|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Support for INET connection oriented protocols. | 
|  | * | 
|  | * Authors:	See the TCP sources | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/jhash.h> | 
|  |  | 
|  | #include <net/inet_connection_sock.h> | 
|  | #include <net/inet_hashtables.h> | 
|  | #include <net/inet_timewait_sock.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/route.h> | 
|  | #include <net/tcp_states.h> | 
|  | #include <net/xfrm.h> | 
|  | #include <net/tcp.h> | 
|  | #include <net/sock_reuseport.h> | 
|  | #include <net/addrconf.h> | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses | 
|  | *				if IPv6 only, and any IPv4 addresses | 
|  | *				if not IPv6 only | 
|  | * match_sk*_wildcard == false: addresses must be exactly the same, i.e. | 
|  | *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, | 
|  | *				and 0.0.0.0 equals to 0.0.0.0 only | 
|  | */ | 
|  | static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, | 
|  | const struct in6_addr *sk2_rcv_saddr6, | 
|  | __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, | 
|  | bool sk1_ipv6only, bool sk2_ipv6only, | 
|  | bool match_sk1_wildcard, | 
|  | bool match_sk2_wildcard) | 
|  | { | 
|  | int addr_type = ipv6_addr_type(sk1_rcv_saddr6); | 
|  | int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; | 
|  |  | 
|  | /* if both are mapped, treat as IPv4 */ | 
|  | if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { | 
|  | if (!sk2_ipv6only) { | 
|  | if (sk1_rcv_saddr == sk2_rcv_saddr) | 
|  | return true; | 
|  | return (match_sk1_wildcard && !sk1_rcv_saddr) || | 
|  | (match_sk2_wildcard && !sk2_rcv_saddr); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) | 
|  | return true; | 
|  |  | 
|  | if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && | 
|  | !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) | 
|  | return true; | 
|  |  | 
|  | if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && | 
|  | !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) | 
|  | return true; | 
|  |  | 
|  | if (sk2_rcv_saddr6 && | 
|  | ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses | 
|  | * match_sk*_wildcard == false: addresses must be exactly the same, i.e. | 
|  | *				0.0.0.0 only equals to 0.0.0.0 | 
|  | */ | 
|  | static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, | 
|  | bool sk2_ipv6only, bool match_sk1_wildcard, | 
|  | bool match_sk2_wildcard) | 
|  | { | 
|  | if (!sk2_ipv6only) { | 
|  | if (sk1_rcv_saddr == sk2_rcv_saddr) | 
|  | return true; | 
|  | return (match_sk1_wildcard && !sk1_rcv_saddr) || | 
|  | (match_sk2_wildcard && !sk2_rcv_saddr); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, | 
|  | bool match_wildcard) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (sk->sk_family == AF_INET6) | 
|  | return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, | 
|  | inet6_rcv_saddr(sk2), | 
|  | sk->sk_rcv_saddr, | 
|  | sk2->sk_rcv_saddr, | 
|  | ipv6_only_sock(sk), | 
|  | ipv6_only_sock(sk2), | 
|  | match_wildcard, | 
|  | match_wildcard); | 
|  | #endif | 
|  | return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, | 
|  | ipv6_only_sock(sk2), match_wildcard, | 
|  | match_wildcard); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_rcv_saddr_equal); | 
|  |  | 
|  | bool inet_rcv_saddr_any(const struct sock *sk) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (sk->sk_family == AF_INET6) | 
|  | return ipv6_addr_any(&sk->sk_v6_rcv_saddr); | 
|  | #endif | 
|  | return !sk->sk_rcv_saddr; | 
|  | } | 
|  |  | 
|  | void inet_get_local_port_range(struct net *net, int *low, int *high) | 
|  | { | 
|  | unsigned int seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); | 
|  |  | 
|  | *low = net->ipv4.ip_local_ports.range[0]; | 
|  | *high = net->ipv4.ip_local_ports.range[1]; | 
|  | } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_get_local_port_range); | 
|  |  | 
|  | static int inet_csk_bind_conflict(const struct sock *sk, | 
|  | const struct inet_bind_bucket *tb, | 
|  | bool relax, bool reuseport_ok) | 
|  | { | 
|  | struct sock *sk2; | 
|  | bool reuseport_cb_ok; | 
|  | bool reuse = sk->sk_reuse; | 
|  | bool reuseport = !!sk->sk_reuseport; | 
|  | struct sock_reuseport *reuseport_cb; | 
|  | kuid_t uid = sock_i_uid((struct sock *)sk); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); | 
|  | /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ | 
|  | reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Unlike other sk lookup places we do not check | 
|  | * for sk_net here, since _all_ the socks listed | 
|  | * in tb->owners list belong to the same net - the | 
|  | * one this bucket belongs to. | 
|  | */ | 
|  |  | 
|  | sk_for_each_bound(sk2, &tb->owners) { | 
|  | if (sk != sk2 && | 
|  | (!sk->sk_bound_dev_if || | 
|  | !sk2->sk_bound_dev_if || | 
|  | sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { | 
|  | if (reuse && sk2->sk_reuse && | 
|  | sk2->sk_state != TCP_LISTEN) { | 
|  | if ((!relax || | 
|  | (!reuseport_ok && | 
|  | reuseport && sk2->sk_reuseport && | 
|  | reuseport_cb_ok && | 
|  | (sk2->sk_state == TCP_TIME_WAIT || | 
|  | uid_eq(uid, sock_i_uid(sk2))))) && | 
|  | inet_rcv_saddr_equal(sk, sk2, true)) | 
|  | break; | 
|  | } else if (!reuseport_ok || | 
