|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Marvell NAND flash controller driver | 
|  | * | 
|  | * Copyright (C) 2017 Marvell | 
|  | * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/mtd/rawnand.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mfd/syscon.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dma/pxa-dma.h> | 
|  | #include <linux/platform_data/mtd-nand-pxa3xx.h> | 
|  |  | 
|  | /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ | 
|  | #define FIFO_DEPTH		8 | 
|  | #define FIFO_REP(x)		(x / sizeof(u32)) | 
|  | #define BCH_SEQ_READS		(32 / FIFO_DEPTH) | 
|  | /* NFC does not support transfers of larger chunks at a time */ | 
|  | #define MAX_CHUNK_SIZE		2112 | 
|  | /* NFCv1 cannot read more that 7 bytes of ID */ | 
|  | #define NFCV1_READID_LEN	7 | 
|  | /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ | 
|  | #define POLL_PERIOD		0 | 
|  | #define POLL_TIMEOUT		100000 | 
|  | /* Interrupt maximum wait period in ms */ | 
|  | #define IRQ_TIMEOUT		1000 | 
|  | /* Latency in clock cycles between SoC pins and NFC logic */ | 
|  | #define MIN_RD_DEL_CNT		3 | 
|  | /* Maximum number of contiguous address cycles */ | 
|  | #define MAX_ADDRESS_CYC_NFCV1	5 | 
|  | #define MAX_ADDRESS_CYC_NFCV2	7 | 
|  | /* System control registers/bits to enable the NAND controller on some SoCs */ | 
|  | #define GENCONF_SOC_DEVICE_MUX	0x208 | 
|  | #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) | 
|  | #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) | 
|  | #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) | 
|  | #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) | 
|  | #define GENCONF_CLK_GATING_CTRL	0x220 | 
|  | #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) | 
|  | #define GENCONF_ND_CLK_CTRL	0x700 | 
|  | #define GENCONF_ND_CLK_CTRL_EN	BIT(0) | 
|  |  | 
|  | /* NAND controller data flash control register */ | 
|  | #define NDCR			0x00 | 
|  | #define NDCR_ALL_INT		GENMASK(11, 0) | 
|  | #define NDCR_CS1_CMDDM		BIT(7) | 
|  | #define NDCR_CS0_CMDDM		BIT(8) | 
|  | #define NDCR_RDYM		BIT(11) | 
|  | #define NDCR_ND_ARB_EN		BIT(12) | 
|  | #define NDCR_RA_START		BIT(15) | 
|  | #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16) | 
|  | #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0) | 
|  | #define NDCR_DWIDTH_M		BIT(26) | 
|  | #define NDCR_DWIDTH_C		BIT(27) | 
|  | #define NDCR_ND_RUN		BIT(28) | 
|  | #define NDCR_DMA_EN		BIT(29) | 
|  | #define NDCR_ECC_EN		BIT(30) | 
|  | #define NDCR_SPARE_EN		BIT(31) | 
|  | #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ | 
|  | NDCR_DWIDTH_M | NDCR_DWIDTH_C)) | 
|  |  | 
|  | /* NAND interface timing parameter 0 register */ | 
|  | #define NDTR0			0x04 | 
|  | #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0) | 
|  | #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3) | 
|  | #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3) | 
|  | #define NDTR0_SEL_NRE_EDGE	BIT(7) | 
|  | #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8) | 
|  | #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11) | 
|  | #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16) | 
|  | #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19) | 
|  | #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22) | 
|  | #define NDTR0_SELCNTR		BIT(26) | 
|  | #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27) | 
|  |  | 
|  | /* NAND interface timing parameter 1 register */ | 
|  | #define NDTR1			0x0C | 
|  | #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0) | 
|  | #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4) | 
|  | #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8) | 
|  | #define NDTR1_PRESCALE		BIT(14) | 
|  | #define NDTR1_WAIT_MODE		BIT(15) | 
|  | #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16) | 
|  |  | 
|  | /* NAND controller status register */ | 
|  | #define NDSR			0x14 | 
|  | #define NDSR_WRCMDREQ		BIT(0) | 
|  | #define NDSR_RDDREQ		BIT(1) | 
|  | #define NDSR_WRDREQ		BIT(2) | 
|  | #define NDSR_CORERR		BIT(3) | 
|  | #define NDSR_UNCERR		BIT(4) | 
|  | #define NDSR_CMDD(cs)		BIT(8 - cs) | 
|  | #define NDSR_RDY(rb)		BIT(11 + rb) | 
|  | #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F) | 
|  |  | 
|  | /* NAND ECC control register */ | 
|  | #define NDECCCTRL		0x28 | 
|  | #define NDECCCTRL_BCH_EN	BIT(0) | 
|  |  | 
|  | /* NAND controller data buffer register */ | 
|  | #define NDDB			0x40 | 
|  |  | 
|  | /* NAND controller command buffer 0 register */ | 
|  | #define NDCB0			0x48 | 
|  | #define NDCB0_CMD1(x)		((x & 0xFF) << 0) | 
|  | #define NDCB0_CMD2(x)		((x & 0xFF) << 8) | 
|  | #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16) | 
|  | #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) | 
|  | #define NDCB0_DBC		BIT(19) | 
|  | #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21) | 
|  | #define NDCB0_CSEL		BIT(24) | 
|  | #define NDCB0_RDY_BYP		BIT(27) | 
|  | #define NDCB0_LEN_OVRD		BIT(28) | 
|  | #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29) | 
|  |  | 
|  | /* NAND controller command buffer 1 register */ | 
|  | #define NDCB1			0x4C | 
|  | #define NDCB1_COLS(x)		((x & 0xFFFF) << 0) | 
|  | #define NDCB1_ADDRS_PAGE(x)	(x << 16) | 
|  |  | 
|  | /* NAND controller command buffer 2 register */ | 
|  | #define NDCB2			0x50 | 
|  | #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0) | 
|  | #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0) | 
|  |  | 
|  | /* NAND controller command buffer 3 register */ | 
|  | #define NDCB3			0x54 | 
|  | #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16) | 
|  | #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24) | 
|  |  | 
|  | /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ | 
|  | #define TYPE_READ		0 | 
|  | #define TYPE_WRITE		1 | 
|  | #define TYPE_ERASE		2 | 
|  | #define TYPE_READ_ID		3 | 
|  | #define TYPE_STATUS		4 | 
|  | #define TYPE_RESET		5 | 
|  | #define TYPE_NAKED_CMD		6 | 
|  | #define TYPE_NAKED_ADDR		7 | 
|  | #define TYPE_MASK		7 | 
|  | #define XTYPE_MONOLITHIC_RW	0 | 
|  | #define XTYPE_LAST_NAKED_RW	1 | 
|  | #define XTYPE_FINAL_COMMAND	3 | 
|  | #define XTYPE_READ		4 | 
|  | #define XTYPE_WRITE_DISPATCH	4 | 
|  | #define XTYPE_NAKED_RW		5 | 
|  | #define XTYPE_COMMAND_DISPATCH	6 | 
|  | #define XTYPE_MASK		7 | 
|  |  | 
|  | /** | 
|  | * Marvell ECC engine works differently than the others, in order to limit the | 
|  | * size of the IP, hardware engineers chose to set a fixed strength at 16 bits | 
|  | * per subpage, and depending on a the desired strength needed by the NAND chip, | 
|  | * a particular layout mixing data/spare/ecc is defined, with a possible last | 
|  | * chunk smaller that the others. | 
|  | * | 
|  | * @writesize:		Full page size on which the layout applies | 
|  | * @chunk:		Desired ECC chunk size on which the layout applies | 
|  | * @strength:		Desired ECC strength (per chunk size bytes) on which the | 
|  | *			layout applies | 
|  | * @nchunks:		Total number of chunks | 
|  | * @full_chunk_cnt:	Number of full-sized chunks, which is the number of | 
|  | *			repetitions of the pattern: | 
|  | *			(data_bytes + spare_bytes + ecc_bytes). | 
|  | * @data_bytes:		Number of data bytes per chunk | 
|  | * @spare_bytes:	Number of spare bytes per chunk | 
|  | * @ecc_bytes:		Number of ecc bytes per chunk | 
|  | * @last_data_bytes:	Number of data bytes in the last chunk | 
|  | * @last_spare_bytes:	Number of spare bytes in the last chunk | 
|  | * @last_ecc_bytes:	Number of ecc bytes in the last chunk | 
|  | */ | 
|  | struct marvell_hw_ecc_layout { | 
|  | /* Constraints */ | 
|  | int writesize; | 
|  | int chunk; | 
|  | int strength; | 
|  | /* Corresponding layout */ | 
|  | int nchunks; | 
|  | int full_chunk_cnt; | 
|  | int data_bytes; | 
|  | int spare_bytes; | 
|  | int ecc_bytes; | 
|  | int last_data_bytes; | 
|  | int last_spare_bytes; | 
|  | int last_ecc_bytes; | 
|  | }; | 
|  |  | 
|  | #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\ | 
|  | {								\ | 
|  | .writesize = ws,					\ | 
|  | .chunk = dc,						\ | 
|  | .strength = ds,						\ | 
|  | .nchunks = nc,						\ | 
|  | .full_chunk_cnt = fcc,					\ | 
|  | .data_bytes = db,					\ | 
|  | .spare_bytes = sb,					\ | 
|  | .ecc_bytes = eb,					\ | 
|  | .last_data_bytes = ldb,					\ | 
|  | .last_spare_bytes = lsb,				\ | 
|  | .last_ecc_bytes = leb,					\ | 
|  | } | 
|  |  | 
|  | /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ | 
|  | static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { | 
|  | MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0), | 
|  | MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0), | 
|  | MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0), | 
|  | MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0), | 
|  | MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30), | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection | 
|  | * is made by a field in NDCB0 register, and in another field in NDCB2 register. | 
|  | * The datasheet describes the logic with an error: ADDR5 field is once | 
|  | * declared at the beginning of NDCB2, and another time at its end. Because the | 
|  | * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical | 
|  | * to use the last bit of this field instead of the first ones. | 
|  | * | 
|  | * @cs:			Wanted CE lane. | 
|  | * @ndcb0_csel:		Value of the NDCB0 register with or without the flag | 
|  | *			selecting the wanted CE lane. This is set once when | 
|  | *			the Device Tree is probed. | 
|  | * @rb:			Ready/Busy pin for the flash chip | 
|  | */ | 
|  | struct marvell_nand_chip_sel { | 
|  | unsigned int cs; | 
|  | u32 ndcb0_csel; | 
|  | unsigned int rb; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * NAND chip structure: stores NAND chip device related information | 
|  | * | 
|  | * @chip:		Base NAND chip structure | 
|  | * @node:		Used to store NAND chips into a list | 
|  | * @layout		NAND layout when using hardware ECC | 
|  | * @ndcr:		Controller register value for this NAND chip | 
|  | * @ndtr0:		Timing registers 0 value for this NAND chip | 
|  | * @ndtr1:		Timing registers 1 value for this NAND chip | 
|  | * @selected_die:	Current active CS | 
|  | * @nsels:		Number of CS lines required by the NAND chip | 
|  | * @sels:		Array of CS lines descriptions | 
|  | */ | 
|  | struct marvell_nand_chip { | 
|  | struct nand_chip chip; | 
|  | struct list_head node; | 
|  | const struct marvell_hw_ecc_layout *layout; | 
|  | u32 ndcr; | 
|  | u32 ndtr0; | 
|  | u32 ndtr1; | 
|  | int addr_cyc; | 
|  | int selected_die; | 
|  | unsigned int nsels; | 
|  | struct marvell_nand_chip_sel sels[0]; | 
|  | }; | 
|  |  | 
|  | static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) | 
|  | { | 
|  | return container_of(chip, struct marvell_nand_chip, chip); | 
|  | } | 
|  |  | 
|  | static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip | 
|  | *nand) | 
|  | { | 
