp, bp); | 
 |  | 
 | 	/* | 
 | 	 * We've recorded everything logged in the inode, so we'd like to clear | 
 | 	 * the ili_fields bits so we don't log and flush things unnecessarily. | 
 | 	 * However, we can't stop logging all this information until the data | 
 | 	 * we've copied into the disk buffer is written to disk.  If we did we | 
 | 	 * might overwrite the copy of the inode in the log with all the data | 
 | 	 * after re-logging only part of it, and in the face of a crash we | 
 | 	 * wouldn't have all the data we need to recover. | 
 | 	 * | 
 | 	 * What we do is move the bits to the ili_last_fields field.  When | 
 | 	 * logging the inode, these bits are moved back to the ili_fields field. | 
 | 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we | 
 | 	 * know that the information those bits represent is permanently on | 
 | 	 * disk.  As long as the flush completes before the inode is logged | 
 | 	 * again, then both ili_fields and ili_last_fields will be cleared. | 
 | 	 * | 
 | 	 * We can play with the ili_fields bits here, because the inode lock | 
 | 	 * must be held exclusively in order to set bits there and the flush | 
 | 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush | 
 | 	 * done routine can tell whether or not to look in the AIL.  Also, store | 
 | 	 * the current LSN of the inode so that we can tell whether the item has | 
 | 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we | 
 | 	 * need the AIL lock, because it is a 64 bit value that cannot be read | 
 | 	 * atomically. | 
 | 	 */ | 
 | 	iip->ili_last_fields = iip->ili_fields; | 
 | 	iip->ili_fields = 0; | 
 | 	iip->ili_fsync_fields = 0; | 
 | 	iip->ili_logged = 1; | 
 |  | 
 | 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, | 
 | 				&iip->ili_item.li_lsn); | 
 |  | 
 | 	/* | 
 | 	 * Attach the function xfs_iflush_done to the inode's | 
 | 	 * buffer.  This will remove the inode from the AIL | 
 | 	 * and unlock the inode's flush lock when the inode is | 
 | 	 * completely written to disk. | 
 | 	 */ | 
 | 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); | 
 |  | 
 | 	/* generate the checksum. */ | 
 | 	xfs_dinode_calc_crc(mp, dip); | 
 |  | 
 | 	ASSERT(!list_empty(&bp->b_li_list)); | 
 | 	ASSERT(bp->b_iodone != NULL); | 
 | 	return 0; | 
 |  | 
 | corrupt_out: | 
 | 	return -EFSCORRUPTED; | 
 | } | 
 |  | 
 | /* Release an inode. */ | 
 | void | 
 | xfs_irele( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	trace_xfs_irele(ip, _RET_IP_); | 
 | 	iput(VFS_I(ip)); | 
 | } |