|  | /* | 
|  | * st_spi_fsm.c	- ST Fast Sequence Mode (FSM) Serial Flash Controller | 
|  | * | 
|  | * Author: Angus Clark <angus.clark@st.com> | 
|  | * | 
|  | * Copyright (C) 2010-2014 STMicroelectronics Limited | 
|  | * | 
|  | * JEDEC probe based on drivers/mtd/devices/m25p80.c | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/mfd/syscon.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/mtd/spi-nor.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/clk.h> | 
|  |  | 
|  | #include "serial_flash_cmds.h" | 
|  |  | 
|  | /* | 
|  | * FSM SPI Controller Registers | 
|  | */ | 
|  | #define SPI_CLOCKDIV			0x0010 | 
|  | #define SPI_MODESELECT			0x0018 | 
|  | #define SPI_CONFIGDATA			0x0020 | 
|  | #define SPI_STA_MODE_CHANGE		0x0028 | 
|  | #define SPI_FAST_SEQ_TRANSFER_SIZE	0x0100 | 
|  | #define SPI_FAST_SEQ_ADD1		0x0104 | 
|  | #define SPI_FAST_SEQ_ADD2		0x0108 | 
|  | #define SPI_FAST_SEQ_ADD_CFG		0x010c | 
|  | #define SPI_FAST_SEQ_OPC1		0x0110 | 
|  | #define SPI_FAST_SEQ_OPC2		0x0114 | 
|  | #define SPI_FAST_SEQ_OPC3		0x0118 | 
|  | #define SPI_FAST_SEQ_OPC4		0x011c | 
|  | #define SPI_FAST_SEQ_OPC5		0x0120 | 
|  | #define SPI_MODE_BITS			0x0124 | 
|  | #define SPI_DUMMY_BITS			0x0128 | 
|  | #define SPI_FAST_SEQ_FLASH_STA_DATA	0x012c | 
|  | #define SPI_FAST_SEQ_1			0x0130 | 
|  | #define SPI_FAST_SEQ_2			0x0134 | 
|  | #define SPI_FAST_SEQ_3			0x0138 | 
|  | #define SPI_FAST_SEQ_4			0x013c | 
|  | #define SPI_FAST_SEQ_CFG		0x0140 | 
|  | #define SPI_FAST_SEQ_STA		0x0144 | 
|  | #define SPI_QUAD_BOOT_SEQ_INIT_1	0x0148 | 
|  | #define SPI_QUAD_BOOT_SEQ_INIT_2	0x014c | 
|  | #define SPI_QUAD_BOOT_READ_SEQ_1	0x0150 | 
|  | #define SPI_QUAD_BOOT_READ_SEQ_2	0x0154 | 
|  | #define SPI_PROGRAM_ERASE_TIME		0x0158 | 
|  | #define SPI_MULT_PAGE_REPEAT_SEQ_1	0x015c | 
|  | #define SPI_MULT_PAGE_REPEAT_SEQ_2	0x0160 | 
|  | #define SPI_STATUS_WR_TIME_REG		0x0164 | 
|  | #define SPI_FAST_SEQ_DATA_REG		0x0300 | 
|  |  | 
|  | /* | 
|  | * Register: SPI_MODESELECT | 
|  | */ | 
|  | #define SPI_MODESELECT_CONTIG		0x01 | 
|  | #define SPI_MODESELECT_FASTREAD		0x02 | 
|  | #define SPI_MODESELECT_DUALIO		0x04 | 
|  | #define SPI_MODESELECT_FSM		0x08 | 
|  | #define SPI_MODESELECT_QUADBOOT		0x10 | 
|  |  | 
|  | /* | 
|  | * Register: SPI_CONFIGDATA | 
|  | */ | 
|  | #define SPI_CFG_DEVICE_ST		0x1 | 
|  | #define SPI_CFG_DEVICE_ATMEL		0x4 | 
|  | #define SPI_CFG_MIN_CS_HIGH(x)		(((x) & 0xfff) << 4) | 
|  | #define SPI_CFG_CS_SETUPHOLD(x)		(((x) & 0xff) << 16) | 
|  | #define SPI_CFG_DATA_HOLD(x)		(((x) & 0xff) << 24) | 
|  |  | 
|  | #define SPI_CFG_DEFAULT_MIN_CS_HIGH    SPI_CFG_MIN_CS_HIGH(0x0AA) | 
|  | #define SPI_CFG_DEFAULT_CS_SETUPHOLD   SPI_CFG_CS_SETUPHOLD(0xA0) | 
|  | #define SPI_CFG_DEFAULT_DATA_HOLD      SPI_CFG_DATA_HOLD(0x00) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_FAST_SEQ_TRANSFER_SIZE | 
|  | */ | 
|  | #define TRANSFER_SIZE(x)		((x) * 8) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_FAST_SEQ_ADD_CFG | 
|  | */ | 
|  | #define ADR_CFG_CYCLES_ADD1(x)		((x) << 0) | 
|  | #define ADR_CFG_PADS_1_ADD1		(0x0 << 6) | 
|  | #define ADR_CFG_PADS_2_ADD1		(0x1 << 6) | 
|  | #define ADR_CFG_PADS_4_ADD1		(0x3 << 6) | 
|  | #define ADR_CFG_CSDEASSERT_ADD1		(1   << 8) | 
|  | #define ADR_CFG_CYCLES_ADD2(x)		((x) << (0+16)) | 
|  | #define ADR_CFG_PADS_1_ADD2		(0x0 << (6+16)) | 
|  | #define ADR_CFG_PADS_2_ADD2		(0x1 << (6+16)) | 
|  | #define ADR_CFG_PADS_4_ADD2		(0x3 << (6+16)) | 
|  | #define ADR_CFG_CSDEASSERT_ADD2		(1   << (8+16)) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_FAST_SEQ_n | 
|  | */ | 
|  | #define SEQ_OPC_OPCODE(x)		((x) << 0) | 
|  | #define SEQ_OPC_CYCLES(x)		((x) << 8) | 
|  | #define SEQ_OPC_PADS_1			(0x0 << 14) | 
|  | #define SEQ_OPC_PADS_2			(0x1 << 14) | 
|  | #define SEQ_OPC_PADS_4			(0x3 << 14) | 
|  | #define SEQ_OPC_CSDEASSERT		(1   << 16) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_FAST_SEQ_CFG | 
|  | */ | 
|  | #define SEQ_CFG_STARTSEQ		(1 << 0) | 
|  | #define SEQ_CFG_SWRESET			(1 << 5) | 
|  | #define SEQ_CFG_CSDEASSERT		(1 << 6) | 
|  | #define SEQ_CFG_READNOTWRITE		(1 << 7) | 
|  | #define SEQ_CFG_ERASE			(1 << 8) | 
|  | #define SEQ_CFG_PADS_1			(0x0 << 16) | 
|  | #define SEQ_CFG_PADS_2			(0x1 << 16) | 
|  | #define SEQ_CFG_PADS_4			(0x3 << 16) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_MODE_BITS | 
|  | */ | 
|  | #define MODE_DATA(x)			(x & 0xff) | 
|  | #define MODE_CYCLES(x)			((x & 0x3f) << 16) | 
|  | #define MODE_PADS_1			(0x0 << 22) | 
|  | #define MODE_PADS_2			(0x1 << 22) | 
|  | #define MODE_PADS_4			(0x3 << 22) | 
|  | #define DUMMY_CSDEASSERT		(1   << 24) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_DUMMY_BITS | 
|  | */ | 
|  | #define DUMMY_CYCLES(x)			((x & 0x3f) << 16) | 
|  | #define DUMMY_PADS_1			(0x0 << 22) | 
|  | #define DUMMY_PADS_2			(0x1 << 22) | 
|  | #define DUMMY_PADS_4			(0x3 << 22) | 
|  | #define DUMMY_CSDEASSERT		(1   << 24) | 
|  |  | 
|  | /* | 
|  | * Register: SPI_FAST_SEQ_FLASH_STA_DATA | 
|  | */ | 
|  | #define STA_DATA_BYTE1(x)		((x & 0xff) << 0) | 
|  | #define STA_DATA_BYTE2(x)		((x & 0xff) << 8) | 
|  | #define STA_PADS_1			(0x0 << 16) | 
|  | #define STA_PADS_2			(0x1 << 16) | 
|  | #define STA_PADS_4			(0x3 << 16) | 
|  | #define STA_CSDEASSERT			(0x1 << 20) | 
|  | #define STA_RDNOTWR			(0x1 << 21) | 
|  |  | 
|  | /* | 
|  | * FSM SPI Instruction Opcodes | 
|  | */ | 
|  | #define STFSM_OPC_CMD			0x1 | 
|  | #define STFSM_OPC_ADD			0x2 | 
|  | #define STFSM_OPC_STA			0x3 | 
|  | #define STFSM_OPC_MODE			0x4 | 
|  | #define STFSM_OPC_DUMMY		0x5 | 
|  | #define STFSM_OPC_DATA			0x6 | 
|  | #define STFSM_OPC_WAIT			0x7 | 
|  | #define STFSM_OPC_JUMP			0x8 | 
|  | #define STFSM_OPC_GOTO			0x9 | 
|  | #define STFSM_OPC_STOP			0xF | 
|  |  | 
|  | /* | 
|  | * FSM SPI Instructions (== opcode + operand). | 
|  | */ | 
|  | #define STFSM_INSTR(cmd, op)		((cmd) | ((op) << 4)) | 
|  |  | 
|  | #define STFSM_INST_CMD1			STFSM_INSTR(STFSM_OPC_CMD,	1) | 
|  | #define STFSM_INST_CMD2			STFSM_INSTR(STFSM_OPC_CMD,	2) | 
|  | #define STFSM_INST_CMD3			STFSM_INSTR(STFSM_OPC_CMD,	3) | 
|  | #define STFSM_INST_CMD4			STFSM_INSTR(STFSM_OPC_CMD,	4) | 
|  | #define STFSM_INST_CMD5			STFSM_INSTR(STFSM_OPC_CMD,	5) | 
|  | #define STFSM_INST_ADD1			STFSM_INSTR(STFSM_OPC_ADD,	1) | 
|  | #define STFSM_INST_ADD2			STFSM_INSTR(STFSM_OPC_ADD,	2) | 
|  |  | 
|  | #define STFSM_INST_DATA_WRITE		STFSM_INSTR(STFSM_OPC_DATA,	1) | 
|  | #define STFSM_INST_DATA_READ		STFSM_INSTR(STFSM_OPC_DATA,	2) | 
|  |  | 
|  | #define STFSM_INST_STA_RD1		STFSM_INSTR(STFSM_OPC_STA,	0x1) | 
|  | #define STFSM_INST_STA_WR1		STFSM_INSTR(STFSM_OPC_STA,	0x1) | 
|  | #define STFSM_INST_STA_RD2		STFSM_INSTR(STFSM_OPC_STA,	0x2) | 
|  | #define STFSM_INST_STA_WR1_2		STFSM_INSTR(STFSM_OPC_STA,	0x3) | 
|  |  | 
|  | #define STFSM_INST_MODE			STFSM_INSTR(STFSM_OPC_MODE,	0) | 
|  | #define STFSM_INST_DUMMY		STFSM_INSTR(STFSM_OPC_DUMMY,	0) | 
|  | #define STFSM_INST_WAIT			STFSM_INSTR(STFSM_OPC_WAIT,	0) | 
|  | #define STFSM_INST_STOP			STFSM_INSTR(STFSM_OPC_STOP,	0) | 
|  |  | 
|  | #define STFSM_DEFAULT_EMI_FREQ 100000000UL                        /* 100 MHz */ | 
|  | #define STFSM_DEFAULT_WR_TIME  (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */ | 
|  |  | 
|  | #define STFSM_FLASH_SAFE_FREQ  10000000UL                         /* 10 MHz */ | 
|  |  | 
|  | #define STFSM_MAX_WAIT_SEQ_MS  1000     /* FSM execution time */ | 
|  |  | 
|  | /* S25FLxxxS commands */ | 
|  | #define S25FL_CMD_WRITE4_1_1_4 0x34 | 
|  | #define S25FL_CMD_SE4          0xdc | 
|  | #define S25FL_CMD_CLSR         0x30 | 
|  | #define S25FL_CMD_DYBWR                0xe1 | 
|  | #define S25FL_CMD_DYBRD                0xe0 | 
|  | #define S25FL_CMD_WRITE4       0x12    /* Note, opcode clashes with | 
|  | * 'SPINOR_OP_WRITE_1_4_4' | 
|  | * as found on N25Qxxx devices! */ | 
|  |  | 
|  | /* Status register */ | 
|  | #define FLASH_STATUS_BUSY      0x01 | 
|  | #define FLASH_STATUS_WEL       0x02 | 
|  | #define FLASH_STATUS_BP0       0x04 | 
|  | #define FLASH_STATUS_BP1       0x08 | 
|  | #define FLASH_STATUS_BP2       0x10 | 
|  | #define FLASH_STATUS_SRWP0     0x80 | 
|  | #define FLASH_STATUS_TIMEOUT   0xff | 
|  | /* S25FL Error Flags */ | 
|  | #define S25FL_STATUS_E_ERR     0x20 | 
|  | #define S25FL_STATUS_P_ERR     0x40 | 
|  |  | 
|  | #define N25Q_CMD_WRVCR         0x81 | 
|  | #define N25Q_CMD_RDVCR         0x85 | 
|  | #define N25Q_CMD_RDVECR        0x65 | 
|  | #define N25Q_CMD_RDNVCR        0xb5 | 
|  | #define N25Q_CMD_WRNVCR        0xb1 | 
|  |  | 
