| // SPDX-License-Identifier: GPL-2.0-only | 
 | #include <linux/export.h> | 
 | #include <linux/bvec.h> | 
 | #include <linux/fault-inject-usercopy.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/splice.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/instrumented.h> | 
 | #include <linux/iov_iter.h> | 
 |  | 
 | static __always_inline | 
 | size_t copy_to_user_iter(void __user *iter_to, size_t progress, | 
 | 			 size_t len, void *from, void *priv2) | 
 | { | 
 | 	if (should_fail_usercopy()) | 
 | 		return len; | 
 | 	if (access_ok(iter_to, len)) { | 
 | 		from += progress; | 
 | 		instrument_copy_to_user(iter_to, from, len); | 
 | 		len = raw_copy_to_user(iter_to, from, len); | 
 | 	} | 
 | 	return len; | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, | 
 | 				 size_t len, void *from, void *priv2) | 
 | { | 
 | 	ssize_t res; | 
 |  | 
 | 	if (should_fail_usercopy()) | 
 | 		return len; | 
 |  | 
 | 	from += progress; | 
 | 	res = copy_to_user_nofault(iter_to, from, len); | 
 | 	return res < 0 ? len : res; | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t copy_from_user_iter(void __user *iter_from, size_t progress, | 
 | 			   size_t len, void *to, void *priv2) | 
 | { | 
 | 	size_t res = len; | 
 |  | 
 | 	if (should_fail_usercopy()) | 
 | 		return len; | 
 | 	if (access_ok(iter_from, len)) { | 
 | 		to += progress; | 
 | 		instrument_copy_from_user_before(to, iter_from, len); | 
 | 		res = raw_copy_from_user(to, iter_from, len); | 
 | 		instrument_copy_from_user_after(to, iter_from, len, res); | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t memcpy_to_iter(void *iter_to, size_t progress, | 
 | 		      size_t len, void *from, void *priv2) | 
 | { | 
 | 	memcpy(iter_to, from + progress, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t memcpy_from_iter(void *iter_from, size_t progress, | 
 | 			size_t len, void *to, void *priv2) | 
 | { | 
 | 	memcpy(to + progress, iter_from, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * fault_in_iov_iter_readable - fault in iov iterator for reading | 
 |  * @i: iterator | 
 |  * @size: maximum length | 
 |  * | 
 |  * Fault in one or more iovecs of the given iov_iter, to a maximum length of | 
 |  * @size.  For each iovec, fault in each page that constitutes the iovec. | 
 |  * | 
 |  * Returns the number of bytes not faulted in (like copy_to_user() and | 
 |  * copy_from_user()). | 
 |  * | 
 |  * Always returns 0 for non-userspace iterators. | 
 |  */ | 
 | size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) | 
 | { | 
 | 	if (iter_is_ubuf(i)) { | 
 | 		size_t n = min(size, iov_iter_count(i)); | 
 | 		n -= fault_in_readable(i->ubuf + i->iov_offset, n); | 
 | 		return size - n; | 
 | 	} else if (iter_is_iovec(i)) { | 
 | 		size_t count = min(size, iov_iter_count(i)); | 
 | 		const struct iovec *p; | 
 | 		size_t skip; | 
 |  | 
 | 		size -= count; | 
 | 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { | 
 | 			size_t len = min(count, p->iov_len - skip); | 
 | 			size_t ret; | 
 |  | 
 | 			if (unlikely(!len)) | 
 | 				continue; | 
 | 			ret = fault_in_readable(p->iov_base + skip, len); | 
 | 			count -= len - ret; | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		return count + size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_iov_iter_readable); | 
 |  | 
 | /* | 
 |  * fault_in_iov_iter_writeable - fault in iov iterator for writing | 
 |  * @i: iterator | 
 |  * @size: maximum length | 
 |  * | 
 |  * Faults in the iterator using get_user_pages(), i.e., without triggering | 
 |  * hardware page faults.  This is primarily useful when we already know that | 
 |  * some or all of the pages in @i aren't in memory. | 
 |  * | 
 |  * Returns the number of bytes not faulted in, like copy_to_user() and | 
 |  * copy_from_user(). | 
 |  * | 
 |  * Always returns 0 for non-user-space iterators. | 
 |  */ | 
 | size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) | 
 | { | 
 | 	if (iter_is_ubuf(i)) { | 
 | 		size_t n = min(size, iov_iter_count(i)); | 
 | 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); | 
 | 		return size - n; | 
 | 	} else if (iter_is_iovec(i)) { | 
 | 		size_t count = min(size, iov_iter_count(i)); | 
 | 		const struct iovec *p; | 
 | 		size_t skip; | 
 |  | 
 | 		size -= count; | 
 | 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { | 
 | 			size_t len = min(count, p->iov_len - skip); | 
 | 			size_t ret; | 
 |  | 
 | 			if (unlikely(!len)) | 
 | 				continue; | 
 | 			ret = fault_in_safe_writeable(p->iov_base + skip, len); | 
 | 			count -= len - ret; | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		return count + size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_iov_iter_writeable); | 
 |  | 
 | void iov_iter_init(struct iov_iter *i, unsigned int direction, | 
 | 			const struct iovec *iov, unsigned long nr_segs, | 
 | 			size_t count) | 
 | { | 
 | 	WARN_ON(direction & ~(READ | WRITE)); | 
 | 	*i = (struct iov_iter) { | 
 | 		.iter_type = ITER_IOVEC, | 
 | 		.nofault = false, | 
 | 		.data_source = direction, | 
 | 		.__iov = iov, | 
 | 		.nr_segs = nr_segs, | 
 | 		.iov_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_init); | 
 |  | 
 | size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (user_backed_iter(i)) | 
 | 		might_fault(); | 
 | 	return iterate_and_advance(i, bytes, (void *)addr, | 
 | 				   copy_to_user_iter, memcpy_to_iter); | 
 | } | 
 | EXPORT_SYMBOL(_copy_to_iter); | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_COPY_MC | 
 | static __always_inline | 
 | size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, | 
 | 			    size_t len, void *from, void *priv2) | 
 | { | 
 | 	if (access_ok(iter_to, len)) { | 
 | 		from += progress; | 
 | 		instrument_copy_to_user(iter_to, from, len); | 
 | 		len = copy_mc_to_user(iter_to, from, len); | 
 | 	} | 
 | 	return len; | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t memcpy_to_iter_mc(void *iter_to, size_t progress, | 
 | 			 size_t len, void *from, void *priv2) | 
 | { | 
 | 	return copy_mc_to_kernel(iter_to, from + progress, len); | 
 | } | 
 |  | 
 | /** | 
 |  * _copy_mc_to_iter - copy to iter with source memory error exception handling | 
 |  * @addr: source kernel address | 
 |  * @bytes: total transfer length | 
 |  * @i: destination iterator | 
 |  * | 
 |  * The pmem driver deploys this for the dax operation | 
 |  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the | 
 |  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes | 
 |  * successfully copied. | 
 |  * | 
 |  * The main differences between this and typical _copy_to_iter(). | 
 |  * | 
 |  * * Typical tail/residue handling after a fault retries the copy | 
 |  *   byte-by-byte until the fault happens again. Re-triggering machine | 
 |  *   checks is potentially fatal so the implementation uses source | 
 |  *   alignment and poison alignment assumptions to avoid re-triggering | 
 |  *   hardware exceptions. | 
 |  * | 
 |  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to | 
 |  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy. | 
 |  * | 
 |  * Return: number of bytes copied (may be %0) | 
