|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *	mm/mremap.c | 
|  | * | 
|  | *	(C) Copyright 1996 Linus Torvalds | 
|  | * | 
|  | *	Address space accounting code	<alan@lxorguk.ukuu.org.uk> | 
|  | *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/mempolicy.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/pgalloc.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | return NULL; | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | if (p4d_none_or_clear_bad(p4d)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | return NULL; | 
|  |  | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pud = get_old_pud(mm, addr); | 
|  | if (!pud) | 
|  | return NULL; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) | 
|  | return NULL; | 
|  |  | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | p4d = p4d_alloc(mm, pgd, addr); | 
|  | if (!p4d) | 
|  | return NULL; | 
|  |  | 
|  | return pud_alloc(mm, p4d, addr); | 
|  | } | 
|  |  | 
|  | static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pud = alloc_new_pud(mm, vma, addr); | 
|  | if (!pud) | 
|  | return NULL; | 
|  |  | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return NULL; | 
|  |  | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  |  | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | static void take_rmap_locks(struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_file) | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | if (vma->anon_vma) | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  | } | 
|  |  | 
|  | static void drop_rmap_locks(struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->anon_vma) | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | if (vma->vm_file) | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | static pte_t move_soft_dirty_pte(pte_t pte) | 
|  | { | 
|  | /* | 
|  | * Set soft dirty bit so we can notice | 
|  | * in userspace the ptes were moved. | 
|  | */ | 
|  | #ifdef CONFIG_MEM_SOFT_DIRTY | 
|  | if (pte_present(pte)) | 
|  | pte = pte_mksoft_dirty(pte); | 
|  | else if (is_swap_pte(pte)) | 
|  | pte = pte_swp_mksoft_dirty(pte); | 
|  | #endif | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, | 
|  | unsigned long old_addr, unsigned long old_end, | 
|  | struct vm_area_struct *new_vma, pmd_t *new_pmd, | 
|  | unsigned long new_addr, bool need_rmap_locks) | 
|  | { | 
|  | bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pte_t *old_pte, *new_pte, pte; | 
|  | spinlock_t *old_ptl, *new_ptl; | 
|  | bool force_flush = false; | 
|  | unsigned long len = old_end - old_addr; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma | 
|  | * locks to ensure that rmap will always observe either the old or the | 
|  | * new ptes. This is the easiest way to avoid races with | 
|  | * truncate_pagecache(), page migration, etc... | 
|  | * | 
|  | * When need_rmap_locks is false, we use other ways to avoid | 
|  | * such races: | 
|  | * | 
|  | * - During exec() shift_arg_pages(), we use a specially tagged vma | 
|  | *   which rmap call sites look for using vma_is_temporary_stack(). | 
|  | * | 
|  | * - During mremap(), new_vma is often known to be placed after vma | 
|  | *   in rmap traversal order. This ensures rmap will always observe | 
|  | *   either the old pte, or the new pte, or both (the page table locks | 
|  | *   serialize access to individual ptes, but only rmap traversal | 
|  | *   order guarantees that we won't miss both the old and new ptes). | 
|  | */ | 
|  | if (need_rmap_locks) | 
|  | take_rmap_locks(vma); | 
|  |  | 
|  | /* | 
|  | * We don't have to worry about the ordering of src and dst | 
|  | * pte locks because exclusive mmap_lock prevents deadlock. | 
|  | */ | 
|  | old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); | 
|  | if (!old_pte) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl); | 
|  | if (!new_pte) { | 
|  | pte_unmap_unlock(old_pte, old_ptl); | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | if (new_ptl != old_ptl) | 
|  | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 
|  | flush_tlb_batched_pending(vma->vm_mm); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, | 
|  | new_pte++, new_addr += PAGE_SIZE) { | 
|  | if (pte_none(ptep_get(old_pte))) | 
|  | continue; | 
|  |  | 
|  | pte = ptep_get_and_clear(mm, old_addr, old_pte); | 
|  | /* | 
|  | * If we are remapping a valid PTE, make sure | 
|  | * to flush TLB before we drop the PTL for the | 
|  | * PTE. | 
|  | * | 
|  | * NOTE! Both old and new PTL matter: the old one | 
|  | * for racing with folio_mkclean(), the new one to | 
|  | * make sure the physical page stays valid until | 