|  | #define FLASH_PAGESIZE         256			/* In Bytes    */ | 
|  | #define FLASH_PAGESIZE_32      (FLASH_PAGESIZE / 4)	/* In uint32_t */ | 
|  | #define FLASH_MAX_BUSY_WAIT    (300 * HZ)	/* Maximum 'CHIPERASE' time */ | 
|  |  | 
|  | /* | 
|  | * Flags to tweak operation of default read/write/erase routines | 
|  | */ | 
|  | #define CFG_READ_TOGGLE_32BIT_ADDR     0x00000001 | 
|  | #define CFG_WRITE_TOGGLE_32BIT_ADDR    0x00000002 | 
|  | #define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008 | 
|  | #define CFG_S25FL_CHECK_ERROR_FLAGS    0x00000010 | 
|  |  | 
|  | struct stfsm_seq { | 
|  | uint32_t data_size; | 
|  | uint32_t addr1; | 
|  | uint32_t addr2; | 
|  | uint32_t addr_cfg; | 
|  | uint32_t seq_opc[5]; | 
|  | uint32_t mode; | 
|  | uint32_t dummy; | 
|  | uint32_t status; | 
|  | uint8_t  seq[16]; | 
|  | uint32_t seq_cfg; | 
|  | } __packed __aligned(4); | 
|  |  | 
|  | struct stfsm { | 
|  | struct device		*dev; | 
|  | void __iomem		*base; | 
|  | struct resource		*region; | 
|  | struct mtd_info		mtd; | 
|  | struct mutex		lock; | 
|  | struct flash_info       *info; | 
|  | struct clk              *clk; | 
|  |  | 
|  | uint32_t                configuration; | 
|  | uint32_t                fifo_dir_delay; | 
|  | bool                    booted_from_spi; | 
|  | bool                    reset_signal; | 
|  | bool                    reset_por; | 
|  |  | 
|  | struct stfsm_seq stfsm_seq_read; | 
|  | struct stfsm_seq stfsm_seq_write; | 
|  | struct stfsm_seq stfsm_seq_en_32bit_addr; | 
|  | }; | 
|  |  | 
|  | /* Parameters to configure a READ or WRITE FSM sequence */ | 
|  | struct seq_rw_config { | 
|  | uint32_t        flags;          /* flags to support config */ | 
|  | uint8_t         cmd;            /* FLASH command */ | 
|  | int             write;          /* Write Sequence */ | 
|  | uint8_t         addr_pads;      /* No. of addr pads (MODE & DUMMY) */ | 
|  | uint8_t         data_pads;      /* No. of data pads */ | 
|  | uint8_t         mode_data;      /* MODE data */ | 
|  | uint8_t         mode_cycles;    /* No. of MODE cycles */ | 
|  | uint8_t         dummy_cycles;   /* No. of DUMMY cycles */ | 
|  | }; | 
|  |  | 
|  | /* SPI Flash Device Table */ | 
|  | struct flash_info { | 
|  | char            *name; | 
|  | /* | 
|  | * JEDEC id zero means "no ID" (most older chips); otherwise it has | 
|  | * a high byte of zero plus three data bytes: the manufacturer id, | 
|  | * then a two byte device id. | 
|  | */ | 
|  | u32             jedec_id; | 
|  | u16             ext_id; | 
|  | /* | 
|  | * The size listed here is what works with SPINOR_OP_SE, which isn't | 
|  | * necessarily called a "sector" by the vendor. | 
|  | */ | 
|  | unsigned        sector_size; | 
|  | u16             n_sectors; | 
|  | u32             flags; | 
|  | /* | 
|  | * Note, where FAST_READ is supported, freq_max specifies the | 
|  | * FAST_READ frequency, not the READ frequency. | 
|  | */ | 
|  | u32             max_freq; | 
|  | int             (*config)(struct stfsm *); | 
|  | }; | 
|  |  | 
|  | static int stfsm_n25q_config(struct stfsm *fsm); | 
|  | static int stfsm_mx25_config(struct stfsm *fsm); | 
|  | static int stfsm_s25fl_config(struct stfsm *fsm); | 
|  | static int stfsm_w25q_config(struct stfsm *fsm); | 
|  |  | 
|  | static struct flash_info flash_types[] = { | 
|  | /* | 
|  | * ST Microelectronics/Numonyx -- | 
|  | * (newer production versions may have feature updates | 
|  | * (eg faster operating frequency) | 
|  | */ | 
|  | #define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST) | 
|  | { "m25p40",  0x202013, 0,  64 * 1024,   8, M25P_FLAG, 25, NULL }, | 
|  | { "m25p80",  0x202014, 0,  64 * 1024,  16, M25P_FLAG, 25, NULL }, | 
|  | { "m25p16",  0x202015, 0,  64 * 1024,  32, M25P_FLAG, 25, NULL }, | 
|  | { "m25p32",  0x202016, 0,  64 * 1024,  64, M25P_FLAG, 50, NULL }, | 
|  | { "m25p64",  0x202017, 0,  64 * 1024, 128, M25P_FLAG, 50, NULL }, | 
|  | { "m25p128", 0x202018, 0, 256 * 1024,  64, M25P_FLAG, 50, NULL }, | 
|  |  | 
|  | #define M25PX_FLAG (FLASH_FLAG_READ_WRITE      |	\ | 
|  | FLASH_FLAG_READ_FAST        |	\ | 
|  | FLASH_FLAG_READ_1_1_2       |	\ | 
|  | FLASH_FLAG_WRITE_1_1_2) | 
|  | { "m25px32", 0x207116, 0,  64 * 1024,  64, M25PX_FLAG, 75, NULL }, | 
|  | { "m25px64", 0x207117, 0,  64 * 1024, 128, M25PX_FLAG, 75, NULL }, | 
|  |  | 
|  | /* Macronix MX25xxx | 
|  | *     - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices | 
|  | *       where operating frequency must be reduced. | 
|  | */ | 
|  | #define MX25_FLAG (FLASH_FLAG_READ_WRITE       |	\ | 
|  | FLASH_FLAG_READ_FAST         |	\ | 
|  | FLASH_FLAG_READ_1_1_2        |	\ | 
|  | FLASH_FLAG_READ_1_2_2        |	\ | 
|  | FLASH_FLAG_READ_1_1_4        |	\ | 
|  | FLASH_FLAG_SE_4K             |	\ | 
|  | FLASH_FLAG_SE_32K) | 
|  | { "mx25l3255e",  0xc29e16, 0, 64 * 1024, 64, | 
|  | (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86, | 
|  | stfsm_mx25_config}, | 
|  | { "mx25l25635e", 0xc22019, 0, 64*1024, 512, | 
|  | (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, | 
|  | stfsm_mx25_config }, | 
|  | { "mx25l25655e", 0xc22619, 0, 64*1024, 512, | 
|  | (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, | 
|  | stfsm_mx25_config}, | 
|  |  | 
|  | #define N25Q_FLAG (FLASH_FLAG_READ_WRITE       |	\ | 
|  | FLASH_FLAG_READ_FAST         |	\ | 
|  | FLASH_FLAG_READ_1_1_2        |	\ | 
|  | FLASH_FLAG_READ_1_2_2        |	\ | 
|  | FLASH_FLAG_READ_1_1_4        |	\ | 
|  | FLASH_FLAG_READ_1_4_4        |	\ | 
|  | FLASH_FLAG_WRITE_1_1_2       |	\ | 
|  | FLASH_FLAG_WRITE_1_2_2       |	\ | 
|  | FLASH_FLAG_WRITE_1_1_4       |	\ | 
|  | FLASH_FLAG_WRITE_1_4_4) | 
|  | { "n25q128", 0x20ba18, 0, 64 * 1024,  256, N25Q_FLAG, 108, | 
|  | stfsm_n25q_config }, | 
|  | { "n25q256", 0x20ba19, 0, 64 * 1024,  512, | 
|  | N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config }, | 
|  |  | 
|  | /* | 
|  | * Spansion S25FLxxxP | 
|  | *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC) | 
|  | */ | 
|  | #define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE  |	\ | 
|  | FLASH_FLAG_READ_1_1_2   |	\ | 
|  | FLASH_FLAG_READ_1_2_2   |	\ | 
|  | FLASH_FLAG_READ_1_1_4   |	\ | 
|  | FLASH_FLAG_READ_1_4_4   |	\ | 
|  | FLASH_FLAG_WRITE_1_1_4  |	\ | 
|  | FLASH_FLAG_READ_FAST) | 
|  | { "s25fl032p",  0x010215, 0x4d00,  64 * 1024,  64, S25FLXXXP_FLAG, 80, | 
|  | stfsm_s25fl_config}, | 
|  | { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024,  64, S25FLXXXP_FLAG, 80, | 
|  | stfsm_s25fl_config }, | 
|  | { "s25fl129p1", 0x012018, 0x4d01,  64 * 1024, 256, S25FLXXXP_FLAG, 80, | 
|  | stfsm_s25fl_config }, | 
|  |  | 
|  | /* | 
|  | * Spansion S25FLxxxS | 
|  | *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC) | 
|  | *     - RESET# signal supported by die but not bristled out on all | 
|  | *       package types.  The package type is a function of board design, | 
|  | *       so this information is captured in the board's flags. | 
|  | *     - Supports 'DYB' sector protection. Depending on variant, sectors | 
|  | *       may default to locked state on power-on. | 
|  | */ | 
|  | #define S25FLXXXS_FLAG (S25FLXXXP_FLAG         |	\ | 
|  | FLASH_FLAG_RESET        |	\ | 
|  | FLASH_FLAG_DYB_LOCKING) | 
|  | { "s25fl128s0", 0x012018, 0x0300,  256 * 1024, 64, S25FLXXXS_FLAG, 80, | 
|  | stfsm_s25fl_config }, | 
|  | { "s25fl128s1", 0x012018, 0x0301,  64 * 1024, 256, S25FLXXXS_FLAG, 80, | 
|  | stfsm_s25fl_config }, | 
|  | { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128, | 
|  | S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, | 
|  | { "s25fl256s1", 0x010219, 0x4d01,  64 * 1024, 512, | 
|  | S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, | 
|  |  | 
|  | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ | 
|  | #define W25X_FLAG (FLASH_FLAG_READ_WRITE       |	\ | 
|  | FLASH_FLAG_READ_FAST         |	\ | 
|  | FLASH_FLAG_READ_1_1_2        |	\ | 
|  | FLASH_FLAG_WRITE_1_1_2) | 
|  | { "w25x40",  0xef3013, 0,  64 * 1024,   8, W25X_FLAG, 75, NULL }, | 
|  | { "w25x80",  0xef3014, 0,  64 * 1024,  16, W25X_FLAG, 75, NULL }, | 
|  | { "w25x16",  0xef3015, 0,  64 * 1024,  32, W25X_FLAG, 75, NULL }, | 
|  | { "w25x32",  0xef3016, 0,  64 * 1024,  64, W25X_FLAG, 75, NULL }, | 
|  | { "w25x64",  0xef3017, 0,  64 * 1024, 128, W25X_FLAG, 75, NULL }, | 
|  |  | 
|  | /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */ | 
|  | #define W25Q_FLAG (FLASH_FLAG_READ_WRITE       |	\ | 
|  | FLASH_FLAG_READ_FAST         |	\ | 
|  | FLASH_FLAG_READ_1_1_2        |	\ | 
|  | FLASH_FLAG_READ_1_2_2        |	\ | 