|  | return &nand->sels[nand->selected_die]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * NAND controller capabilities for distinction between compatible strings | 
|  | * | 
|  | * @max_cs_nb:		Number of Chip Select lines available | 
|  | * @max_rb_nb:		Number of Ready/Busy lines available | 
|  | * @need_system_controller: Indicates if the SoC needs to have access to the | 
|  | *                      system controller (ie. to enable the NAND controller) | 
|  | * @legacy_of_bindings:	Indicates if DT parsing must be done using the old | 
|  | *			fashion way | 
|  | * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie. | 
|  | *			BCH error detection and correction algorithm, | 
|  | *			NDCB3 register has been added | 
|  | * @use_dma:		Use dma for data transfers | 
|  | */ | 
|  | struct marvell_nfc_caps { | 
|  | unsigned int max_cs_nb; | 
|  | unsigned int max_rb_nb; | 
|  | bool need_system_controller; | 
|  | bool legacy_of_bindings; | 
|  | bool is_nfcv2; | 
|  | bool use_dma; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * NAND controller structure: stores Marvell NAND controller information | 
|  | * | 
|  | * @controller:		Base controller structure | 
|  | * @dev:		Parent device (used to print error messages) | 
|  | * @regs:		NAND controller registers | 
|  | * @core_clk:		Core clock | 
|  | * @reg_clk:		Regiters clock | 
|  | * @complete:		Completion object to wait for NAND controller events | 
|  | * @assigned_cs:	Bitmask describing already assigned CS lines | 
|  | * @chips:		List containing all the NAND chips attached to | 
|  | *			this NAND controller | 
|  | * @caps:		NAND controller capabilities for each compatible string | 
|  | * @dma_chan:		DMA channel (NFCv1 only) | 
|  | * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only) | 
|  | */ | 
|  | struct marvell_nfc { | 
|  | struct nand_controller controller; | 
|  | struct device *dev; | 
|  | void __iomem *regs; | 
|  | struct clk *core_clk; | 
|  | struct clk *reg_clk; | 
|  | struct completion complete; | 
|  | unsigned long assigned_cs; | 
|  | struct list_head chips; | 
|  | struct nand_chip *selected_chip; | 
|  | const struct marvell_nfc_caps *caps; | 
|  |  | 
|  | /* DMA (NFCv1 only) */ | 
|  | bool use_dma; | 
|  | struct dma_chan *dma_chan; | 
|  | u8 *dma_buf; | 
|  | }; | 
|  |  | 
|  | static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) | 
|  | { | 
|  | return container_of(ctrl, struct marvell_nfc, controller); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * NAND controller timings expressed in NAND Controller clock cycles | 
|  | * | 
|  | * @tRP:		ND_nRE pulse width | 
|  | * @tRH:		ND_nRE high duration | 
|  | * @tWP:		ND_nWE pulse time | 
|  | * @tWH:		ND_nWE high duration | 
|  | * @tCS:		Enable signal setup time | 
|  | * @tCH:		Enable signal hold time | 
|  | * @tADL:		Address to write data delay | 
|  | * @tAR:		ND_ALE low to ND_nRE low delay | 
|  | * @tWHR:		ND_nWE high to ND_nRE low for status read | 
|  | * @tRHW:		ND_nRE high duration, read to write delay | 
|  | * @tR:			ND_nWE high to ND_nRE low for read | 
|  | */ | 
|  | struct marvell_nfc_timings { | 
|  | /* NDTR0 fields */ | 
|  | unsigned int tRP; | 
|  | unsigned int tRH; | 
|  | unsigned int tWP; | 
|  | unsigned int tWH; | 
|  | unsigned int tCS; | 
|  | unsigned int tCH; | 
|  | unsigned int tADL; | 
|  | /* NDTR1 fields */ | 
|  | unsigned int tAR; | 
|  | unsigned int tWHR; | 
|  | unsigned int tRHW; | 
|  | unsigned int tR; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Derives a duration in numbers of clock cycles. | 
|  | * | 
|  | * @ps: Duration in pico-seconds | 
|  | * @period_ns:  Clock period in nano-seconds | 
|  | * | 
|  | * Convert the duration in nano-seconds, then divide by the period and | 
|  | * return the number of clock periods. | 
|  | */ | 
|  | #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) | 
|  | #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ | 
|  | period_ns)) | 
|  |  | 
|  | /** | 
|  | * NAND driver structure filled during the parsing of the ->exec_op() subop | 
|  | * subset of instructions. | 
|  | * | 
|  | * @ndcb:		Array of values written to NDCBx registers | 
|  | * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle | 
|  | * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin | 
|  | * @rdy_delay_ns:	Optional delay after waiting for the RB pin | 
|  | * @data_delay_ns:	Optional delay after the data xfer | 
|  | * @data_instr_idx:	Index of the data instruction in the subop | 
|  | * @data_instr:		Pointer to the data instruction in the subop | 
|  | */ | 
|  | struct marvell_nfc_op { | 
|  | u32 ndcb[4]; | 
|  | unsigned int cle_ale_delay_ns; | 
|  | unsigned int rdy_timeout_ms; | 
|  | unsigned int rdy_delay_ns; | 
|  | unsigned int data_delay_ns; | 
|  | unsigned int data_instr_idx; | 
|  | const struct nand_op_instr *data_instr; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Internal helper to conditionnally apply a delay (from the above structure, | 
|  | * most of the time). | 
|  | */ | 
|  | static void cond_delay(unsigned int ns) | 
|  | { | 
|  | if (!ns) | 
|  | return; | 
|  |  | 
|  | if (ns < 10000) | 
|  | ndelay(ns); | 
|  | else | 
|  | udelay(DIV_ROUND_UP(ns, 1000)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The controller has many flags that could generate interrupts, most of them | 
|  | * are disabled and polling is used. For the very slow signals, using interrupts | 
|  | * may relax the CPU charge. | 
|  | */ | 
|  | static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* Writing 1 disables the interrupt */ | 
|  | reg = readl_relaxed(nfc->regs + NDCR); | 
|  | writel_relaxed(reg | int_mask, nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* Writing 0 enables the interrupt */ | 
|  | reg = readl_relaxed(nfc->regs + NDCR); | 
|  | writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | reg = readl_relaxed(nfc->regs + NDSR); | 
|  | writel_relaxed(int_mask, nfc->regs + NDSR); | 
|  |  | 
|  | return reg & int_mask; | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_force_byte_access(struct nand_chip *chip, | 
|  | bool force_8bit) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 ndcr; | 
|  |  | 
|  | /* | 
|  | * Callers of this function do not verify if the NAND is using a 16-bit | 
|  | * an 8-bit bus for normal operations, so we need to take care of that | 
|  | * here by leaving the configuration unchanged if the NAND does not have | 
|  | * the NAND_BUSWIDTH_16 flag set. | 
|  | */ | 
|  | if (!(chip->options & NAND_BUSWIDTH_16)) | 
|  | return; | 
|  |  | 
|  | ndcr = readl_relaxed(nfc->regs + NDCR); | 
|  |  | 
|  | if (force_8bit) | 
|  | ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); | 
|  | else | 
|  | ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; | 
|  |  | 
|  | writel_relaxed(ndcr, nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_wait_ndrun(struct nand_chip *chip) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * The command is being processed, wait for the ND_RUN bit to be | 
|  | * cleared by the NFC. If not, we must clear it by hand. | 
|  | */ | 
|  | ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, | 
|  | (val & NDCR_ND_RUN) == 0, | 
|  | POLL_PERIOD, POLL_TIMEOUT); | 
|  | if (ret) { | 
|  | dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); | 
|  | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, | 
|  | nfc->regs + NDCR); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Any time a command has to be sent to the controller, the following sequence | 
|  | * has to be followed: | 
|  | * - call marvell_nfc_prepare_cmd() | 
|  | *      -> activate the ND_RUN bit that will kind of 'start a job' | 
|  | *      -> wait the signal indicating the NFC is waiting for a command | 
|  | * - send the command (cmd and address cycles) | 
|  | * - enventually send or receive the data | 
|  | * - call marvell_nfc_end_cmd() with the corresponding flag | 
|  | *      -> wait the flag to be triggered or cancel the job with a timeout | 
|  | * | 
|  | * The following helpers are here to factorize the code a bit so that | 
|  | * specialized functions responsible for executing the actual NAND | 
|  | * operations do not have to replicate the same code blocks. | 
|  | */ | 
|  | static int marvell_nfc_prepare_cmd(struct nand_chip *chip) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 ndcr, val; | 
|  | int ret; | 
|  |  | 
|  | /* Poll ND_RUN and clear NDSR before issuing any command */ | 
|  | ret = marvell_nfc_wait_ndrun(chip); | 
|  | if (ret) { | 
|  | dev_err(nfc->dev, "Last operation did not succeed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ndcr = readl_relaxed(nfc->regs + NDCR); | 
|  | writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); | 
|  |  | 
|  | /* Assert ND_RUN bit and wait the NFC to be ready */ | 
|  | writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); | 
|  | ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, | 
|  | val & NDSR_WRCMDREQ, | 
|  | POLL_PERIOD, POLL_TIMEOUT); | 
|  | if (ret) { | 
|  | dev_err(nfc->dev, "Timeout on WRCMDRE\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* Command may be written, clear WRCMDREQ status bit */ | 
|  | writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_send_cmd(struct nand_chip *chip, | 
|  | struct marvell_nfc_op *nfc_op) | 
|  | { | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  |  | 
|  | dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n" | 
|  | "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", | 
|  | (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], | 
|  | nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); | 
|  |  | 
|  | writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], | 
|  | nfc->regs + NDCB0); | 
|  | writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); | 
|  | writel(nfc_op->ndcb[2], nfc->regs + NDCB0); | 
|  |  | 
|  | /* | 
|  | * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 | 
|  | * fields are used (only available on NFCv2). | 
|  | */ | 
|  | if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || | 
|  | NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { | 
|  | if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) | 
|  | writel(nfc_op->ndcb[3], nfc->regs + NDCB0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, | 
|  | const char *label) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, | 
|  | val & flag, | 
|  | POLL_PERIOD, POLL_TIMEOUT); | 
|  |  | 
|  | if (ret) { | 
|  | dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", | 
|  | label, val); | 
|  | if (nfc->dma_chan) | 
|  | dmaengine_terminate_all(nfc->dma_chan); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA function uses this helper to poll on CMDD bits without wanting | 
|  | * them to be cleared. | 
|  | */ | 
|  | if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) | 
|  | return 0; | 
|  |  | 
|  | writel_relaxed(flag, nfc->regs + NDSR); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_wait_cmdd(struct nand_chip *chip) | 