|  | * the TLB entry for the old mapping has been | 
|  | * flushed. | 
|  | */ | 
|  | if (pte_present(pte)) | 
|  | force_flush = true; | 
|  | pte = move_pte(pte, old_addr, new_addr); | 
|  | pte = move_soft_dirty_pte(pte); | 
|  |  | 
|  | if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) | 
|  | pte_clear(mm, new_addr, new_pte); | 
|  | else { | 
|  | if (need_clear_uffd_wp) { | 
|  | if (pte_present(pte)) | 
|  | pte = pte_clear_uffd_wp(pte); | 
|  | else if (is_swap_pte(pte)) | 
|  | pte = pte_swp_clear_uffd_wp(pte); | 
|  | } | 
|  | set_pte_at(mm, new_addr, new_pte, pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | if (force_flush) | 
|  | flush_tlb_range(vma, old_end - len, old_end); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_unlock(new_ptl); | 
|  | pte_unmap(new_pte - 1); | 
|  | pte_unmap_unlock(old_pte - 1, old_ptl); | 
|  | out: | 
|  | if (need_rmap_locks) | 
|  | drop_rmap_locks(vma); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifndef arch_supports_page_table_move | 
|  | #define arch_supports_page_table_move arch_supports_page_table_move | 
|  | static inline bool arch_supports_page_table_move(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || | 
|  | IS_ENABLED(CONFIG_HAVE_MOVE_PUD); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MOVE_PMD | 
|  | static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, | 
|  | unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) | 
|  | { | 
|  | spinlock_t *old_ptl, *new_ptl; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | bool res = false; | 
|  | pmd_t pmd; | 
|  |  | 
|  | if (!arch_supports_page_table_move()) | 
|  | return false; | 
|  | /* | 
|  | * The destination pmd shouldn't be established, free_pgtables() | 
|  | * should have released it. | 
|  | * | 
|  | * However, there's a case during execve() where we use mremap | 
|  | * to move the initial stack, and in that case the target area | 
|  | * may overlap the source area (always moving down). | 
|  | * | 
|  | * If everything is PMD-aligned, that works fine, as moving | 
|  | * each pmd down will clear the source pmd. But if we first | 
|  | * have a few 4kB-only pages that get moved down, and then | 
|  | * hit the "now the rest is PMD-aligned, let's do everything | 
|  | * one pmd at a time", we will still have the old (now empty | 
|  | * of any 4kB pages, but still there) PMD in the page table | 
|  | * tree. | 
|  | * | 
|  | * Warn on it once - because we really should try to figure | 
|  | * out how to do this better - but then say "I won't move | 
|  | * this pmd". | 
|  | * | 
|  | * One alternative might be to just unmap the target pmd at | 
|  | * this point, and verify that it really is empty. We'll see. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!pmd_none(*new_pmd))) | 
|  | return false; | 
|  |  | 
|  | /* If this pmd belongs to a uffd vma with remap events disabled, we need | 
|  | * to ensure that the uffd-wp state is cleared from all pgtables. This | 
|  | * means recursing into lower page tables in move_page_tables(), and we | 
|  | * can reuse the existing code if we simply treat the entry as "not | 
|  | * moved". | 
|  | */ | 
|  | if (vma_has_uffd_without_event_remap(vma)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We don't have to worry about the ordering of src and dst | 
|  | * ptlocks because exclusive mmap_lock prevents deadlock. | 
|  | */ | 
|  | old_ptl = pmd_lock(vma->vm_mm, old_pmd); | 
|  | new_ptl = pmd_lockptr(mm, new_pmd); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | pmd = *old_pmd; | 
|  |  | 
|  | /* Racing with collapse? */ | 
|  | if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) | 
|  | goto out_unlock; | 
|  | /* Clear the pmd */ | 
|  | pmd_clear(old_pmd); | 
|  | res = true; | 
|  |  | 
|  | VM_BUG_ON(!pmd_none(*new_pmd)); | 
|  |  | 
|  | pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); | 
|  | flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); | 
|  | out_unlock: | 
|  | if (new_ptl != old_ptl) | 
|  | spin_unlock(new_ptl); | 
|  | spin_unlock(old_ptl); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | #else | 
|  | static inline bool move_normal_pmd(struct vm_area_struct *vma, | 
|  | unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, | 
|  | pmd_t *new_pmd) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) | 
|  | static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, | 
|  | unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) | 
|  | { | 
|  | spinlock_t *old_ptl, *new_ptl; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pud_t pud; | 
|  |  | 
|  | if (!arch_supports_page_table_move()) | 