|  | FLASH_FLAG_READ_1_1_4        |	\ | 
|  | FLASH_FLAG_READ_1_4_4        |	\ | 
|  | FLASH_FLAG_WRITE_1_1_4) | 
|  | { "w25q80",  0xef4014, 0,  64 * 1024,  16, W25Q_FLAG, 80, | 
|  | stfsm_w25q_config }, | 
|  | { "w25q16",  0xef4015, 0,  64 * 1024,  32, W25Q_FLAG, 80, | 
|  | stfsm_w25q_config }, | 
|  | { "w25q32",  0xef4016, 0,  64 * 1024,  64, W25Q_FLAG, 80, | 
|  | stfsm_w25q_config }, | 
|  | { "w25q64",  0xef4017, 0,  64 * 1024, 128, W25Q_FLAG, 80, | 
|  | stfsm_w25q_config }, | 
|  |  | 
|  | /* Sentinel */ | 
|  | { NULL, 0x000000, 0, 0, 0, 0, 0, NULL }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * FSM message sequence configurations: | 
|  | * | 
|  | * All configs are presented in order of preference | 
|  | */ | 
|  |  | 
|  | /* Default READ configurations, in order of preference */ | 
|  | static struct seq_rw_config default_read_configs[] = { | 
|  | {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,	0, 4, 4, 0x00, 2, 4}, | 
|  | {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,	0, 1, 4, 0x00, 4, 0}, | 
|  | {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,	0, 2, 2, 0x00, 4, 0}, | 
|  | {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,	0, 1, 2, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_FAST,	SPINOR_OP_READ_FAST,	0, 1, 1, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,		0, 1, 1, 0x00, 0, 0}, | 
|  | {0x00,			0,			0, 0, 0, 0x00, 0, 0}, | 
|  | }; | 
|  |  | 
|  | /* Default WRITE configurations */ | 
|  | static struct seq_rw_config default_write_configs[] = { | 
|  | {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0}, | 
|  | {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0}, | 
|  | {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0}, | 
|  | {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0}, | 
|  | {FLASH_FLAG_READ_WRITE,  SPINOR_OP_WRITE,       1, 1, 1, 0x00, 0, 0}, | 
|  | {0x00,			 0,			0, 0, 0, 0x00, 0, 0}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * [N25Qxxx] Configuration | 
|  | */ | 
|  | #define N25Q_VCR_DUMMY_CYCLES(x)	(((x) & 0xf) << 4) | 
|  | #define N25Q_VCR_XIP_DISABLED		((uint8_t)0x1 << 3) | 
|  | #define N25Q_VCR_WRAP_CONT		0x3 | 
|  |  | 
|  | /* N25Q 3-byte Address READ configurations | 
|  | *	- 'FAST' variants configured for 8 dummy cycles. | 
|  | * | 
|  | * Note, the number of dummy cycles used for 'FAST' READ operations is | 
|  | * configurable and would normally be tuned according to the READ command and | 
|  | * operating frequency.  However, this applies universally to all 'FAST' READ | 
|  | * commands, including those used by the SPIBoot controller, and remains in | 
|  | * force until the device is power-cycled.  Since the SPIBoot controller is | 
|  | * hard-wired to use 8 dummy cycles, we must configure the device to also use 8 | 
|  | * cycles. | 
|  | */ | 
|  | static struct seq_rw_config n25q_read3_configs[] = { | 
|  | {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,	0, 4, 4, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,	0, 1, 4, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,	0, 2, 2, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,	0, 1, 2, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_FAST,	SPINOR_OP_READ_FAST,	0, 1, 1, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,	        0, 1, 1, 0x00, 0, 0}, | 
|  | {0x00,			0,			0, 0, 0, 0x00, 0, 0}, | 
|  | }; | 
|  |  | 
|  | /* N25Q 4-byte Address READ configurations | 
|  | *	- use special 4-byte address READ commands (reduces overheads, and | 
|  | *        reduces risk of hitting watchdog reset issues). | 
|  | *	- 'FAST' variants configured for 8 dummy cycles (see note above.) | 
|  | */ | 
|  | static struct seq_rw_config n25q_read4_configs[] = { | 
|  | {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_FAST,	SPINOR_OP_READ_FAST_4B,  0, 1, 1, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B,       0, 1, 1, 0x00, 0, 0}, | 
|  | {0x00,			0,                       0, 0, 0, 0x00, 0, 0}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * [MX25xxx] Configuration | 
|  | */ | 
|  | #define MX25_STATUS_QE			(0x1 << 6) | 
|  |  | 
|  | static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq) | 
|  | { | 
|  | seq->seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_EN4B) | | 
|  | SEQ_OPC_CSDEASSERT); | 
|  |  | 
|  | seq->seq[0] = STFSM_INST_CMD1; | 
|  | seq->seq[1] = STFSM_INST_WAIT; | 
|  | seq->seq[2] = STFSM_INST_STOP; | 
|  |  | 
|  | seq->seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_ERASE | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * [S25FLxxx] Configuration | 
|  | */ | 
|  | #define STFSM_S25FL_CONFIG_QE		(0x1 << 1) | 
|  |  | 
|  | /* | 
|  | * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank | 
|  | * Register, Extended Address Modes, and a 32-bit address command set.  The | 
|  | * 32-bit address command set is used here, since it avoids any problems with | 
|  | * entering a state that is incompatible with the SPIBoot Controller. | 
|  | */ | 
|  | static struct seq_rw_config stfsm_s25fl_read4_configs[] = { | 
|  | {FLASH_FLAG_READ_1_4_4,  SPINOR_OP_READ_1_4_4_4B,  0, 4, 4, 0x00, 2, 4}, | 
|  | {FLASH_FLAG_READ_1_1_4,  SPINOR_OP_READ_1_1_4_4B,  0, 1, 4, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_1_2_2,  SPINOR_OP_READ_1_2_2_4B,  0, 2, 2, 0x00, 4, 0}, | 
|  | {FLASH_FLAG_READ_1_1_2,  SPINOR_OP_READ_1_1_2_4B,  0, 1, 2, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_FAST,   SPINOR_OP_READ_FAST_4B,   0, 1, 1, 0x00, 0, 8}, | 
|  | {FLASH_FLAG_READ_WRITE,  SPINOR_OP_READ_4B,        0, 1, 1, 0x00, 0, 0}, | 
|  | {0x00,                   0,                        0, 0, 0, 0x00, 0, 0}, | 
|  | }; | 
|  |  | 
|  | static struct seq_rw_config stfsm_s25fl_write4_configs[] = { | 
|  | {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0}, | 
|  | {FLASH_FLAG_READ_WRITE,  S25FL_CMD_WRITE4,       1, 1, 1, 0x00, 0, 0}, | 
|  | {0x00,                   0,                      0, 0, 0, 0x00, 0, 0}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * [W25Qxxx] Configuration | 
|  | */ | 
|  | #define W25Q_STATUS_QE			(0x1 << 1) | 
|  |  | 
|  | static struct stfsm_seq stfsm_seq_read_jedec = { | 
|  | .data_size = TRANSFER_SIZE(8), | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_RDID)), | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_DATA_READ, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | static struct stfsm_seq stfsm_seq_read_status_fifo = { | 
|  | .data_size = TRANSFER_SIZE(4), | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_RDSR)), | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_DATA_READ, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | static struct stfsm_seq stfsm_seq_erase_sector = { | 
|  | /* 'addr_cfg' configured during initialisation */ | 
|  | .seq_opc = { | 
|  | (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), | 
|  |  | 
|  | (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_SE)), | 
|  | }, | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_CMD2, | 
|  | STFSM_INST_ADD1, | 
|  | STFSM_INST_ADD2, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | static struct stfsm_seq stfsm_seq_erase_chip = { | 
|  | .seq_opc = { | 
|  | (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), | 
|  |  | 
|  | (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT), | 
|  | }, | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_CMD2, | 
|  | STFSM_INST_WAIT, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_ERASE | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | static struct stfsm_seq stfsm_seq_write_status = { | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), | 
|  | .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WRSR)), | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_CMD2, | 
|  | STFSM_INST_STA_WR1, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | /* Dummy sequence to read one byte of data from flash into the FIFO */ | 
|  | static const struct stfsm_seq stfsm_seq_load_fifo_byte = { | 
|  | .data_size = TRANSFER_SIZE(1), | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_RDID)), | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_DATA_READ, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq) | 
|  | { | 
|  | seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_EN4B)); | 
|  | seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WREN) | | 
|  | SEQ_OPC_CSDEASSERT); | 
|  |  | 
|  | seq->seq[0] = STFSM_INST_CMD2; | 
|  | seq->seq[1] = STFSM_INST_CMD1; | 
|  | seq->seq[2] = STFSM_INST_WAIT; | 
|  | seq->seq[3] = STFSM_INST_STOP; | 
|  |  | 