 |  */ | 
 | size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	if (user_backed_iter(i)) | 
 | 		might_fault(); | 
 | 	return iterate_and_advance(i, bytes, (void *)addr, | 
 | 				   copy_to_user_iter_mc, memcpy_to_iter_mc); | 
 | } | 
 | EXPORT_SYMBOL_GPL(_copy_mc_to_iter); | 
 | #endif /* CONFIG_ARCH_HAS_COPY_MC */ | 
 |  | 
 | static __always_inline | 
 | size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	return iterate_and_advance(i, bytes, addr, | 
 | 				   copy_from_user_iter, memcpy_from_iter); | 
 | } | 
 |  | 
 | size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	if (user_backed_iter(i)) | 
 | 		might_fault(); | 
 | 	return __copy_from_iter(addr, bytes, i); | 
 | } | 
 | EXPORT_SYMBOL(_copy_from_iter); | 
 |  | 
 | static __always_inline | 
 | size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, | 
 | 				   size_t len, void *to, void *priv2) | 
 | { | 
 | 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); | 
 | } | 
 |  | 
 | size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	return iterate_and_advance(i, bytes, addr, | 
 | 				   copy_from_user_iter_nocache, | 
 | 				   memcpy_from_iter); | 
 | } | 
 | EXPORT_SYMBOL(_copy_from_iter_nocache); | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE | 
 | static __always_inline | 
 | size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, | 
 | 				      size_t len, void *to, void *priv2) | 
 | { | 
 | 	return __copy_from_user_flushcache(to + progress, iter_from, len); | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, | 
 | 				   size_t len, void *to, void *priv2) | 
 | { | 
 | 	memcpy_flushcache(to + progress, iter_from, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * _copy_from_iter_flushcache - write destination through cpu cache | 
 |  * @addr: destination kernel address | 
 |  * @bytes: total transfer length | 
 |  * @i: source iterator | 
 |  * | 
 |  * The pmem driver arranges for filesystem-dax to use this facility via | 
 |  * dax_copy_from_iter() for ensuring that writes to persistent memory | 
 |  * are flushed through the CPU cache. It is differentiated from | 
 |  * _copy_from_iter_nocache() in that guarantees all data is flushed for | 
 |  * all iterator types. The _copy_from_iter_nocache() only attempts to | 
 |  * bypass the cache for the ITER_IOVEC case, and on some archs may use | 
 |  * instructions that strand dirty-data in the cache. | 
 |  * | 
 |  * Return: number of bytes copied (may be %0) | 
 |  */ | 
 | size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	return iterate_and_advance(i, bytes, addr, | 
 | 				   copy_from_user_iter_flushcache, | 
 | 				   memcpy_from_iter_flushcache); | 
 | } | 
 | EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); | 
 | #endif | 
 |  | 
 | static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) | 
 | { | 
 | 	struct page *head; | 
 | 	size_t v = n + offset; | 
 |  | 
 | 	/* | 
 | 	 * The general case needs to access the page order in order | 
 | 	 * to compute the page size. | 
 | 	 * However, we mostly deal with order-0 pages and thus can | 
 | 	 * avoid a possible cache line miss for requests that fit all | 
 | 	 * page orders. | 
 | 	 */ | 
 | 	if (n <= v && v <= PAGE_SIZE) | 
 | 		return true; | 
 |  | 
 | 	head = compound_head(page); | 
 | 	v += (page - head) << PAGE_SHIFT; | 
 |  | 
 | 	if (WARN_ON(n > v || v > page_size(head))) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, | 
 | 			 struct iov_iter *i) | 
 | { | 
 | 	size_t res = 0; | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	page += offset / PAGE_SIZE; // first subpage | 
 | 	offset %= PAGE_SIZE; | 
 | 	while (1) { | 
 | 		void *kaddr = kmap_local_page(page); | 
 | 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset); | 
 | 		n = _copy_to_iter(kaddr + offset, n, i); | 
 | 		kunmap_local(kaddr); | 
 | 		res += n; | 
 | 		bytes -= n; | 
 | 		if (!bytes || !n) | 
 | 			break; | 
 | 		offset += n; | 
 | 		if (offset == PAGE_SIZE) { | 
 | 			page++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_to_iter); | 
 |  | 
 | size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, | 
 | 				 struct iov_iter *i) | 
 | { | 
 | 	size_t res = 0; | 
 |  | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(i->data_source)) | 
 | 		return 0; | 
 | 	page += offset / PAGE_SIZE; // first subpage | 
 | 	offset %= PAGE_SIZE; | 
 | 	while (1) { | 
 | 		void *kaddr = kmap_local_page(page); | 
 | 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset); | 
 |  | 
 | 		n = iterate_and_advance(i, n, kaddr + offset, | 
 | 					copy_to_user_iter_nofault, | 
 | 					memcpy_to_iter); | 
 | 		kunmap_local(kaddr); | 
 | 		res += n; | 
 | 		bytes -= n; | 
 | 		if (!bytes || !n) | 
 | 			break; | 
 | 		offset += n; | 
 | 		if (offset == PAGE_SIZE) { | 
 | 			page++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_to_iter_nofault); | 
 |  | 
 | size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, | 
 | 			 struct iov_iter *i) | 
 | { | 
 | 	size_t res = 0; | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	page += offset / PAGE_SIZE; // first subpage | 
 | 	offset %= PAGE_SIZE; | 
 | 	while (1) { | 
 | 		void *kaddr = kmap_local_page(page); | 
 | 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset); | 
 | 		n = _copy_from_iter(kaddr + offset, n, i); | 
 | 		kunmap_local(kaddr); | 
 | 		res += n; | 
 | 		bytes -= n; | 
 | 		if (!bytes || !n) | 
 | 			break; | 
 | 		offset += n; | 
 | 		if (offset == PAGE_SIZE) { | 
 | 			page++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_from_iter); | 
 |  | 
 | static __always_inline | 
 | size_t zero_to_user_iter(void __user *iter_to, size_t progress, | 
 | 			 size_t len, void *priv, void *priv2) | 
 | { | 
 | 	return clear_user(iter_to, len); | 
 | } | 
 |  | 
 | static __always_inline | 
 | size_t zero_to_iter(void *iter_to, size_t progress, | 
 | 		    size_t len, void *priv, void *priv2) | 
 | { | 
 | 	memset(iter_to, 0, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | size_t iov_iter_zero(size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	return iterate_and_advance(i, bytes, NULL, | 
 | 				   zero_to_user_iter, zero_to_iter); | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_zero); | 
 |  | 
 | size_t copy_page_from_iter_atomic(struct page *page, size_t offset, | 
 | 		size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	size_t n, copied = 0; | 
 | 	bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || | 
 | 			 PageHighMem(page); | 
 |  | 
 | 	if (!page_copy_sane(page, offset, bytes)) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(!i->data_source)) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		char *p; | 
 |  | 
 | 		n = bytes - copied; | 
 | 		if (uses_kmap) { | 
 | 			page += offset / PAGE_SIZE; | 
 | 			offset %= PAGE_SIZE; | 
 | 			n = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 		} | 
 |  | 
 | 		p = kmap_atomic(page) + offset; | 
 | 		n = __copy_from_iter(p, n, i); | 
 | 		kunmap_atomic(p); | 
 | 		copied += n; | 
 | 		offset += n; | 
 | 	} while (uses_kmap && copied != bytes && n > 0); | 
 |  | 