|  | !reuseport || !sk2->sk_reuseport || | 
|  | !reuseport_cb_ok || | 
|  | (sk2->sk_state != TCP_TIME_WAIT && | 
|  | !uid_eq(uid, sock_i_uid(sk2)))) { | 
|  | if (inet_rcv_saddr_equal(sk, sk2, true)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return sk2 != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find an open port number for the socket.  Returns with the | 
|  | * inet_bind_hashbucket lock held. | 
|  | */ | 
|  | static struct inet_bind_hashbucket * | 
|  | inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) | 
|  | { | 
|  | struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; | 
|  | int port = 0; | 
|  | struct inet_bind_hashbucket *head; | 
|  | struct net *net = sock_net(sk); | 
|  | bool relax = false; | 
|  | int i, low, high, attempt_half; | 
|  | struct inet_bind_bucket *tb; | 
|  | u32 remaining, offset; | 
|  | int l3mdev; | 
|  |  | 
|  | l3mdev = inet_sk_bound_l3mdev(sk); | 
|  | ports_exhausted: | 
|  | attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; | 
|  | other_half_scan: | 
|  | inet_get_local_port_range(net, &low, &high); | 
|  | high++; /* [32768, 60999] -> [32768, 61000[ */ | 
|  | if (high - low < 4) | 
|  | attempt_half = 0; | 
|  | if (attempt_half) { | 
|  | int half = low + (((high - low) >> 2) << 1); | 
|  |  | 
|  | if (attempt_half == 1) | 
|  | high = half; | 
|  | else | 
|  | low = half; | 
|  | } | 
|  | remaining = high - low; | 
|  | if (likely(remaining > 1)) | 
|  | remaining &= ~1U; | 
|  |  | 
|  | offset = prandom_u32() % remaining; | 
|  | /* __inet_hash_connect() favors ports having @low parity | 
|  | * We do the opposite to not pollute connect() users. | 
|  | */ | 
|  | offset |= 1U; | 
|  |  | 
|  | other_parity_scan: | 
|  | port = low + offset; | 
|  | for (i = 0; i < remaining; i += 2, port += 2) { | 
|  | if (unlikely(port >= high)) | 
|  | port -= remaining; | 
|  | if (inet_is_local_reserved_port(net, port)) | 
|  | continue; | 
|  | head = &hinfo->bhash[inet_bhashfn(net, port, | 
|  | hinfo->bhash_size)]; | 
|  | spin_lock_bh(&head->lock); | 
|  | inet_bind_bucket_for_each(tb, &head->chain) | 
|  | if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && | 
|  | tb->port == port) { | 
|  | if (!inet_csk_bind_conflict(sk, tb, relax, false)) | 
|  | goto success; | 
|  | goto next_port; | 
|  | } | 
|  | tb = NULL; | 
|  | goto success; | 
|  | next_port: | 
|  | spin_unlock_bh(&head->lock); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | offset--; | 
|  | if (!(offset & 1)) | 
|  | goto other_parity_scan; | 
|  |  | 
|  | if (attempt_half == 1) { | 
|  | /* OK we now try the upper half of the range */ | 
|  | attempt_half = 2; | 
|  | goto other_half_scan; | 
|  | } | 
|  |  | 
|  | if (net->ipv4.sysctl_ip_autobind_reuse && !relax) { | 
|  | /* We still have a chance to connect to different destinations */ | 
|  | relax = true; | 
|  | goto ports_exhausted; | 
|  | } | 
|  | return NULL; | 
|  | success: | 
|  | *port_ret = port; | 
|  | *tb_ret = tb; | 
|  | return head; | 
|  | } | 
|  |  | 
|  | static inline int sk_reuseport_match(struct inet_bind_bucket *tb, | 
|  | struct sock *sk) | 
|  | { | 
|  | kuid_t uid = sock_i_uid(sk); | 
|  |  | 
|  | if (tb->fastreuseport <= 0) | 
|  | return 0; | 
|  | if (!sk->sk_reuseport) | 
|  | return 0; | 
|  | if (rcu_access_pointer(sk->sk_reuseport_cb)) | 
|  | return 0; | 
|  | if (!uid_eq(tb->fastuid, uid)) | 
|  | return 0; | 
|  | /* We only need to check the rcv_saddr if this tb was once marked | 
|  | * without fastreuseport and then was reset, as we can only know that | 
|  | * the fast_*rcv_saddr doesn't have any conflicts with the socks on the | 
|  | * owners list. | 
|  | */ | 
|  | if (tb->fastreuseport == FASTREUSEPORT_ANY) | 
|  | return 1; | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (tb->fast_sk_family == AF_INET6) | 
|  | return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, | 
|  | inet6_rcv_saddr(sk), | 
|  | tb->fast_rcv_saddr, | 
|  | sk->sk_rcv_saddr, | 
|  | tb->fast_ipv6_only, | 
|  | ipv6_only_sock(sk), true, false); | 
|  | #endif | 
|  | return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, | 
|  | ipv6_only_sock(sk), true, false); | 
|  | } | 
|  |  | 
|  | void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, | 
|  | struct sock *sk) | 
|  | { | 
|  | kuid_t uid = sock_i_uid(sk); | 
|  | bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; | 
|  |  | 
|  | if (hlist_empty(&tb->owners)) { | 
|  | tb->fastreuse = reuse; | 
|  | if (sk->sk_reuseport) { | 
|  | tb->fastreuseport = FASTREUSEPORT_ANY; | 
|  | tb->fastuid = uid; | 
|  | tb->fast_rcv_saddr = sk->sk_rcv_saddr; | 
|  | tb->fast_ipv6_only = ipv6_only_sock(sk); | 
|  | tb->fast_sk_family = sk->sk_family; | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; | 
|  | #endif | 
|  | } else { | 
|  | tb->fastreuseport = 0; | 
|  | } | 
|  | } else { | 
|  | if (!reuse) | 
|  | tb->fastreuse = 0; | 
|  | if (sk->sk_reuseport) { | 
|  | /* We didn't match or we don't have fastreuseport set on | 
|  | * the tb, but we have sk_reuseport set on this socket | 
|  | * and we know that there are no bind conflicts with | 
|  | * this socket in this tb, so reset our tb's reuseport | 
|  | * settings so that any subsequent sockets that match | 
|  | * our current socket will be put on the fast path. | 