|  | return false; | 
|  | /* | 
|  | * The destination pud shouldn't be established, free_pgtables() | 
|  | * should have released it. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!pud_none(*new_pud))) | 
|  | return false; | 
|  |  | 
|  | /* If this pud belongs to a uffd vma with remap events disabled, we need | 
|  | * to ensure that the uffd-wp state is cleared from all pgtables. This | 
|  | * means recursing into lower page tables in move_page_tables(), and we | 
|  | * can reuse the existing code if we simply treat the entry as "not | 
|  | * moved". | 
|  | */ | 
|  | if (vma_has_uffd_without_event_remap(vma)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We don't have to worry about the ordering of src and dst | 
|  | * ptlocks because exclusive mmap_lock prevents deadlock. | 
|  | */ | 
|  | old_ptl = pud_lock(vma->vm_mm, old_pud); | 
|  | new_ptl = pud_lockptr(mm, new_pud); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | /* Clear the pud */ | 
|  | pud = *old_pud; | 
|  | pud_clear(old_pud); | 
|  |  | 
|  | VM_BUG_ON(!pud_none(*new_pud)); | 
|  |  | 
|  | pud_populate(mm, new_pud, pud_pgtable(pud)); | 
|  | flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_unlock(new_ptl); | 
|  | spin_unlock(old_ptl); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | static inline bool move_normal_pud(struct vm_area_struct *vma, | 
|  | unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, | 
|  | pud_t *new_pud) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
|  | static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, | 
|  | unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) | 
|  | { | 
|  | spinlock_t *old_ptl, *new_ptl; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pud_t pud; | 
|  |  | 
|  | /* | 
|  | * The destination pud shouldn't be established, free_pgtables() | 
|  | * should have released it. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!pud_none(*new_pud))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We don't have to worry about the ordering of src and dst | 
|  | * ptlocks because exclusive mmap_lock prevents deadlock. | 
|  | */ | 
|  | old_ptl = pud_lock(vma->vm_mm, old_pud); | 
|  | new_ptl = pud_lockptr(mm, new_pud); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | /* Clear the pud */ | 
|  | pud = *old_pud; | 
|  | pud_clear(old_pud); | 
|  |  | 
|  | VM_BUG_ON(!pud_none(*new_pud)); | 
|  |  | 
|  | /* Set the new pud */ | 
|  | /* mark soft_ditry when we add pud level soft dirty support */ | 
|  | set_pud_at(mm, new_addr, new_pud, pud); | 
|  | flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_unlock(new_ptl); | 
|  | spin_unlock(old_ptl); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, | 
|  | unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) | 
|  | { | 
|  | WARN_ON_ONCE(1); | 
|  | return false; | 
|  |  | 
|  | } | 
|  | #endif | 
|  |  | 
|  | enum pgt_entry { | 
|  | NORMAL_PMD, | 
|  | HPAGE_PMD, | 
|  | NORMAL_PUD, | 
|  | HPAGE_PUD, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Returns an extent of the corresponding size for the pgt_entry specified if | 
|  | * valid. Else returns a smaller extent bounded by the end of the source and | 
|  | * destination pgt_entry. | 
|  | */ | 
|  | static __always_inline unsigned long get_extent(enum pgt_entry entry, | 
|  | unsigned long old_addr, unsigned long old_end, | 
|  | unsigned long new_addr) | 
|  | { | 
|  | unsigned long next, extent, mask, size; | 
|  |  | 
|  | switch (entry) { | 
|  | case HPAGE_PMD: | 
|  | case NORMAL_PMD: | 
|  | mask = PMD_MASK; | 
|  | size = PMD_SIZE; | 
|  | break; | 
|  | case HPAGE_PUD: | 
|  | case NORMAL_PUD: | 
|  | mask = PUD_MASK; | 
|  | size = PUD_SIZE; | 
|  | break; | 
|  | default: | 
|  | BUILD_BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | next = (old_addr + size) & mask; | 
|  | /* even if next overflowed, extent below will be ok */ | 
|  | extent = next - old_addr; | 
|  | if (extent > old_end - old_addr) | 
|  | extent = old_end - old_addr; | 
|  | next = (new_addr + size) & mask; | 
|  | if (extent > next - new_addr) | 
|  | extent = next - new_addr; | 
|  | return extent; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempts to speedup the move by moving entry at the level corresponding to | 
|  | * pgt_entry. Returns true if the move was successful, else false. | 
|  | */ | 
|  | static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, | 
|  | unsigned long old_addr, unsigned long new_addr, | 
|  | void *old_entry, void *new_entry, bool need_rmap_locks) | 
|  | { | 
|  | bool moved = false; | 
|  |  | 
|  | /* See comment in move_ptes() */ | 