 | 	return copied; | 
 | } | 
 | EXPORT_SYMBOL(copy_page_from_iter_atomic); | 
 |  | 
 | static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	const struct bio_vec *bvec, *end; | 
 |  | 
 | 	if (!i->count) | 
 | 		return; | 
 | 	i->count -= size; | 
 |  | 
 | 	size += i->iov_offset; | 
 |  | 
 | 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { | 
 | 		if (likely(size < bvec->bv_len)) | 
 | 			break; | 
 | 		size -= bvec->bv_len; | 
 | 	} | 
 | 	i->iov_offset = size; | 
 | 	i->nr_segs -= bvec - i->bvec; | 
 | 	i->bvec = bvec; | 
 | } | 
 |  | 
 | static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	const struct iovec *iov, *end; | 
 |  | 
 | 	if (!i->count) | 
 | 		return; | 
 | 	i->count -= size; | 
 |  | 
 | 	size += i->iov_offset; // from beginning of current segment | 
 | 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { | 
 | 		if (likely(size < iov->iov_len)) | 
 | 			break; | 
 | 		size -= iov->iov_len; | 
 | 	} | 
 | 	i->iov_offset = size; | 
 | 	i->nr_segs -= iov - iter_iov(i); | 
 | 	i->__iov = iov; | 
 | } | 
 |  | 
 | static void iov_iter_folioq_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	const struct folio_queue *folioq = i->folioq; | 
 | 	unsigned int slot = i->folioq_slot; | 
 |  | 
 | 	if (!i->count) | 
 | 		return; | 
 | 	i->count -= size; | 
 |  | 
 | 	if (slot >= folioq_nr_slots(folioq)) { | 
 | 		folioq = folioq->next; | 
 | 		slot = 0; | 
 | 	} | 
 |  | 
 | 	size += i->iov_offset; /* From beginning of current segment. */ | 
 | 	do { | 
 | 		size_t fsize = folioq_folio_size(folioq, slot); | 
 |  | 
 | 		if (likely(size < fsize)) | 
 | 			break; | 
 | 		size -= fsize; | 
 | 		slot++; | 
 | 		if (slot >= folioq_nr_slots(folioq) && folioq->next) { | 
 | 			folioq = folioq->next; | 
 | 			slot = 0; | 
 | 		} | 
 | 	} while (size); | 
 |  | 
 | 	i->iov_offset = size; | 
 | 	i->folioq_slot = slot; | 
 | 	i->folioq = folioq; | 
 | } | 
 |  | 
 | void iov_iter_advance(struct iov_iter *i, size_t size) | 
 | { | 
 | 	if (unlikely(i->count < size)) | 
 | 		size = i->count; | 
 | 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { | 
 | 		i->iov_offset += size; | 
 | 		i->count -= size; | 
 | 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { | 
 | 		/* iovec and kvec have identical layouts */ | 
 | 		iov_iter_iovec_advance(i, size); | 
 | 	} else if (iov_iter_is_bvec(i)) { | 
 | 		iov_iter_bvec_advance(i, size); | 
 | 	} else if (iov_iter_is_folioq(i)) { | 
 | 		iov_iter_folioq_advance(i, size); | 
 | 	} else if (iov_iter_is_discard(i)) { | 
 | 		i->count -= size; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_advance); | 
 |  | 
 | static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll) | 
 | { | 
 | 	const struct folio_queue *folioq = i->folioq; | 
 | 	unsigned int slot = i->folioq_slot; | 
 |  | 
 | 	for (;;) { | 
 | 		size_t fsize; | 
 |  | 
 | 		if (slot == 0) { | 
 | 			folioq = folioq->prev; | 
 | 			slot = folioq_nr_slots(folioq); | 
 | 		} | 
 | 		slot--; | 
 |  | 
 | 		fsize = folioq_folio_size(folioq, slot); | 
 | 		if (unroll <= fsize) { | 
 | 			i->iov_offset = fsize - unroll; | 
 | 			break; | 
 | 		} | 
 | 		unroll -= fsize; | 
 | 	} | 
 |  | 
 | 	i->folioq_slot = slot; | 
 | 	i->folioq = folioq; | 
 | } | 
 |  | 
 | void iov_iter_revert(struct iov_iter *i, size_t unroll) | 
 | { | 
 | 	if (!unroll) | 
 | 		return; | 
 | 	if (WARN_ON(unroll > MAX_RW_COUNT)) | 
 | 		return; | 
 | 	i->count += unroll; | 
 | 	if (unlikely(iov_iter_is_discard(i))) | 
 | 		return; | 
 | 	if (unroll <= i->iov_offset) { | 
 | 		i->iov_offset -= unroll; | 
 | 		return; | 
 | 	} | 
 | 	unroll -= i->iov_offset; | 
 | 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { | 
 | 		BUG(); /* We should never go beyond the start of the specified | 
 | 			* range since we might then be straying into pages that | 
 | 			* aren't pinned. | 
 | 			*/ | 
 | 	} else if (iov_iter_is_bvec(i)) { | 
 | 		const struct bio_vec *bvec = i->bvec; | 
 | 		while (1) { | 
 | 			size_t n = (--bvec)->bv_len; | 
 | 			i->nr_segs++; | 
 | 			if (unroll <= n) { | 
 | 				i->bvec = bvec; | 
 | 				i->iov_offset = n - unroll; | 
 | 				return; | 
 | 			} | 
 | 			unroll -= n; | 
 | 		} | 
 | 	} else if (iov_iter_is_folioq(i)) { | 
 | 		i->iov_offset = 0; | 
 | 		iov_iter_folioq_revert(i, unroll); | 
 | 	} else { /* same logics for iovec and kvec */ | 
 | 		const struct iovec *iov = iter_iov(i); | 
 | 		while (1) { | 
 | 			size_t n = (--iov)->iov_len; | 
 | 			i->nr_segs++; | 
 | 			if (unroll <= n) { | 
 | 				i->__iov = iov; | 
 | 				i->iov_offset = n - unroll; | 
 | 				return; | 
 | 			} | 
 | 			unroll -= n; | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_revert); | 
 |  | 
 | /* | 
 |  * Return the count of just the current iov_iter segment. | 
 |  */ | 
 | size_t iov_iter_single_seg_count(const struct iov_iter *i) | 
 | { | 
 | 	if (i->nr_segs > 1) { | 
 | 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset); | 
 | 		if (iov_iter_is_bvec(i)) | 
 | 			return min(i->count, i->bvec->bv_len - i->iov_offset); | 
 | 	} | 
 | 	if (unlikely(iov_iter_is_folioq(i))) | 
 | 		return !i->count ? 0 : | 
 | 			umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count); | 
 | 	return i->count; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_single_seg_count); | 
 |  | 
 | void iov_iter_kvec(struct iov_iter *i, unsigned int direction, | 
 | 			const struct kvec *kvec, unsigned long nr_segs, | 
 | 			size_t count) | 
 | { | 
 | 	WARN_ON(direction & ~(READ | WRITE)); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_KVEC, | 
 | 		.data_source = direction, | 
 | 		.kvec = kvec, | 
 | 		.nr_segs = nr_segs, | 
 | 		.iov_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_kvec); | 
 |  | 
 | void iov_iter_bvec(struct iov_iter *i, unsigned int direction, | 
 | 			const struct bio_vec *bvec, unsigned long nr_segs, | 
 | 			size_t count) | 
 | { | 
 | 	WARN_ON(direction & ~(READ | WRITE)); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_BVEC, | 
 | 		.data_source = direction, | 
 | 		.bvec = bvec, | 
 | 		.nr_segs = nr_segs, | 
 | 		.iov_offset = 0, | 
 | 		.count = count | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_bvec); | 
 |  | 
 | /** | 
 |  * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue | 
 |  * @i: The iterator to initialise. | 
 |  * @direction: The direction of the transfer. | 
 |  * @folioq: The starting point in the folio queue. | 
 |  * @first_slot: The first slot in the folio queue to use | 
 |  * @offset: The offset into the folio in the first slot to start at | 
 |  * @count: The size of the I/O buffer in bytes. | 
 |  * | 
 |  * Set up an I/O iterator to either draw data out of the pages attached to an | 
 |  * inode or to inject data into those pages.  The pages *must* be prevented | 
 |  * from evaporation, either by taking a ref on them or locking them by the | 
 |  * caller. | 
 |  */ | 
 | void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, | 
 | 			  const struct folio_queue *folioq, unsigned int first_slot, | 
 | 			  unsigned int offset, size_t count) | 
 | { | 
 | 	BUG_ON(direction & ~1); | 
 | 	*i = (struct iov_iter) { | 