|  | seq->seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_ERASE | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int stfsm_is_idle(struct stfsm *fsm) | 
|  | { | 
|  | return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10; | 
|  | } | 
|  |  | 
|  | static inline uint32_t stfsm_fifo_available(struct stfsm *fsm) | 
|  | { | 
|  | return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f; | 
|  | } | 
|  |  | 
|  | static inline void stfsm_load_seq(struct stfsm *fsm, | 
|  | const struct stfsm_seq *seq) | 
|  | { | 
|  | void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE; | 
|  | const uint32_t *src = (const uint32_t *)seq; | 
|  | int words = sizeof(*seq) / sizeof(*src); | 
|  |  | 
|  | BUG_ON(!stfsm_is_idle(fsm)); | 
|  |  | 
|  | while (words--) { | 
|  | writel(*src, dst); | 
|  | src++; | 
|  | dst += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void stfsm_wait_seq(struct stfsm *fsm) | 
|  | { | 
|  | unsigned long deadline; | 
|  | int timeout = 0; | 
|  |  | 
|  | deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS); | 
|  |  | 
|  | while (!timeout) { | 
|  | if (time_after_eq(jiffies, deadline)) | 
|  | timeout = 1; | 
|  |  | 
|  | if (stfsm_is_idle(fsm)) | 
|  | return; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | dev_err(fsm->dev, "timeout on sequence completion\n"); | 
|  | } | 
|  |  | 
|  | static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size) | 
|  | { | 
|  | uint32_t remaining = size >> 2; | 
|  | uint32_t avail; | 
|  | uint32_t words; | 
|  |  | 
|  | dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size); | 
|  |  | 
|  | BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); | 
|  |  | 
|  | while (remaining) { | 
|  | for (;;) { | 
|  | avail = stfsm_fifo_available(fsm); | 
|  | if (avail) | 
|  | break; | 
|  | udelay(1); | 
|  | } | 
|  | words = min(avail, remaining); | 
|  | remaining -= words; | 
|  |  | 
|  | readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); | 
|  | buf += words; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the data FIFO | 
|  | * | 
|  | * Typically, this is only required during driver initialisation, where no | 
|  | * assumptions can be made regarding the state of the FIFO. | 
|  | * | 
|  | * The process of clearing the FIFO is complicated by fact that while it is | 
|  | * possible for the FIFO to contain an arbitrary number of bytes [1], the | 
|  | * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words | 
|  | * present.  Furthermore, data can only be drained from the FIFO by reading | 
|  | * complete 32-bit words. | 
|  | * | 
|  | * With this in mind, a two stage process is used to the clear the FIFO: | 
|  | * | 
|  | *     1. Read any complete 32-bit words from the FIFO, as reported by the | 
|  | *        SPI_FAST_SEQ_STA register. | 
|  | * | 
|  | *     2. Mop up any remaining bytes.  At this point, it is not known if there | 
|  | *        are 0, 1, 2, or 3 bytes in the FIFO.  To handle all cases, a dummy FSM | 
|  | *        sequence is used to load one byte at a time, until a complete 32-bit | 
|  | *        word is formed; at most, 4 bytes will need to be loaded. | 
|  | * | 
|  | * [1] It is theoretically possible for the FIFO to contain an arbitrary number | 
|  | *     of bits.  However, since there are no known use-cases that leave | 
|  | *     incomplete bytes in the FIFO, only words and bytes are considered here. | 
|  | */ | 
|  | static void stfsm_clear_fifo(struct stfsm *fsm) | 
|  | { | 
|  | const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte; | 
|  | uint32_t words, i; | 
|  |  | 
|  | /* 1. Clear any 32-bit words */ | 
|  | words = stfsm_fifo_available(fsm); | 
|  | if (words) { | 
|  | for (i = 0; i < words; i++) | 
|  | readl(fsm->base + SPI_FAST_SEQ_DATA_REG); | 
|  | dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 2. Clear any remaining bytes | 
|  | *    - Load the FIFO, one byte at a time, until a complete 32-bit word | 
|  | *      is available. | 
|  | */ | 
|  | for (i = 0, words = 0; i < 4 && !words; i++) { | 
|  | stfsm_load_seq(fsm, seq); | 
|  | stfsm_wait_seq(fsm); | 
|  | words = stfsm_fifo_available(fsm); | 
|  | } | 
|  |  | 
|  | /*    - A single word must be available now */ | 
|  | if (words != 1) { | 
|  | dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /*    - Read the 32-bit word */ | 
|  | readl(fsm->base + SPI_FAST_SEQ_DATA_REG); | 
|  |  | 
|  | dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i); | 
|  | } | 
|  |  | 
|  | static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf, | 
|  | uint32_t size) | 
|  | { | 
|  | uint32_t words = size >> 2; | 
|  |  | 
|  | dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size); | 
|  |  | 
|  | BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); | 
|  |  | 
|  | writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter) | 
|  | { | 
|  | struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr; | 
|  | uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; | 
|  |  | 
|  | seq->seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(cmd) | | 
|  | SEQ_OPC_CSDEASSERT); | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint8_t stfsm_wait_busy(struct stfsm *fsm) | 
|  | { | 
|  | struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; | 
|  | unsigned long deadline; | 
|  | uint32_t status; | 
|  | int timeout = 0; | 
|  |  | 
|  | /* Use RDRS1 */ | 
|  | seq->seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_RDSR)); | 
|  |  | 
|  | /* Load read_status sequence */ | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | /* | 
|  | * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS) | 
|  | */ | 
|  | deadline = jiffies + FLASH_MAX_BUSY_WAIT; | 
|  | while (!timeout) { | 
|  | if (time_after_eq(jiffies, deadline)) | 
|  | timeout = 1; | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | stfsm_read_fifo(fsm, &status, 4); | 
|  |  | 
|  | if ((status & FLASH_STATUS_BUSY) == 0) | 
|  | return 0; | 
|  |  | 
|  | if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) && | 
|  | ((status & S25FL_STATUS_P_ERR) || | 
|  | (status & S25FL_STATUS_E_ERR))) | 
|  | return (uint8_t)(status & 0xff); | 
|  |  | 
|  | if (!timeout) | 
|  | /* Restart */ | 
|  | writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG); | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | dev_err(fsm->dev, "timeout on wait_busy\n"); | 
|  |  | 
|  | return FLASH_STATUS_TIMEOUT; | 
|  | } | 
|  |  | 
|  | static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd, | 
|  | uint8_t *data, int bytes) | 
|  | { | 
|  | struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; | 
|  | uint32_t tmp; | 
|  | uint8_t *t = (uint8_t *)&tmp; | 
|  | int i; | 
|  |  | 
|  | dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n", | 
|  | cmd, bytes); | 
|  |  | 
|  | BUG_ON(bytes != 1 && bytes != 2); | 
|  |  | 
|  | seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(cmd)), | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | stfsm_read_fifo(fsm, &tmp, 4); | 
|  |  | 
|  | for (i = 0; i < bytes; i++) | 
|  | data[i] = t[i]; | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd, | 
|  | uint16_t data, int bytes, int wait_busy) | 
|  | { | 
|  | struct stfsm_seq *seq = &stfsm_seq_write_status; | 
|  |  | 
|  | dev_dbg(fsm->dev, | 
|  | "write 'status' register [0x%02x], %d byte(s), 0x%04x\n" | 
|  | " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no"); | 
|  |  | 
|  | BUG_ON(bytes != 1 && bytes != 2); | 
|  |  | 
|  | seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(cmd)); | 
|  |  | 
|  | seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT; | 
|  | seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2; | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | if (wait_busy) | 
|  | stfsm_wait_busy(fsm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SoC reset on 'boot-from-spi' systems | 
|  | * | 
|  | * Certain modes of operation cause the Flash device to enter a particular state | 
|  | * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit | 
|  | * Addr' commands).  On boot-from-spi systems, it is important to consider what | 
|  | * happens if a warm reset occurs during this period.  The SPIBoot controller | 
|  | * assumes that Flash device is in its default reset state, 24-bit address mode, | 
|  | * and ready to accept commands.  This can be achieved using some form of | 
|  | * on-board logic/controller to force a device POR in response to a SoC-level | 
|  | * reset or by making use of the device reset signal if available (limited | 