|  | * | 
|  | * If we reset we need to set FASTREUSEPORT_STRICT so we | 
|  | * do extra checking for all subsequent sk_reuseport | 
|  | * socks. | 
|  | */ | 
|  | if (!sk_reuseport_match(tb, sk)) { | 
|  | tb->fastreuseport = FASTREUSEPORT_STRICT; | 
|  | tb->fastuid = uid; | 
|  | tb->fast_rcv_saddr = sk->sk_rcv_saddr; | 
|  | tb->fast_ipv6_only = ipv6_only_sock(sk); | 
|  | tb->fast_sk_family = sk->sk_family; | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | tb->fastreuseport = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Obtain a reference to a local port for the given sock, | 
|  | * if snum is zero it means select any available local port. | 
|  | * We try to allocate an odd port (and leave even ports for connect()) | 
|  | */ | 
|  | int inet_csk_get_port(struct sock *sk, unsigned short snum) | 
|  | { | 
|  | bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; | 
|  | struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; | 
|  | int ret = 1, port = snum; | 
|  | struct inet_bind_hashbucket *head; | 
|  | struct net *net = sock_net(sk); | 
|  | struct inet_bind_bucket *tb = NULL; | 
|  | int l3mdev; | 
|  |  | 
|  | l3mdev = inet_sk_bound_l3mdev(sk); | 
|  |  | 
|  | if (!port) { | 
|  | head = inet_csk_find_open_port(sk, &tb, &port); | 
|  | if (!head) | 
|  | return ret; | 
|  | if (!tb) | 
|  | goto tb_not_found; | 
|  | goto success; | 
|  | } | 
|  | head = &hinfo->bhash[inet_bhashfn(net, port, | 
|  | hinfo->bhash_size)]; | 
|  | spin_lock_bh(&head->lock); | 
|  | inet_bind_bucket_for_each(tb, &head->chain) | 
|  | if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && | 
|  | tb->port == port) | 
|  | goto tb_found; | 
|  | tb_not_found: | 
|  | tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, | 
|  | net, head, port, l3mdev); | 
|  | if (!tb) | 
|  | goto fail_unlock; | 
|  | tb_found: | 
|  | if (!hlist_empty(&tb->owners)) { | 
|  | if (sk->sk_reuse == SK_FORCE_REUSE) | 
|  | goto success; | 
|  |  | 
|  | if ((tb->fastreuse > 0 && reuse) || | 
|  | sk_reuseport_match(tb, sk)) | 
|  | goto success; | 
|  | if (inet_csk_bind_conflict(sk, tb, true, true)) | 
|  | goto fail_unlock; | 
|  | } | 
|  | success: | 
|  | inet_csk_update_fastreuse(tb, sk); | 
|  |  | 
|  | if (!inet_csk(sk)->icsk_bind_hash) | 
|  | inet_bind_hash(sk, tb, port); | 
|  | WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); | 
|  | ret = 0; | 
|  |  | 
|  | fail_unlock: | 
|  | spin_unlock_bh(&head->lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_get_port); | 
|  |  | 
|  | /* | 
|  | * Wait for an incoming connection, avoid race conditions. This must be called | 
|  | * with the socket locked. | 
|  | */ | 
|  | static int inet_csk_wait_for_connect(struct sock *sk, long timeo) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | DEFINE_WAIT(wait); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * True wake-one mechanism for incoming connections: only | 
|  | * one process gets woken up, not the 'whole herd'. | 
|  | * Since we do not 'race & poll' for established sockets | 
|  | * anymore, the common case will execute the loop only once. | 
|  | * | 
|  | * Subtle issue: "add_wait_queue_exclusive()" will be added | 
|  | * after any current non-exclusive waiters, and we know that | 
|  | * it will always _stay_ after any new non-exclusive waiters | 
|  | * because all non-exclusive waiters are added at the | 
|  | * beginning of the wait-queue. As such, it's ok to "drop" | 
|  | * our exclusiveness temporarily when we get woken up without | 
|  | * having to remove and re-insert us on the wait queue. | 
|  | */ | 
|  | for (;;) { | 
|  | prepare_to_wait_exclusive(sk_sleep(sk), &wait, | 
|  | TASK_INTERRUPTIBLE); | 
|  | release_sock(sk); | 
|  | if (reqsk_queue_empty(&icsk->icsk_accept_queue)) | 
|  | timeo = schedule_timeout(timeo); | 
|  | sched_annotate_sleep(); | 
|  | lock_sock(sk); | 
|  | err = 0; | 
|  | if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) | 
|  | break; | 
|  | err = -EINVAL; | 
|  | if (sk->sk_state != TCP_LISTEN) | 
|  | break; | 
|  | err = sock_intr_errno(timeo); | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  | err = -EAGAIN; | 
|  | if (!timeo) | 
|  | break; | 
|  | } | 
|  | finish_wait(sk_sleep(sk), &wait); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will accept the next outstanding connection. | 
|  | */ | 
|  | struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct request_sock_queue *queue = &icsk->icsk_accept_queue; | 
|  | struct request_sock *req; | 
|  | struct sock *newsk; | 
|  | int error; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | /* We need to make sure that this socket is listening, | 
|  | * and that it has something pending. | 
|  | */ | 
|  | error = -EINVAL; | 
|  | if (sk->sk_state != TCP_LISTEN) | 
|  | goto out_err; | 
|  |  | 
|  | /* Find already established connection */ | 
|  | if (reqsk_queue_empty(queue)) { | 
|  | long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); | 
|  |  | 
|  | /* If this is a non blocking socket don't sleep */ | 
|  | error = -EAGAIN; | 
|  | if (!timeo) | 
|  | goto out_err; | 
|  |  | 
|  | error = inet_csk_wait_for_connect(sk, timeo); | 
|  | if (error) | 
|  | goto out_err; | 
|  | } | 
|  | req = reqsk_queue_remove(queue, sk); | 