|  | { | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); | 
|  |  | 
|  | return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 pending; | 
|  | int ret; | 
|  |  | 
|  | /* Timeout is expressed in ms */ | 
|  | if (!timeout_ms) | 
|  | timeout_ms = IRQ_TIMEOUT; | 
|  |  | 
|  | init_completion(&nfc->complete); | 
|  |  | 
|  | marvell_nfc_enable_int(nfc, NDCR_RDYM); | 
|  | ret = wait_for_completion_timeout(&nfc->complete, | 
|  | msecs_to_jiffies(timeout_ms)); | 
|  | marvell_nfc_disable_int(nfc, NDCR_RDYM); | 
|  | pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); | 
|  |  | 
|  | /* | 
|  | * In case the interrupt was not served in the required time frame, | 
|  | * check if the ISR was not served or if something went actually wrong. | 
|  | */ | 
|  | if (!ret && !pending) { | 
|  | dev_err(nfc->dev, "Timeout waiting for RB signal\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 ndcr_generic; | 
|  |  | 
|  | if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) | 
|  | return; | 
|  |  | 
|  | if (die_nr < 0 || die_nr >= marvell_nand->nsels) { | 
|  | nfc->selected_chip = NULL; | 
|  | marvell_nand->selected_die = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); | 
|  | writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); | 
|  |  | 
|  | /* | 
|  | * Reset the NDCR register to a clean state for this particular chip, | 
|  | * also clear ND_RUN bit. | 
|  | */ | 
|  | ndcr_generic = readl_relaxed(nfc->regs + NDCR) & | 
|  | NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; | 
|  | writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); | 
|  |  | 
|  | /* Also reset the interrupt status register */ | 
|  | marvell_nfc_clear_int(nfc, NDCR_ALL_INT); | 
|  |  | 
|  | nfc->selected_chip = chip; | 
|  | marvell_nand->selected_die = die_nr; | 
|  | } | 
|  |  | 
|  | static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct marvell_nfc *nfc = dev_id; | 
|  | u32 st = readl_relaxed(nfc->regs + NDSR); | 
|  | u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; | 
|  |  | 
|  | /* | 
|  | * RDY interrupt mask is one bit in NDCR while there are two status | 
|  | * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). | 
|  | */ | 
|  | if (st & NDSR_RDY(1)) | 
|  | st |= NDSR_RDY(0); | 
|  |  | 
|  | if (!(st & ien)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); | 
|  |  | 
|  | if (st & (NDSR_RDY(0) | NDSR_RDY(1))) | 
|  | complete(&nfc->complete); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* HW ECC related functions */ | 
|  | static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 ndcr = readl_relaxed(nfc->regs + NDCR); | 
|  |  | 
|  | if (!(ndcr & NDCR_ECC_EN)) { | 
|  | writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); | 
|  |  | 
|  | /* | 
|  | * When enabling BCH, set threshold to 0 to always know the | 
|  | * number of corrected bitflips. | 
|  | */ | 
|  | if (chip->ecc.algo == NAND_ECC_BCH) | 
|  | writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | u32 ndcr = readl_relaxed(nfc->regs + NDCR); | 
|  |  | 
|  | if (ndcr & NDCR_ECC_EN) { | 
|  | writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); | 
|  | if (chip->ecc.algo == NAND_ECC_BCH) | 
|  | writel_relaxed(0, nfc->regs + NDECCCTRL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* DMA related helpers */ | 
|  | static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | reg = readl_relaxed(nfc->regs + NDCR); | 
|  | writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | reg = readl_relaxed(nfc->regs + NDCR); | 
|  | writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | /* Read/write PIO/DMA accessors */ | 
|  | static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, | 
|  | enum dma_data_direction direction, | 
|  | unsigned int len) | 
|  | { | 
|  | unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | struct scatterlist sg; | 
|  | dma_cookie_t cookie; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_enable_dma(nfc); | 
|  | /* Prepare the DMA transfer */ | 
|  | sg_init_one(&sg, nfc->dma_buf, dma_len); | 
|  | dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); | 
|  | tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, | 
|  | direction == DMA_FROM_DEVICE ? | 
|  | DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, | 
|  | DMA_PREP_INTERRUPT); | 
|  | if (!tx) { | 
|  | dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Do the task and wait for it to finish */ | 
|  | cookie = dmaengine_submit(tx); | 
|  | ret = dma_submit_error(cookie); | 
|  | if (ret) | 
|  | return -EIO; | 
|  |  | 
|  | dma_async_issue_pending(nfc->dma_chan); | 
|  | ret = marvell_nfc_wait_cmdd(nfc->selected_chip); | 
|  | dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); | 
|  | marvell_nfc_disable_dma(nfc); | 
|  | if (ret) { | 
|  | dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", | 
|  | dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); | 
|  | dmaengine_terminate_all(nfc->dma_chan); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, | 
|  | unsigned int len) | 
|  | { | 
|  | unsigned int last_len = len % FIFO_DEPTH; | 
|  | unsigned int last_full_offset = round_down(len, FIFO_DEPTH); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < last_full_offset; i += FIFO_DEPTH) | 
|  | ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); | 
|  |  | 
|  | if (last_len) { | 
|  | u8 tmp_buf[FIFO_DEPTH]; | 
|  |  | 
|  | ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); | 
|  | memcpy(in + last_full_offset, tmp_buf, last_len); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, | 
|  | unsigned int len) | 
|  | { | 
|  | unsigned int last_len = len % FIFO_DEPTH; | 
|  | unsigned int last_full_offset = round_down(len, FIFO_DEPTH); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < last_full_offset; i += FIFO_DEPTH) | 
|  | iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); | 
|  |  | 
|  | if (last_len) { | 
|  | u8 tmp_buf[FIFO_DEPTH]; | 
|  |  | 
|  | memcpy(tmp_buf, out + last_full_offset, last_len); | 
|  | iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, | 
|  | u8 *data, int data_len, | 
|  | u8 *spare, int spare_len, | 
|  | u8 *ecc, int ecc_len, | 
|  | unsigned int *max_bitflips) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | int bf; | 
|  |  | 
|  | /* | 
|  | * Blank pages (all 0xFF) that have not been written may be recognized | 
|  | * as bad if bitflips occur, so whenever an uncorrectable error occurs, | 
|  | * check if the entire page (with ECC bytes) is actually blank or not. | 
|  | */ | 
|  | if (!data) | 
|  | data_len = 0; | 
|  | if (!spare) | 
|  | spare_len = 0; | 
|  | if (!ecc) | 
|  | ecc_len = 0; | 
|  |  | 
|  | bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, | 
|  | spare, spare_len, chip->ecc.strength); | 
|  | if (bf < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Update the stats and max_bitflips */ | 
|  | mtd->ecc_stats.corrected += bf; | 
|  | *max_bitflips = max_t(unsigned int, *max_bitflips, bf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check a chunk is correct or not according to hardware ECC engine. | 
|  | * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however | 
|  | * mtd->ecc_stats.failure is not, the function will instead return a non-zero | 
|  | * value indicating that a check on the emptyness of the subpage must be | 
|  | * performed before declaring the subpage corrupted. | 
|  | */ | 
|  | static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, | 
|  | unsigned int *max_bitflips) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | int bf = 0; | 
|  | u32 ndsr; | 
|  |  | 
|  | ndsr = readl_relaxed(nfc->regs + NDSR); | 
|  |  | 
|  | /* Check uncorrectable error flag */ | 
|  | if (ndsr & NDSR_UNCERR) { | 
|  | writel_relaxed(ndsr, nfc->regs + NDSR); | 
|  |  | 
|  | /* | 
|  | * Do not increment ->ecc_stats.failed now, instead, return a | 
|  | * non-zero value to indicate that this chunk was apparently | 
|  | * bad, and it should be check to see if it empty or not. If | 
|  | * the chunk (with ECC bytes) is not declared empty, the calling | 
|  | * function must increment the failure count. | 
|  | */ | 
|  | return -EBADMSG; | 
|  | } | 
|  |  | 
|  | /* Check correctable error flag */ | 
|  | if (ndsr & NDSR_CORERR) { | 
|  | writel_relaxed(ndsr, nfc->regs + NDSR); | 
|  |  | 
|  | if (chip->ecc.algo == NAND_ECC_BCH) | 
|  | bf = NDSR_ERRCNT(ndsr); | 
|  | else | 
|  | bf = 1; | 
|  | } | 
|  |  | 
|  | /* Update the stats and max_bitflips */ | 
|  | mtd->ecc_stats.corrected += bf; | 
|  | *max_bitflips = max_t(unsigned int, *max_bitflips, bf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Hamming read helpers */ | 
|  | static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, | 
|  | u8 *data_buf, u8 *oob_buf, | 
|  | bool raw, int page) | 
|  | { | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | struct marvell_nfc_op nfc_op = { | 
|  | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | | 
|  | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | | 
|  | NDCB0_DBC | | 
|  | NDCB0_CMD1(NAND_CMD_READ0) | | 
|  | NDCB0_CMD2(NAND_CMD_READSTART), | 
|  | .ndcb[1] = NDCB1_ADDRS_PAGE(page), | 
|  | .ndcb[2] = NDCB2_ADDR5_PAGE(page), | 
|  | }; | 
|  | unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); | 
|  | int ret; | 
|  |  | 
|  | /* NFCv2 needs more information about the operation being executed */ | 
|  | if (nfc->caps->is_nfcv2) | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, | 
|  | "RDDREQ while draining FIFO (data/oob)"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Read the page then the OOB area. Unlike what is shown in current | 
|  | * documentation, spare bytes are protected by the ECC engine, and must | 
|  | * be at the beginning of the OOB area or running this driver on legacy | 
|  | * systems will prevent the discovery of the BBM/BBT. | 
|  | */ | 
|  | if (nfc->use_dma) { | 
|  | marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, | 
|  | lt->data_bytes + oob_bytes); | 
|  | memcpy(data_buf, nfc->dma_buf, lt->data_bytes); | 
|  | memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); | 
|  | } else { | 
|  | marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); | 
|  | marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); | 
|  | } | 
|  |  | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, | 
|  | true, page); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | u8 *buf, int oob_required, | 
|  | int page) | 
|  | { | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; | 
|  | int max_bitflips = 0, ret; | 
|  | u8 *raw_buf; | 
|  |  | 
|  | marvell_nfc_enable_hw_ecc(chip); | 
|  | marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, | 
|  | page); | 
|  | ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); | 
|  | marvell_nfc_disable_hw_ecc(chip); | 
|  |  | 
|  | if (!ret) | 
|  | return max_bitflips; | 
|  |  | 
|  | /* | 
|  | * When ECC failures are detected, check if the full page has been | 
|  | * written or not. Ignore the failure if it is actually empty. | 
