| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Performance event support - powerpc architecture code | 
 |  * | 
 |  * Copyright 2008-2009 Paul Mackerras, IBM Corporation. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/uaccess.h> | 
 | #include <asm/reg.h> | 
 | #include <asm/pmc.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/firmware.h> | 
 | #include <asm/ptrace.h> | 
 | #include <asm/code-patching.h> | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | #include "internal.h" | 
 | #endif | 
 |  | 
 | #define BHRB_MAX_ENTRIES	32 | 
 | #define BHRB_TARGET		0x0000000000000002 | 
 | #define BHRB_PREDICTION		0x0000000000000001 | 
 | #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL | 
 |  | 
 | struct cpu_hw_events { | 
 | 	int n_events; | 
 | 	int n_percpu; | 
 | 	int disabled; | 
 | 	int n_added; | 
 | 	int n_limited; | 
 | 	u8  pmcs_enabled; | 
 | 	struct perf_event *event[MAX_HWEVENTS]; | 
 | 	u64 events[MAX_HWEVENTS]; | 
 | 	unsigned int flags[MAX_HWEVENTS]; | 
 | 	/* | 
 | 	 * The order of the MMCR array is: | 
 | 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 | 
 | 	 *  - 32-bit, MMCR0, MMCR1, MMCR2 | 
 | 	 */ | 
 | 	unsigned long mmcr[4]; | 
 | 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; | 
 | 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS]; | 
 | 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
 | 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
 | 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
 |  | 
 | 	unsigned int txn_flags; | 
 | 	int n_txn_start; | 
 |  | 
 | 	/* BHRB bits */ | 
 | 	u64				bhrb_filter;	/* BHRB HW branch filter */ | 
 | 	unsigned int			bhrb_users; | 
 | 	void				*bhrb_context; | 
 | 	struct	perf_branch_stack	bhrb_stack; | 
 | 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES]; | 
 | 	u64				ic_init; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); | 
 |  | 
 | static struct power_pmu *ppmu; | 
 |  | 
 | /* | 
 |  * Normally, to ignore kernel events we set the FCS (freeze counters | 
 |  * in supervisor mode) bit in MMCR0, but if the kernel runs with the | 
 |  * hypervisor bit set in the MSR, or if we are running on a processor | 
 |  * where the hypervisor bit is forced to 1 (as on Apple G5 processors), | 
 |  * then we need to use the FCHV bit to ignore kernel events. | 
 |  */ | 
 | static unsigned int freeze_events_kernel = MMCR0_FCS; | 
 |  | 
 | /* | 
 |  * 32-bit doesn't have MMCRA but does have an MMCR2, | 
 |  * and a few other names are different. | 
 |  */ | 
 | #ifdef CONFIG_PPC32 | 
 |  | 
 | #define MMCR0_FCHV		0 | 
 | #define MMCR0_PMCjCE		MMCR0_PMCnCE | 
 | #define MMCR0_FC56		0 | 
 | #define MMCR0_PMAO		0 | 
 | #define MMCR0_EBE		0 | 
 | #define MMCR0_BHRBA		0 | 
 | #define MMCR0_PMCC		0 | 
 | #define MMCR0_PMCC_U6		0 | 
 |  | 
 | #define SPRN_MMCRA		SPRN_MMCR2 | 
 | #define MMCRA_SAMPLE_ENABLE	0 | 
 |  | 
 | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } | 
 | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void perf_read_regs(struct pt_regs *regs) | 
 | { | 
 | 	regs->result = 0; | 
 | } | 
 | static inline int perf_intr_is_nmi(struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int siar_valid(struct pt_regs *regs) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool is_ebb_event(struct perf_event *event) { return false; } | 
 | static int ebb_event_check(struct perf_event *event) { return 0; } | 
 | static void ebb_event_add(struct perf_event *event) { } | 
 | static void ebb_switch_out(unsigned long mmcr0) { } | 
 | static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) | 
 | { | 
 | 	return cpuhw->mmcr[0]; | 
 | } | 
 |  | 
 | static inline void power_pmu_bhrb_enable(struct perf_event *event) {} | 
 | static inline void power_pmu_bhrb_disable(struct perf_event *event) {} | 
 | static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} | 
 | static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} | 
 | static void pmao_restore_workaround(bool ebb) { } | 
 | #endif /* CONFIG_PPC32 */ | 
 |  | 
 | bool is_sier_available(void) | 
 | { | 
 | 	if (!ppmu) | 
 | 		return false; | 
 |  | 
 | 	if (ppmu->flags & PPMU_HAS_SIER) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool regs_use_siar(struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * When we take a performance monitor exception the regs are setup | 
 | 	 * using perf_read_regs() which overloads some fields, in particular | 