 | 		.iter_type = ITER_FOLIOQ, | 
 | 		.data_source = direction, | 
 | 		.folioq = folioq, | 
 | 		.folioq_slot = first_slot, | 
 | 		.count = count, | 
 | 		.iov_offset = offset, | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_folio_queue); | 
 |  | 
 | /** | 
 |  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray | 
 |  * @i: The iterator to initialise. | 
 |  * @direction: The direction of the transfer. | 
 |  * @xarray: The xarray to access. | 
 |  * @start: The start file position. | 
 |  * @count: The size of the I/O buffer in bytes. | 
 |  * | 
 |  * Set up an I/O iterator to either draw data out of the pages attached to an | 
 |  * inode or to inject data into those pages.  The pages *must* be prevented | 
 |  * from evaporation, either by taking a ref on them or locking them by the | 
 |  * caller. | 
 |  */ | 
 | void iov_iter_xarray(struct iov_iter *i, unsigned int direction, | 
 | 		     struct xarray *xarray, loff_t start, size_t count) | 
 | { | 
 | 	BUG_ON(direction & ~1); | 
 | 	*i = (struct iov_iter) { | 
 | 		.iter_type = ITER_XARRAY, | 
 | 		.data_source = direction, | 
 | 		.xarray = xarray, | 
 | 		.xarray_start = start, | 
 | 		.count = count, | 
 | 		.iov_offset = 0 | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_xarray); | 
 |  | 
 | /** | 
 |  * iov_iter_discard - Initialise an I/O iterator that discards data | 
 |  * @i: The iterator to initialise. | 
 |  * @direction: The direction of the transfer. | 
 |  * @count: The size of the I/O buffer in bytes. | 
 |  * | 
 |  * Set up an I/O iterator that just discards everything that's written to it. | 
 |  * It's only available as a READ iterator. | 
 |  */ | 
 | void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) | 
 | { | 
 | 	BUG_ON(direction != READ); | 
 | 	*i = (struct iov_iter){ | 
 | 		.iter_type = ITER_DISCARD, | 
 | 		.data_source = false, | 
 | 		.count = count, | 
 | 		.iov_offset = 0 | 
 | 	}; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_discard); | 
 |  | 
 | static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, | 
 | 				   unsigned len_mask) | 
 | { | 
 | 	const struct iovec *iov = iter_iov(i); | 
 | 	size_t size = i->count; | 
 | 	size_t skip = i->iov_offset; | 
 |  | 
 | 	do { | 
 | 		size_t len = iov->iov_len - skip; | 
 |  | 
 | 		if (len > size) | 
 | 			len = size; | 
 | 		if (len & len_mask) | 
 | 			return false; | 
 | 		if ((unsigned long)(iov->iov_base + skip) & addr_mask) | 
 | 			return false; | 
 |  | 
 | 		iov++; | 
 | 		size -= len; | 
 | 		skip = 0; | 
 | 	} while (size); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, | 
 | 				  unsigned len_mask) | 
 | { | 
 | 	const struct bio_vec *bvec = i->bvec; | 
 | 	unsigned skip = i->iov_offset; | 
 | 	size_t size = i->count; | 
 |  | 
 | 	do { | 
 | 		size_t len = bvec->bv_len - skip; | 
 |  | 
 | 		if (len > size) | 
 | 			len = size; | 
 | 		if (len & len_mask) | 
 | 			return false; | 
 | 		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask) | 
 | 			return false; | 
 |  | 
 | 		bvec++; | 
 | 		size -= len; | 
 | 		skip = 0; | 
 | 	} while (size); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments | 
 |  * 	are aligned to the parameters. | 
 |  * | 
 |  * @i: &struct iov_iter to restore | 
 |  * @addr_mask: bit mask to check against the iov element's addresses | 
 |  * @len_mask: bit mask to check against the iov element's lengths | 
 |  * | 
 |  * Return: false if any addresses or lengths intersect with the provided masks | 
 |  */ | 
 | bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, | 
 | 			 unsigned len_mask) | 
 | { | 
 | 	if (likely(iter_is_ubuf(i))) { | 
 | 		if (i->count & len_mask) | 
 | 			return false; | 
 | 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) | 
 | 			return false; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 		return iov_iter_aligned_iovec(i, addr_mask, len_mask); | 
 |  | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return iov_iter_aligned_bvec(i, addr_mask, len_mask); | 
 |  | 
 | 	/* With both xarray and folioq types, we're dealing with whole folios. */ | 
 | 	if (iov_iter_is_xarray(i)) { | 
 | 		if (i->count & len_mask) | 
 | 			return false; | 
 | 		if ((i->xarray_start + i->iov_offset) & addr_mask) | 
 | 			return false; | 
 | 	} | 
 | 	if (iov_iter_is_folioq(i)) { | 
 | 		if (i->count & len_mask) | 
 | 			return false; | 
 | 		if (i->iov_offset & addr_mask) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iov_iter_is_aligned); | 
 |  | 
 | static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) | 
 | { | 
 | 	const struct iovec *iov = iter_iov(i); | 
 | 	unsigned long res = 0; | 
 | 	size_t size = i->count; | 
 | 	size_t skip = i->iov_offset; | 
 |  | 
 | 	do { | 
 | 		size_t len = iov->iov_len - skip; | 
 | 		if (len) { | 
 | 			res |= (unsigned long)iov->iov_base + skip; | 
 | 			if (len > size) | 
 | 				len = size; | 
 | 			res |= len; | 
 | 			size -= len; | 
 | 		} | 
 | 		iov++; | 
 | 		skip = 0; | 
 | 	} while (size); | 
 | 	return res; | 
 | } | 
 |  | 
 | static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) | 
 | { | 
 | 	const struct bio_vec *bvec = i->bvec; | 
 | 	unsigned res = 0; | 
 | 	size_t size = i->count; | 
 | 	unsigned skip = i->iov_offset; | 
 |  | 
 | 	do { | 
 | 		size_t len = bvec->bv_len - skip; | 
 | 		res |= (unsigned long)bvec->bv_offset + skip; | 
 | 		if (len > size) | 
 | 			len = size; | 
 | 		res |= len; | 
 | 		bvec++; | 
 | 		size -= len; | 
 | 		skip = 0; | 
 | 	} while (size); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | unsigned long iov_iter_alignment(const struct iov_iter *i) | 
 | { | 
 | 	if (likely(iter_is_ubuf(i))) { | 
 | 		size_t size = i->count; | 
 | 		if (size) | 
 | 			return ((unsigned long)i->ubuf + i->iov_offset) | size; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* iovec and kvec have identical layouts */ | 
 | 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 		return iov_iter_alignment_iovec(i); | 
 |  | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return iov_iter_alignment_bvec(i); | 
 |  | 
 | 	/* With both xarray and folioq types, we're dealing with whole folios. */ | 
 | 	if (iov_iter_is_folioq(i)) | 
 | 		return i->iov_offset | i->count; | 
 | 	if (iov_iter_is_xarray(i)) | 
 | 		return (i->xarray_start + i->iov_offset) | i->count; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_alignment); | 
 |  | 
 | unsigned long iov_iter_gap_alignment(const struct iov_iter *i) | 
 | { | 
 | 	unsigned long res = 0; | 
 | 	unsigned long v = 0; | 
 | 	size_t size = i->count; | 
 | 	unsigned k; | 
 |  | 
 | 	if (iter_is_ubuf(i)) | 
 | 		return 0; | 
 |  | 
 | 	if (WARN_ON(!iter_is_iovec(i))) | 
 | 		return ~0U; | 
 |  | 
 | 	for (k = 0; k < i->nr_segs; k++) { | 
 | 		const struct iovec *iov = iter_iov(i) + k; | 
 | 		if (iov->iov_len) { | 
 | 			unsigned long base = (unsigned long)iov->iov_base; | 
 | 			if (v) // if not the first one | 
 | 				res |= base | v; // this start | previous end | 
 | 			v = base + iov->iov_len; | 
 | 			if (size <= iov->iov_len) | 
 | 				break; | 
 | 			size -= iov->iov_len; | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_gap_alignment); | 