|  | */ | 
|  | raw_buf = kmalloc(full_sz, GFP_KERNEL); | 
|  | if (!raw_buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + | 
|  | lt->data_bytes, true, page); | 
|  | marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, | 
|  | &max_bitflips); | 
|  | kfree(raw_buf); | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spare area in Hamming layouts is not protected by the ECC engine (even if | 
|  | * it appears before the ECC bytes when reading), the ->read_oob_raw() function | 
|  | * also stands for ->read_oob(). | 
|  | */ | 
|  | static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, | 
|  | chip->oob_poi, true, page); | 
|  | } | 
|  |  | 
|  | /* Hamming write helpers */ | 
|  | static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, | 
|  | const u8 *data_buf, | 
|  | const u8 *oob_buf, bool raw, | 
|  | int page) | 
|  | { | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | struct marvell_nfc_op nfc_op = { | 
|  | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | | 
|  | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | | 
|  | NDCB0_CMD1(NAND_CMD_SEQIN) | | 
|  | NDCB0_CMD2(NAND_CMD_PAGEPROG) | | 
|  | NDCB0_DBC, | 
|  | .ndcb[1] = NDCB1_ADDRS_PAGE(page), | 
|  | .ndcb[2] = NDCB2_ADDR5_PAGE(page), | 
|  | }; | 
|  | unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); | 
|  | int ret; | 
|  |  | 
|  | /* NFCv2 needs more information about the operation being executed */ | 
|  | if (nfc->caps->is_nfcv2) | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, | 
|  | "WRDREQ while loading FIFO (data)"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Write the page then the OOB area */ | 
|  | if (nfc->use_dma) { | 
|  | memcpy(nfc->dma_buf, data_buf, lt->data_bytes); | 
|  | memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); | 
|  | marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + | 
|  | lt->ecc_bytes + lt->spare_bytes); | 
|  | } else { | 
|  | marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); | 
|  | marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); | 
|  | } | 
|  |  | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = marvell_nfc_wait_op(chip, | 
|  | PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, | 
|  | true, page); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_enable_hw_ecc(chip); | 
|  | ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, | 
|  | false, page); | 
|  | marvell_nfc_disable_hw_ecc(chip); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spare area in Hamming layouts is not protected by the ECC engine (even if | 
|  | * it appears before the ECC bytes when reading), the ->write_oob_raw() function | 
|  | * also stands for ->write_oob(). | 
|  | */ | 
|  | static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | memset(chip->data_buf, 0xFF, mtd->writesize); | 
|  |  | 
|  | return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, | 
|  | chip->oob_poi, true, page); | 
|  | } | 
|  |  | 
|  | /* BCH read helpers */ | 
|  | static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | u8 *oob = chip->oob_poi; | 
|  | int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; | 
|  | int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + | 
|  | lt->last_spare_bytes; | 
|  | int data_len = lt->data_bytes; | 
|  | int spare_len = lt->spare_bytes; | 
|  | int ecc_len = lt->ecc_bytes; | 
|  | int chunk; | 
|  |  | 
|  | if (oob_required) | 
|  | memset(chip->oob_poi, 0xFF, mtd->oobsize); | 
|  |  | 
|  | nand_read_page_op(chip, page, 0, NULL, 0); | 
|  |  | 
|  | for (chunk = 0; chunk < lt->nchunks; chunk++) { | 
|  | /* Update last chunk length */ | 
|  | if (chunk >= lt->full_chunk_cnt) { | 
|  | data_len = lt->last_data_bytes; | 
|  | spare_len = lt->last_spare_bytes; | 
|  | ecc_len = lt->last_ecc_bytes; | 
|  | } | 
|  |  | 
|  | /* Read data bytes*/ | 
|  | nand_change_read_column_op(chip, chunk * chunk_size, | 
|  | buf + (lt->data_bytes * chunk), | 
|  | data_len, false); | 
|  |  | 
|  | /* Read spare bytes */ | 
|  | nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), | 
|  | spare_len, false); | 
|  |  | 
|  | /* Read ECC bytes */ | 
|  | nand_read_data_op(chip, oob + ecc_offset + | 
|  | (ALIGN(lt->ecc_bytes, 32) * chunk), | 
|  | ecc_len, false); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, | 
|  | u8 *data, unsigned int data_len, | 
|  | u8 *spare, unsigned int spare_len, | 
|  | int page) | 
|  | { | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | int i, ret; | 
|  | struct marvell_nfc_op nfc_op = { | 
|  | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | | 
|  | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | | 
|  | NDCB0_LEN_OVRD, | 
|  | .ndcb[1] = NDCB1_ADDRS_PAGE(page), | 
|  | .ndcb[2] = NDCB2_ADDR5_PAGE(page), | 
|  | .ndcb[3] = data_len + spare_len, | 
|  | }; | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | if (chunk == 0) | 
|  | nfc_op.ndcb[0] |= NDCB0_DBC | | 
|  | NDCB0_CMD1(NAND_CMD_READ0) | | 
|  | NDCB0_CMD2(NAND_CMD_READSTART); | 
|  |  | 
|  | /* | 
|  | * Trigger the monolithic read on the first chunk, then naked read on | 
|  | * intermediate chunks and finally a last naked read on the last chunk. | 
|  | */ | 
|  | if (chunk == 0) | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); | 
|  | else if (chunk < lt->nchunks - 1) | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); | 
|  | else | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  |  | 
|  | /* | 
|  | * According to the datasheet, when reading from NDDB | 
|  | * with BCH enabled, after each 32 bytes reads, we | 
|  | * have to make sure that the NDSR.RDDREQ bit is set. | 
|  | * | 
|  | * Drain the FIFO, 8 32-bit reads at a time, and skip | 
|  | * the polling on the last read. | 
|  | * | 
|  | * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. | 
|  | */ | 
|  | for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { | 
|  | marvell_nfc_end_cmd(chip, NDSR_RDDREQ, | 
|  | "RDDREQ while draining FIFO (data)"); | 
|  | marvell_nfc_xfer_data_in_pio(nfc, data, | 
|  | FIFO_DEPTH * BCH_SEQ_READS); | 
|  | data += FIFO_DEPTH * BCH_SEQ_READS; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { | 
|  | marvell_nfc_end_cmd(chip, NDSR_RDDREQ, | 
|  | "RDDREQ while draining FIFO (OOB)"); | 
|  | marvell_nfc_xfer_data_in_pio(nfc, spare, | 
|  | FIFO_DEPTH * BCH_SEQ_READS); | 
|  | spare += FIFO_DEPTH * BCH_SEQ_READS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | u8 *buf, int oob_required, | 
|  | int page) | 
|  | { | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len; | 
|  | u8 *data = buf, *spare = chip->oob_poi, *ecc; | 
|  | int max_bitflips = 0; | 
|  | u32 failure_mask = 0; | 
|  | int chunk, ecc_offset_in_page, ret; | 
|  |  | 
|  | /* | 
|  | * With BCH, OOB is not fully used (and thus not read entirely), not | 
|  | * expected bytes could show up at the end of the OOB buffer if not | 
|  | * explicitly erased. | 
|  | */ | 
|  | if (oob_required) | 
|  | memset(chip->oob_poi, 0xFF, mtd->oobsize); | 
|  |  | 
|  | marvell_nfc_enable_hw_ecc(chip); | 
|  |  | 
|  | for (chunk = 0; chunk < lt->nchunks; chunk++) { | 
|  | /* Update length for the last chunk */ | 
|  | if (chunk >= lt->full_chunk_cnt) { | 
|  | data_len = lt->last_data_bytes; | 
|  | spare_len = lt->last_spare_bytes; | 
|  | } | 
|  |  | 
|  | /* Read the chunk and detect number of bitflips */ | 
|  | marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, | 
|  | spare, spare_len, page); | 
|  | ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); | 
|  | if (ret) | 
|  | failure_mask |= BIT(chunk); | 
|  |  | 
|  | data += data_len; | 
|  | spare += spare_len; | 
|  | } | 
|  |  | 
|  | marvell_nfc_disable_hw_ecc(chip); | 
|  |  | 
|  | if (!failure_mask) | 
|  | return max_bitflips; | 
|  |  | 
|  | /* | 
|  | * Please note that dumping the ECC bytes during a normal read with OOB | 
|  | * area would add a significant overhead as ECC bytes are "consumed" by | 
|  | * the controller in normal mode and must be re-read in raw mode. To | 
|  | * avoid dropping the performances, we prefer not to include them. The | 
|  | * user should re-read the page in raw mode if ECC bytes are required. | 
|  | * | 
|  | * However, for any subpage read error reported by ->correct(), the ECC | 
|  | * bytes must be read in raw mode and the full subpage must be checked | 
|  | * to see if it is entirely empty of if there was an actual error. | 
|  | */ | 
|  | for (chunk = 0; chunk < lt->nchunks; chunk++) { | 
|  | /* No failure reported for this chunk, move to the next one */ | 
|  | if (!(failure_mask & BIT(chunk))) | 
|  | continue; | 
|  |  | 
|  | /* Derive ECC bytes positions (in page/buffer) and length */ | 
|  | ecc = chip->oob_poi + | 
|  | (lt->full_chunk_cnt * lt->spare_bytes) + | 
|  | lt->last_spare_bytes + | 
|  | (chunk * ALIGN(lt->ecc_bytes, 32)); | 
|  | ecc_offset_in_page = | 
|  | (chunk * (lt->data_bytes + lt->spare_bytes + | 
|  | lt->ecc_bytes)) + | 
|  | (chunk < lt->full_chunk_cnt ? | 
|  | lt->data_bytes + lt->spare_bytes : | 
|  | lt->last_data_bytes + lt->last_spare_bytes); | 
|  | ecc_len = chunk < lt->full_chunk_cnt ? | 
|  | lt->ecc_bytes : lt->last_ecc_bytes; | 
|  |  | 
|  | /* Do the actual raw read of the ECC bytes */ | 
|  | nand_change_read_column_op(chip, ecc_offset_in_page, | 
|  | ecc, ecc_len, false); | 
|  |  | 
|  | /* Derive data/spare bytes positions (in buffer) and length */ | 
|  | data = buf + (chunk * lt->data_bytes); | 
|  | data_len = chunk < lt->full_chunk_cnt ? | 
|  | lt->data_bytes : lt->last_data_bytes; | 
|  | spare = chip->oob_poi + (chunk * (lt->spare_bytes + | 
|  | lt->ecc_bytes)); | 
|  | spare_len = chunk < lt->full_chunk_cnt ? | 
|  | lt->spare_bytes : lt->last_spare_bytes; | 
|  |  | 
|  | /* Check the entire chunk (data + spare + ecc) for emptyness */ | 
|  | marvell_nfc_check_empty_chunk(chip, data, data_len, spare, | 
|  | spare_len, ecc, ecc_len, | 
|  | &max_bitflips); | 
|  | } | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page); | 
|  | } | 
|  |  | 
|  | /* BCH write helpers */ | 
|  | static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; | 
|  | int data_len = lt->data_bytes; | 
|  | int spare_len = lt->spare_bytes; | 
|  | int ecc_len = lt->ecc_bytes; | 
|  | int spare_offset = 0; | 
|  | int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + | 
|  | lt->last_spare_bytes; | 
|  | int chunk; | 
|  |  | 
|  | nand_prog_page_begin_op(chip, page, 0, NULL, 0); | 
|  |  | 
|  | for (chunk = 0; chunk < lt->nchunks; chunk++) { | 
|  | if (chunk >= lt->full_chunk_cnt) { | 
|  | data_len = lt->last_data_bytes; | 
|  | spare_len = lt->last_spare_bytes; | 
|  | ecc_len = lt->last_ecc_bytes; | 
|  | } | 
|  |  | 
|  | /* Point to the column of the next chunk */ | 
|  | nand_change_write_column_op(chip, chunk * full_chunk_size, | 
|  | NULL, 0, false); | 
|  |  | 
|  | /* Write the data */ | 
|  | nand_write_data_op(chip, buf + (chunk * lt->data_bytes), | 
|  | data_len, false); | 
|  |  | 
|  | if (!oob_required) | 
|  | continue; | 