 | 	 * regs->result to tell us whether to use SIAR. | 
 | 	 * | 
 | 	 * However if the regs are from another exception, eg. a syscall, then | 
 | 	 * they have not been setup using perf_read_regs() and so regs->result | 
 | 	 * is something random. | 
 | 	 */ | 
 | 	return ((TRAP(regs) == 0xf00) && regs->result); | 
 | } | 
 |  | 
 | /* | 
 |  * Things that are specific to 64-bit implementations. | 
 |  */ | 
 | #ifdef CONFIG_PPC64 | 
 |  | 
 | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long mmcra = regs->dsisr; | 
 |  | 
 | 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { | 
 | 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; | 
 | 		if (slot > 1) | 
 | 			return 4 * (slot - 1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The user wants a data address recorded. | 
 |  * If we're not doing instruction sampling, give them the SDAR | 
 |  * (sampled data address).  If we are doing instruction sampling, then | 
 |  * only give them the SDAR if it corresponds to the instruction | 
 |  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the | 
 |  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. | 
 |  */ | 
 | static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) | 
 | { | 
 | 	unsigned long mmcra = regs->dsisr; | 
 | 	bool sdar_valid; | 
 |  | 
 | 	if (ppmu->flags & PPMU_HAS_SIER) | 
 | 		sdar_valid = regs->dar & SIER_SDAR_VALID; | 
 | 	else { | 
 | 		unsigned long sdsync; | 
 |  | 
 | 		if (ppmu->flags & PPMU_SIAR_VALID) | 
 | 			sdsync = POWER7P_MMCRA_SDAR_VALID; | 
 | 		else if (ppmu->flags & PPMU_ALT_SIPR) | 
 | 			sdsync = POWER6_MMCRA_SDSYNC; | 
 | 		else if (ppmu->flags & PPMU_NO_SIAR) | 
 | 			sdsync = MMCRA_SAMPLE_ENABLE; | 
 | 		else | 
 | 			sdsync = MMCRA_SDSYNC; | 
 |  | 
 | 		sdar_valid = mmcra & sdsync; | 
 | 	} | 
 |  | 
 | 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) | 
 | 		*addrp = mfspr(SPRN_SDAR); | 
 |  | 
 | 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) | 
 | 		*addrp = 0; | 
 | } | 
 |  | 
 | static bool regs_sihv(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long sihv = MMCRA_SIHV; | 
 |  | 
 | 	if (ppmu->flags & PPMU_HAS_SIER) | 
 | 		return !!(regs->dar & SIER_SIHV); | 
 |  | 
 | 	if (ppmu->flags & PPMU_ALT_SIPR) | 
 | 		sihv = POWER6_MMCRA_SIHV; | 
 |  | 
 | 	return !!(regs->dsisr & sihv); | 
 | } | 
 |  | 
 | static bool regs_sipr(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long sipr = MMCRA_SIPR; | 
 |  | 
 | 	if (ppmu->flags & PPMU_HAS_SIER) | 
 | 		return !!(regs->dar & SIER_SIPR); | 
 |  | 
 | 	if (ppmu->flags & PPMU_ALT_SIPR) | 
 | 		sipr = POWER6_MMCRA_SIPR; | 
 |  | 
 | 	return !!(regs->dsisr & sipr); | 
 | } | 
 |  | 
 | static inline u32 perf_flags_from_msr(struct pt_regs *regs) | 
 | { | 
 | 	if (regs->msr & MSR_PR) | 
 | 		return PERF_RECORD_MISC_USER; | 
 | 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) | 
 | 		return PERF_RECORD_MISC_HYPERVISOR; | 
 | 	return PERF_RECORD_MISC_KERNEL; | 
 | } | 
 |  | 
 | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | 
 | { | 
 | 	bool use_siar = regs_use_siar(regs); | 
 |  | 
 | 	if (!use_siar) | 
 | 		return perf_flags_from_msr(regs); | 
 |  | 
 | 	/* | 
 | 	 * If we don't have flags in MMCRA, rather than using | 
 | 	 * the MSR, we intuit the flags from the address in | 
 | 	 * SIAR which should give slightly more reliable | 
 | 	 * results | 
 | 	 */ | 
 | 	if (ppmu->flags & PPMU_NO_SIPR) { | 
 | 		unsigned long siar = mfspr(SPRN_SIAR); | 
 | 		if (is_kernel_addr(siar)) | 
 | 			return PERF_RECORD_MISC_KERNEL; | 
 | 		return PERF_RECORD_MISC_USER; | 
 | 	} | 
 |  | 
 | 	/* PR has priority over HV, so order below is important */ | 
 | 	if (regs_sipr(regs)) | 
 | 		return PERF_RECORD_MISC_USER; | 
 |  | 
 | 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) | 
 | 		return PERF_RECORD_MISC_HYPERVISOR; | 
 |  | 
 | 	return PERF_RECORD_MISC_KERNEL; | 
 | } | 
 |  | 
 | /* | 
 |  * Overload regs->dsisr to store MMCRA so we only need to read it once | 
 |  * on each interrupt. | 
 |  * Overload regs->dar to store SIER if we have it. | 
 |  * Overload regs->result to specify whether we should use the MSR (result | 
 |  * is zero) or the SIAR (result is non zero). | 
 |  */ | 
 | static inline void perf_read_regs(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long mmcra = mfspr(SPRN_MMCRA); | 
 | 	int marked = mmcra & MMCRA_SAMPLE_ENABLE; | 
 | 	int use_siar; | 