|  | if (need_rmap_locks) | 
|  | take_rmap_locks(vma); | 
|  |  | 
|  | switch (entry) { | 
|  | case NORMAL_PMD: | 
|  | moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, | 
|  | new_entry); | 
|  | break; | 
|  | case NORMAL_PUD: | 
|  | moved = move_normal_pud(vma, old_addr, new_addr, old_entry, | 
|  | new_entry); | 
|  | break; | 
|  | case HPAGE_PMD: | 
|  | moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | move_huge_pmd(vma, old_addr, new_addr, old_entry, | 
|  | new_entry); | 
|  | break; | 
|  | case HPAGE_PUD: | 
|  | moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | move_huge_pud(vma, old_addr, new_addr, old_entry, | 
|  | new_entry); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (need_rmap_locks) | 
|  | drop_rmap_locks(vma); | 
|  |  | 
|  | return moved; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A helper to check if aligning down is OK. The aligned address should fall | 
|  | * on *no mapping*. For the stack moving down, that's a special move within | 
|  | * the VMA that is created to span the source and destination of the move, | 
|  | * so we make an exception for it. | 
|  | */ | 
|  | static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align, | 
|  | unsigned long mask, bool for_stack) | 
|  | { | 
|  | unsigned long addr_masked = addr_to_align & mask; | 
|  |  | 
|  | /* | 
|  | * If @addr_to_align of either source or destination is not the beginning | 
|  | * of the corresponding VMA, we can't align down or we will destroy part | 
|  | * of the current mapping. | 
|  | */ | 
|  | if (!for_stack && vma->vm_start != addr_to_align) | 
|  | return false; | 
|  |  | 
|  | /* In the stack case we explicitly permit in-VMA alignment. */ | 
|  | if (for_stack && addr_masked >= vma->vm_start) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Make sure the realignment doesn't cause the address to fall on an | 
|  | * existing mapping. | 
|  | */ | 
|  | return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; | 
|  | } | 
|  |  | 
|  | /* Opportunistically realign to specified boundary for faster copy. */ | 
|  | static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma, | 
|  | unsigned long *new_addr, struct vm_area_struct *new_vma, | 
|  | unsigned long mask, bool for_stack) | 
|  | { | 
|  | /* Skip if the addresses are already aligned. */ | 
|  | if ((*old_addr & ~mask) == 0) | 
|  | return; | 
|  |  | 
|  | /* Only realign if the new and old addresses are mutually aligned. */ | 
|  | if ((*old_addr & ~mask) != (*new_addr & ~mask)) | 
|  | return; | 
|  |  | 
|  | /* Ensure realignment doesn't cause overlap with existing mappings. */ | 
|  | if (!can_align_down(old_vma, *old_addr, mask, for_stack) || | 
|  | !can_align_down(new_vma, *new_addr, mask, for_stack)) | 
|  | return; | 
|  |  | 
|  | *old_addr = *old_addr & mask; | 
|  | *new_addr = *new_addr & mask; | 
|  | } | 
|  |  | 
|  | unsigned long move_page_tables(struct vm_area_struct *vma, | 
|  | unsigned long old_addr, struct vm_area_struct *new_vma, | 
|  | unsigned long new_addr, unsigned long len, | 
|  | bool need_rmap_locks, bool for_stack) | 
|  | { | 
|  | unsigned long extent, old_end; | 
|  | struct mmu_notifier_range range; | 
|  | pmd_t *old_pmd, *new_pmd; | 
|  | pud_t *old_pud, *new_pud; | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | old_end = old_addr + len; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | return move_hugetlb_page_tables(vma, new_vma, old_addr, | 
|  | new_addr, len); | 
|  |  | 
|  | /* | 
|  | * If possible, realign addresses to PMD boundary for faster copy. | 
|  | * Only realign if the mremap copying hits a PMD boundary. | 
|  | */ | 
|  | if (len >= PMD_SIZE - (old_addr & ~PMD_MASK)) | 
|  | try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK, | 
|  | for_stack); | 
|  |  | 
|  | flush_cache_range(vma, old_addr, old_end); | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, | 
|  | old_addr, old_end); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | for (; old_addr < old_end; old_addr += extent, new_addr += extent) { | 
|  | cond_resched(); | 
|  | /* | 
|  | * If extent is PUD-sized try to speed up the move by moving at the | 
|  | * PUD level if possible. | 
|  | */ | 
|  | extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); | 
|  |  | 
|  | old_pud = get_old_pud(vma->vm_mm, old_addr); | 
|  | if (!old_pud) | 
|  | continue; | 
|  | new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); | 
|  | if (!new_pud) | 
|  | break; | 
|  | if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { | 
|  | if (extent == HPAGE_PUD_SIZE) { | 
|  | move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, | 