|  | * number of devices only). | 
|  | * | 
|  | * Failure to take such precautions can cause problems following a warm reset. | 
|  | * For some operations (e.g. ERASE), there is little that can be done.  For | 
|  | * other modes of operation (e.g. 32-bit addressing), options are often | 
|  | * available that can help minimise the window in which a reset could cause a | 
|  | * problem. | 
|  | * | 
|  | */ | 
|  | static bool stfsm_can_handle_soc_reset(struct stfsm *fsm) | 
|  | { | 
|  | /* Reset signal is available on the board and supported by the device */ | 
|  | if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET) | 
|  | return true; | 
|  |  | 
|  | /* Board-level logic forces a power-on-reset */ | 
|  | if (fsm->reset_por) | 
|  | return true; | 
|  |  | 
|  | /* Reset is not properly handled and may result in failure to reboot */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Configure 'addr_cfg' according to addressing mode */ | 
|  | static void stfsm_prepare_erasesec_seq(struct stfsm *fsm, | 
|  | struct stfsm_seq *seq) | 
|  | { | 
|  | int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8; | 
|  |  | 
|  | seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) | | 
|  | ADR_CFG_PADS_1_ADD1 | | 
|  | ADR_CFG_CYCLES_ADD2(16) | | 
|  | ADR_CFG_PADS_1_ADD2 | | 
|  | ADR_CFG_CSDEASSERT_ADD2); | 
|  | } | 
|  |  | 
|  | /* Search for preferred configuration based on available flags */ | 
|  | static struct seq_rw_config * | 
|  | stfsm_search_seq_rw_configs(struct stfsm *fsm, | 
|  | struct seq_rw_config cfgs[]) | 
|  | { | 
|  | struct seq_rw_config *config; | 
|  | int flags = fsm->info->flags; | 
|  |  | 
|  | for (config = cfgs; config->cmd != 0; config++) | 
|  | if ((config->flags & flags) == config->flags) | 
|  | return config; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Prepare a READ/WRITE sequence according to configuration parameters */ | 
|  | static void stfsm_prepare_rw_seq(struct stfsm *fsm, | 
|  | struct stfsm_seq *seq, | 
|  | struct seq_rw_config *cfg) | 
|  | { | 
|  | int addr1_cycles, addr2_cycles; | 
|  | int i = 0; | 
|  |  | 
|  | memset(seq, 0, sizeof(*seq)); | 
|  |  | 
|  | /* Add READ/WRITE OPC  */ | 
|  | seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(cfg->cmd)); | 
|  |  | 
|  | /* Add WREN OPC for a WRITE sequence */ | 
|  | if (cfg->write) | 
|  | seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WREN) | | 
|  | SEQ_OPC_CSDEASSERT); | 
|  |  | 
|  | /* Address configuration (24 or 32-bit addresses) */ | 
|  | addr1_cycles  = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8; | 
|  | addr1_cycles /= cfg->addr_pads; | 
|  | addr2_cycles  = 16 / cfg->addr_pads; | 
|  | seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 |	/* ADD1 cycles */ | 
|  | (cfg->addr_pads - 1) << 6 |	/* ADD1 pads */ | 
|  | (addr2_cycles & 0x3f) << 16 |	/* ADD2 cycles */ | 
|  | ((cfg->addr_pads - 1) << 22));	/* ADD2 pads */ | 
|  |  | 
|  | /* Data/Sequence configuration */ | 
|  | seq->seq_cfg = ((cfg->data_pads - 1) << 16 | | 
|  | SEQ_CFG_STARTSEQ | | 
|  | SEQ_CFG_CSDEASSERT); | 
|  | if (!cfg->write) | 
|  | seq->seq_cfg |= SEQ_CFG_READNOTWRITE; | 
|  |  | 
|  | /* Mode configuration (no. of pads taken from addr cfg) */ | 
|  | seq->mode = ((cfg->mode_data & 0xff) << 0 |	/* data */ | 
|  | (cfg->mode_cycles & 0x3f) << 16 |	/* cycles */ | 
|  | (cfg->addr_pads - 1) << 22);	/* pads */ | 
|  |  | 
|  | /* Dummy configuration (no. of pads taken from addr cfg) */ | 
|  | seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 |	/* cycles */ | 
|  | (cfg->addr_pads - 1) << 22);		/* pads */ | 
|  |  | 
|  |  | 
|  | /* Instruction sequence */ | 
|  | i = 0; | 
|  | if (cfg->write) | 
|  | seq->seq[i++] = STFSM_INST_CMD2; | 
|  |  | 
|  | seq->seq[i++] = STFSM_INST_CMD1; | 
|  |  | 
|  | seq->seq[i++] = STFSM_INST_ADD1; | 
|  | seq->seq[i++] = STFSM_INST_ADD2; | 
|  |  | 
|  | if (cfg->mode_cycles) | 
|  | seq->seq[i++] = STFSM_INST_MODE; | 
|  |  | 
|  | if (cfg->dummy_cycles) | 
|  | seq->seq[i++] = STFSM_INST_DUMMY; | 
|  |  | 
|  | seq->seq[i++] = | 
|  | cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ; | 
|  | seq->seq[i++] = STFSM_INST_STOP; | 
|  | } | 
|  |  | 
|  | static int stfsm_search_prepare_rw_seq(struct stfsm *fsm, | 
|  | struct stfsm_seq *seq, | 
|  | struct seq_rw_config *cfgs) | 
|  | { | 
|  | struct seq_rw_config *config; | 
|  |  | 
|  | config = stfsm_search_seq_rw_configs(fsm, cfgs); | 
|  | if (!config) { | 
|  | dev_err(fsm->dev, "failed to find suitable config\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | stfsm_prepare_rw_seq(fsm, seq, config); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Prepare a READ/WRITE/ERASE 'default' sequences */ | 
|  | static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm) | 
|  | { | 
|  | uint32_t flags = fsm->info->flags; | 
|  | int ret; | 
|  |  | 
|  | /* Configure 'READ' sequence */ | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, | 
|  | default_read_configs); | 
|  | if (ret) { | 
|  | dev_err(fsm->dev, | 
|  | "failed to prep READ sequence with flags [0x%08x]\n", | 
|  | flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Configure 'WRITE' sequence */ | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, | 
|  | default_write_configs); | 
|  | if (ret) { | 
|  | dev_err(fsm->dev, | 
|  | "failed to prep WRITE sequence with flags [0x%08x]\n", | 
|  | flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Configure 'ERASE_SECTOR' sequence */ | 
|  | stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_mx25_config(struct stfsm *fsm) | 
|  | { | 
|  | uint32_t flags = fsm->info->flags; | 
|  | uint32_t data_pads; | 
|  | uint8_t sta; | 
|  | int ret; | 
|  | bool soc_reset; | 
|  |  | 
|  | /* | 
|  | * Use default READ/WRITE sequences | 
|  | */ | 
|  | ret = stfsm_prepare_rwe_seqs_default(fsm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Configure 32-bit Address Support | 
|  | */ | 
|  | if (flags & FLASH_FLAG_32BIT_ADDR) { | 
|  | /* Configure 'enter_32bitaddr' FSM sequence */ | 
|  | stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); | 
|  |  | 
|  | soc_reset = stfsm_can_handle_soc_reset(fsm); | 
|  | if (soc_reset || !fsm->booted_from_spi) | 
|  | /* If we can handle SoC resets, we enable 32-bit address | 
|  | * mode pervasively */ | 
|  | stfsm_enter_32bit_addr(fsm, 1); | 
|  |  | 
|  | else | 
|  | /* Else, enable/disable 32-bit addressing before/after | 
|  | * each operation */ | 
|  | fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR | | 
|  | CFG_WRITE_TOGGLE_32BIT_ADDR | | 
|  | CFG_ERASESEC_TOGGLE_32BIT_ADDR); | 
|  | } | 
|  |  | 
|  | /* Check status of 'QE' bit, update if required. */ | 
|  | stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1); | 
|  | data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; | 
|  | if (data_pads == 4) { | 
|  | if (!(sta & MX25_STATUS_QE)) { | 
|  | /* Set 'QE' */ | 
|  | sta |= MX25_STATUS_QE; | 
|  |  | 
|  | stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); | 
|  | } | 
|  | } else { | 
|  | if (sta & MX25_STATUS_QE) { | 
|  | /* Clear 'QE' */ | 
|  | sta &= ~MX25_STATUS_QE; | 
|  |  | 
|  | stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_n25q_config(struct stfsm *fsm) | 
|  | { | 
|  | uint32_t flags = fsm->info->flags; | 
|  | uint8_t vcr; | 
|  | int ret = 0; | 
|  | bool soc_reset; | 
|  |  | 
|  | /* Configure 'READ' sequence */ | 
|  | if (flags & FLASH_FLAG_32BIT_ADDR) | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, | 
|  | n25q_read4_configs); | 
|  | else | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, | 
|  | n25q_read3_configs); | 
|  | if (ret) { | 
|  | dev_err(fsm->dev, | 
|  | "failed to prepare READ sequence with flags [0x%08x]\n", | 
|  | flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Configure 'WRITE' sequence (default configs) */ | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, | 
|  | default_write_configs); | 
|  | if (ret) { | 
|  | dev_err(fsm->dev, | 
|  | "preparing WRITE sequence using flags [0x%08x] failed\n", | 
|  | flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* * Configure 'ERASE_SECTOR' sequence */ | 
|  | stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); | 
|  |  | 
|  | /* Configure 32-bit address support */ | 
|  | if (flags & FLASH_FLAG_32BIT_ADDR) { | 
|  | stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); | 
|  |  | 
|  | soc_reset = stfsm_can_handle_soc_reset(fsm); | 
|  | if (soc_reset || !fsm->booted_from_spi) { | 
|  | /* | 
|  | * If we can handle SoC resets, we enable 32-bit | 