 |  | 
 | 	regs->dsisr = mmcra; | 
 |  | 
 | 	if (ppmu->flags & PPMU_HAS_SIER) | 
 | 		regs->dar = mfspr(SPRN_SIER); | 
 |  | 
 | 	/* | 
 | 	 * If this isn't a PMU exception (eg a software event) the SIAR is | 
 | 	 * not valid. Use pt_regs. | 
 | 	 * | 
 | 	 * If it is a marked event use the SIAR. | 
 | 	 * | 
 | 	 * If the PMU doesn't update the SIAR for non marked events use | 
 | 	 * pt_regs. | 
 | 	 * | 
 | 	 * If the PMU has HV/PR flags then check to see if they | 
 | 	 * place the exception in userspace. If so, use pt_regs. In | 
 | 	 * continuous sampling mode the SIAR and the PMU exception are | 
 | 	 * not synchronised, so they may be many instructions apart. | 
 | 	 * This can result in confusing backtraces. We still want | 
 | 	 * hypervisor samples as well as samples in the kernel with | 
 | 	 * interrupts off hence the userspace check. | 
 | 	 */ | 
 | 	if (TRAP(regs) != 0xf00) | 
 | 		use_siar = 0; | 
 | 	else if ((ppmu->flags & PPMU_NO_SIAR)) | 
 | 		use_siar = 0; | 
 | 	else if (marked) | 
 | 		use_siar = 1; | 
 | 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) | 
 | 		use_siar = 0; | 
 | 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) | 
 | 		use_siar = 0; | 
 | 	else | 
 | 		use_siar = 1; | 
 |  | 
 | 	regs->result = use_siar; | 
 | } | 
 |  | 
 | /* | 
 |  * If interrupts were soft-disabled when a PMU interrupt occurs, treat | 
 |  * it as an NMI. | 
 |  */ | 
 | static inline int perf_intr_is_nmi(struct pt_regs *regs) | 
 | { | 
 | 	return (regs->softe & IRQS_DISABLED); | 
 | } | 
 |  | 
 | /* | 
 |  * On processors like P7+ that have the SIAR-Valid bit, marked instructions | 
 |  * must be sampled only if the SIAR-valid bit is set. | 
 |  * | 
 |  * For unmarked instructions and for processors that don't have the SIAR-Valid | 
 |  * bit, assume that SIAR is valid. | 
 |  */ | 
 | static inline int siar_valid(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long mmcra = regs->dsisr; | 
 | 	int marked = mmcra & MMCRA_SAMPLE_ENABLE; | 
 |  | 
 | 	if (marked) { | 
 | 		if (ppmu->flags & PPMU_HAS_SIER) | 
 | 			return regs->dar & SIER_SIAR_VALID; | 
 |  | 
 | 		if (ppmu->flags & PPMU_SIAR_VALID) | 
 | 			return mmcra & POWER7P_MMCRA_SIAR_VALID; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | /* Reset all possible BHRB entries */ | 
 | static void power_pmu_bhrb_reset(void) | 
 | { | 
 | 	asm volatile(PPC_CLRBHRB); | 
 | } | 
 |  | 
 | static void power_pmu_bhrb_enable(struct perf_event *event) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	if (!ppmu->bhrb_nr) | 
 | 		return; | 
 |  | 
 | 	/* Clear BHRB if we changed task context to avoid data leaks */ | 
 | 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { | 
 | 		power_pmu_bhrb_reset(); | 
 | 		cpuhw->bhrb_context = event->ctx; | 
 | 	} | 
 | 	cpuhw->bhrb_users++; | 
 | 	perf_sched_cb_inc(event->ctx->pmu); | 
 | } | 
 |  | 
 | static void power_pmu_bhrb_disable(struct perf_event *event) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	if (!ppmu->bhrb_nr) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(!cpuhw->bhrb_users); | 
 | 	cpuhw->bhrb_users--; | 
 | 	perf_sched_cb_dec(event->ctx->pmu); | 
 |  | 
 | 	if (!cpuhw->disabled && !cpuhw->bhrb_users) { | 
 | 		/* BHRB cannot be turned off when other | 
 | 		 * events are active on the PMU. | 
 | 		 */ | 
 |  | 
 | 		/* avoid stale pointer */ | 
 | 		cpuhw->bhrb_context = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* Called from ctxsw to prevent one process's branch entries to | 
 |  * mingle with the other process's entries during context switch. | 
 |  */ | 
 | static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) | 
 | { | 
 | 	if (!ppmu->bhrb_nr) | 
 | 		return; | 
 |  | 
 | 	if (sched_in) | 
 | 		power_pmu_bhrb_reset(); | 
 | } | 
 | /* Calculate the to address for a branch */ | 
 | static __u64 power_pmu_bhrb_to(u64 addr) | 
 | { | 
 | 	unsigned int instr; | 
 | 	int ret; | 
 | 	__u64 target; | 
 |  | 
 | 	if (is_kernel_addr(addr)) { | 
 | 		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr))) | 
 | 			return 0; | 
 |  | 
 | 		return branch_target(&instr); | 
 | 	} | 
 |  | 
 | 	/* Userspace: need copy instruction here then translate it */ | 
 | 	pagefault_disable(); | 
 | 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr); | 
 | 	if (ret) { | 
 | 		pagefault_enable(); | 
 | 		return 0; | 
 | 	} | 
 | 	pagefault_enable(); | 
 |  | 