|  |  | 
|  | /* Write the spare bytes */ | 
|  | if (spare_len) | 
|  | nand_write_data_op(chip, chip->oob_poi + spare_offset, | 
|  | spare_len, false); | 
|  |  | 
|  | /* Write the ECC bytes */ | 
|  | if (ecc_len) | 
|  | nand_write_data_op(chip, chip->oob_poi + ecc_offset, | 
|  | ecc_len, false); | 
|  |  | 
|  | spare_offset += spare_len; | 
|  | ecc_offset += ALIGN(ecc_len, 32); | 
|  | } | 
|  |  | 
|  | return nand_prog_page_end_op(chip); | 
|  | } | 
|  |  | 
|  | static int | 
|  | marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, | 
|  | const u8 *data, unsigned int data_len, | 
|  | const u8 *spare, unsigned int spare_len, | 
|  | int page) | 
|  | { | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | u32 xtype; | 
|  | int ret; | 
|  | struct marvell_nfc_op nfc_op = { | 
|  | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, | 
|  | .ndcb[3] = data_len + spare_len, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * First operation dispatches the CMD_SEQIN command, issue the address | 
|  | * cycles and asks for the first chunk of data. | 
|  | * All operations in the middle (if any) will issue a naked write and | 
|  | * also ask for data. | 
|  | * Last operation (if any) asks for the last chunk of data through a | 
|  | * last naked write. | 
|  | */ | 
|  | if (chunk == 0) { | 
|  | if (lt->nchunks == 1) | 
|  | xtype = XTYPE_MONOLITHIC_RW; | 
|  | else | 
|  | xtype = XTYPE_WRITE_DISPATCH; | 
|  |  | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | | 
|  | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | | 
|  | NDCB0_CMD1(NAND_CMD_SEQIN); | 
|  | nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); | 
|  | nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); | 
|  | } else if (chunk < lt->nchunks - 1) { | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); | 
|  | } else { | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); | 
|  | } | 
|  |  | 
|  | /* Always dispatch the PAGEPROG command on the last chunk */ | 
|  | if (chunk == lt->nchunks - 1) | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, | 
|  | "WRDREQ while loading FIFO (data)"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Transfer the contents */ | 
|  | iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); | 
|  | iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  | const u8 *data = buf; | 
|  | const u8 *spare = chip->oob_poi; | 
|  | int data_len = lt->data_bytes; | 
|  | int spare_len = lt->spare_bytes; | 
|  | int chunk, ret; | 
|  |  | 
|  | /* Spare data will be written anyway, so clear it to avoid garbage */ | 
|  | if (!oob_required) | 
|  | memset(chip->oob_poi, 0xFF, mtd->oobsize); | 
|  |  | 
|  | marvell_nfc_enable_hw_ecc(chip); | 
|  |  | 
|  | for (chunk = 0; chunk < lt->nchunks; chunk++) { | 
|  | if (chunk >= lt->full_chunk_cnt) { | 
|  | data_len = lt->last_data_bytes; | 
|  | spare_len = lt->last_spare_bytes; | 
|  | } | 
|  |  | 
|  | marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, | 
|  | spare, spare_len, page); | 
|  | data += data_len; | 
|  | spare += spare_len; | 
|  |  | 
|  | /* | 
|  | * Waiting only for CMDD or PAGED is not enough, ECC are | 
|  | * partially written. No flag is set once the operation is | 
|  | * really finished but the ND_RUN bit is cleared, so wait for it | 
|  | * before stepping into the next command. | 
|  | */ | 
|  | marvell_nfc_wait_ndrun(chip); | 
|  | } | 
|  |  | 
|  | ret = marvell_nfc_wait_op(chip, | 
|  | PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); | 
|  |  | 
|  | marvell_nfc_disable_hw_ecc(chip); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | memset(chip->data_buf, 0xFF, mtd->writesize); | 
|  |  | 
|  | return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | memset(chip->data_buf, 0xFF, mtd->writesize); | 
|  |  | 
|  | return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page); | 
|  | } | 
|  |  | 
|  | /* NAND framework ->exec_op() hooks and related helpers */ | 
|  | static void marvell_nfc_parse_instructions(struct nand_chip *chip, | 
|  | const struct nand_subop *subop, | 
|  | struct marvell_nfc_op *nfc_op) | 
|  | { | 
|  | const struct nand_op_instr *instr = NULL; | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | bool first_cmd = true; | 
|  | unsigned int op_id; | 
|  | int i; | 
|  |  | 
|  | /* Reset the input structure as most of its fields will be OR'ed */ | 
|  | memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); | 
|  |  | 
|  | for (op_id = 0; op_id < subop->ninstrs; op_id++) { | 
|  | unsigned int offset, naddrs; | 
|  | const u8 *addrs; | 
|  | int len; | 
|  |  | 
|  | instr = &subop->instrs[op_id]; | 
|  |  | 
|  | switch (instr->type) { | 
|  | case NAND_OP_CMD_INSTR: | 
|  | if (first_cmd) | 
|  | nfc_op->ndcb[0] |= | 
|  | NDCB0_CMD1(instr->ctx.cmd.opcode); | 
|  | else | 
|  | nfc_op->ndcb[0] |= | 
|  | NDCB0_CMD2(instr->ctx.cmd.opcode) | | 
|  | NDCB0_DBC; | 
|  |  | 
|  | nfc_op->cle_ale_delay_ns = instr->delay_ns; | 
|  | first_cmd = false; | 
|  | break; | 
|  |  | 
|  | case NAND_OP_ADDR_INSTR: | 
|  | offset = nand_subop_get_addr_start_off(subop, op_id); | 
|  | naddrs = nand_subop_get_num_addr_cyc(subop, op_id); | 
|  | addrs = &instr->ctx.addr.addrs[offset]; | 
|  |  | 
|  | nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); | 
|  |  | 
|  | for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) | 
|  | nfc_op->ndcb[1] |= addrs[i] << (8 * i); | 
|  |  | 
|  | if (naddrs >= 5) | 
|  | nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); | 
|  | if (naddrs >= 6) | 
|  | nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); | 
|  | if (naddrs == 7) | 
|  | nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); | 
|  |  | 
|  | nfc_op->cle_ale_delay_ns = instr->delay_ns; | 
|  | break; | 
|  |  | 
|  | case NAND_OP_DATA_IN_INSTR: | 
|  | nfc_op->data_instr = instr; | 
|  | nfc_op->data_instr_idx = op_id; | 
|  | nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); | 
|  | if (nfc->caps->is_nfcv2) { | 
|  | nfc_op->ndcb[0] |= | 
|  | NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | | 
|  | NDCB0_LEN_OVRD; | 
|  | len = nand_subop_get_data_len(subop, op_id); | 
|  | nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); | 
|  | } | 
|  | nfc_op->data_delay_ns = instr->delay_ns; | 
|  | break; | 
|  |  | 
|  | case NAND_OP_DATA_OUT_INSTR: | 
|  | nfc_op->data_instr = instr; | 
|  | nfc_op->data_instr_idx = op_id; | 
|  | nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); | 
|  | if (nfc->caps->is_nfcv2) { | 
|  | nfc_op->ndcb[0] |= | 
|  | NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | | 
|  | NDCB0_LEN_OVRD; | 
|  | len = nand_subop_get_data_len(subop, op_id); | 
|  | nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); | 
|  | } | 
|  | nfc_op->data_delay_ns = instr->delay_ns; | 
|  | break; | 
|  |  | 
|  | case NAND_OP_WAITRDY_INSTR: | 
|  | nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; | 
|  | nfc_op->rdy_delay_ns = instr->delay_ns; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, | 
|  | const struct nand_subop *subop, | 
|  | struct marvell_nfc_op *nfc_op) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | const struct nand_op_instr *instr = nfc_op->data_instr; | 
|  | unsigned int op_id = nfc_op->data_instr_idx; | 
|  | unsigned int len = nand_subop_get_data_len(subop, op_id); | 
|  | unsigned int offset = nand_subop_get_data_start_off(subop, op_id); | 
|  | bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); | 
|  | int ret; | 
|  |  | 
|  | if (instr->ctx.data.force_8bit) | 
|  | marvell_nfc_force_byte_access(chip, true); | 
|  |  | 
|  | if (reading) { | 
|  | u8 *in = instr->ctx.data.buf.in + offset; | 
|  |  | 
|  | ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); | 
|  | } else { | 
|  | const u8 *out = instr->ctx.data.buf.out + offset; | 
|  |  | 
|  | ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); | 
|  | } | 
|  |  | 
|  | if (instr->ctx.data.force_8bit) | 
|  | marvell_nfc_force_byte_access(chip, false); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | bool reading; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  | reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, | 
|  | "RDDREQ/WRDREQ while draining raw data"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.cle_ale_delay_ns); | 
|  |  | 
|  | if (reading) { | 
|  | if (nfc_op.rdy_timeout_ms) { | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  | } | 
|  |  | 
|  | marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.data_delay_ns); | 
|  |  | 
|  | if (!reading) { | 
|  | if (nfc_op.rdy_timeout_ms) { | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NDCR ND_RUN bit should be cleared automatically at the end of each | 
|  | * operation but experience shows that the behavior is buggy when it | 
|  | * comes to writes (with LEN_OVRD). Clear it by hand in this case. | 
|  | */ | 
|  | if (!reading) { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  |  | 
|  | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, | 
|  | nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_naked_access_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  |  | 
|  | /* | 
|  | * Naked access are different in that they need to be flagged as naked | 
|  | * by the controller. Reset the controller registers fields that inform | 
|  | * on the type and refill them according to the ongoing operation. | 
|  | */ | 
|  | nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | | 
|  | NDCB0_CMD_XTYPE(XTYPE_MASK)); | 
|  | switch (subop->instrs[0].type) { | 
|  | case NAND_OP_CMD_INSTR: | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); | 
|  | break; | 
|  | case NAND_OP_ADDR_INSTR: | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); | 
|  | break; | 
|  | case NAND_OP_DATA_IN_INSTR: | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | | 
|  | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); | 
|  | break; | 
|  | case NAND_OP_DATA_OUT_INSTR: | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | | 
|  | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); | 
|  | break; | 
|  | default: | 
|  | /* This should never happen */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  |  | 
|  | if (!nfc_op.data_instr) { | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | cond_delay(nfc_op.cle_ale_delay_ns); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, | 
|  | "RDDREQ/WRDREQ while draining raw data"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * NDCR ND_RUN bit should be cleared automatically at the end of each | 
|  | * operation but experience shows that the behavior is buggy when it | 
|  | * comes to writes (with LEN_OVRD). Clear it by hand in this case. | 
|  | */ | 
|  | if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  |  | 
|  | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, | 
|  | nfc->regs + NDCR); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  |  | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  | nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, | 