|  | * address mode pervasively | 
|  | */ | 
|  | stfsm_enter_32bit_addr(fsm, 1); | 
|  | } else { | 
|  | /* | 
|  | * If not, enable/disable for WRITE and ERASE | 
|  | * operations (READ uses special commands) | 
|  | */ | 
|  | fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR | | 
|  | CFG_ERASESEC_TOGGLE_32BIT_ADDR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure device to use 8 dummy cycles | 
|  | */ | 
|  | vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED | | 
|  | N25Q_VCR_WRAP_CONT); | 
|  | stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq) | 
|  | { | 
|  | seq->seq_opc[1] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(S25FL_CMD_SE4)); | 
|  |  | 
|  | seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | | 
|  | ADR_CFG_PADS_1_ADD1 | | 
|  | ADR_CFG_CYCLES_ADD2(16) | | 
|  | ADR_CFG_PADS_1_ADD2 | | 
|  | ADR_CFG_CSDEASSERT_ADD2); | 
|  | } | 
|  |  | 
|  | static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby) | 
|  | { | 
|  | uint32_t tmp; | 
|  | struct stfsm_seq seq = { | 
|  | .data_size = TRANSFER_SIZE(4), | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)), | 
|  | .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | | 
|  | ADR_CFG_PADS_1_ADD1 | | 
|  | ADR_CFG_CYCLES_ADD2(16) | | 
|  | ADR_CFG_PADS_1_ADD2), | 
|  | .addr1 = (offs >> 16) & 0xffff, | 
|  | .addr2 = offs & 0xffff, | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_ADD1, | 
|  | STFSM_INST_ADD2, | 
|  | STFSM_INST_DATA_READ, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | stfsm_load_seq(fsm, &seq); | 
|  |  | 
|  | stfsm_read_fifo(fsm, &tmp, 4); | 
|  |  | 
|  | *dby = (uint8_t)(tmp >> 24); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  | } | 
|  |  | 
|  | static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby) | 
|  | { | 
|  | struct stfsm_seq seq = { | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WREN) | | 
|  | SEQ_OPC_CSDEASSERT), | 
|  | .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)), | 
|  | .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | | 
|  | ADR_CFG_PADS_1_ADD1 | | 
|  | ADR_CFG_CYCLES_ADD2(16) | | 
|  | ADR_CFG_PADS_1_ADD2), | 
|  | .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT, | 
|  | .addr1 = (offs >> 16) & 0xffff, | 
|  | .addr2 = offs & 0xffff, | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_CMD2, | 
|  | STFSM_INST_ADD1, | 
|  | STFSM_INST_ADD2, | 
|  | STFSM_INST_STA_WR1, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | stfsm_load_seq(fsm, &seq); | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | stfsm_wait_busy(fsm); | 
|  | } | 
|  |  | 
|  | static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm) | 
|  | { | 
|  | struct stfsm_seq seq = { | 
|  | .seq_opc[0] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(S25FL_CMD_CLSR) | | 
|  | SEQ_OPC_CSDEASSERT), | 
|  | .seq_opc[1] = (SEQ_OPC_PADS_1 | | 
|  | SEQ_OPC_CYCLES(8) | | 
|  | SEQ_OPC_OPCODE(SPINOR_OP_WRDI) | | 
|  | SEQ_OPC_CSDEASSERT), | 
|  | .seq = { | 
|  | STFSM_INST_CMD1, | 
|  | STFSM_INST_CMD2, | 
|  | STFSM_INST_WAIT, | 
|  | STFSM_INST_STOP, | 
|  | }, | 
|  | .seq_cfg = (SEQ_CFG_PADS_1 | | 
|  | SEQ_CFG_ERASE | | 
|  | SEQ_CFG_READNOTWRITE | | 
|  | SEQ_CFG_CSDEASSERT | | 
|  | SEQ_CFG_STARTSEQ), | 
|  | }; | 
|  |  | 
|  | stfsm_load_seq(fsm, &seq); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_s25fl_config(struct stfsm *fsm) | 
|  | { | 
|  | struct flash_info *info = fsm->info; | 
|  | uint32_t flags = info->flags; | 
|  | uint32_t data_pads; | 
|  | uint32_t offs; | 
|  | uint16_t sta_wr; | 
|  | uint8_t sr1, cr1, dyb; | 
|  | int update_sr = 0; | 
|  | int ret; | 
|  |  | 
|  | if (flags & FLASH_FLAG_32BIT_ADDR) { | 
|  | /* | 
|  | * Prepare Read/Write/Erase sequences according to S25FLxxx | 
|  | * 32-bit address command set | 
|  | */ | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, | 
|  | stfsm_s25fl_read4_configs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, | 
|  | stfsm_s25fl_write4_configs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector); | 
|  |  | 
|  | } else { | 
|  | /* Use default configurations for 24-bit addressing */ | 
|  | ret = stfsm_prepare_rwe_seqs_default(fsm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For devices that support 'DYB' sector locking, check lock status and | 
|  | * unlock sectors if necessary (some variants power-on with sectors | 
|  | * locked by default) | 
|  | */ | 
|  | if (flags & FLASH_FLAG_DYB_LOCKING) { | 
|  | offs = 0; | 
|  | for (offs = 0; offs < info->sector_size * info->n_sectors;) { | 
|  | stfsm_s25fl_read_dyb(fsm, offs, &dyb); | 
|  | if (dyb == 0x00) | 
|  | stfsm_s25fl_write_dyb(fsm, offs, 0xff); | 
|  |  | 
|  | /* Handle bottom/top 4KiB parameter sectors */ | 
|  | if ((offs < info->sector_size * 2) || | 
|  | (offs >= (info->sector_size - info->n_sectors * 4))) | 
|  | offs += 0x1000; | 
|  | else | 
|  | offs += 0x10000; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check status of 'QE' bit, update if required. */ | 
|  | stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1); | 
|  | data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; | 
|  | if (data_pads == 4) { | 
|  | if (!(cr1 & STFSM_S25FL_CONFIG_QE)) { | 
|  | /* Set 'QE' */ | 
|  | cr1 |= STFSM_S25FL_CONFIG_QE; | 
|  |  | 
|  | update_sr = 1; | 
|  | } | 
|  | } else { | 
|  | if (cr1 & STFSM_S25FL_CONFIG_QE) { | 
|  | /* Clear 'QE' */ | 
|  | cr1 &= ~STFSM_S25FL_CONFIG_QE; | 
|  |  | 
|  | update_sr = 1; | 
|  | } | 
|  | } | 
|  | if (update_sr) { | 
|  | stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); | 
|  | sta_wr = ((uint16_t)cr1  << 8) | sr1; | 
|  | stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * S25FLxxx devices support Program and Error error flags. | 
|  | * Configure driver to check flags and clear if necessary. | 
|  | */ | 
|  | fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_w25q_config(struct stfsm *fsm) | 
|  | { | 
|  | uint32_t data_pads; | 
|  | uint8_t sr1, sr2; | 
|  | uint16_t sr_wr; | 
|  | int update_sr = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = stfsm_prepare_rwe_seqs_default(fsm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Check status of 'QE' bit, update if required. */ | 
|  | stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1); | 
|  | data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; | 
|  | if (data_pads == 4) { | 
|  | if (!(sr2 & W25Q_STATUS_QE)) { | 
|  | /* Set 'QE' */ | 
|  | sr2 |= W25Q_STATUS_QE; | 
|  | update_sr = 1; | 
|  | } | 
|  | } else { | 
|  | if (sr2 & W25Q_STATUS_QE) { | 
|  | /* Clear 'QE' */ | 
|  | sr2 &= ~W25Q_STATUS_QE; | 
|  | update_sr = 1; | 
|  | } | 
|  | } | 
|  | if (update_sr) { | 
|  | /* Write status register */ | 
|  | stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); | 
|  | sr_wr = ((uint16_t)sr2 << 8) | sr1; | 
|  | stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size, | 
|  | uint32_t offset) | 
|  | { | 
|  | struct stfsm_seq *seq = &fsm->stfsm_seq_read; | 
|  | uint32_t data_pads; | 
|  | uint32_t read_mask; | 
|  | uint32_t size_ub; | 
|  | uint32_t size_lb; | 
|  | uint32_t size_mop; | 
|  | uint32_t tmp[4]; | 
|  | uint32_t page_buf[FLASH_PAGESIZE_32]; | 
|  | uint8_t *p; | 
|  |  | 
|  | dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset); | 
|  |  | 
|  | /* Enter 32-bit address mode, if required */ | 
|  | if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) | 
|  | stfsm_enter_32bit_addr(fsm, 1); | 
|  |  | 
|  | /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */ | 
|  | data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; | 
|  | read_mask = (data_pads << 2) - 1; | 
|  |  | 
|  | /* Handle non-aligned buf */ | 
|  | p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf; | 
|  |  | 
|  | /* Handle non-aligned size */ | 
|  | size_ub = (size + read_mask) & ~read_mask; | 
|  | size_lb = size & ~read_mask; | 
|  | size_mop = size & read_mask; | 
|  |  | 
|  | seq->data_size = TRANSFER_SIZE(size_ub); | 
|  | seq->addr1 = (offset >> 16) & 0xffff; | 
|  | seq->addr2 = offset & 0xffff; | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | if (size_lb) | 
|  | stfsm_read_fifo(fsm, (uint32_t *)p, size_lb); | 
|  |  | 
|  | if (size_mop) { | 
|  | stfsm_read_fifo(fsm, tmp, read_mask + 1); | 
|  | memcpy(p + size_lb, &tmp, size_mop); | 
|  | } | 
|  |  | 
|  | /* Handle non-aligned buf */ | 
|  | if ((uintptr_t)buf & 0x3) | 
|  | memcpy(buf, page_buf, size); | 
|  |  | 
|  | /* Wait for sequence to finish */ | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | stfsm_clear_fifo(fsm); | 
|  |  | 