 | 	target = branch_target(&instr); | 
 | 	if ((!target) || (instr & BRANCH_ABSOLUTE)) | 
 | 		return target; | 
 |  | 
 | 	/* Translate relative branch target from kernel to user address */ | 
 | 	return target - (unsigned long)&instr + addr; | 
 | } | 
 |  | 
 | /* Processing BHRB entries */ | 
 | static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) | 
 | { | 
 | 	u64 val; | 
 | 	u64 addr; | 
 | 	int r_index, u_index, pred; | 
 |  | 
 | 	r_index = 0; | 
 | 	u_index = 0; | 
 | 	while (r_index < ppmu->bhrb_nr) { | 
 | 		/* Assembly read function */ | 
 | 		val = read_bhrb(r_index++); | 
 | 		if (!val) | 
 | 			/* Terminal marker: End of valid BHRB entries */ | 
 | 			break; | 
 | 		else { | 
 | 			addr = val & BHRB_EA; | 
 | 			pred = val & BHRB_PREDICTION; | 
 |  | 
 | 			if (!addr) | 
 | 				/* invalid entry */ | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * BHRB rolling buffer could very much contain the kernel | 
 | 			 * addresses at this point. Check the privileges before | 
 | 			 * exporting it to userspace (avoid exposure of regions | 
 | 			 * where we could have speculative execution) | 
 | 			 */ | 
 | 			if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) | 
 | 				continue; | 
 |  | 
 | 			/* Branches are read most recent first (ie. mfbhrb 0 is | 
 | 			 * the most recent branch). | 
 | 			 * There are two types of valid entries: | 
 | 			 * 1) a target entry which is the to address of a | 
 | 			 *    computed goto like a blr,bctr,btar.  The next | 
 | 			 *    entry read from the bhrb will be branch | 
 | 			 *    corresponding to this target (ie. the actual | 
 | 			 *    blr/bctr/btar instruction). | 
 | 			 * 2) a from address which is an actual branch.  If a | 
 | 			 *    target entry proceeds this, then this is the | 
 | 			 *    matching branch for that target.  If this is not | 
 | 			 *    following a target entry, then this is a branch | 
 | 			 *    where the target is given as an immediate field | 
 | 			 *    in the instruction (ie. an i or b form branch). | 
 | 			 *    In this case we need to read the instruction from | 
 | 			 *    memory to determine the target/to address. | 
 | 			 */ | 
 |  | 
 | 			if (val & BHRB_TARGET) { | 
 | 				/* Target branches use two entries | 
 | 				 * (ie. computed gotos/XL form) | 
 | 				 */ | 
 | 				cpuhw->bhrb_entries[u_index].to = addr; | 
 | 				cpuhw->bhrb_entries[u_index].mispred = pred; | 
 | 				cpuhw->bhrb_entries[u_index].predicted = ~pred; | 
 |  | 
 | 				/* Get from address in next entry */ | 
 | 				val = read_bhrb(r_index++); | 
 | 				addr = val & BHRB_EA; | 
 | 				if (val & BHRB_TARGET) { | 
 | 					/* Shouldn't have two targets in a | 
 | 					   row.. Reset index and try again */ | 
 | 					r_index--; | 
 | 					addr = 0; | 
 | 				} | 
 | 				cpuhw->bhrb_entries[u_index].from = addr; | 
 | 			} else { | 
 | 				/* Branches to immediate field  | 
 | 				   (ie I or B form) */ | 
 | 				cpuhw->bhrb_entries[u_index].from = addr; | 
 | 				cpuhw->bhrb_entries[u_index].to = | 
 | 					power_pmu_bhrb_to(addr); | 
 | 				cpuhw->bhrb_entries[u_index].mispred = pred; | 
 | 				cpuhw->bhrb_entries[u_index].predicted = ~pred; | 
 | 			} | 
 | 			u_index++; | 
 |  | 
 | 		} | 
 | 	} | 
 | 	cpuhw->bhrb_stack.nr = u_index; | 
 | 	return; | 
 | } | 
 |  | 
 | static bool is_ebb_event(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We | 
 | 	 * check that the PMU supports EBB, meaning those that don't can still | 
 | 	 * use bit 63 of the event code for something else if they wish. | 
 | 	 */ | 
 | 	return (ppmu->flags & PPMU_ARCH_207S) && | 
 | 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); | 
 | } | 
 |  | 
 | static int ebb_event_check(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader; | 
 |  | 
 | 	/* Event and group leader must agree on EBB */ | 
 | 	if (is_ebb_event(leader) != is_ebb_event(event)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (is_ebb_event(event)) { | 
 | 		if (!(event->attach_state & PERF_ATTACH_TASK)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (!leader->attr.pinned || !leader->attr.exclusive) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (event->attr.freq || | 
 | 		    event->attr.inherit || | 
 | 		    event->attr.sample_type || | 
 | 		    event->attr.sample_period || | 
 | 		    event->attr.enable_on_exec) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ebb_event_add(struct perf_event *event) | 