|  | newsk = req->sk; | 
|  |  | 
|  | if (sk->sk_protocol == IPPROTO_TCP && | 
|  | tcp_rsk(req)->tfo_listener) { | 
|  | spin_lock_bh(&queue->fastopenq.lock); | 
|  | if (tcp_rsk(req)->tfo_listener) { | 
|  | /* We are still waiting for the final ACK from 3WHS | 
|  | * so can't free req now. Instead, we set req->sk to | 
|  | * NULL to signify that the child socket is taken | 
|  | * so reqsk_fastopen_remove() will free the req | 
|  | * when 3WHS finishes (or is aborted). | 
|  | */ | 
|  | req->sk = NULL; | 
|  | req = NULL; | 
|  | } | 
|  | spin_unlock_bh(&queue->fastopenq.lock); | 
|  | } | 
|  |  | 
|  | out: | 
|  | release_sock(sk); | 
|  | if (newsk && mem_cgroup_sockets_enabled) { | 
|  | int amt; | 
|  |  | 
|  | /* atomically get the memory usage, set and charge the | 
|  | * newsk->sk_memcg. | 
|  | */ | 
|  | lock_sock(newsk); | 
|  |  | 
|  | /* The socket has not been accepted yet, no need to look at | 
|  | * newsk->sk_wmem_queued. | 
|  | */ | 
|  | amt = sk_mem_pages(newsk->sk_forward_alloc + | 
|  | atomic_read(&newsk->sk_rmem_alloc)); | 
|  | mem_cgroup_sk_alloc(newsk); | 
|  | if (newsk->sk_memcg && amt) | 
|  | mem_cgroup_charge_skmem(newsk->sk_memcg, amt, | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  |  | 
|  | release_sock(newsk); | 
|  | } | 
|  | if (req) | 
|  | reqsk_put(req); | 
|  | return newsk; | 
|  | out_err: | 
|  | newsk = NULL; | 
|  | req = NULL; | 
|  | *err = error; | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_accept); | 
|  |  | 
|  | /* | 
|  | * Using different timers for retransmit, delayed acks and probes | 
|  | * We may wish use just one timer maintaining a list of expire jiffies | 
|  | * to optimize. | 
|  | */ | 
|  | void inet_csk_init_xmit_timers(struct sock *sk, | 
|  | void (*retransmit_handler)(struct timer_list *t), | 
|  | void (*delack_handler)(struct timer_list *t), | 
|  | void (*keepalive_handler)(struct timer_list *t)) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); | 
|  | timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); | 
|  | timer_setup(&sk->sk_timer, keepalive_handler, 0); | 
|  | icsk->icsk_pending = icsk->icsk_ack.pending = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_init_xmit_timers); | 
|  |  | 
|  | void inet_csk_clear_xmit_timers(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | icsk->icsk_pending = icsk->icsk_ack.pending = 0; | 
|  |  | 
|  | sk_stop_timer(sk, &icsk->icsk_retransmit_timer); | 
|  | sk_stop_timer(sk, &icsk->icsk_delack_timer); | 
|  | sk_stop_timer(sk, &sk->sk_timer); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_clear_xmit_timers); | 
|  |  | 
|  | void inet_csk_delete_keepalive_timer(struct sock *sk) | 
|  | { | 
|  | sk_stop_timer(sk, &sk->sk_timer); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); | 
|  |  | 
|  | void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) | 
|  | { | 
|  | sk_reset_timer(sk, &sk->sk_timer, jiffies + len); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); | 
|  |  | 
|  | struct dst_entry *inet_csk_route_req(const struct sock *sk, | 
|  | struct flowi4 *fl4, | 
|  | const struct request_sock *req) | 
|  | { | 
|  | const struct inet_request_sock *ireq = inet_rsk(req); | 
|  | struct net *net = read_pnet(&ireq->ireq_net); | 
|  | struct ip_options_rcu *opt; | 
|  | struct rtable *rt; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | opt = rcu_dereference(ireq->ireq_opt); | 
|  |  | 
|  | flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, | 
|  | RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, | 
|  | sk->sk_protocol, inet_sk_flowi_flags(sk), | 
|  | (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, | 
|  | ireq->ir_loc_addr, ireq->ir_rmt_port, | 
|  | htons(ireq->ir_num), sk->sk_uid); | 
|  | security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); | 
|  | rt = ip_route_output_flow(net, fl4, sk); | 
|  | if (IS_ERR(rt)) | 
|  | goto no_route; | 
|  | if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) | 
|  | goto route_err; | 
|  | rcu_read_unlock(); | 
|  | return &rt->dst; | 
|  |  | 
|  | route_err: | 
|  | ip_rt_put(rt); | 
|  | no_route: | 
|  | rcu_read_unlock(); | 
|  | __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_route_req); | 
|  |  | 
|  | struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, | 
|  | struct sock *newsk, | 
|  | const struct request_sock *req) | 
|  | { | 
|  | const struct inet_request_sock *ireq = inet_rsk(req); | 
|  | struct net *net = read_pnet(&ireq->ireq_net); | 
|  | struct inet_sock *newinet = inet_sk(newsk); | 
|  | struct ip_options_rcu *opt; | 
|  | struct flowi4 *fl4; | 
|  | struct rtable *rt; | 
|  |  | 
|  | opt = rcu_dereference(ireq->ireq_opt); | 
|  | fl4 = &newinet->cork.fl.u.ip4; | 
|  |  | 
|  | flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, | 
|  | RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, | 
|  | sk->sk_protocol, inet_sk_flowi_flags(sk), | 
|  | (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, | 
|  | ireq->ir_loc_addr, ireq->ir_rmt_port, | 
|  | htons(ireq->ir_num), sk->sk_uid); | 
|  | security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); | 
|  | rt = ip_route_output_flow(net, fl4, sk); | 
|  | if (IS_ERR(rt)) | 
|  | goto no_route; | 
|  | if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) | 