|  | "RDDREQ while reading ID"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.cle_ale_delay_ns); | 
|  |  | 
|  | if (nfc_op.rdy_timeout_ms) { | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  |  | 
|  | marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.data_delay_ns); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_read_status_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  | nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, | 
|  | "RDDREQ while reading status"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.cle_ale_delay_ns); | 
|  |  | 
|  | if (nfc_op.rdy_timeout_ms) { | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  |  | 
|  | marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.data_delay_ns); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.cle_ale_delay_ns); | 
|  |  | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, | 
|  | const struct nand_subop *subop) | 
|  | { | 
|  | struct marvell_nfc_op nfc_op; | 
|  | int ret; | 
|  |  | 
|  | marvell_nfc_parse_instructions(chip, subop, &nfc_op); | 
|  | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); | 
|  |  | 
|  | ret = marvell_nfc_prepare_cmd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | marvell_nfc_send_cmd(chip, &nfc_op); | 
|  | ret = marvell_nfc_wait_cmdd(chip); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.cle_ale_delay_ns); | 
|  |  | 
|  | ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_delay(nfc_op.rdy_delay_ns); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( | 
|  | /* Monolithic reads/writes */ | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_monolithic_access_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_monolithic_access_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), | 
|  | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(true), | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), | 
|  | /* Naked commands */ | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_naked_access_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_naked_access_exec, | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_naked_access_exec, | 
|  | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_naked_access_exec, | 
|  | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_naked_waitrdy_exec, | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), | 
|  | ); | 
|  |  | 
|  | static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( | 
|  | /* Naked commands not supported, use a function for each pattern */ | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_read_id_type_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), | 
|  | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_erase_cmd_type_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_read_status_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_reset_cmd_type_exec, | 
|  | NAND_OP_PARSER_PAT_CMD_ELEM(false), | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), | 
|  | NAND_OP_PARSER_PATTERN( | 
|  | marvell_nfc_naked_waitrdy_exec, | 
|  | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), | 
|  | ); | 
|  |  | 
|  | static int marvell_nfc_exec_op(struct nand_chip *chip, | 
|  | const struct nand_operation *op, | 
|  | bool check_only) | 
|  | { | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  |  | 
|  | if (nfc->caps->is_nfcv2) | 
|  | return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, | 
|  | op, check_only); | 
|  | else | 
|  | return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, | 
|  | op, check_only); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Layouts were broken in old pxa3xx_nand driver, these are supposed to be | 
|  | * usable. | 
|  | */ | 
|  | static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + | 
|  | lt->last_ecc_bytes; | 
|  | oobregion->offset = mtd->oobsize - oobregion->length; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* | 
|  | * Bootrom looks in bytes 0 & 5 for bad blocks for the | 
|  | * 4KB page / 4bit BCH combination. | 
|  | */ | 
|  | if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) | 
|  | oobregion->offset = 6; | 
|  | else | 
|  | oobregion->offset = 2; | 
|  |  | 
|  | oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + | 
|  | lt->last_spare_bytes - oobregion->offset; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { | 
|  | .ecc = marvell_nand_ooblayout_ecc, | 
|  | .free = marvell_nand_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, | 
|  | struct nand_ecc_ctrl *ecc) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | const struct marvell_hw_ecc_layout *l; | 
|  | int i; | 
|  |  | 
|  | if (!nfc->caps->is_nfcv2 && | 
|  | (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { | 
|  | dev_err(nfc->dev, | 
|  | "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", | 
|  | mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | to_marvell_nand(chip)->layout = NULL; | 
|  | for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { | 
|  | l = &marvell_nfc_layouts[i]; | 
|  | if (mtd->writesize == l->writesize && | 
|  | ecc->size == l->chunk && ecc->strength == l->strength) { | 
|  | to_marvell_nand(chip)->layout = l; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!to_marvell_nand(chip)->layout || | 
|  | (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { | 
|  | dev_err(nfc->dev, | 
|  | "ECC strength %d at page size %d is not supported\n", | 
|  | ecc->strength, mtd->writesize); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); | 
|  | ecc->steps = l->nchunks; | 
|  | ecc->size = l->data_bytes; | 
|  |  | 
|  | if (ecc->strength == 1) { | 
|  | chip->ecc.algo = NAND_ECC_HAMMING; | 
|  | ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; | 
|  | ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; | 
|  | ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; | 
|  | ecc->read_oob = ecc->read_oob_raw; | 
|  | ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; | 
|  | ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; | 
|  | ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; | 
|  | ecc->write_oob = ecc->write_oob_raw; | 
|  | } else { | 
|  | chip->ecc.algo = NAND_ECC_BCH; | 
|  | ecc->strength = 16; | 
|  | ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; | 
|  | ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; | 
|  | ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; | 
|  | ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; | 
|  | ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; | 
|  | ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; | 
|  | ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; | 
|  | ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nand_ecc_init(struct mtd_info *mtd, | 
|  | struct nand_ecc_ctrl *ecc) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | int ret; | 
|  |  | 
|  | if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { | 
|  | if (chip->ecc_step_ds && chip->ecc_strength_ds) { | 
|  | ecc->size = chip->ecc_step_ds; | 
|  | ecc->strength = chip->ecc_strength_ds; | 
|  | } else { | 
|  | dev_info(nfc->dev, | 
|  | "No minimum ECC strength, using 1b/512B\n"); | 
|  | ecc->size = 512; | 
|  | ecc->strength = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (ecc->mode) { | 
|  | case NAND_ECC_HW: | 
|  | ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); | 
|  | if (ret) | 
|  | return ret; | 
|  | break; | 
|  | case NAND_ECC_NONE: | 
|  | case NAND_ECC_SOFT: | 
|  | case NAND_ECC_ON_DIE: | 
|  | if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && | 
|  | mtd->writesize != SZ_2K) { | 
|  | dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", | 
|  | mtd->writesize); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; | 
|  | static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_main_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | | 
|  | NAND_BBT_2BIT | NAND_BBT_VERSION, | 
|  | .offs =	8, | 
|  | .len = 6, | 
|  | .veroffs = 14, | 
|  | .maxblocks = 8,	/* Last 8 blocks in each chip */ | 
|  | .pattern = bbt_pattern | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_mirror_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | | 
|  | NAND_BBT_2BIT | NAND_BBT_VERSION, | 
|  | .offs =	8, | 
|  | .len = 6, | 
|  | .veroffs = 14, | 
|  | .maxblocks = 8,	/* Last 8 blocks in each chip */ | 
|  | .pattern = bbt_mirror_pattern | 
|  | }; | 
|  |  | 
|  | static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, | 
|  | const struct nand_data_interface | 
|  | *conf) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; | 
|  | const struct nand_sdr_timings *sdr; | 
|  | struct marvell_nfc_timings nfc_tmg; | 
|  | int read_delay; | 
|  |  | 
|  | sdr = nand_get_sdr_timings(conf); | 
|  | if (IS_ERR(sdr)) | 
|  | return PTR_ERR(sdr); | 
|  |  | 
|  | /* | 
|  | * SDR timings are given in pico-seconds while NFC timings must be | 
|  | * expressed in NAND controller clock cycles, which is half of the | 
|  | * frequency of the accessible ECC clock retrieved by clk_get_rate(). | 
|  | * This is not written anywhere in the datasheet but was observed | 
|  | * with an oscilloscope. | 
|  | * | 
|  | * NFC datasheet gives equations from which thoses calculations | 
|  | * are derived, they tend to be slightly more restrictives than the | 
|  | * given core timings and may improve the overall speed. | 
|  | */ | 
|  | nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; | 
|  | nfc_tmg.tRH = nfc_tmg.tRP; | 
|  | nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; | 
|  | nfc_tmg.tWH = nfc_tmg.tWP; | 
|  | nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); | 
|  | nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; | 
|  | nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); | 
|  | /* | 
|  | * Read delay is the time of propagation from SoC pins to NFC internal | 
|  | * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In | 
|  | * EDO mode, an additional delay of tRH must be taken into account so | 
|  | * the data is sampled on the falling edge instead of the rising edge. | 
|  | */ | 
|  | read_delay = sdr->tRC_min >= 30000 ? | 
|  | MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; | 
|  |  | 
|  | nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); | 
|  | /* | 
|  | * tWHR and tRHW are supposed to be read to write delays (and vice | 
|  | * versa) but in some cases, ie. when doing a change column, they must | 
|  | * be greater than that to be sure tCCS delay is respected. | 
|  | */ | 
|  | nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), | 
|  | period_ns) - 2, | 
|  | nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), | 
|  | period_ns); | 
|  |  | 
|  | /* | 
|  | * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. | 
|  | * NFCv1: No WAIT_MODE, tR must be maximal. | 
|  | */ | 
|  | if (nfc->caps->is_nfcv2) { | 
|  | nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); | 
|  | } else { | 
|  | nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, | 