 | { | 
 | 	if (!is_ebb_event(event) || current->thread.used_ebb) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * IFF this is the first time we've added an EBB event, set | 
 | 	 * PMXE in the user MMCR0 so we can detect when it's cleared by | 
 | 	 * userspace. We need this so that we can context switch while | 
 | 	 * userspace is in the EBB handler (where PMXE is 0). | 
 | 	 */ | 
 | 	current->thread.used_ebb = 1; | 
 | 	current->thread.mmcr0 |= MMCR0_PMXE; | 
 | } | 
 |  | 
 | static void ebb_switch_out(unsigned long mmcr0) | 
 | { | 
 | 	if (!(mmcr0 & MMCR0_EBE)) | 
 | 		return; | 
 |  | 
 | 	current->thread.siar  = mfspr(SPRN_SIAR); | 
 | 	current->thread.sier  = mfspr(SPRN_SIER); | 
 | 	current->thread.sdar  = mfspr(SPRN_SDAR); | 
 | 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; | 
 | 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; | 
 | } | 
 |  | 
 | static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) | 
 | { | 
 | 	unsigned long mmcr0 = cpuhw->mmcr[0]; | 
 |  | 
 | 	if (!ebb) | 
 | 		goto out; | 
 |  | 
 | 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ | 
 | 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; | 
 |  | 
 | 	/* | 
 | 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible | 
 | 	 * with pmao_restore_workaround() because we may add PMAO but we never | 
 | 	 * clear it here. | 
 | 	 */ | 
 | 	mmcr0 |= current->thread.mmcr0; | 
 |  | 
 | 	/* | 
 | 	 * Be careful not to set PMXE if userspace had it cleared. This is also | 
 | 	 * compatible with pmao_restore_workaround() because it has already | 
 | 	 * cleared PMXE and we leave PMAO alone. | 
 | 	 */ | 
 | 	if (!(current->thread.mmcr0 & MMCR0_PMXE)) | 
 | 		mmcr0 &= ~MMCR0_PMXE; | 
 |  | 
 | 	mtspr(SPRN_SIAR, current->thread.siar); | 
 | 	mtspr(SPRN_SIER, current->thread.sier); | 
 | 	mtspr(SPRN_SDAR, current->thread.sdar); | 
 |  | 
 | 	/* | 
 | 	 * Merge the kernel & user values of MMCR2. The semantics we implement | 
 | 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze, | 
 | 	 * but not clear bits. If a task wants to be able to clear bits, ie. | 
 | 	 * unfreeze counters, it should not set exclude_xxx in its events and | 
 | 	 * instead manage the MMCR2 entirely by itself. | 
 | 	 */ | 
 | 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); | 
 | out: | 
 | 	return mmcr0; | 
 | } | 
 |  | 
 | static void pmao_restore_workaround(bool ebb) | 
 | { | 
 | 	unsigned pmcs[6]; | 
 |  | 
 | 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * On POWER8E there is a hardware defect which affects the PMU context | 
 | 	 * switch logic, ie. power_pmu_disable/enable(). | 
 | 	 * | 
 | 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 | 
 | 	 * by the hardware. Sometime later the actual PMU exception is | 
 | 	 * delivered. | 
 | 	 * | 
 | 	 * If we context switch, or simply disable/enable, the PMU prior to the | 
 | 	 * exception arriving, the exception will be lost when we clear PMAO. | 
 | 	 * | 
 | 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO | 
 | 	 * set, and this _should_ generate an exception. However because of the | 
 | 	 * defect no exception is generated when we write PMAO, and we get | 
 | 	 * stuck with no counters counting but no exception delivered. | 
 | 	 * | 
 | 	 * The workaround is to detect this case and tweak the hardware to | 
 | 	 * create another pending PMU exception. | 
 | 	 * | 
 | 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and | 
 | 	 * enabling the PMU. That causes a new exception to be generated in the | 
 | 	 * chip, but we don't take it yet because we have interrupts hard | 
 | 	 * disabled. We then write back the PMU state as we want it to be seen | 
 | 	 * by the exception handler. When we reenable interrupts the exception | 
 | 	 * handler will be called and see the correct state. | 
 | 	 * | 
 | 	 * The logic is the same for EBB, except that the exception is gated by | 
 | 	 * us having interrupts hard disabled as well as the fact that we are | 
 | 	 * not in userspace. The exception is finally delivered when we return | 
 | 	 * to userspace. | 
 | 	 */ | 
 |  | 
 | 	/* Only if PMAO is set and PMAO_SYNC is clear */ | 
 | 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) | 
 | 		return; | 
 |  | 
 | 	/* If we're doing EBB, only if BESCR[GE] is set */ | 
 | 	if (ebb && !(current->thread.bescr & BESCR_GE)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We are already soft-disabled in power_pmu_enable(). We need to hard | 