|  | /* Exit 32-bit address mode, if required */ | 
|  | if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) | 
|  | stfsm_enter_32bit_addr(fsm, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_write(struct stfsm *fsm, const uint8_t *buf, | 
|  | uint32_t size, uint32_t offset) | 
|  | { | 
|  | struct stfsm_seq *seq = &fsm->stfsm_seq_write; | 
|  | uint32_t data_pads; | 
|  | uint32_t write_mask; | 
|  | uint32_t size_ub; | 
|  | uint32_t size_lb; | 
|  | uint32_t size_mop; | 
|  | uint32_t tmp[4]; | 
|  | uint32_t i; | 
|  | uint32_t page_buf[FLASH_PAGESIZE_32]; | 
|  | uint8_t *t = (uint8_t *)&tmp; | 
|  | const uint8_t *p; | 
|  | int ret; | 
|  |  | 
|  | dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset); | 
|  |  | 
|  | /* Enter 32-bit address mode, if required */ | 
|  | if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) | 
|  | stfsm_enter_32bit_addr(fsm, 1); | 
|  |  | 
|  | /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */ | 
|  | data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; | 
|  | write_mask = (data_pads << 2) - 1; | 
|  |  | 
|  | /* Handle non-aligned buf */ | 
|  | if ((uintptr_t)buf & 0x3) { | 
|  | memcpy(page_buf, buf, size); | 
|  | p = (uint8_t *)page_buf; | 
|  | } else { | 
|  | p = buf; | 
|  | } | 
|  |  | 
|  | /* Handle non-aligned size */ | 
|  | size_ub = (size + write_mask) & ~write_mask; | 
|  | size_lb = size & ~write_mask; | 
|  | size_mop = size & write_mask; | 
|  |  | 
|  | seq->data_size = TRANSFER_SIZE(size_ub); | 
|  | seq->addr1 = (offset >> 16) & 0xffff; | 
|  | seq->addr2 = offset & 0xffff; | 
|  |  | 
|  | /* Need to set FIFO to write mode, before writing data to FIFO (see | 
|  | * GNBvb79594) | 
|  | */ | 
|  | writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG); | 
|  |  | 
|  | /* | 
|  | * Before writing data to the FIFO, apply a small delay to allow a | 
|  | * potential change of FIFO direction to complete. | 
|  | */ | 
|  | if (fsm->fifo_dir_delay == 0) | 
|  | readl(fsm->base + SPI_FAST_SEQ_CFG); | 
|  | else | 
|  | udelay(fsm->fifo_dir_delay); | 
|  |  | 
|  |  | 
|  | /* Write data to FIFO, before starting sequence (see GNBvd79593) */ | 
|  | if (size_lb) { | 
|  | stfsm_write_fifo(fsm, (uint32_t *)p, size_lb); | 
|  | p += size_lb; | 
|  | } | 
|  |  | 
|  | /* Handle non-aligned size */ | 
|  | if (size_mop) { | 
|  | memset(t, 0xff, write_mask + 1);	/* fill with 0xff's */ | 
|  | for (i = 0; i < size_mop; i++) | 
|  | t[i] = *p++; | 
|  |  | 
|  | stfsm_write_fifo(fsm, tmp, write_mask + 1); | 
|  | } | 
|  |  | 
|  | /* Start sequence */ | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | /* Wait for sequence to finish */ | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | /* Wait for completion */ | 
|  | ret = stfsm_wait_busy(fsm); | 
|  | if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) | 
|  | stfsm_s25fl_clear_status_reg(fsm); | 
|  |  | 
|  | /* Exit 32-bit address mode, if required */ | 
|  | if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) | 
|  | stfsm_enter_32bit_addr(fsm, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an address range from the flash chip. The address range | 
|  | * may be any size provided it is within the physical boundaries. | 
|  | */ | 
|  | static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); | 
|  | uint32_t bytes; | 
|  |  | 
|  | dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n", | 
|  | __func__, (u32)from, len); | 
|  |  | 
|  | mutex_lock(&fsm->lock); | 
|  |  | 
|  | while (len > 0) { | 
|  | bytes = min_t(size_t, len, FLASH_PAGESIZE); | 
|  |  | 
|  | stfsm_read(fsm, buf, bytes, from); | 
|  |  | 
|  | buf += bytes; | 
|  | from += bytes; | 
|  | len -= bytes; | 
|  |  | 
|  | *retlen += bytes; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fsm->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset) | 
|  | { | 
|  | struct stfsm_seq *seq = &stfsm_seq_erase_sector; | 
|  | int ret; | 
|  |  | 
|  | dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset); | 
|  |  | 
|  | /* Enter 32-bit address mode, if required */ | 
|  | if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) | 
|  | stfsm_enter_32bit_addr(fsm, 1); | 
|  |  | 
|  | seq->addr1 = (offset >> 16) & 0xffff; | 
|  | seq->addr2 = offset & 0xffff; | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | /* Wait for completion */ | 
|  | ret = stfsm_wait_busy(fsm); | 
|  | if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) | 
|  | stfsm_s25fl_clear_status_reg(fsm); | 
|  |  | 
|  | /* Exit 32-bit address mode, if required */ | 
|  | if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) | 
|  | stfsm_enter_32bit_addr(fsm, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int stfsm_erase_chip(struct stfsm *fsm) | 
|  | { | 
|  | const struct stfsm_seq *seq = &stfsm_seq_erase_chip; | 
|  |  | 
|  | dev_dbg(fsm->dev, "erasing chip\n"); | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  |  | 
|  | return stfsm_wait_busy(fsm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write an address range to the flash chip.  Data must be written in | 
|  | * FLASH_PAGESIZE chunks.  The address range may be any size provided | 
|  | * it is within the physical boundaries. | 
|  | */ | 
|  | static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); | 
|  |  | 
|  | u32 page_offs; | 
|  | u32 bytes; | 
|  | uint8_t *b = (uint8_t *)buf; | 
|  | int ret = 0; | 
|  |  | 
|  | dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len); | 
|  |  | 
|  | /* Offset within page */ | 
|  | page_offs = to % FLASH_PAGESIZE; | 
|  |  | 
|  | mutex_lock(&fsm->lock); | 
|  |  | 
|  | while (len) { | 
|  | /* Write up to page boundary */ | 
|  | bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len); | 
|  |  | 
|  | ret = stfsm_write(fsm, b, bytes, to); | 
|  | if (ret) | 
|  | goto out1; | 
|  |  | 
|  | b += bytes; | 
|  | len -= bytes; | 
|  | to += bytes; | 
|  |  | 
|  | /* We are now page-aligned */ | 
|  | page_offs = 0; | 
|  |  | 
|  | *retlen += bytes; | 
|  |  | 
|  | } | 
|  |  | 
|  | out1: | 
|  | mutex_unlock(&fsm->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erase an address range on the flash chip. The address range may extend | 
|  | * one or more erase sectors.  Return an error is there is a problem erasing. | 
|  | */ | 
|  | static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); | 
|  | u32 addr, len; | 
|  | int ret; | 
|  |  | 
|  | dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__, | 
|  | (long long)instr->addr, (long long)instr->len); | 
|  |  | 
|  | addr = instr->addr; | 
|  | len = instr->len; | 
|  |  | 
|  | mutex_lock(&fsm->lock); | 
|  |  | 
|  | /* Whole-chip erase? */ | 
|  | if (len == mtd->size) { | 
|  | ret = stfsm_erase_chip(fsm); | 
|  | if (ret) | 
|  | goto out1; | 
|  | } else { | 
|  | while (len) { | 
|  | ret = stfsm_erase_sector(fsm, addr); | 
|  | if (ret) | 
|  | goto out1; | 
|  |  | 
|  | addr += mtd->erasesize; | 
|  | len -= mtd->erasesize; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fsm->lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out1: | 
|  | mutex_unlock(&fsm->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec) | 
|  | { | 
|  | const struct stfsm_seq *seq = &stfsm_seq_read_jedec; | 
|  | uint32_t tmp[2]; | 
|  |  | 
|  | stfsm_load_seq(fsm, seq); | 
|  |  | 
|  | stfsm_read_fifo(fsm, tmp, 8); | 
|  |  | 
|  | memcpy(jedec, tmp, 5); | 
|  |  | 
|  | stfsm_wait_seq(fsm); | 
|  | } | 
|  |  | 
|  | static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm) | 
|  | { | 
|  | struct flash_info	*info; | 
|  | u16                     ext_jedec; | 
|  | u32			jedec; | 
|  | u8			id[5]; | 
|  |  | 
|  | stfsm_read_jedec(fsm, id); | 
|  |  | 
|  | jedec     = id[0] << 16 | id[1] << 8 | id[2]; | 
|  | /* | 
|  | * JEDEC also defines an optional "extended device information" | 
|  | * string for after vendor-specific data, after the three bytes | 
|  | * we use here. Supporting some chips might require using it. | 
|  | */ | 
|  | ext_jedec = id[3] << 8  | id[4]; | 
|  |  | 
|  | dev_dbg(fsm->dev, "JEDEC =  0x%08x [%5ph]\n", jedec, id); | 
|  |  | 
|  | for (info = flash_types; info->name; info++) { | 
|  | if (info->jedec_id == jedec) { | 
|  | if (info->ext_id && info->ext_id != ext_jedec) | 
|  | continue; | 
|  | return info; | 
|  | } | 
|  | } | 
|  | dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode) | 
|  | { | 
|  | int ret, timeout = 10; | 
|  |  | 
|  | /* Wait for controller to accept mode change */ | 
|  | while (--timeout) { | 
|  | ret = readl(fsm->base + SPI_STA_MODE_CHANGE); | 