|  | old_pud, new_pud, need_rmap_locks); | 
|  | /* We ignore and continue on error? */ | 
|  | continue; | 
|  | } | 
|  | } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { | 
|  |  | 
|  | if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, | 
|  | old_pud, new_pud, true)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); | 
|  | old_pmd = get_old_pmd(vma->vm_mm, old_addr); | 
|  | if (!old_pmd) | 
|  | continue; | 
|  | new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); | 
|  | if (!new_pmd) | 
|  | break; | 
|  | again: | 
|  | if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || | 
|  | pmd_devmap(*old_pmd)) { | 
|  | if (extent == HPAGE_PMD_SIZE && | 
|  | move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, | 
|  | old_pmd, new_pmd, need_rmap_locks)) | 
|  | continue; | 
|  | split_huge_pmd(vma, old_pmd, old_addr); | 
|  | } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && | 
|  | extent == PMD_SIZE) { | 
|  | /* | 
|  | * If the extent is PMD-sized, try to speed the move by | 
|  | * moving at the PMD level if possible. | 
|  | */ | 
|  | if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, | 
|  | old_pmd, new_pmd, true)) | 
|  | continue; | 
|  | } | 
|  | if (pmd_none(*old_pmd)) | 
|  | continue; | 
|  | if (pte_alloc(new_vma->vm_mm, new_pmd)) | 
|  | break; | 
|  | if (move_ptes(vma, old_pmd, old_addr, old_addr + extent, | 
|  | new_vma, new_pmd, new_addr, need_rmap_locks) < 0) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | /* | 
|  | * Prevent negative return values when {old,new}_addr was realigned | 
|  | * but we broke out of the above loop for the first PMD itself. | 
|  | */ | 
|  | if (old_addr < old_end - len) | 
|  | return 0; | 
|  |  | 
|  | return len + old_addr - old_end;	/* how much done */ | 
|  | } | 
|  |  | 
|  | static unsigned long move_vma(struct vm_area_struct *vma, | 
|  | unsigned long old_addr, unsigned long old_len, | 
|  | unsigned long new_len, unsigned long new_addr, | 
|  | bool *locked, unsigned long flags, | 
|  | struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) | 
|  | { | 
|  | long to_account = new_len - old_len; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *new_vma; | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  | unsigned long new_pgoff; | 
|  | unsigned long moved_len; | 
|  | bool account_start = false; | 
|  | bool account_end = false; | 
|  | unsigned long hiwater_vm; | 
|  | int err = 0; | 
|  | bool need_rmap_locks; | 
|  | struct vma_iterator vmi; | 
|  |  | 
|  | /* | 
|  | * We'd prefer to avoid failure later on in do_munmap: | 
|  | * which may split one vma into three before unmapping. | 
|  | */ | 
|  | if (mm->map_count >= sysctl_max_map_count - 3) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (unlikely(flags & MREMAP_DONTUNMAP)) | 
|  | to_account = new_len; | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->may_split) { | 
|  | if (vma->vm_start != old_addr) | 
|  | err = vma->vm_ops->may_split(vma, old_addr); | 
|  | if (!err && vma->vm_end != old_addr + old_len) | 
|  | err = vma->vm_ops->may_split(vma, old_addr + old_len); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advise KSM to break any KSM pages in the area to be moved: | 
|  | * it would be confusing if they were to turn up at the new | 
|  | * location, where they happen to coincide with different KSM | 
|  | * pages recently unmapped.  But leave vma->vm_flags as it was, | 
|  | * so KSM can come around to merge on vma and new_vma afterwards. | 
|  | */ | 
|  | err = ksm_madvise(vma, old_addr, old_addr + old_len, | 
|  | MADV_UNMERGEABLE, &vm_flags); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (vm_flags & VM_ACCOUNT) { | 
|  | if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | vma_start_write(vma); | 
|  | new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); | 
|  | new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, | 
|  | &need_rmap_locks); | 
|  | if (!new_vma) { | 
|  | if (vm_flags & VM_ACCOUNT) | 
|  | vm_unacct_memory(to_account >> PAGE_SHIFT); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, | 
|  | need_rmap_locks, false); | 
|  | if (moved_len < old_len) { | 
|  | err = -ENOMEM; | 
|  | } else if (vma->vm_ops && vma->vm_ops->mremap) { | 
|  | err = vma->vm_ops->mremap(new_vma); | 
|  | } | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | /* | 
|  | * On error, move entries back from new area to old, | 
|  | * which will succeed since page tables still there, | 
|  | * and then proceed to unmap new area instead of old. | 
|  | */ | 
|  | move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, | 