|  | goto route_err; | 
|  | return &rt->dst; | 
|  |  | 
|  | route_err: | 
|  | ip_rt_put(rt); | 
|  | no_route: | 
|  | __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); | 
|  |  | 
|  | /* Decide when to expire the request and when to resend SYN-ACK */ | 
|  | static void syn_ack_recalc(struct request_sock *req, | 
|  | const int max_syn_ack_retries, | 
|  | const u8 rskq_defer_accept, | 
|  | int *expire, int *resend) | 
|  | { | 
|  | if (!rskq_defer_accept) { | 
|  | *expire = req->num_timeout >= max_syn_ack_retries; | 
|  | *resend = 1; | 
|  | return; | 
|  | } | 
|  | *expire = req->num_timeout >= max_syn_ack_retries && | 
|  | (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); | 
|  | /* Do not resend while waiting for data after ACK, | 
|  | * start to resend on end of deferring period to give | 
|  | * last chance for data or ACK to create established socket. | 
|  | */ | 
|  | *resend = !inet_rsk(req)->acked || | 
|  | req->num_timeout >= rskq_defer_accept - 1; | 
|  | } | 
|  |  | 
|  | int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) | 
|  | { | 
|  | int err = req->rsk_ops->rtx_syn_ack(parent, req); | 
|  |  | 
|  | if (!err) | 
|  | req->num_retrans++; | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_rtx_syn_ack); | 
|  |  | 
|  | static struct request_sock *inet_reqsk_clone(struct request_sock *req, | 
|  | struct sock *sk) | 
|  | { | 
|  | struct sock *req_sk, *nreq_sk; | 
|  | struct request_sock *nreq; | 
|  |  | 
|  | nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); | 
|  | if (!nreq) { | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); | 
|  |  | 
|  | /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ | 
|  | sock_put(sk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | req_sk = req_to_sk(req); | 
|  | nreq_sk = req_to_sk(nreq); | 
|  |  | 
|  | memcpy(nreq_sk, req_sk, | 
|  | offsetof(struct sock, sk_dontcopy_begin)); | 
|  | memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, | 
|  | req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end)); | 
|  |  | 
|  | sk_node_init(&nreq_sk->sk_node); | 
|  | nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; | 
|  | #endif | 
|  | nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; | 
|  |  | 
|  | nreq->rsk_listener = sk; | 
|  |  | 
|  | /* We need not acquire fastopenq->lock | 
|  | * because the child socket is locked in inet_csk_listen_stop(). | 
|  | */ | 
|  | if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) | 
|  | rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); | 
|  |  | 
|  | return nreq; | 
|  | } | 
|  |  | 
|  | static void reqsk_queue_migrated(struct request_sock_queue *queue, | 
|  | const struct request_sock *req) | 
|  | { | 
|  | if (req->num_timeout == 0) | 
|  | atomic_inc(&queue->young); | 
|  | atomic_inc(&queue->qlen); | 
|  | } | 
|  |  | 
|  | static void reqsk_migrate_reset(struct request_sock *req) | 
|  | { | 
|  | req->saved_syn = NULL; | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | inet_rsk(req)->ipv6_opt = NULL; | 
|  | inet_rsk(req)->pktopts = NULL; | 
|  | #else | 
|  | inet_rsk(req)->ireq_opt = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* return true if req was found in the ehash table */ | 
|  | static bool reqsk_queue_unlink(struct request_sock *req) | 
|  | { | 
|  | struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; | 
|  | bool found = false; | 
|  |  | 
|  | if (sk_hashed(req_to_sk(req))) { | 
|  | spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); | 
|  |  | 
|  | spin_lock(lock); | 
|  | found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); | 
|  | spin_unlock(lock); | 
|  | } | 
|  | if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) | 
|  | reqsk_put(req); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) | 
|  | { | 
|  | bool unlinked = reqsk_queue_unlink(req); | 
|  |  | 
|  | if (unlinked) { | 
|  | reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); | 
|  | reqsk_put(req); | 
|  | } | 
|  | return unlinked; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); | 
|  |  | 
|  | void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) | 
|  | { | 
|  | inet_csk_reqsk_queue_drop(sk, req); | 
|  | reqsk_put(req); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); | 
|  |  | 
|  | static void reqsk_timer_handler(struct timer_list *t) | 
|  | { | 
|  | struct request_sock *req = from_timer(req, t, rsk_timer); | 
|  | struct request_sock *nreq = NULL, *oreq = req; | 
|  | struct sock *sk_listener = req->rsk_listener; | 
|  | struct inet_connection_sock *icsk; | 
|  | struct request_sock_queue *queue; | 
|  | struct net *net; | 
|  | int max_syn_ack_retries, qlen, expire = 0, resend = 0; | 
|  |  | 
|  | if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { | 
|  | struct sock *nsk; | 
|  |  | 
|  | nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); | 
|  | if (!nsk) | 
|  | goto drop; | 
|  |  | 
|  | nreq = inet_reqsk_clone(req, nsk); | 
|  | if (!nreq) | 
|  | goto drop; | 
|  |  | 
|  | /* The new timer for the cloned req can decrease the 2 | 
|  | * by calling inet_csk_reqsk_queue_drop_and_put(), so | 
|  | * hold another count to prevent use-after-free and | 
|  | * call reqsk_put() just before return. | 
|  | */ | 
|  | refcount_set(&nreq->rsk_refcnt, 2 + 1); | 