|  | if (ret & 0x1) | 
|  | break; | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | if (!timeout) | 
|  | return -EBUSY; | 
|  |  | 
|  | writel(mode, fsm->base + SPI_MODESELECT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq) | 
|  | { | 
|  | uint32_t emi_freq; | 
|  | uint32_t clk_div; | 
|  |  | 
|  | emi_freq = clk_get_rate(fsm->clk); | 
|  |  | 
|  | /* | 
|  | * Calculate clk_div - values between 2 and 128 | 
|  | * Multiple of 2, rounded up | 
|  | */ | 
|  | clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq); | 
|  | if (clk_div < 2) | 
|  | clk_div = 2; | 
|  | else if (clk_div > 128) | 
|  | clk_div = 128; | 
|  |  | 
|  | /* | 
|  | * Determine a suitable delay for the IP to complete a change of | 
|  | * direction of the FIFO. The required delay is related to the clock | 
|  | * divider used. The following heuristics are based on empirical tests, | 
|  | * using a 100MHz EMI clock. | 
|  | */ | 
|  | if (clk_div <= 4) | 
|  | fsm->fifo_dir_delay = 0; | 
|  | else if (clk_div <= 10) | 
|  | fsm->fifo_dir_delay = 1; | 
|  | else | 
|  | fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10); | 
|  |  | 
|  | dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n", | 
|  | emi_freq, spi_freq, clk_div); | 
|  |  | 
|  | writel(clk_div, fsm->base + SPI_CLOCKDIV); | 
|  | } | 
|  |  | 
|  | static int stfsm_init(struct stfsm *fsm) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Perform a soft reset of the FSM controller */ | 
|  | writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG); | 
|  | udelay(1); | 
|  | writel(0, fsm->base + SPI_FAST_SEQ_CFG); | 
|  |  | 
|  | /* Set clock to 'safe' frequency initially */ | 
|  | stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ); | 
|  |  | 
|  | /* Switch to FSM */ | 
|  | ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Set timing parameters */ | 
|  | writel(SPI_CFG_DEVICE_ST            | | 
|  | SPI_CFG_DEFAULT_MIN_CS_HIGH  | | 
|  | SPI_CFG_DEFAULT_CS_SETUPHOLD | | 
|  | SPI_CFG_DEFAULT_DATA_HOLD, | 
|  | fsm->base + SPI_CONFIGDATA); | 
|  | writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG); | 
|  |  | 
|  | /* | 
|  | * Set the FSM 'WAIT' delay to the minimum workable value.  Note, for | 
|  | * our purposes, the WAIT instruction is used purely to achieve | 
|  | * "sequence validity" rather than actually implement a delay. | 
|  | */ | 
|  | writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME); | 
|  |  | 
|  | /* Clear FIFO, just in case */ | 
|  | stfsm_clear_fifo(fsm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stfsm_fetch_platform_configs(struct platform_device *pdev) | 
|  | { | 
|  | struct stfsm *fsm = platform_get_drvdata(pdev); | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | struct regmap *regmap; | 
|  | uint32_t boot_device_reg; | 
|  | uint32_t boot_device_spi; | 
|  | uint32_t boot_device;     /* Value we read from *boot_device_reg */ | 
|  | int ret; | 
|  |  | 
|  | /* Booting from SPI NOR Flash is the default */ | 
|  | fsm->booted_from_spi = true; | 
|  |  | 
|  | regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); | 
|  | if (IS_ERR(regmap)) | 
|  | goto boot_device_fail; | 
|  |  | 
|  | fsm->reset_signal = of_property_read_bool(np, "st,reset-signal"); | 
|  |  | 
|  | fsm->reset_por = of_property_read_bool(np, "st,reset-por"); | 
|  |  | 
|  | /* Where in the syscon the boot device information lives */ | 
|  | ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg); | 
|  | if (ret) | 
|  | goto boot_device_fail; | 
|  |  | 
|  | /* Boot device value when booted from SPI NOR */ | 
|  | ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi); | 
|  | if (ret) | 
|  | goto boot_device_fail; | 
|  |  | 
|  | ret = regmap_read(regmap, boot_device_reg, &boot_device); | 
|  | if (ret) | 
|  | goto boot_device_fail; | 
|  |  | 
|  | if (boot_device != boot_device_spi) | 
|  | fsm->booted_from_spi = false; | 
|  |  | 
|  | return; | 
|  |  | 
|  | boot_device_fail: | 
|  | dev_warn(&pdev->dev, | 
|  | "failed to fetch boot device, assuming boot from SPI\n"); | 
|  | } | 
|  |  | 
|  | static int stfsm_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | struct flash_info *info; | 
|  | struct resource *res; | 
|  | struct stfsm *fsm; | 
|  | int ret; | 
|  |  | 
|  | if (!np) { | 
|  | dev_err(&pdev->dev, "No DT found\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL); | 
|  | if (!fsm) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fsm->dev = &pdev->dev; | 
|  |  | 
|  | platform_set_drvdata(pdev, fsm); | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!res) { | 
|  | dev_err(&pdev->dev, "Resource not found\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | fsm->base = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(fsm->base)) { | 
|  | dev_err(&pdev->dev, | 
|  | "Failed to reserve memory region %pR\n", res); | 
|  | return PTR_ERR(fsm->base); | 
|  | } | 
|  |  | 
|  | fsm->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(fsm->clk)) { | 
|  | dev_err(fsm->dev, "Couldn't find EMI clock.\n"); | 
|  | return PTR_ERR(fsm->clk); | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(fsm->clk); | 
|  | if (ret) { | 
|  | dev_err(fsm->dev, "Failed to enable EMI clock.\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mutex_init(&fsm->lock); | 
|  |  | 
|  | ret = stfsm_init(fsm); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "Failed to initialise FSM Controller\n"); | 
|  | goto err_clk_unprepare; | 
|  | } | 
|  |  | 
|  | stfsm_fetch_platform_configs(pdev); | 
|  |  | 
|  | /* Detect SPI FLASH device */ | 
|  | info = stfsm_jedec_probe(fsm); | 
|  | if (!info) { | 
|  | ret = -ENODEV; | 
|  | goto err_clk_unprepare; | 
|  | } | 
|  | fsm->info = info; | 
|  |  | 
|  | /* Use device size to determine address width */ | 
|  | if (info->sector_size * info->n_sectors > 0x1000000) | 
|  | info->flags |= FLASH_FLAG_32BIT_ADDR; | 
|  |  | 
|  | /* | 
|  | * Configure READ/WRITE/ERASE sequences according to platform and | 
|  | * device flags. | 
|  | */ | 
|  | if (info->config) { | 
|  | ret = info->config(fsm); | 
|  | if (ret) | 
|  | goto err_clk_unprepare; | 
|  | } else { | 
|  | ret = stfsm_prepare_rwe_seqs_default(fsm); | 
|  | if (ret) | 
|  | goto err_clk_unprepare; | 
|  | } | 
|  |  | 
|  | fsm->mtd.name		= info->name; | 
|  | fsm->mtd.dev.parent	= &pdev->dev; | 
|  | mtd_set_of_node(&fsm->mtd, np); | 
|  | fsm->mtd.type		= MTD_NORFLASH; | 
|  | fsm->mtd.writesize	= 4; | 
|  | fsm->mtd.writebufsize	= fsm->mtd.writesize; | 
|  | fsm->mtd.flags		= MTD_CAP_NORFLASH; | 
|  | fsm->mtd.size		= info->sector_size * info->n_sectors; | 
|  | fsm->mtd.erasesize	= info->sector_size; | 
|  |  | 
|  | fsm->mtd._read  = stfsm_mtd_read; | 
|  | fsm->mtd._write = stfsm_mtd_write; | 
|  | fsm->mtd._erase = stfsm_mtd_erase; | 
|  |  | 
|  | dev_info(&pdev->dev, | 
|  | "Found serial flash device: %s\n" | 
|  | " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n", | 
|  | info->name, | 
|  | (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20), | 
|  | fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10)); | 
|  |  | 
|  | return mtd_device_register(&fsm->mtd, NULL, 0); | 
|  |  | 
|  | err_clk_unprepare: | 
|  | clk_disable_unprepare(fsm->clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int stfsm_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct stfsm *fsm = platform_get_drvdata(pdev); | 
|  |  | 
|  | return mtd_device_unregister(&fsm->mtd); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int stfsmfsm_suspend(struct device *dev) | 
|  | { | 
|  | struct stfsm *fsm = dev_get_drvdata(dev); | 
|  |  | 
|  | clk_disable_unprepare(fsm->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stfsmfsm_resume(struct device *dev) | 
|  | { | 
|  | struct stfsm *fsm = dev_get_drvdata(dev); | 
|  |  | 
|  | return clk_prepare_enable(fsm->clk); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume); | 
|  |  | 
|  | static const struct of_device_id stfsm_match[] = { | 
|  | { .compatible = "st,spi-fsm", }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, stfsm_match); | 
|  |  | 
|  | static struct platform_driver stfsm_driver = { | 
|  | .probe		= stfsm_probe, | 
|  | .remove		= stfsm_remove, | 
|  | .driver		= { | 
|  | .name	= "st-spi-fsm", | 
|  | .of_match_table = stfsm_match, | 
|  | .pm     = &stfsm_pm_ops, | 
|  | }, | 
|  | }; | 
|  | module_platform_driver(stfsm_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Angus Clark <angus.clark@st.com>"); | 
|  | MODULE_DESCRIPTION("ST SPI FSM driver"); | 
|  | MODULE_LICENSE("GPL"); |