|  | true, false); | 
|  | vma = new_vma; | 
|  | old_len = new_len; | 
|  | old_addr = new_addr; | 
|  | new_addr = err; | 
|  | } else { | 
|  | mremap_userfaultfd_prep(new_vma, uf); | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | clear_vma_resv_huge_pages(vma); | 
|  | } | 
|  |  | 
|  | /* Conceal VM_ACCOUNT so old reservation is not undone */ | 
|  | if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { | 
|  | vm_flags_clear(vma, VM_ACCOUNT); | 
|  | if (vma->vm_start < old_addr) | 
|  | account_start = true; | 
|  | if (vma->vm_end > old_addr + old_len) | 
|  | account_end = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we failed to move page tables we still do total_vm increment | 
|  | * since do_munmap() will decrement it by old_len == new_len. | 
|  | * | 
|  | * Since total_vm is about to be raised artificially high for a | 
|  | * moment, we need to restore high watermark afterwards: if stats | 
|  | * are taken meanwhile, total_vm and hiwater_vm appear too high. | 
|  | * If this were a serious issue, we'd add a flag to do_munmap(). | 
|  | */ | 
|  | hiwater_vm = mm->hiwater_vm; | 
|  | vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); | 
|  |  | 
|  | /* Tell pfnmap has moved from this vma */ | 
|  | if (unlikely(vma->vm_flags & VM_PFNMAP)) | 
|  | untrack_pfn_clear(vma); | 
|  |  | 
|  | if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { | 
|  | /* We always clear VM_LOCKED[ONFAULT] on the old vma */ | 
|  | vm_flags_clear(vma, VM_LOCKED_MASK); | 
|  |  | 
|  | /* | 
|  | * anon_vma links of the old vma is no longer needed after its page | 
|  | * table has been moved. | 
|  | */ | 
|  | if (new_vma != vma && vma->vm_start == old_addr && | 
|  | vma->vm_end == (old_addr + old_len)) | 
|  | unlink_anon_vmas(vma); | 
|  |  | 
|  | /* Because we won't unmap we don't need to touch locked_vm */ | 
|  | return new_addr; | 
|  | } | 
|  |  | 
|  | vma_iter_init(&vmi, mm, old_addr); | 
|  | if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) { | 
|  | /* OOM: unable to split vma, just get accounts right */ | 
|  | if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) | 
|  | vm_acct_memory(old_len >> PAGE_SHIFT); | 
|  | account_start = account_end = false; | 
|  | } | 
|  |  | 
|  | if (vm_flags & VM_LOCKED) { | 
|  | mm->locked_vm += new_len >> PAGE_SHIFT; | 
|  | *locked = true; | 
|  | } | 
|  |  | 
|  | mm->hiwater_vm = hiwater_vm; | 
|  |  | 
|  | /* Restore VM_ACCOUNT if one or two pieces of vma left */ | 
|  | if (account_start) { | 
|  | vma = vma_prev(&vmi); | 
|  | vm_flags_set(vma, VM_ACCOUNT); | 
|  | } | 
|  |  | 
|  | if (account_end) { | 
|  | vma = vma_next(&vmi); | 
|  | vm_flags_set(vma, VM_ACCOUNT); | 
|  | } | 
|  |  | 
|  | return new_addr; | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *vma_to_resize(unsigned long addr, | 
|  | unsigned long old_len, unsigned long new_len, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long pgoff; | 
|  |  | 
|  | vma = vma_lookup(mm, addr); | 
|  | if (!vma) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | /* | 
|  | * !old_len is a special case where an attempt is made to 'duplicate' | 
|  | * a mapping.  This makes no sense for private mappings as it will | 
|  | * instead create a fresh/new mapping unrelated to the original.  This | 
|  | * is contrary to the basic idea of mremap which creates new mappings | 
|  | * based on the original.  There are no known use cases for this | 
|  | * behavior.  As a result, fail such attempts. | 
|  | */ | 
|  | if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { | 
|  | pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if ((flags & MREMAP_DONTUNMAP) && | 
|  | (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* We can't remap across vm area boundaries */ | 
|  | if (old_len > vma->vm_end - addr) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | if (new_len == old_len) | 
|  | return vma; | 
|  |  | 
|  | /* Need to be careful about a growing mapping */ | 
|  | pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | pgoff += vma->vm_pgoff; | 
|  | if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len)) | 
|  | return ERR_PTR(-EAGAIN); | 
|  |  | 
|  | if (!may_expand_vm(mm, vma->vm_flags, | 
|  | (new_len - old_len) >> PAGE_SHIFT)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | static unsigned long mremap_to(unsigned long addr, unsigned long old_len, | 
|  | unsigned long new_addr, unsigned long new_len, bool *locked, | 
|  | unsigned long flags, struct vm_userfaultfd_ctx *uf, | 
|  | struct list_head *uf_unmap_early, | 
|  | struct list_head *uf_unmap) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long ret = -EINVAL; | 