|  | timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); | 
|  | reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); | 
|  |  | 
|  | req = nreq; | 
|  | sk_listener = nsk; | 
|  | } | 
|  |  | 
|  | icsk = inet_csk(sk_listener); | 
|  | net = sock_net(sk_listener); | 
|  | max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; | 
|  | /* Normally all the openreqs are young and become mature | 
|  | * (i.e. converted to established socket) for first timeout. | 
|  | * If synack was not acknowledged for 1 second, it means | 
|  | * one of the following things: synack was lost, ack was lost, | 
|  | * rtt is high or nobody planned to ack (i.e. synflood). | 
|  | * When server is a bit loaded, queue is populated with old | 
|  | * open requests, reducing effective size of queue. | 
|  | * When server is well loaded, queue size reduces to zero | 
|  | * after several minutes of work. It is not synflood, | 
|  | * it is normal operation. The solution is pruning | 
|  | * too old entries overriding normal timeout, when | 
|  | * situation becomes dangerous. | 
|  | * | 
|  | * Essentially, we reserve half of room for young | 
|  | * embrions; and abort old ones without pity, if old | 
|  | * ones are about to clog our table. | 
|  | */ | 
|  | queue = &icsk->icsk_accept_queue; | 
|  | qlen = reqsk_queue_len(queue); | 
|  | if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { | 
|  | int young = reqsk_queue_len_young(queue) << 1; | 
|  |  | 
|  | while (max_syn_ack_retries > 2) { | 
|  | if (qlen < young) | 
|  | break; | 
|  | max_syn_ack_retries--; | 
|  | young <<= 1; | 
|  | } | 
|  | } | 
|  | syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), | 
|  | &expire, &resend); | 
|  | req->rsk_ops->syn_ack_timeout(req); | 
|  | if (!expire && | 
|  | (!resend || | 
|  | !inet_rtx_syn_ack(sk_listener, req) || | 
|  | inet_rsk(req)->acked)) { | 
|  | unsigned long timeo; | 
|  |  | 
|  | if (req->num_timeout++ == 0) | 
|  | atomic_dec(&queue->young); | 
|  | timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); | 
|  | mod_timer(&req->rsk_timer, jiffies + timeo); | 
|  |  | 
|  | if (!nreq) | 
|  | return; | 
|  |  | 
|  | if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { | 
|  | /* delete timer */ | 
|  | inet_csk_reqsk_queue_drop(sk_listener, nreq); | 
|  | goto no_ownership; | 
|  | } | 
|  |  | 
|  | __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); | 
|  | reqsk_migrate_reset(oreq); | 
|  | reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); | 
|  | reqsk_put(oreq); | 
|  |  | 
|  | reqsk_put(nreq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Even if we can clone the req, we may need not retransmit any more | 
|  | * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another | 
|  | * CPU may win the "own_req" race so that inet_ehash_insert() fails. | 
|  | */ | 
|  | if (nreq) { | 
|  | __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); | 
|  | no_ownership: | 
|  | reqsk_migrate_reset(nreq); | 
|  | reqsk_queue_removed(queue, nreq); | 
|  | __reqsk_free(nreq); | 
|  | } | 
|  |  | 
|  | drop: | 
|  | inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq); | 
|  | } | 
|  |  | 
|  | static void reqsk_queue_hash_req(struct request_sock *req, | 
|  | unsigned long timeout) | 
|  | { | 
|  | timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); | 
|  | mod_timer(&req->rsk_timer, jiffies + timeout); | 
|  |  | 
|  | inet_ehash_insert(req_to_sk(req), NULL, NULL); | 
|  | /* before letting lookups find us, make sure all req fields | 
|  | * are committed to memory and refcnt initialized. | 
|  | */ | 
|  | smp_wmb(); | 
|  | refcount_set(&req->rsk_refcnt, 2 + 1); | 
|  | } | 
|  |  | 
|  | void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, | 
|  | unsigned long timeout) | 
|  | { | 
|  | reqsk_queue_hash_req(req, timeout); | 
|  | inet_csk_reqsk_queue_added(sk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); | 
|  |  | 
|  | static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, | 
|  | const gfp_t priority) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(newsk); | 
|  |  | 
|  | if (!icsk->icsk_ulp_ops) | 
|  | return; | 
|  |  | 
|  | if (icsk->icsk_ulp_ops->clone) | 
|  | icsk->icsk_ulp_ops->clone(req, newsk, priority); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	inet_csk_clone_lock - clone an inet socket, and lock its clone | 
|  | *	@sk: the socket to clone | 
|  | *	@req: request_sock | 
|  | *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) | 
|  | * | 
|  | *	Caller must unlock socket even in error path (bh_unlock_sock(newsk)) | 
|  | */ | 
|  | struct sock *inet_csk_clone_lock(const struct sock *sk, | 
|  | const struct request_sock *req, | 
|  | const gfp_t priority) | 
|  | { | 
|  | struct sock *newsk = sk_clone_lock(sk, priority); | 
|  |  | 
|  | if (newsk) { | 
|  | struct inet_connection_sock *newicsk = inet_csk(newsk); | 
|  |  | 
|  | inet_sk_set_state(newsk, TCP_SYN_RECV); | 
|  | newicsk->icsk_bind_hash = NULL; | 
|  |  | 
|  | inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; | 
|  | inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; | 
|  | inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); | 
|  |  | 
|  | /* listeners have SOCK_RCU_FREE, not the children */ | 