 | 	 * disable to actually prevent the PMU exception from firing. | 
 | 	 */ | 
 | 	hard_irq_disable(); | 
 |  | 
 | 	/* | 
 | 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. | 
 | 	 * Using read/write_pmc() in a for loop adds 12 function calls and | 
 | 	 * almost doubles our code size. | 
 | 	 */ | 
 | 	pmcs[0] = mfspr(SPRN_PMC1); | 
 | 	pmcs[1] = mfspr(SPRN_PMC2); | 
 | 	pmcs[2] = mfspr(SPRN_PMC3); | 
 | 	pmcs[3] = mfspr(SPRN_PMC4); | 
 | 	pmcs[4] = mfspr(SPRN_PMC5); | 
 | 	pmcs[5] = mfspr(SPRN_PMC6); | 
 |  | 
 | 	/* Ensure all freeze bits are unset */ | 
 | 	mtspr(SPRN_MMCR2, 0); | 
 |  | 
 | 	/* Set up PMC6 to overflow in one cycle */ | 
 | 	mtspr(SPRN_PMC6, 0x7FFFFFFE); | 
 |  | 
 | 	/* Enable exceptions and unfreeze PMC6 */ | 
 | 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); | 
 |  | 
 | 	/* Now we need to refreeze and restore the PMCs */ | 
 | 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); | 
 |  | 
 | 	mtspr(SPRN_PMC1, pmcs[0]); | 
 | 	mtspr(SPRN_PMC2, pmcs[1]); | 
 | 	mtspr(SPRN_PMC3, pmcs[2]); | 
 | 	mtspr(SPRN_PMC4, pmcs[3]); | 
 | 	mtspr(SPRN_PMC5, pmcs[4]); | 
 | 	mtspr(SPRN_PMC6, pmcs[5]); | 
 | } | 
 |  | 
 | #endif /* CONFIG_PPC64 */ | 
 |  | 
 | static void perf_event_interrupt(struct pt_regs *regs); | 
 |  | 
 | /* | 
 |  * Read one performance monitor counter (PMC). | 
 |  */ | 
 | static unsigned long read_pmc(int idx) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	switch (idx) { | 
 | 	case 1: | 
 | 		val = mfspr(SPRN_PMC1); | 
 | 		break; | 
 | 	case 2: | 
 | 		val = mfspr(SPRN_PMC2); | 
 | 		break; | 
 | 	case 3: | 
 | 		val = mfspr(SPRN_PMC3); | 
 | 		break; | 
 | 	case 4: | 
 | 		val = mfspr(SPRN_PMC4); | 
 | 		break; | 
 | 	case 5: | 
 | 		val = mfspr(SPRN_PMC5); | 
 | 		break; | 
 | 	case 6: | 
 | 		val = mfspr(SPRN_PMC6); | 
 | 		break; | 
 | #ifdef CONFIG_PPC64 | 
 | 	case 7: | 
 | 		val = mfspr(SPRN_PMC7); | 
 | 		break; | 
 | 	case 8: | 
 | 		val = mfspr(SPRN_PMC8); | 
 | 		break; | 
 | #endif /* CONFIG_PPC64 */ | 
 | 	default: | 
 | 		printk(KERN_ERR "oops trying to read PMC%d\n", idx); | 
 | 		val = 0; | 
 | 	} | 
 | 	return val; | 
 | } | 
 |  | 
 | /* | 
 |  * Write one PMC. | 
 |  */ | 
 | static void write_pmc(int idx, unsigned long val) | 
 | { | 
 | 	switch (idx) { | 
 | 	case 1: | 
 | 		mtspr(SPRN_PMC1, val); | 
 | 		break; | 
 | 	case 2: | 
 | 		mtspr(SPRN_PMC2, val); | 
 | 		break; | 
 | 	case 3: | 
 | 		mtspr(SPRN_PMC3, val); | 
 | 		break; | 
 | 	case 4: | 
 | 		mtspr(SPRN_PMC4, val); | 
 | 		break; | 
 | 	case 5: | 
 | 		mtspr(SPRN_PMC5, val); | 
 | 		break; | 
 | 	case 6: | 
 | 		mtspr(SPRN_PMC6, val); | 
 | 		break; | 
 | #ifdef CONFIG_PPC64 | 
 | 	case 7: | 
 | 		mtspr(SPRN_PMC7, val); | 
 | 		break; | 
 | 	case 8: | 
 | 		mtspr(SPRN_PMC8, val); | 
 | 		break; | 
 | #endif /* CONFIG_PPC64 */ | 
 | 	default: | 
 | 		printk(KERN_ERR "oops trying to write PMC%d\n", idx); | 
 | 	} | 
 | } | 
 |  | 
 | /* Called from sysrq_handle_showregs() */ | 
 | void perf_event_print_debug(void) | 
 | { | 
 | 	unsigned long sdar, sier, flags; | 
 | 	u32 pmcs[MAX_HWEVENTS]; | 
 | 	int i; | 
 |  | 
 | 	if (!ppmu) { | 
 | 		pr_info("Performance monitor hardware not registered.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!ppmu->n_counter) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", | 
 | 		 smp_processor_id(), ppmu->name, ppmu->n_counter); | 
 |  | 
 | 	for (i = 0; i < ppmu->n_counter; i++) | 
 | 		pmcs[i] = read_pmc(i + 1); | 
 |  | 
 | 	for (; i < MAX_HWEVENTS; i++) | 
 | 		pmcs[i] = 0xdeadbeef; | 
 |  | 
 | 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", | 
 | 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); | 
 |  | 
 | 	if (ppmu->n_counter > 4) | 
 | 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", | 
 | 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); | 
 |  | 
 | 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", | 
 | 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); | 
 |  | 
 | 	sdar = sier = 0; | 
 | #ifdef CONFIG_PPC64 | 
 | 	sdar = mfspr(SPRN_SDAR); | 
 |  | 
 | 	if (ppmu->flags & PPMU_HAS_SIER) | 
 | 		sier = mfspr(SPRN_SIER); | 
 |  | 
 | 	if (ppmu->flags & PPMU_ARCH_207S) { | 
 | 		pr_info("MMCR2: %016lx EBBHR: %016lx\n", | 
 | 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); | 
 | 		pr_info("EBBRR: %016lx BESCR: %016lx\n", | 