 |  | 
 | static int want_pages_array(struct page ***res, size_t size, | 
 | 			    size_t start, unsigned int maxpages) | 
 | { | 
 | 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); | 
 |  | 
 | 	if (count > maxpages) | 
 | 		count = maxpages; | 
 | 	WARN_ON(!count);	// caller should've prevented that | 
 | 	if (!*res) { | 
 | 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); | 
 | 		if (!*res) | 
 | 			return 0; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t iter_folioq_get_pages(struct iov_iter *iter, | 
 | 				     struct page ***ppages, size_t maxsize, | 
 | 				     unsigned maxpages, size_t *_start_offset) | 
 | { | 
 | 	const struct folio_queue *folioq = iter->folioq; | 
 | 	struct page **pages; | 
 | 	unsigned int slot = iter->folioq_slot; | 
 | 	size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset; | 
 |  | 
 | 	if (slot >= folioq_nr_slots(folioq)) { | 
 | 		folioq = folioq->next; | 
 | 		slot = 0; | 
 | 		if (WARN_ON(iov_offset != 0)) | 
 | 			return -EIO; | 
 | 	} | 
 |  | 
 | 	maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	*_start_offset = iov_offset & ~PAGE_MASK; | 
 | 	pages = *ppages; | 
 |  | 
 | 	for (;;) { | 
 | 		struct folio *folio = folioq_folio(folioq, slot); | 
 | 		size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot); | 
 | 		size_t part = PAGE_SIZE - offset % PAGE_SIZE; | 
 |  | 
 | 		if (offset < fsize) { | 
 | 			part = umin(part, umin(maxsize - extracted, fsize - offset)); | 
 | 			count -= part; | 
 | 			iov_offset += part; | 
 | 			extracted += part; | 
 |  | 
 | 			*pages = folio_page(folio, offset / PAGE_SIZE); | 
 | 			get_page(*pages); | 
 | 			pages++; | 
 | 			maxpages--; | 
 | 		} | 
 |  | 
 | 		if (maxpages == 0 || extracted >= maxsize) | 
 | 			break; | 
 |  | 
 | 		if (iov_offset >= fsize) { | 
 | 			iov_offset = 0; | 
 | 			slot++; | 
 | 			if (slot == folioq_nr_slots(folioq) && folioq->next) { | 
 | 				folioq = folioq->next; | 
 | 				slot = 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	iter->count = count; | 
 | 	iter->iov_offset = iov_offset; | 
 | 	iter->folioq = folioq; | 
 | 	iter->folioq_slot = slot; | 
 | 	return extracted; | 
 | } | 
 |  | 
 | static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, | 
 | 					  pgoff_t index, unsigned int nr_pages) | 
 | { | 
 | 	XA_STATE(xas, xa, index); | 
 | 	struct page *page; | 
 | 	unsigned int ret = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (page = xas_load(&xas); page; page = xas_next(&xas)) { | 
 | 		if (xas_retry(&xas, page)) | 
 | 			continue; | 
 |  | 
 | 		/* Has the page moved or been split? */ | 
 | 		if (unlikely(page != xas_reload(&xas))) { | 
 | 			xas_reset(&xas); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pages[ret] = find_subpage(page, xas.xa_index); | 
 | 		get_page(pages[ret]); | 
 | 		if (++ret == nr_pages) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t iter_xarray_get_pages(struct iov_iter *i, | 
 | 				     struct page ***pages, size_t maxsize, | 
 | 				     unsigned maxpages, size_t *_start_offset) | 
 | { | 
 | 	unsigned nr, offset, count; | 
 | 	pgoff_t index; | 
 | 	loff_t pos; | 
 |  | 
 | 	pos = i->xarray_start + i->iov_offset; | 
 | 	index = pos >> PAGE_SHIFT; | 
 | 	offset = pos & ~PAGE_MASK; | 
 | 	*_start_offset = offset; | 
 |  | 
 | 	count = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!count) | 
 | 		return -ENOMEM; | 
 | 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); | 
 | 	if (nr == 0) | 
 | 		return 0; | 
 |  | 
 | 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); | 
 | 	i->iov_offset += maxsize; | 
 | 	i->count -= maxsize; | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ | 
 | static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) | 
 | { | 
 | 	size_t skip; | 
 | 	long k; | 
 |  | 
 | 	if (iter_is_ubuf(i)) | 
 | 		return (unsigned long)i->ubuf + i->iov_offset; | 
 |  | 
 | 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { | 
 | 		const struct iovec *iov = iter_iov(i) + k; | 
 | 		size_t len = iov->iov_len - skip; | 
 |  | 
 | 		if (unlikely(!len)) | 
 | 			continue; | 
 | 		if (*size > len) | 
 | 			*size = len; | 
 | 		return (unsigned long)iov->iov_base + skip; | 
 | 	} | 
 | 	BUG(); // if it had been empty, we wouldn't get called | 
 | } | 
 |  | 
 | /* must be done on non-empty ITER_BVEC one */ | 
 | static struct page *first_bvec_segment(const struct iov_iter *i, | 
 | 				       size_t *size, size_t *start) | 
 | { | 
 | 	struct page *page; | 
 | 	size_t skip = i->iov_offset, len; | 
 |  | 
 | 	len = i->bvec->bv_len - skip; | 
 | 	if (*size > len) | 
 | 		*size = len; | 
 | 	skip += i->bvec->bv_offset; | 
 | 	page = i->bvec->bv_page + skip / PAGE_SIZE; | 
 | 	*start = skip % PAGE_SIZE; | 
 | 	return page; | 
 | } | 
 |  | 
 | static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, | 
 | 		   struct page ***pages, size_t maxsize, | 
 | 		   unsigned int maxpages, size_t *start) | 
 | { | 
 | 	unsigned int n, gup_flags = 0; | 
 |  | 
 | 	if (maxsize > i->count) | 
 | 		maxsize = i->count; | 
 | 	if (!maxsize) | 
 | 		return 0; | 
 | 	if (maxsize > MAX_RW_COUNT) | 
 | 		maxsize = MAX_RW_COUNT; | 
 |  | 
 | 	if (likely(user_backed_iter(i))) { | 
 | 		unsigned long addr; | 
 | 		int res; | 
 |  | 
 | 		if (iov_iter_rw(i) != WRITE) | 
 | 			gup_flags |= FOLL_WRITE; | 
 | 		if (i->nofault) | 
 | 			gup_flags |= FOLL_NOFAULT; | 
 |  | 
 | 		addr = first_iovec_segment(i, &maxsize); | 
 | 		*start = addr % PAGE_SIZE; | 
 | 		addr &= PAGE_MASK; | 
 | 		n = want_pages_array(pages, maxsize, *start, maxpages); | 
 | 		if (!n) | 
 | 			return -ENOMEM; | 
 | 		res = get_user_pages_fast(addr, n, gup_flags, *pages); | 
 | 		if (unlikely(res <= 0)) | 
 | 			return res; | 
 | 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); | 
 | 		iov_iter_advance(i, maxsize); | 
 | 		return maxsize; | 
 | 	} | 
 | 	if (iov_iter_is_bvec(i)) { | 
 | 		struct page **p; | 
 | 		struct page *page; | 
 |  | 
 | 		page = first_bvec_segment(i, &maxsize, start); | 
 | 		n = want_pages_array(pages, maxsize, *start, maxpages); | 
 | 		if (!n) | 
 | 			return -ENOMEM; | 
 | 		p = *pages; | 
 | 		for (int k = 0; k < n; k++) | 
 | 			get_page(p[k] = page + k); | 
 | 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); | 
 | 		i->count -= maxsize; | 
 | 		i->iov_offset += maxsize; | 
 | 		if (i->iov_offset == i->bvec->bv_len) { | 
 | 			i->iov_offset = 0; | 
 | 			i->bvec++; | 
 | 			i->nr_segs--; | 
 | 		} | 
 | 		return maxsize; | 
 | 	} | 
 | 	if (iov_iter_is_folioq(i)) | 
 | 		return iter_folioq_get_pages(i, pages, maxsize, maxpages, start); | 
 | 	if (iov_iter_is_xarray(i)) | 
 | 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, | 
 | 		size_t maxsize, unsigned maxpages, size_t *start) | 
 | { | 
 | 	if (!maxpages) | 
 | 		return 0; | 
 | 	BUG_ON(!pages); | 
 |  | 
 | 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_get_pages2); | 
 |  | 
 | ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, | 
 | 		struct page ***pages, size_t maxsize, size_t *start) | 
 | { | 
 | 	ssize_t len; | 
 |  | 
 | 	*pages = NULL; | 