|  | sock_reset_flag(newsk, SOCK_RCU_FREE); | 
|  |  | 
|  | inet_sk(newsk)->mc_list = NULL; | 
|  |  | 
|  | newsk->sk_mark = inet_rsk(req)->ir_mark; | 
|  | atomic64_set(&newsk->sk_cookie, | 
|  | atomic64_read(&inet_rsk(req)->ir_cookie)); | 
|  |  | 
|  | newicsk->icsk_retransmits = 0; | 
|  | newicsk->icsk_backoff	  = 0; | 
|  | newicsk->icsk_probes_out  = 0; | 
|  | newicsk->icsk_probes_tstamp = 0; | 
|  |  | 
|  | /* Deinitialize accept_queue to trap illegal accesses. */ | 
|  | memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); | 
|  |  | 
|  | inet_clone_ulp(req, newsk, priority); | 
|  |  | 
|  | security_inet_csk_clone(newsk, req); | 
|  | } | 
|  | return newsk; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_clone_lock); | 
|  |  | 
|  | /* | 
|  | * At this point, there should be no process reference to this | 
|  | * socket, and thus no user references at all.  Therefore we | 
|  | * can assume the socket waitqueue is inactive and nobody will | 
|  | * try to jump onto it. | 
|  | */ | 
|  | void inet_csk_destroy_sock(struct sock *sk) | 
|  | { | 
|  | WARN_ON(sk->sk_state != TCP_CLOSE); | 
|  | WARN_ON(!sock_flag(sk, SOCK_DEAD)); | 
|  |  | 
|  | /* It cannot be in hash table! */ | 
|  | WARN_ON(!sk_unhashed(sk)); | 
|  |  | 
|  | /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ | 
|  | WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); | 
|  |  | 
|  | sk->sk_prot->destroy(sk); | 
|  |  | 
|  | sk_stream_kill_queues(sk); | 
|  |  | 
|  | xfrm_sk_free_policy(sk); | 
|  |  | 
|  | sk_refcnt_debug_release(sk); | 
|  |  | 
|  | this_cpu_dec(*sk->sk_prot->orphan_count); | 
|  |  | 
|  | sock_put(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_destroy_sock); | 
|  |  | 
|  | /* This function allows to force a closure of a socket after the call to | 
|  | * tcp/dccp_create_openreq_child(). | 
|  | */ | 
|  | void inet_csk_prepare_forced_close(struct sock *sk) | 
|  | __releases(&sk->sk_lock.slock) | 
|  | { | 
|  | /* sk_clone_lock locked the socket and set refcnt to 2 */ | 
|  | bh_unlock_sock(sk); | 
|  | sock_put(sk); | 
|  | inet_csk_prepare_for_destroy_sock(sk); | 
|  | inet_sk(sk)->inet_num = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_prepare_forced_close); | 
|  |  | 
|  | int inet_csk_listen_start(struct sock *sk, int backlog) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | int err = -EADDRINUSE; | 
|  |  | 
|  | reqsk_queue_alloc(&icsk->icsk_accept_queue); | 
|  |  | 
|  | sk->sk_ack_backlog = 0; | 
|  | inet_csk_delack_init(sk); | 
|  |  | 
|  | /* There is race window here: we announce ourselves listening, | 
|  | * but this transition is still not validated by get_port(). | 
|  | * It is OK, because this socket enters to hash table only | 
|  | * after validation is complete. | 
|  | */ | 
|  | inet_sk_state_store(sk, TCP_LISTEN); | 
|  | if (!sk->sk_prot->get_port(sk, inet->inet_num)) { | 
|  | inet->inet_sport = htons(inet->inet_num); | 
|  |  | 
|  | sk_dst_reset(sk); | 
|  | err = sk->sk_prot->hash(sk); | 
|  |  | 
|  | if (likely(!err)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inet_sk_set_state(sk, TCP_CLOSE); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_listen_start); | 
|  |  | 
|  | static void inet_child_forget(struct sock *sk, struct request_sock *req, | 
|  | struct sock *child) | 
|  | { | 
|  | sk->sk_prot->disconnect(child, O_NONBLOCK); | 
|  |  | 
|  | sock_orphan(child); | 
|  |  | 
|  | this_cpu_inc(*sk->sk_prot->orphan_count); | 
|  |  | 
|  | if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { | 
|  | BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); | 
|  | BUG_ON(sk != req->rsk_listener); | 
|  |  | 
|  | /* Paranoid, to prevent race condition if | 
|  | * an inbound pkt destined for child is | 
|  | * blocked by sock lock in tcp_v4_rcv(). | 
|  | * Also to satisfy an assertion in | 
|  | * tcp_v4_destroy_sock(). | 
|  | */ | 
|  | RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); | 
|  | } | 
|  | inet_csk_destroy_sock(child); | 
|  | } | 
|  |  | 
|  | struct sock *inet_csk_reqsk_queue_add(struct sock *sk, | 
|  | struct request_sock *req, | 
|  | struct sock *child) | 
|  | { | 
|  | struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; | 
|  |  | 
|  | spin_lock(&queue->rskq_lock); | 
|  | if (unlikely(sk->sk_state != TCP_LISTEN)) { | 
|  | inet_child_forget(sk, req, child); | 
|  | child = NULL; | 
|  | } else { | 
|  | req->sk = child; | 
|  | req->dl_next = NULL; | 
|  | if (queue->rskq_accept_head == NULL) | 
|  | WRITE_ONCE(queue->rskq_accept_head, req); | 
|  | else | 
|  | queue->rskq_accept_tail->dl_next = req; | 
|  | queue->rskq_accept_tail = req; | 
|  | sk_acceptq_added(sk); | 
|  | } | 
|  | spin_unlock(&queue->rskq_lock); | 
|  | return child; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_reqsk_queue_add); | 
|  |  | 
|  | struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, | 
|  | struct request_sock *req, bool own_req) | 
|  | { | 
|  | if (own_req) { | 
|  | inet_csk_reqsk_queue_drop(req->rsk_listener, req); | 
|  | reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); | 
|  |  | 
|  | if (sk != req->rsk_listener) { | 
|  | /* another listening sk has been selected, | 
|  | * migrate the req to it. | 
|  | */ | 
|  | struct request_sock *nreq; | 
|  |  | 