|  | unsigned long map_flags = 0; | 
|  |  | 
|  | if (offset_in_page(new_addr)) | 
|  | goto out; | 
|  |  | 
|  | if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) | 
|  | goto out; | 
|  |  | 
|  | /* Ensure the old/new locations do not overlap */ | 
|  | if (addr + old_len > new_addr && new_addr + new_len > addr) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * move_vma() need us to stay 4 maps below the threshold, otherwise | 
|  | * it will bail out at the very beginning. | 
|  | * That is a problem if we have already unmaped the regions here | 
|  | * (new_addr, and old_addr), because userspace will not know the | 
|  | * state of the vma's after it gets -ENOMEM. | 
|  | * So, to avoid such scenario we can pre-compute if the whole | 
|  | * operation has high chances to success map-wise. | 
|  | * Worst-scenario case is when both vma's (new_addr and old_addr) get | 
|  | * split in 3 before unmapping it. | 
|  | * That means 2 more maps (1 for each) to the ones we already hold. | 
|  | * Check whether current map count plus 2 still leads us to 4 maps below | 
|  | * the threshold, otherwise return -ENOMEM here to be more safe. | 
|  | */ | 
|  | if ((mm->map_count + 2) >= sysctl_max_map_count - 3) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MREMAP_FIXED) { | 
|  | /* | 
|  | * In mremap_to(). | 
|  | * VMA is moved to dst address, and munmap dst first. | 
|  | * do_munmap will check if dst is sealed. | 
|  | */ | 
|  | ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (old_len > new_len) { | 
|  | ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); | 
|  | if (ret) | 
|  | goto out; | 
|  | old_len = new_len; | 
|  | } | 
|  |  | 
|  | vma = vma_to_resize(addr, old_len, new_len, flags); | 
|  | if (IS_ERR(vma)) { | 
|  | ret = PTR_ERR(vma); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ | 
|  | if (flags & MREMAP_DONTUNMAP && | 
|  | !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (flags & MREMAP_FIXED) | 
|  | map_flags |= MAP_FIXED; | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | map_flags |= MAP_SHARED; | 
|  |  | 
|  | ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + | 
|  | ((addr - vma->vm_start) >> PAGE_SHIFT), | 
|  | map_flags); | 
|  | if (IS_ERR_VALUE(ret)) | 
|  | goto out; | 
|  |  | 
|  | /* We got a new mapping */ | 
|  | if (!(flags & MREMAP_FIXED)) | 
|  | new_addr = ret; | 
|  |  | 
|  | ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, | 
|  | uf_unmap); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) | 
|  | { | 
|  | unsigned long end = vma->vm_end + delta; | 
|  |  | 
|  | if (end < vma->vm_end) /* overflow */ | 
|  | return 0; | 
|  | if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) | 
|  | return 0; | 
|  | if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, | 
|  | 0, MAP_FIXED) & ~PAGE_MASK) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand (or shrink) an existing mapping, potentially moving it at the | 
|  | * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) | 
|  | * | 
|  | * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise | 
|  | * This option implies MREMAP_MAYMOVE. | 
|  | */ | 
|  | SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, | 
|  | unsigned long, new_len, unsigned long, flags, | 
|  | unsigned long, new_addr) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long ret = -EINVAL; | 
|  | bool locked = false; | 
|  | struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; | 
|  | LIST_HEAD(uf_unmap_early); | 
|  | LIST_HEAD(uf_unmap); | 
|  |  | 
|  | /* | 
|  | * There is a deliberate asymmetry here: we strip the pointer tag | 
|  | * from the old address but leave the new address alone. This is | 
|  | * for consistency with mmap(), where we prevent the creation of | 
|  | * aliasing mappings in userspace by leaving the tag bits of the | 
|  | * mapping address intact. A non-zero tag will cause the subsequent | 
|  | * range checks to reject the address as invalid. | 
|  | * | 
|  | * See Documentation/arch/arm64/tagged-address-abi.rst for more | 
|  | * information. | 
|  | */ | 
|  | addr = untagged_addr(addr); | 
|  |  | 
|  | if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) | 
|  | return ret; | 
|  |  | 
|  | if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * MREMAP_DONTUNMAP is always a move and it does not allow resizing | 
|  | * in the process. | 
|  | */ | 
|  | if (flags & MREMAP_DONTUNMAP && | 
|  | (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) | 
|  | return ret; | 
|  |  | 
|  |  | 
|  | if (offset_in_page(addr)) | 
|  | return ret; | 
|  |  | 