 | 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); | 
 | 	} | 
 | #endif | 
 | 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n", | 
 | 		mfspr(SPRN_SIAR), sdar, sier); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if a set of events can all go on the PMU at once. | 
 |  * If they can't, this will look at alternative codes for the events | 
 |  * and see if any combination of alternative codes is feasible. | 
 |  * The feasible set is returned in event_id[]. | 
 |  */ | 
 | static int power_check_constraints(struct cpu_hw_events *cpuhw, | 
 | 				   u64 event_id[], unsigned int cflags[], | 
 | 				   int n_ev) | 
 | { | 
 | 	unsigned long mask, value, nv; | 
 | 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; | 
 | 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; | 
 | 	int i, j; | 
 | 	unsigned long addf = ppmu->add_fields; | 
 | 	unsigned long tadd = ppmu->test_adder; | 
 | 	unsigned long grp_mask = ppmu->group_constraint_mask; | 
 | 	unsigned long grp_val = ppmu->group_constraint_val; | 
 |  | 
 | 	if (n_ev > ppmu->n_counter) | 
 | 		return -1; | 
 |  | 
 | 	/* First see if the events will go on as-is */ | 
 | 	for (i = 0; i < n_ev; ++i) { | 
 | 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD) | 
 | 		    && !ppmu->limited_pmc_event(event_id[i])) { | 
 | 			ppmu->get_alternatives(event_id[i], cflags[i], | 
 | 					       cpuhw->alternatives[i]); | 
 | 			event_id[i] = cpuhw->alternatives[i][0]; | 
 | 		} | 
 | 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], | 
 | 					 &cpuhw->avalues[i][0])) | 
 | 			return -1; | 
 | 	} | 
 | 	value = mask = 0; | 
 | 	for (i = 0; i < n_ev; ++i) { | 
 | 		nv = (value | cpuhw->avalues[i][0]) + | 
 | 			(value & cpuhw->avalues[i][0] & addf); | 
 |  | 
 | 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) | 
 | 			break; | 
 |  | 
 | 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) | 
 | 			& (~grp_mask)) != 0) | 
 | 			break; | 
 |  | 
 | 		value = nv; | 
 | 		mask |= cpuhw->amasks[i][0]; | 
 | 	} | 
 | 	if (i == n_ev) { | 
 | 		if ((value & mask & grp_mask) != (mask & grp_val)) | 
 | 			return -1; | 
 | 		else | 
 | 			return 0;	/* all OK */ | 
 | 	} | 
 |  | 
 | 	/* doesn't work, gather alternatives... */ | 
 | 	if (!ppmu->get_alternatives) | 
 | 		return -1; | 
 | 	for (i = 0; i < n_ev; ++i) { | 
 | 		choice[i] = 0; | 
 | 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], | 
 | 						  cpuhw->alternatives[i]); | 
 | 		for (j = 1; j < n_alt[i]; ++j) | 
 | 			ppmu->get_constraint(cpuhw->alternatives[i][j], | 
 | 					     &cpuhw->amasks[i][j], | 
 | 					     &cpuhw->avalues[i][j]); | 
 | 	} | 
 |  | 
 | 	/* enumerate all possibilities and see if any will work */ | 
 | 	i = 0; | 
 | 	j = -1; | 
 | 	value = mask = nv = 0; | 
 | 	while (i < n_ev) { | 
 | 		if (j >= 0) { | 
 | 			/* we're backtracking, restore context */ | 
 | 			value = svalues[i]; | 
 | 			mask = smasks[i]; | 
 | 			j = choice[i]; | 
 | 		} | 
 | 		/* | 
 | 		 * See if any alternative k for event_id i, | 
 | 		 * where k > j, will satisfy the constraints. | 
 | 		 */ | 
 | 		while (++j < n_alt[i]) { | 
 | 			nv = (value | cpuhw->avalues[i][j]) + | 
 | 				(value & cpuhw->avalues[i][j] & addf); | 
 | 			if ((((nv + tadd) ^ value) & mask) == 0 && | 
 | 			    (((nv + tadd) ^ cpuhw->avalues[i][j]) | 
 | 			     & cpuhw->amasks[i][j]) == 0) | 
 | 				break; | 
 | 		} | 
 | 		if (j >= n_alt[i]) { | 
 | 			/* | 
 | 			 * No feasible alternative, backtrack | 
 | 			 * to event_id i-1 and continue enumerating its | 
 | 			 * alternatives from where we got up to. | 
 | 			 */ | 
 | 			if (--i < 0) | 
 | 				return -1; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Found a feasible alternative for event_id i, | 
 | 			 * remember where we got up to with this event_id, | 
 | 			 * go on to the next event_id, and start with | 
 | 			 * the first alternative for it. | 
 | 			 */ | 
 | 			choice[i] = j; | 
 | 			svalues[i] = value; | 
 | 			smasks[i] = mask; | 
 | 			value = nv; | 
 | 			mask |= cpuhw->amasks[i][j]; | 
 | 			++i; | 
 | 			j = -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* OK, we have a feasible combination, tell the caller the solution */ | 
 | 	for (i = 0; i < n_ev; ++i) | 
 | 		event_id[i] = cpuhw->alternatives[i][choice[i]]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if newly-added events have consistent settings for | 