|  | period_ns); | 
|  | if (nfc_tmg.tR + 3 > nfc_tmg.tCH) | 
|  | nfc_tmg.tR = nfc_tmg.tCH - 3; | 
|  | else | 
|  | nfc_tmg.tR = 0; | 
|  | } | 
|  |  | 
|  | if (chipnr < 0) | 
|  | return 0; | 
|  |  | 
|  | marvell_nand->ndtr0 = | 
|  | NDTR0_TRP(nfc_tmg.tRP) | | 
|  | NDTR0_TRH(nfc_tmg.tRH) | | 
|  | NDTR0_ETRP(nfc_tmg.tRP) | | 
|  | NDTR0_TWP(nfc_tmg.tWP) | | 
|  | NDTR0_TWH(nfc_tmg.tWH) | | 
|  | NDTR0_TCS(nfc_tmg.tCS) | | 
|  | NDTR0_TCH(nfc_tmg.tCH); | 
|  |  | 
|  | marvell_nand->ndtr1 = | 
|  | NDTR1_TAR(nfc_tmg.tAR) | | 
|  | NDTR1_TWHR(nfc_tmg.tWHR) | | 
|  | NDTR1_TR(nfc_tmg.tR); | 
|  |  | 
|  | if (nfc->caps->is_nfcv2) { | 
|  | marvell_nand->ndtr0 |= | 
|  | NDTR0_RD_CNT_DEL(read_delay) | | 
|  | NDTR0_SELCNTR | | 
|  | NDTR0_TADL(nfc_tmg.tADL); | 
|  |  | 
|  | marvell_nand->ndtr1 |= | 
|  | NDTR1_TRHW(nfc_tmg.tRHW) | | 
|  | NDTR1_WAIT_MODE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nand_attach_chip(struct nand_chip *chip) | 
|  | { | 
|  | struct mtd_info *mtd = nand_to_mtd(chip); | 
|  | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); | 
|  | struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); | 
|  | struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); | 
|  | int ret; | 
|  |  | 
|  | if (pdata && pdata->flash_bbt) | 
|  | chip->bbt_options |= NAND_BBT_USE_FLASH; | 
|  |  | 
|  | if (chip->bbt_options & NAND_BBT_USE_FLASH) { | 
|  | /* | 
|  | * We'll use a bad block table stored in-flash and don't | 
|  | * allow writing the bad block marker to the flash. | 
|  | */ | 
|  | chip->bbt_options |= NAND_BBT_NO_OOB_BBM; | 
|  | chip->bbt_td = &bbt_main_descr; | 
|  | chip->bbt_md = &bbt_mirror_descr; | 
|  | } | 
|  |  | 
|  | /* Save the chip-specific fields of NDCR */ | 
|  | marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); | 
|  | if (chip->options & NAND_BUSWIDTH_16) | 
|  | marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; | 
|  |  | 
|  | /* | 
|  | * On small page NANDs, only one cycle is needed to pass the | 
|  | * column address. | 
|  | */ | 
|  | if (mtd->writesize <= 512) { | 
|  | marvell_nand->addr_cyc = 1; | 
|  | } else { | 
|  | marvell_nand->addr_cyc = 2; | 
|  | marvell_nand->ndcr |= NDCR_RA_START; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now add the number of cycles needed to pass the row | 
|  | * address. | 
|  | * | 
|  | * Addressing a chip using CS 2 or 3 should also need the third row | 
|  | * cycle but due to inconsistance in the documentation and lack of | 
|  | * hardware to test this situation, this case is not supported. | 
|  | */ | 
|  | if (chip->options & NAND_ROW_ADDR_3) | 
|  | marvell_nand->addr_cyc += 3; | 
|  | else | 
|  | marvell_nand->addr_cyc += 2; | 
|  |  | 
|  | if (pdata) { | 
|  | chip->ecc.size = pdata->ecc_step_size; | 
|  | chip->ecc.strength = pdata->ecc_strength; | 
|  | } | 
|  |  | 
|  | ret = marvell_nand_ecc_init(mtd, &chip->ecc); | 
|  | if (ret) { | 
|  | dev_err(nfc->dev, "ECC init failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (chip->ecc.mode == NAND_ECC_HW) { | 
|  | /* | 
|  | * Subpage write not available with hardware ECC, prohibit also | 
|  | * subpage read as in userspace subpage access would still be | 
|  | * allowed and subpage write, if used, would lead to numerous | 
|  | * uncorrectable ECC errors. | 
|  | */ | 
|  | chip->options |= NAND_NO_SUBPAGE_WRITE; | 
|  | } | 
|  |  | 
|  | if (pdata || nfc->caps->legacy_of_bindings) { | 
|  | /* | 
|  | * We keep the MTD name unchanged to avoid breaking platforms | 
|  | * where the MTD cmdline parser is used and the bootloader | 
|  | * has not been updated to use the new naming scheme. | 
|  | */ | 
|  | mtd->name = "pxa3xx_nand-0"; | 
|  | } else if (!mtd->name) { | 
|  | /* | 
|  | * If the new bindings are used and the bootloader has not been | 
|  | * updated to pass a new mtdparts parameter on the cmdline, you | 
|  | * should define the following property in your NAND node, ie: | 
|  | * | 
|  | *	label = "main-storage"; | 
|  | * | 
|  | * This way, mtd->name will be set by the core when | 
|  | * nand_set_flash_node() is called. | 
|  | */ | 
|  | mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, | 
|  | "%s:nand.%d", dev_name(nfc->dev), | 
|  | marvell_nand->sels[0].cs); | 
|  | if (!mtd->name) { | 
|  | dev_err(nfc->dev, "Failed to allocate mtd->name\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct nand_controller_ops marvell_nand_controller_ops = { | 
|  | .attach_chip = marvell_nand_attach_chip, | 
|  | }; | 
|  |  | 
|  | static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, | 
|  | struct device_node *np) | 
|  | { | 
|  | struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); | 
|  | struct marvell_nand_chip *marvell_nand; | 
|  | struct mtd_info *mtd; | 
|  | struct nand_chip *chip; | 
|  | int nsels, ret, i; | 
|  | u32 cs, rb; | 
|  |  | 
|  | /* | 
|  | * The legacy "num-cs" property indicates the number of CS on the only | 
|  | * chip connected to the controller (legacy bindings does not support | 
|  | * more than one chip). The CS and RB pins are always the #0. | 
|  | * | 
|  | * When not using legacy bindings, a couple of "reg" and "nand-rb" | 
|  | * properties must be filled. For each chip, expressed as a subnode, | 
|  | * "reg" points to the CS lines and "nand-rb" to the RB line. | 
|  | */ | 
|  | if (pdata || nfc->caps->legacy_of_bindings) { | 
|  | nsels = 1; | 
|  | } else { | 
|  | nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); | 
|  | if (nsels <= 0) { | 
|  | dev_err(dev, "missing/invalid reg property\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Alloc the nand chip structure */ | 
|  | marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + | 
|  | (nsels * | 
|  | sizeof(struct marvell_nand_chip_sel)), | 
|  | GFP_KERNEL); | 
|  | if (!marvell_nand) { | 
|  | dev_err(dev, "could not allocate chip structure\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | marvell_nand->nsels = nsels; | 
|  | marvell_nand->selected_die = -1; | 
|  |  | 
|  | for (i = 0; i < nsels; i++) { | 
|  | if (pdata || nfc->caps->legacy_of_bindings) { | 
|  | /* | 
|  | * Legacy bindings use the CS lines in natural | 
|  | * order (0, 1, ...) | 
|  | */ | 
|  | cs = i; | 
|  | } else { | 
|  | /* Retrieve CS id */ | 
|  | ret = of_property_read_u32_index(np, "reg", i, &cs); | 
|  | if (ret) { | 
|  | dev_err(dev, "could not retrieve reg property: %d\n", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cs >= nfc->caps->max_cs_nb) { | 
|  | dev_err(dev, "invalid reg value: %u (max CS = %d)\n", | 
|  | cs, nfc->caps->max_cs_nb); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (test_and_set_bit(cs, &nfc->assigned_cs)) { | 
|  | dev_err(dev, "CS %d already assigned\n", cs); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cs variable represents the chip select id, which must be | 
|  | * converted in bit fields for NDCB0 and NDCB2 to select the | 
|  | * right chip. Unfortunately, due to a lack of information on | 
|  | * the subject and incoherent documentation, the user should not | 
|  | * use CS1 and CS3 at all as asserting them is not supported in | 
|  | * a reliable way (due to multiplexing inside ADDR5 field). | 
|  | */ | 
|  | marvell_nand->sels[i].cs = cs; | 
|  | switch (cs) { | 
|  | case 0: | 
|  | case 2: | 
|  | marvell_nand->sels[i].ndcb0_csel = 0; | 
|  | break; | 
|  | case 1: | 
|  | case 3: | 
|  | marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Retrieve RB id */ | 
|  | if (pdata || nfc->caps->legacy_of_bindings) { | 
|  | /* Legacy bindings always use RB #0 */ | 
|  | rb = 0; | 
|  | } else { | 
|  | ret = of_property_read_u32_index(np, "nand-rb", i, | 
|  | &rb); | 
|  | if (ret) { | 
|  | dev_err(dev, | 
|  | "could not retrieve RB property: %d\n", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rb >= nfc->caps->max_rb_nb) { | 
|  | dev_err(dev, "invalid reg value: %u (max RB = %d)\n", | 
|  | rb, nfc->caps->max_rb_nb); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | marvell_nand->sels[i].rb = rb; | 
|  | } | 
|  |  | 
|  | chip = &marvell_nand->chip; | 
|  | chip->controller = &nfc->controller; | 
|  | nand_set_flash_node(chip, np); | 
|  |  | 
|  | chip->exec_op = marvell_nfc_exec_op; | 
|  | chip->select_chip = marvell_nfc_select_chip; | 
|  | if (!of_property_read_bool(np, "marvell,nand-keep-config")) | 
|  | chip->setup_data_interface = marvell_nfc_setup_data_interface; | 
|  |  | 
|  | mtd = nand_to_mtd(chip); | 
|  | mtd->dev.parent = dev; | 
|  |  | 
|  | /* | 
|  | * Default to HW ECC engine mode. If the nand-ecc-mode property is given | 
|  | * in the DT node, this entry will be overwritten in nand_scan_ident(). | 
|  | */ | 
|  | chip->ecc.mode = NAND_ECC_HW; | 
|  |  | 
|  | /* | 
|  | * Save a reference value for timing registers before | 
|  | * ->setup_data_interface() is called. | 
|  | */ | 
|  | marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); | 
|  | marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); | 
|  |  | 
|  | chip->options |= NAND_BUSWIDTH_AUTO; | 
|  |  | 
|  | ret = nand_scan(chip, marvell_nand->nsels); | 
|  | if (ret) { | 
|  | dev_err(dev, "could not scan the nand chip\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (pdata) | 
|  | /* Legacy bindings support only one chip */ | 
|  | ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); | 
|  | else | 
|  | ret = mtd_device_register(mtd, NULL, 0); | 
|  | if (ret) { | 
|  | dev_err(dev, "failed to register mtd device: %d\n", ret); | 
|  | nand_cleanup(chip); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | list_add_tail(&marvell_nand->node, &nfc->chips); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) | 
|  | { | 
|  | struct marvell_nand_chip *entry, *temp; | 
|  |  | 
|  | list_for_each_entry_safe(entry, temp, &nfc->chips, node) { | 
|  | nand_release(&entry->chip); | 
|  | list_del(&entry->node); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) | 
|  | { | 
|  | struct device_node *np = dev->of_node; | 
|  | struct device_node *nand_np; | 
|  | int max_cs = nfc->caps->max_cs_nb; | 
|  | int nchips; | 
|  | int ret; | 
|  |  | 
|  | if (!np) | 
|  | nchips = 1; | 
|  | else | 
|  | nchips = of_get_child_count(np); | 
|  |  | 
|  | if (nchips > max_cs) { | 
|  | dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, | 
|  | max_cs); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Legacy bindings do not use child nodes to exhibit NAND chip | 
|  | * properties and layout. Instead, NAND properties are mixed with the | 
|  | * controller ones, and partitions are defined as direct subnodes of the | 
|  | * NAND controller node. | 
|  | */ | 
|  | if (nfc->caps->legacy_of_bindings) { | 
|  | ret = marvell_nand_chip_init(dev, nfc, np); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for_each_child_of_node(np, nand_np) { | 
|  | ret = marvell_nand_chip_init(dev, nfc, nand_np); | 
|  | if (ret) { | 
|  | of_node_put(nand_np); | 
|  | goto cleanup_chips; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup_chips: | 