|  | old_len = PAGE_ALIGN(old_len); | 
|  | new_len = PAGE_ALIGN(new_len); | 
|  |  | 
|  | /* | 
|  | * We allow a zero old-len as a special case | 
|  | * for DOS-emu "duplicate shm area" thing. But | 
|  | * a zero new-len is nonsensical. | 
|  | */ | 
|  | if (!new_len) | 
|  | return ret; | 
|  |  | 
|  | if (mmap_write_lock_killable(current->mm)) | 
|  | return -EINTR; | 
|  | vma = vma_lookup(mm, addr); | 
|  | if (!vma) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Don't allow remapping vmas when they have already been sealed */ | 
|  | if (!can_modify_vma(vma)) { | 
|  | ret = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | struct hstate *h __maybe_unused = hstate_vma(vma); | 
|  |  | 
|  | old_len = ALIGN(old_len, huge_page_size(h)); | 
|  | new_len = ALIGN(new_len, huge_page_size(h)); | 
|  |  | 
|  | /* addrs must be huge page aligned */ | 
|  | if (addr & ~huge_page_mask(h)) | 
|  | goto out; | 
|  | if (new_addr & ~huge_page_mask(h)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Don't allow remap expansion, because the underlying hugetlb | 
|  | * reservation is not yet capable to handle split reservation. | 
|  | */ | 
|  | if (new_len > old_len) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { | 
|  | ret = mremap_to(addr, old_len, new_addr, new_len, | 
|  | &locked, flags, &uf, &uf_unmap_early, | 
|  | &uf_unmap); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always allow a shrinking remap: that just unmaps | 
|  | * the unnecessary pages.. | 
|  | * do_vmi_munmap does all the needed commit accounting, and | 
|  | * unlocks the mmap_lock if so directed. | 
|  | */ | 
|  | if (old_len >= new_len) { | 
|  | VMA_ITERATOR(vmi, mm, addr + new_len); | 
|  |  | 
|  | if (old_len == new_len) { | 
|  | ret = addr; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len, | 
|  | &uf_unmap, true); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = addr; | 
|  | goto out_unlocked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we need to grow.. | 
|  | */ | 
|  | vma = vma_to_resize(addr, old_len, new_len, flags); | 
|  | if (IS_ERR(vma)) { | 
|  | ret = PTR_ERR(vma); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* old_len exactly to the end of the area.. | 
|  | */ | 
|  | if (old_len == vma->vm_end - addr) { | 
|  | unsigned long delta = new_len - old_len; | 
|  |  | 
|  | /* can we just expand the current mapping? */ | 
|  | if (vma_expandable(vma, delta)) { | 
|  | long pages = delta >> PAGE_SHIFT; | 
|  | VMA_ITERATOR(vmi, mm, vma->vm_end); | 
|  | long charged = 0; | 
|  |  | 
|  | if (vma->vm_flags & VM_ACCOUNT) { | 
|  | if (security_vm_enough_memory_mm(mm, pages)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | charged = pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function vma_merge_extend() is called on the | 
|  | * extension we are adding to the already existing vma, | 
|  | * vma_merge_extend() will merge this extension with the | 
|  | * already existing vma (expand operation itself) and | 
|  | * possibly also with the next vma if it becomes | 
|  | * adjacent to the expanded vma and otherwise | 
|  | * compatible. | 
|  | */ | 
|  | vma = vma_merge_extend(&vmi, vma, delta); | 
|  | if (!vma) { | 
|  | vm_unacct_memory(charged); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vm_stat_account(mm, vma->vm_flags, pages); | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | mm->locked_vm += pages; | 
|  | locked = true; | 
|  | new_addr = addr; | 
|  | } | 
|  | ret = addr; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We weren't able to just expand or shrink the area, | 
|  | * we need to create a new one and move it.. | 
|  | */ | 
|  | ret = -ENOMEM; | 
|  | if (flags & MREMAP_MAYMOVE) { | 
|  | unsigned long map_flags = 0; | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | map_flags |= MAP_SHARED; | 
|  |  | 
|  | new_addr = get_unmapped_area(vma->vm_file, 0, new_len, | 
|  | vma->vm_pgoff + | 
|  | ((addr - vma->vm_start) >> PAGE_SHIFT), | 
|  | map_flags); | 
|  | if (IS_ERR_VALUE(new_addr)) { | 
|  | ret = new_addr; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = move_vma(vma, addr, old_len, new_len, new_addr, | 
|  | &locked, flags, &uf, &uf_unmap); | 
|  | } | 
|  | out: | 
|  | if (offset_in_page(ret)) | 
|  | locked = false; | 
|  | mmap_write_unlock(current->mm); | 
|  | if (locked && new_len > old_len) | 
|  | mm_populate(new_addr + old_len, new_len - old_len); | 
|  | out_unlocked: | 
|  | userfaultfd_unmap_complete(mm, &uf_unmap_early); | 
|  | mremap_userfaultfd_complete(&uf, addr, ret, old_len); | 
|  | userfaultfd_unmap_complete(mm, &uf_unmap); | 
|  | return ret; | 
|  | } |