 |  | 
 | 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); | 
 | 	if (len <= 0) { | 
 | 		kvfree(*pages); | 
 | 		*pages = NULL; | 
 | 	} | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_get_pages_alloc2); | 
 |  | 
 | static int iov_npages(const struct iov_iter *i, int maxpages) | 
 | { | 
 | 	size_t skip = i->iov_offset, size = i->count; | 
 | 	const struct iovec *p; | 
 | 	int npages = 0; | 
 |  | 
 | 	for (p = iter_iov(i); size; skip = 0, p++) { | 
 | 		unsigned offs = offset_in_page(p->iov_base + skip); | 
 | 		size_t len = min(p->iov_len - skip, size); | 
 |  | 
 | 		if (len) { | 
 | 			size -= len; | 
 | 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); | 
 | 			if (unlikely(npages > maxpages)) | 
 | 				return maxpages; | 
 | 		} | 
 | 	} | 
 | 	return npages; | 
 | } | 
 |  | 
 | static int bvec_npages(const struct iov_iter *i, int maxpages) | 
 | { | 
 | 	size_t skip = i->iov_offset, size = i->count; | 
 | 	const struct bio_vec *p; | 
 | 	int npages = 0; | 
 |  | 
 | 	for (p = i->bvec; size; skip = 0, p++) { | 
 | 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; | 
 | 		size_t len = min(p->bv_len - skip, size); | 
 |  | 
 | 		size -= len; | 
 | 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); | 
 | 		if (unlikely(npages > maxpages)) | 
 | 			return maxpages; | 
 | 	} | 
 | 	return npages; | 
 | } | 
 |  | 
 | int iov_iter_npages(const struct iov_iter *i, int maxpages) | 
 | { | 
 | 	if (unlikely(!i->count)) | 
 | 		return 0; | 
 | 	if (likely(iter_is_ubuf(i))) { | 
 | 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset); | 
 | 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); | 
 | 		return min(npages, maxpages); | 
 | 	} | 
 | 	/* iovec and kvec have identical layouts */ | 
 | 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) | 
 | 		return iov_npages(i, maxpages); | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return bvec_npages(i, maxpages); | 
 | 	if (iov_iter_is_folioq(i)) { | 
 | 		unsigned offset = i->iov_offset % PAGE_SIZE; | 
 | 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); | 
 | 		return min(npages, maxpages); | 
 | 	} | 
 | 	if (iov_iter_is_xarray(i)) { | 
 | 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; | 
 | 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); | 
 | 		return min(npages, maxpages); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iov_iter_npages); | 
 |  | 
 | const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) | 
 | { | 
 | 	*new = *old; | 
 | 	if (iov_iter_is_bvec(new)) | 
 | 		return new->bvec = kmemdup(new->bvec, | 
 | 				    new->nr_segs * sizeof(struct bio_vec), | 
 | 				    flags); | 
 | 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) | 
 | 		/* iovec and kvec have identical layout */ | 
 | 		return new->__iov = kmemdup(new->__iov, | 
 | 				   new->nr_segs * sizeof(struct iovec), | 
 | 				   flags); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(dup_iter); | 
 |  | 
 | static __noclone int copy_compat_iovec_from_user(struct iovec *iov, | 
 | 		const struct iovec __user *uvec, u32 nr_segs) | 
 | { | 
 | 	const struct compat_iovec __user *uiov = | 
 | 		(const struct compat_iovec __user *)uvec; | 
 | 	int ret = -EFAULT; | 
 | 	u32 i; | 
 |  | 
 | 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	for (i = 0; i < nr_segs; i++) { | 
 | 		compat_uptr_t buf; | 
 | 		compat_ssize_t len; | 
 |  | 
 | 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); | 
 | 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); | 
 |  | 
 | 		/* check for compat_size_t not fitting in compat_ssize_t .. */ | 
 | 		if (len < 0) { | 
 | 			ret = -EINVAL; | 
 | 			goto uaccess_end; | 
 | 		} | 
 | 		iov[i].iov_base = compat_ptr(buf); | 
 | 		iov[i].iov_len = len; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | uaccess_end: | 
 | 	user_access_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static __noclone int copy_iovec_from_user(struct iovec *iov, | 
 | 		const struct iovec __user *uiov, unsigned long nr_segs) | 
 | { | 
 | 	int ret = -EFAULT; | 
 |  | 
 | 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	do { | 
 | 		void __user *buf; | 
 | 		ssize_t len; | 
 |  | 
 | 		unsafe_get_user(len, &uiov->iov_len, uaccess_end); | 
 | 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end); | 
 |  | 
 | 		/* check for size_t not fitting in ssize_t .. */ | 
 | 		if (unlikely(len < 0)) { | 
 | 			ret = -EINVAL; | 
 | 			goto uaccess_end; | 
 | 		} | 
 | 		iov->iov_base = buf; | 
 | 		iov->iov_len = len; | 
 |  | 
 | 		uiov++; iov++; | 
 | 	} while (--nr_segs); | 
 |  | 
 | 	ret = 0; | 
 | uaccess_end: | 
 | 	user_access_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct iovec *iovec_from_user(const struct iovec __user *uvec, | 
 | 		unsigned long nr_segs, unsigned long fast_segs, | 
 | 		struct iovec *fast_iov, bool compat) | 
 | { | 
 | 	struct iovec *iov = fast_iov; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * SuS says "The readv() function *may* fail if the iovcnt argument was | 
 | 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has | 
 | 	 * traditionally returned zero for zero segments, so... | 
 | 	 */ | 
 | 	if (nr_segs == 0) | 
 | 		return iov; | 
 | 	if (nr_segs > UIO_MAXIOV) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	if (nr_segs > fast_segs) { | 
 | 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); | 
 | 		if (!iov) | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	if (unlikely(compat)) | 
 | 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); | 
 | 	else | 
 | 		ret = copy_iovec_from_user(iov, uvec, nr_segs); | 
 | 	if (ret) { | 
 | 		if (iov != fast_iov) | 
 | 			kfree(iov); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	return iov; | 
 | } | 
 |  | 
 | /* | 
 |  * Single segment iovec supplied by the user, import it as ITER_UBUF. | 
 |  */ | 
 | static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, | 
 | 				   struct iovec **iovp, struct iov_iter *i, | 
 | 				   bool compat) | 
 | { | 
 | 	struct iovec *iov = *iovp; | 
 | 	ssize_t ret; | 
 |  | 
 | 	*iovp = NULL; | 
 |  | 
 | 	if (compat) | 
 | 		ret = copy_compat_iovec_from_user(iov, uvec, 1); | 
 | 	else | 
 | 		ret = copy_iovec_from_user(iov, uvec, 1); | 
 | 	if (unlikely(ret)) | 
 | 		return ret; | 
 |  | 
 | 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); | 
 | 	if (unlikely(ret)) | 
 | 		return ret; | 
 | 	return i->count; | 
 | } | 
 |  | 
 | ssize_t __import_iovec(int type, const struct iovec __user *uvec, | 
 | 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, | 
 | 		 struct iov_iter *i, bool compat) | 
 | { | 
 | 	ssize_t total_len = 0; | 
 | 	unsigned long seg; | 
 | 	struct iovec *iov; | 
 |  | 
 | 	if (nr_segs == 1) | 
 | 		return __import_iovec_ubuf(type, uvec, iovp, i, compat); | 
 |  | 
 | 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); | 
 | 	if (IS_ERR(iov)) { | 
 | 		*iovp = NULL; | 
 | 		return PTR_ERR(iov); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * According to the Single Unix Specification we should return EINVAL if | 
 | 	 * an element length is < 0 when cast to ssize_t or if the total length | 