|  | marvell_nand_chips_cleanup(nfc); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_init_dma(struct marvell_nfc *nfc) | 
|  | { | 
|  | struct platform_device *pdev = container_of(nfc->dev, | 
|  | struct platform_device, | 
|  | dev); | 
|  | struct dma_slave_config config = {}; | 
|  | struct resource *r; | 
|  | int ret; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_PXA_DMA)) { | 
|  | dev_warn(nfc->dev, | 
|  | "DMA not enabled in configuration\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | nfc->dma_chan =	dma_request_slave_channel(nfc->dev, "data"); | 
|  | if (!nfc->dma_chan) { | 
|  | dev_err(nfc->dev, | 
|  | "Unable to request data DMA channel\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!r) | 
|  | return -ENXIO; | 
|  |  | 
|  | config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | config.src_addr = r->start + NDDB; | 
|  | config.dst_addr = r->start + NDDB; | 
|  | config.src_maxburst = 32; | 
|  | config.dst_maxburst = 32; | 
|  | ret = dmaengine_slave_config(nfc->dma_chan, &config); | 
|  | if (ret < 0) { | 
|  | dev_err(nfc->dev, "Failed to configure DMA channel\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA must act on length multiple of 32 and this length may be | 
|  | * bigger than the destination buffer. Use this buffer instead | 
|  | * for DMA transfers and then copy the desired amount of data to | 
|  | * the provided buffer. | 
|  | */ | 
|  | nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); | 
|  | if (!nfc->dma_buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nfc->use_dma = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void marvell_nfc_reset(struct marvell_nfc *nfc) | 
|  | { | 
|  | /* | 
|  | * ECC operations and interruptions are only enabled when specifically | 
|  | * needed. ECC shall not be activated in the early stages (fails probe). | 
|  | * Arbiter flag, even if marked as "reserved", must be set (empirical). | 
|  | * SPARE_EN bit must always be set or ECC bytes will not be at the same | 
|  | * offset in the read page and this will fail the protection. | 
|  | */ | 
|  | writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | | 
|  | NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); | 
|  | writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); | 
|  | writel_relaxed(0, nfc->regs + NDECCCTRL); | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_init(struct marvell_nfc *nfc) | 
|  | { | 
|  | struct device_node *np = nfc->dev->of_node; | 
|  |  | 
|  | /* | 
|  | * Some SoCs like A7k/A8k need to enable manually the NAND | 
|  | * controller, gated clocks and reset bits to avoid being bootloader | 
|  | * dependent. This is done through the use of the System Functions | 
|  | * registers. | 
|  | */ | 
|  | if (nfc->caps->need_system_controller) { | 
|  | struct regmap *sysctrl_base = | 
|  | syscon_regmap_lookup_by_phandle(np, | 
|  | "marvell,system-controller"); | 
|  |  | 
|  | if (IS_ERR(sysctrl_base)) | 
|  | return PTR_ERR(sysctrl_base); | 
|  |  | 
|  | regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, | 
|  | GENCONF_SOC_DEVICE_MUX_NFC_EN | | 
|  | GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | | 
|  | GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | | 
|  | GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); | 
|  |  | 
|  | regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, | 
|  | GENCONF_CLK_GATING_CTRL_ND_GATE, | 
|  | GENCONF_CLK_GATING_CTRL_ND_GATE); | 
|  |  | 
|  | regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, | 
|  | GENCONF_ND_CLK_CTRL_EN, | 
|  | GENCONF_ND_CLK_CTRL_EN); | 
|  | } | 
|  |  | 
|  | /* Configure the DMA if appropriate */ | 
|  | if (!nfc->caps->is_nfcv2) | 
|  | marvell_nfc_init_dma(nfc); | 
|  |  | 
|  | marvell_nfc_reset(nfc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct resource *r; | 
|  | struct marvell_nfc *nfc; | 
|  | int ret; | 
|  | int irq; | 
|  |  | 
|  | nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), | 
|  | GFP_KERNEL); | 
|  | if (!nfc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nfc->dev = dev; | 
|  | nand_controller_init(&nfc->controller); | 
|  | nfc->controller.ops = &marvell_nand_controller_ops; | 
|  | INIT_LIST_HEAD(&nfc->chips); | 
|  |  | 
|  | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | nfc->regs = devm_ioremap_resource(dev, r); | 
|  | if (IS_ERR(nfc->regs)) | 
|  | return PTR_ERR(nfc->regs); | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) { | 
|  | dev_err(dev, "failed to retrieve irq\n"); | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | nfc->core_clk = devm_clk_get(&pdev->dev, "core"); | 
|  |  | 
|  | /* Managed the legacy case (when the first clock was not named) */ | 
|  | if (nfc->core_clk == ERR_PTR(-ENOENT)) | 
|  | nfc->core_clk = devm_clk_get(&pdev->dev, NULL); | 
|  |  | 
|  | if (IS_ERR(nfc->core_clk)) | 
|  | return PTR_ERR(nfc->core_clk); | 
|  |  | 
|  | ret = clk_prepare_enable(nfc->core_clk); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); | 
|  | if (IS_ERR(nfc->reg_clk)) { | 
|  | if (PTR_ERR(nfc->reg_clk) != -ENOENT) { | 
|  | ret = PTR_ERR(nfc->reg_clk); | 
|  | goto unprepare_core_clk; | 
|  | } | 
|  |  | 
|  | nfc->reg_clk = NULL; | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(nfc->reg_clk); | 
|  | if (ret) | 
|  | goto unprepare_core_clk; | 
|  |  | 
|  | marvell_nfc_disable_int(nfc, NDCR_ALL_INT); | 
|  | marvell_nfc_clear_int(nfc, NDCR_ALL_INT); | 
|  | ret = devm_request_irq(dev, irq, marvell_nfc_isr, | 
|  | 0, "marvell-nfc", nfc); | 
|  | if (ret) | 
|  | goto unprepare_reg_clk; | 
|  |  | 
|  | /* Get NAND controller capabilities */ | 
|  | if (pdev->id_entry) | 
|  | nfc->caps = (void *)pdev->id_entry->driver_data; | 
|  | else | 
|  | nfc->caps = of_device_get_match_data(&pdev->dev); | 
|  |  | 
|  | if (!nfc->caps) { | 
|  | dev_err(dev, "Could not retrieve NFC caps\n"); | 
|  | ret = -EINVAL; | 
|  | goto unprepare_reg_clk; | 
|  | } | 
|  |  | 
|  | /* Init the controller and then probe the chips */ | 
|  | ret = marvell_nfc_init(nfc); | 
|  | if (ret) | 
|  | goto unprepare_reg_clk; | 
|  |  | 
|  | platform_set_drvdata(pdev, nfc); | 
|  |  | 
|  | ret = marvell_nand_chips_init(dev, nfc); | 
|  | if (ret) | 
|  | goto unprepare_reg_clk; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unprepare_reg_clk: | 
|  | clk_disable_unprepare(nfc->reg_clk); | 
|  | unprepare_core_clk: | 
|  | clk_disable_unprepare(nfc->core_clk); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int marvell_nfc_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct marvell_nfc *nfc = platform_get_drvdata(pdev); | 
|  |  | 
|  | marvell_nand_chips_cleanup(nfc); | 
|  |  | 
|  | if (nfc->use_dma) { | 
|  | dmaengine_terminate_all(nfc->dma_chan); | 
|  | dma_release_channel(nfc->dma_chan); | 
|  | } | 
|  |  | 
|  | clk_disable_unprepare(nfc->reg_clk); | 
|  | clk_disable_unprepare(nfc->core_clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused marvell_nfc_suspend(struct device *dev) | 
|  | { | 
|  | struct marvell_nfc *nfc = dev_get_drvdata(dev); | 
|  | struct marvell_nand_chip *chip; | 
|  |  | 
|  | list_for_each_entry(chip, &nfc->chips, node) | 
|  | marvell_nfc_wait_ndrun(&chip->chip); | 
|  |  | 
|  | clk_disable_unprepare(nfc->reg_clk); | 
|  | clk_disable_unprepare(nfc->core_clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused marvell_nfc_resume(struct device *dev) | 
|  | { | 
|  | struct marvell_nfc *nfc = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = clk_prepare_enable(nfc->core_clk); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = clk_prepare_enable(nfc->reg_clk); | 
|  | if (ret < 0) { | 
|  | clk_disable_unprepare(nfc->core_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset nfc->selected_chip so the next command will cause the timing | 
|  | * registers to be restored in marvell_nfc_select_chip(). | 
|  | */ | 
|  | nfc->selected_chip = NULL; | 
|  |  | 
|  | /* Reset registers that have lost their contents */ | 
|  | marvell_nfc_reset(nfc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops marvell_nfc_pm_ops = { | 
|  | SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) | 
|  | }; | 
|  |  | 
|  | static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { | 
|  | .max_cs_nb = 4, | 
|  | .max_rb_nb = 2, | 
|  | .need_system_controller = true, | 
|  | .is_nfcv2 = true, | 
|  | }; | 
|  |  | 
|  | static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { | 
|  | .max_cs_nb = 4, | 
|  | .max_rb_nb = 2, | 
|  | .is_nfcv2 = true, | 
|  | }; | 
|  |  | 
|  | static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { | 
|  | .max_cs_nb = 2, | 
|  | .max_rb_nb = 1, | 
|  | .use_dma = true, | 
|  | }; | 
|  |  | 
|  | static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { | 
|  | .max_cs_nb = 4, | 
|  | .max_rb_nb = 2, | 
|  | .need_system_controller = true, | 
|  | .legacy_of_bindings = true, | 
|  | .is_nfcv2 = true, | 
|  | }; | 
|  |  | 
|  | static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { | 
|  | .max_cs_nb = 4, | 
|  | .max_rb_nb = 2, | 
|  | .legacy_of_bindings = true, | 
|  | .is_nfcv2 = true, | 
|  | }; | 
|  |  | 
|  | static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { | 
|  | .max_cs_nb = 2, | 
|  | .max_rb_nb = 1, | 
|  | .legacy_of_bindings = true, | 
|  | .use_dma = true, | 
|  | }; | 
|  |  | 
|  | static const struct platform_device_id marvell_nfc_platform_ids[] = { | 
|  | { | 
|  | .name = "pxa3xx-nand", | 
|  | .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, | 
|  | }, | 
|  | { /* sentinel */ }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); | 
|  |  | 
|  | static const struct of_device_id marvell_nfc_of_ids[] = { | 
|  | { | 
|  | .compatible = "marvell,armada-8k-nand-controller", | 
|  | .data = &marvell_armada_8k_nfc_caps, | 
|  | }, | 
|  | { | 
|  | .compatible = "marvell,armada370-nand-controller", | 
|  | .data = &marvell_armada370_nfc_caps, | 
|  | }, | 
|  | { | 
|  | .compatible = "marvell,pxa3xx-nand-controller", | 
|  | .data = &marvell_pxa3xx_nfc_caps, | 
|  | }, | 
|  | /* Support for old/deprecated bindings: */ | 
|  | { | 
|  | .compatible = "marvell,armada-8k-nand", | 
|  | .data = &marvell_armada_8k_nfc_legacy_caps, | 
|  | }, | 
|  | { | 
|  | .compatible = "marvell,armada370-nand", | 
|  | .data = &marvell_armada370_nfc_legacy_caps, | 
|  | }, | 
|  | { | 
|  | .compatible = "marvell,pxa3xx-nand", | 
|  | .data = &marvell_pxa3xx_nfc_legacy_caps, | 
|  | }, | 
|  | { /* sentinel */ }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); | 
|  |  | 
|  | static struct platform_driver marvell_nfc_driver = { | 
|  | .driver	= { | 
|  | .name		= "marvell-nfc", | 
|  | .of_match_table = marvell_nfc_of_ids, | 
|  | .pm		= &marvell_nfc_pm_ops, | 
|  | }, | 
|  | .id_table = marvell_nfc_platform_ids, | 
|  | .probe = marvell_nfc_probe, | 
|  | .remove	= marvell_nfc_remove, | 
|  | }; | 
|  | module_platform_driver(marvell_nfc_driver); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Marvell NAND controller driver"); |