|  | /* hold a refcnt for the nreq->rsk_listener | 
|  | * which is assigned in inet_reqsk_clone() | 
|  | */ | 
|  | sock_hold(sk); | 
|  | nreq = inet_reqsk_clone(req, sk); | 
|  | if (!nreq) { | 
|  | inet_child_forget(sk, req, child); | 
|  | goto child_put; | 
|  | } | 
|  |  | 
|  | refcount_set(&nreq->rsk_refcnt, 1); | 
|  | if (inet_csk_reqsk_queue_add(sk, nreq, child)) { | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); | 
|  | reqsk_migrate_reset(req); | 
|  | reqsk_put(req); | 
|  | return child; | 
|  | } | 
|  |  | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); | 
|  | reqsk_migrate_reset(nreq); | 
|  | __reqsk_free(nreq); | 
|  | } else if (inet_csk_reqsk_queue_add(sk, req, child)) { | 
|  | return child; | 
|  | } | 
|  | } | 
|  | /* Too bad, another child took ownership of the request, undo. */ | 
|  | child_put: | 
|  | bh_unlock_sock(child); | 
|  | sock_put(child); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_csk_complete_hashdance); | 
|  |  | 
|  | /* | 
|  | *	This routine closes sockets which have been at least partially | 
|  | *	opened, but not yet accepted. | 
|  | */ | 
|  | void inet_csk_listen_stop(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct request_sock_queue *queue = &icsk->icsk_accept_queue; | 
|  | struct request_sock *next, *req; | 
|  |  | 
|  | /* Following specs, it would be better either to send FIN | 
|  | * (and enter FIN-WAIT-1, it is normal close) | 
|  | * or to send active reset (abort). | 
|  | * Certainly, it is pretty dangerous while synflood, but it is | 
|  | * bad justification for our negligence 8) | 
|  | * To be honest, we are not able to make either | 
|  | * of the variants now.			--ANK | 
|  | */ | 
|  | while ((req = reqsk_queue_remove(queue, sk)) != NULL) { | 
|  | struct sock *child = req->sk, *nsk; | 
|  | struct request_sock *nreq; | 
|  |  | 
|  | local_bh_disable(); | 
|  | bh_lock_sock(child); | 
|  | WARN_ON(sock_owned_by_user(child)); | 
|  | sock_hold(child); | 
|  |  | 
|  | nsk = reuseport_migrate_sock(sk, child, NULL); | 
|  | if (nsk) { | 
|  | nreq = inet_reqsk_clone(req, nsk); | 
|  | if (nreq) { | 
|  | refcount_set(&nreq->rsk_refcnt, 1); | 
|  |  | 
|  | if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { | 
|  | __NET_INC_STATS(sock_net(nsk), | 
|  | LINUX_MIB_TCPMIGRATEREQSUCCESS); | 
|  | reqsk_migrate_reset(req); | 
|  | } else { | 
|  | __NET_INC_STATS(sock_net(nsk), | 
|  | LINUX_MIB_TCPMIGRATEREQFAILURE); | 
|  | reqsk_migrate_reset(nreq); | 
|  | __reqsk_free(nreq); | 
|  | } | 
|  |  | 
|  | /* inet_csk_reqsk_queue_add() has already | 
|  | * called inet_child_forget() on failure case. | 
|  | */ | 
|  | goto skip_child_forget; | 
|  | } | 
|  | } | 
|  |  | 
|  | inet_child_forget(sk, req, child); | 
|  | skip_child_forget: | 
|  | reqsk_put(req); | 
|  | bh_unlock_sock(child); | 
|  | local_bh_enable(); | 
|  | sock_put(child); | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | if (queue->fastopenq.rskq_rst_head) { | 
|  | /* Free all the reqs queued in rskq_rst_head. */ | 
|  | spin_lock_bh(&queue->fastopenq.lock); | 
|  | req = queue->fastopenq.rskq_rst_head; | 
|  | queue->fastopenq.rskq_rst_head = NULL; | 
|  | spin_unlock_bh(&queue->fastopenq.lock); | 
|  | while (req != NULL) { | 
|  | next = req->dl_next; | 
|  | reqsk_put(req); | 
|  | req = next; | 
|  | } | 
|  | } | 
|  | WARN_ON_ONCE(sk->sk_ack_backlog); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_listen_stop); | 
|  |  | 
|  | void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) | 
|  | { | 
|  | struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; | 
|  | const struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | sin->sin_family		= AF_INET; | 
|  | sin->sin_addr.s_addr	= inet->inet_daddr; | 
|  | sin->sin_port		= inet->inet_dport; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); | 
|  |  | 
|  | static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) | 
|  | { | 
|  | const struct inet_sock *inet = inet_sk(sk); | 
|  | const struct ip_options_rcu *inet_opt; | 
|  | __be32 daddr = inet->inet_daddr; | 
|  | struct flowi4 *fl4; | 
|  | struct rtable *rt; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | inet_opt = rcu_dereference(inet->inet_opt); | 
|  | if (inet_opt && inet_opt->opt.srr) | 
|  | daddr = inet_opt->opt.faddr; | 
|  | fl4 = &fl->u.ip4; | 
|  | rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, | 
|  | inet->inet_saddr, inet->inet_dport, | 
|  | inet->inet_sport, sk->sk_protocol, | 
|  | RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); | 
|  | if (IS_ERR(rt)) | 
|  | rt = NULL; | 
|  | if (rt) | 
|  | sk_setup_caps(sk, &rt->dst); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return &rt->dst; | 
|  | } | 
|  |  | 
|  | struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) | 
|  | { | 
|  | struct dst_entry *dst = __sk_dst_check(sk, 0); | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | if (!dst) { | 
|  | dst = inet_csk_rebuild_route(sk, &inet->cork.fl); | 
|  | if (!dst) | 
|  | goto out; | 
|  | } | 
|  | dst->ops->update_pmtu(dst, sk, NULL, mtu, true); | 
|  |  | 
|  | dst = __sk_dst_check(sk, 0); | 
|  | if (!dst) | 
|  | dst = inet_csk_rebuild_route(sk, &inet->cork.fl); | 
|  | out: | 
|  | return dst; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); |