 | 	 * would overflow the ssize_t return value of the system call. | 
 | 	 * | 
 | 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the | 
 | 	 * overflow case. | 
 | 	 */ | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		ssize_t len = (ssize_t)iov[seg].iov_len; | 
 |  | 
 | 		if (!access_ok(iov[seg].iov_base, len)) { | 
 | 			if (iov != *iovp) | 
 | 				kfree(iov); | 
 | 			*iovp = NULL; | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		if (len > MAX_RW_COUNT - total_len) { | 
 | 			len = MAX_RW_COUNT - total_len; | 
 | 			iov[seg].iov_len = len; | 
 | 		} | 
 | 		total_len += len; | 
 | 	} | 
 |  | 
 | 	iov_iter_init(i, type, iov, nr_segs, total_len); | 
 | 	if (iov == *iovp) | 
 | 		*iovp = NULL; | 
 | 	else | 
 | 		*iovp = iov; | 
 | 	return total_len; | 
 | } | 
 |  | 
 | /** | 
 |  * import_iovec() - Copy an array of &struct iovec from userspace | 
 |  *     into the kernel, check that it is valid, and initialize a new | 
 |  *     &struct iov_iter iterator to access it. | 
 |  * | 
 |  * @type: One of %READ or %WRITE. | 
 |  * @uvec: Pointer to the userspace array. | 
 |  * @nr_segs: Number of elements in userspace array. | 
 |  * @fast_segs: Number of elements in @iov. | 
 |  * @iovp: (input and output parameter) Pointer to pointer to (usually small | 
 |  *     on-stack) kernel array. | 
 |  * @i: Pointer to iterator that will be initialized on success. | 
 |  * | 
 |  * If the array pointed to by *@iov is large enough to hold all @nr_segs, | 
 |  * then this function places %NULL in *@iov on return. Otherwise, a new | 
 |  * array will be allocated and the result placed in *@iov. This means that | 
 |  * the caller may call kfree() on *@iov regardless of whether the small | 
 |  * on-stack array was used or not (and regardless of whether this function | 
 |  * returns an error or not). | 
 |  * | 
 |  * Return: Negative error code on error, bytes imported on success | 
 |  */ | 
 | ssize_t import_iovec(int type, const struct iovec __user *uvec, | 
 | 		 unsigned nr_segs, unsigned fast_segs, | 
 | 		 struct iovec **iovp, struct iov_iter *i) | 
 | { | 
 | 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, | 
 | 			      in_compat_syscall()); | 
 | } | 
 | EXPORT_SYMBOL(import_iovec); | 
 |  | 
 | int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) | 
 | { | 
 | 	if (len > MAX_RW_COUNT) | 
 | 		len = MAX_RW_COUNT; | 
 | 	if (unlikely(!access_ok(buf, len))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	iov_iter_ubuf(i, rw, buf, len); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(import_ubuf); | 
 |  | 
 | /** | 
 |  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when | 
 |  *     iov_iter_save_state() was called. | 
 |  * | 
 |  * @i: &struct iov_iter to restore | 
 |  * @state: state to restore from | 
 |  * | 
 |  * Used after iov_iter_save_state() to bring restore @i, if operations may | 
 |  * have advanced it. | 
 |  * | 
 |  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC | 
 |  */ | 
 | void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) | 
 | { | 
 | 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && | 
 | 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) | 
 | 		return; | 
 | 	i->iov_offset = state->iov_offset; | 
 | 	i->count = state->count; | 
 | 	if (iter_is_ubuf(i)) | 
 | 		return; | 
 | 	/* | 
 | 	 * For the *vec iters, nr_segs + iov is constant - if we increment | 
 | 	 * the vec, then we also decrement the nr_segs count. Hence we don't | 
 | 	 * need to track both of these, just one is enough and we can deduct | 
 | 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct | 
 | 	 * size, so we can just increment the iov pointer as they are unionzed. | 
 | 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is | 
 | 	 * not. Be safe and handle it separately. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		i->bvec -= state->nr_segs - i->nr_segs; | 
 | 	else | 
 | 		i->__iov -= state->nr_segs - i->nr_segs; | 
 | 	i->nr_segs = state->nr_segs; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from an ITER_FOLIOQ iterator.  This does | 
 |  * not get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i, | 
 | 					     struct page ***pages, size_t maxsize, | 
 | 					     unsigned int maxpages, | 
 | 					     iov_iter_extraction_t extraction_flags, | 
 | 					     size_t *offset0) | 
 | { | 
 | 	const struct folio_queue *folioq = i->folioq; | 
 | 	struct page **p; | 
 | 	unsigned int nr = 0; | 
 | 	size_t extracted = 0, offset, slot = i->folioq_slot; | 
 |  | 
 | 	if (slot >= folioq_nr_slots(folioq)) { | 
 | 		folioq = folioq->next; | 
 | 		slot = 0; | 
 | 		if (WARN_ON(i->iov_offset != 0)) | 
 | 			return -EIO; | 
 | 	} | 
 |  | 
 | 	offset = i->iov_offset & ~PAGE_MASK; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 |  | 
 | 	for (;;) { | 
 | 		struct folio *folio = folioq_folio(folioq, slot); | 
 | 		size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot); | 
 | 		size_t part = PAGE_SIZE - offset % PAGE_SIZE; | 
 |  | 
 | 		if (offset < fsize) { | 
 | 			part = umin(part, umin(maxsize - extracted, fsize - offset)); | 
 | 			i->count -= part; | 
 | 			i->iov_offset += part; | 
 | 			extracted += part; | 
 |  | 
 | 			p[nr++] = folio_page(folio, offset / PAGE_SIZE); | 
 | 		} | 
 |  | 
 | 		if (nr >= maxpages || extracted >= maxsize) | 
 | 			break; | 
 |  | 
 | 		if (i->iov_offset >= fsize) { | 
 | 			i->iov_offset = 0; | 
 | 			slot++; | 
 | 			if (slot == folioq_nr_slots(folioq) && folioq->next) { | 
 | 				folioq = folioq->next; | 
 | 				slot = 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i->folioq = folioq; | 
 | 	i->folioq_slot = slot; | 
 | 	return extracted; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not | 
 |  * get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, | 
 | 					     struct page ***pages, size_t maxsize, | 
 | 					     unsigned int maxpages, | 
 | 					     iov_iter_extraction_t extraction_flags, | 
 | 					     size_t *offset0) | 
 | { | 
 | 	struct page *page, **p; | 
 | 	unsigned int nr = 0, offset; | 
 | 	loff_t pos = i->xarray_start + i->iov_offset; | 
 | 	pgoff_t index = pos >> PAGE_SHIFT; | 
 | 	XA_STATE(xas, i->xarray, index); | 
 |  | 
 | 	offset = pos & ~PAGE_MASK; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (page = xas_load(&xas); page; page = xas_next(&xas)) { | 
 | 		if (xas_retry(&xas, page)) | 
 | 			continue; | 
 |  | 
 | 		/* Has the page moved or been split? */ | 
 | 		if (unlikely(page != xas_reload(&xas))) { | 
 | 			xas_reset(&xas); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		p[nr++] = find_subpage(page, xas.xa_index); | 
 | 		if (nr == maxpages) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); | 
 | 	iov_iter_advance(i, maxsize); | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does | 
 |  * not get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, | 
 | 					   struct page ***pages, size_t maxsize, | 
 | 					   unsigned int maxpages, | 
 | 					   iov_iter_extraction_t extraction_flags, | 
 | 					   size_t *offset0) | 
 | { | 
 | 	struct page **p, *page; | 
 | 	size_t skip = i->iov_offset, offset, size; | 
 | 	int k; | 
 |  | 
 | 	for (;;) { | 
 | 		if (i->nr_segs == 0) | 
 | 			return 0; | 
 | 		size = min(maxsize, i->bvec->bv_len - skip); | 
 | 		if (size) | 
 | 			break; | 
 | 		i->iov_offset = 0; | 
 | 		i->nr_segs--; | 
 | 		i->bvec++; | 
 | 		skip = 0; | 
 | 	} | 
 |  | 
 | 	skip += i->bvec->bv_offset; | 
 | 	page = i->bvec->bv_page + skip / PAGE_SIZE; | 
 | 	offset = skip % PAGE_SIZE; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, size, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 | 	for (k = 0; k < maxpages; k++) | 
 | 		p[k] = page + k; | 
 |  | 
 | 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); | 
 | 	iov_iter_advance(i, size); | 
 | 	return size; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. | 
 |  * This does not get references on the pages, nor does it get a pin on them. | 
 |  */ | 
 | static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, | 
 | 					   struct page ***pages, size_t maxsize, | 
 | 					   unsigned int maxpages, | 
 | 					   iov_iter_extraction_t extraction_flags, | 
 | 					   size_t *offset0) | 
 | { | 
 | 	struct page **p, *page; | 
 | 	const void *kaddr; | 
 | 	size_t skip = i->iov_offset, offset, len, size; | 
 | 	int k; | 
 |  | 
 | 	for (;;) { | 
 | 		if (i->nr_segs == 0) | 
 | 			return 0; | 
 | 		size = min(maxsize, i->kvec->iov_len - skip); | 
 | 		if (size) | 
 | 			break; | 
 | 		i->iov_offset = 0; | 
 | 		i->nr_segs--; | 
 | 		i->kvec++; | 
 | 		skip = 0; | 
 | 	} | 
 |  | 
 | 	kaddr = i->kvec->iov_base + skip; | 
 | 	offset = (unsigned long)kaddr & ~PAGE_MASK; | 
 | 	*offset0 = offset; | 
 |  | 
 | 	maxpages = want_pages_array(pages, size, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	p = *pages; | 
 |  | 
 | 	kaddr -= offset; | 
 | 	len = offset + size; | 
 | 	for (k = 0; k < maxpages; k++) { | 
 | 		size_t seg = min_t(size_t, len, PAGE_SIZE); | 
 |  | 
 | 		if (is_vmalloc_or_module_addr(kaddr)) | 
 | 			page = vmalloc_to_page(kaddr); | 
 | 		else | 
 | 			page = virt_to_page(kaddr); | 
 |  | 
 | 		p[k] = page; | 
 | 		len -= seg; | 
 | 		kaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); | 
 | 	iov_iter_advance(i, size); | 
 | 	return size; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract a list of contiguous pages from a user iterator and get a pin on | 
 |  * each of them.  This should only be used if the iterator is user-backed | 
 |  * (IOBUF/UBUF). | 
 |  * | 
 |  * It does not get refs on the pages, but the pages must be unpinned by the | 
 |  * caller once the transfer is complete. | 
 |  * | 
 |  * This is safe to be used where background IO/DMA *is* going to be modifying | 
 |  * the buffer; using a pin rather than a ref makes forces fork() to give the | 
 |  * child a copy of the page. | 
 |  */ | 
 | static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, | 
 | 					   struct page ***pages, | 
 | 					   size_t maxsize, | 
 | 					   unsigned int maxpages, | 
 | 					   iov_iter_extraction_t extraction_flags, | 
 | 					   size_t *offset0) | 
 | { | 
 | 	unsigned long addr; | 
 | 	unsigned int gup_flags = 0; | 
 | 	size_t offset; | 
 | 	int res; | 
 |  | 
 | 	if (i->data_source == ITER_DEST) | 
 | 		gup_flags |= FOLL_WRITE; | 
 | 	if (extraction_flags & ITER_ALLOW_P2PDMA) | 
 | 		gup_flags |= FOLL_PCI_P2PDMA; | 
 | 	if (i->nofault) | 
 | 		gup_flags |= FOLL_NOFAULT; | 
 |  | 
 | 	addr = first_iovec_segment(i, &maxsize); | 
 | 	*offset0 = offset = addr % PAGE_SIZE; | 
 | 	addr &= PAGE_MASK; | 
 | 	maxpages = want_pages_array(pages, maxsize, offset, maxpages); | 
 | 	if (!maxpages) | 
 | 		return -ENOMEM; | 
 | 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); | 
 | 	if (unlikely(res <= 0)) | 
 | 		return res; | 
 | 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); | 
 | 	iov_iter_advance(i, maxsize); | 
 | 	return maxsize; | 
 | } | 
 |  | 
 | /** | 
 |  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator | 
 |  * @i: The iterator to extract from | 
 |  * @pages: Where to return the list of pages | 
 |  * @maxsize: The maximum amount of iterator to extract | 
 |  * @maxpages: The maximum size of the list of pages | 
 |  * @extraction_flags: Flags to qualify request | 
 |  * @offset0: Where to return the starting offset into (*@pages)[0] | 
 |  * | 
 |  * Extract a list of contiguous pages from the current point of the iterator, | 
 |  * advancing the iterator.  The maximum number of pages and the maximum amount | 
 |  * of page contents can be set. | 
 |  * | 
 |  * If *@pages is NULL, a page list will be allocated to the required size and | 
 |  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed | 
 |  * that the caller allocated a page list at least @maxpages in size and this | 
 |  * will be filled in. | 
 |  * | 
 |  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA | 
 |  * be allowed on the pages extracted. | 
 |  * | 
 |  * The iov_iter_extract_will_pin() function can be used to query how cleanup | 
 |  * should be performed. | 
 |  * | 
 |  * Extra refs or pins on the pages may be obtained as follows: | 
 |  * | 
 |  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be | 
 |  *      added to the pages, but refs will not be taken. | 
 |  *      iov_iter_extract_will_pin() will return true. | 
 |  * | 
 |  *  (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the | 
 |  *      pages are merely listed; no extra refs or pins are obtained. | 
 |  *      iov_iter_extract_will_pin() will return 0. | 
 |  * | 
 |  * Note also: | 
 |  * | 
 |  *  (*) Use with ITER_DISCARD is not supported as that has no content. | 
 |  * | 
 |  * On success, the function sets *@pages to the new pagelist, if allocated, and | 
 |  * sets *offset0 to the offset into the first page. | 
 |  * | 
 |  * It may also return -ENOMEM and -EFAULT. | 
 |  */ | 
 | ssize_t iov_iter_extract_pages(struct iov_iter *i, | 
 | 			       struct page ***pages, | 
 | 			       size_t maxsize, | 
 | 			       unsigned int maxpages, | 
 | 			       iov_iter_extraction_t extraction_flags, | 
 | 			       size_t *offset0) | 
 | { | 
 | 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); | 
 | 	if (!maxsize) | 
 | 		return 0; | 
 |  | 
 | 	if (likely(user_backed_iter(i))) | 
 | 		return iov_iter_extract_user_pages(i, pages, maxsize, | 
 | 						   maxpages, extraction_flags, | 
 | 						   offset0); | 
 | 	if (iov_iter_is_kvec(i)) | 
 | 		return iov_iter_extract_kvec_pages(i, pages, maxsize, | 
 | 						   maxpages, extraction_flags, | 
 | 						   offset0); | 
 | 	if (iov_iter_is_bvec(i)) | 
 | 		return iov_iter_extract_bvec_pages(i, pages, maxsize, | 
 | 						   maxpages, extraction_flags, | 
 | 						   offset0); | 
 | 	if (iov_iter_is_folioq(i)) | 
 | 		return iov_iter_extract_folioq_pages(i, pages, maxsize, | 
 | 						     maxpages, extraction_flags, | 
 | 						     offset0); | 
 | 	if (iov_iter_is_xarray(i)) | 
 | 		return iov_iter_extract_xarray_pages(i, pages, maxsize, | 
 | 						     maxpages, extraction_flags, | 
 | 						     offset0); | 
 | 	return -EFAULT; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iov_iter_extract_pages); |