 |  * exclude_{user,kernel,hv} with each other and any previously | 
 |  * added events. | 
 |  */ | 
 | static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], | 
 | 			  int n_prev, int n_new) | 
 | { | 
 | 	int eu = 0, ek = 0, eh = 0; | 
 | 	int i, n, first; | 
 | 	struct perf_event *event; | 
 |  | 
 | 	/* | 
 | 	 * If the PMU we're on supports per event exclude settings then we | 
 | 	 * don't need to do any of this logic. NB. This assumes no PMU has both | 
 | 	 * per event exclude and limited PMCs. | 
 | 	 */ | 
 | 	if (ppmu->flags & PPMU_ARCH_207S) | 
 | 		return 0; | 
 |  | 
 | 	n = n_prev + n_new; | 
 | 	if (n <= 1) | 
 | 		return 0; | 
 |  | 
 | 	first = 1; | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		if (cflags[i] & PPMU_LIMITED_PMC_OK) { | 
 | 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD; | 
 | 			continue; | 
 | 		} | 
 | 		event = ctrs[i]; | 
 | 		if (first) { | 
 | 			eu = event->attr.exclude_user; | 
 | 			ek = event->attr.exclude_kernel; | 
 | 			eh = event->attr.exclude_hv; | 
 | 			first = 0; | 
 | 		} else if (event->attr.exclude_user != eu || | 
 | 			   event->attr.exclude_kernel != ek || | 
 | 			   event->attr.exclude_hv != eh) { | 
 | 			return -EAGAIN; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (eu || ek || eh) | 
 | 		for (i = 0; i < n; ++i) | 
 | 			if (cflags[i] & PPMU_LIMITED_PMC_OK) | 
 | 				cflags[i] |= PPMU_LIMITED_PMC_REQD; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 check_and_compute_delta(u64 prev, u64 val) | 
 | { | 
 | 	u64 delta = (val - prev) & 0xfffffffful; | 
 |  | 
 | 	/* | 
 | 	 * POWER7 can roll back counter values, if the new value is smaller | 
 | 	 * than the previous value it will cause the delta and the counter to | 
 | 	 * have bogus values unless we rolled a counter over.  If a coutner is | 
 | 	 * rolled back, it will be smaller, but within 256, which is the maximum | 
 | 	 * number of events to rollback at once.  If we detect a rollback | 
 | 	 * return 0.  This can lead to a small lack of precision in the | 
 | 	 * counters. | 
 | 	 */ | 
 | 	if (prev > val && (prev - val) < 256) | 
 | 		delta = 0; | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | static void power_pmu_read(struct perf_event *event) | 
 | { | 
 | 	s64 val, delta, prev; | 
 |  | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return; | 
 |  | 
 | 	if (!event->hw.idx) | 
 | 		return; | 
 |  | 
 | 	if (is_ebb_event(event)) { | 
 | 		val = read_pmc(event->hw.idx); | 
 | 		local64_set(&event->hw.prev_count, val); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Performance monitor interrupts come even when interrupts | 
 | 	 * are soft-disabled, as long as interrupts are hard-enabled. | 
 | 	 * Therefore we treat them like NMIs. | 
 | 	 */ | 
 | 	do { | 
 | 		prev = local64_read(&event->hw.prev_count); | 
 | 		barrier(); | 
 | 		val = read_pmc(event->hw.idx); | 
 | 		delta = check_and_compute_delta(prev, val); | 
 | 		if (!delta) | 
 | 			return; | 
 | 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); | 
 |  | 
 | 	local64_add(delta, &event->count); | 
 |  | 
 | 	/* | 
 | 	 * A number of places program the PMC with (0x80000000 - period_left). | 
 | 	 * We never want period_left to be less than 1 because we will program | 
 | 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will | 
 | 	 * roll around to 0 before taking an exception. We have seen this | 
 | 	 * on POWER8. | 
 | 	 * | 
 | 	 * To fix this, clamp the minimum value of period_left to 1. | 
 | 	 */ | 
 | 	do { | 
 | 		prev = local64_read(&event->hw.period_left); | 
 | 		val = prev - delta; | 
 | 		if (val < 1) | 
 | 			val = 1; | 
 | 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); | 
 | } | 
 |  | 
 | /* | 
 |  * On some machines, PMC5 and PMC6 can't be written, don't respect | 
 |  * the freeze conditions, and don't generate interrupts.  This tells | 
 |  * us if `event' is using such a PMC. | 
 |  */ | 
 | static int is_limited_pmc(int pmcnum) | 
 | { | 
 | 	return (ppmu->flags & PPMU_LIMITED_PMC5_6) | 
 | 		&& (pmcnum == 5 || pmcnum == 6); | 
 | } | 
 |  | 
 | static void freeze_limited_counters(struct cpu_hw_events *cpuhw, | 
 | 				    unsigned long pmc5, unsigned long pmc6) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	u64 val, prev, delta; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cpuhw->n_limited; ++i) { | 
 | 		event = cpuhw->limited_counter[i]; | 
 | 		if (!event->hw.idx) | 
 | 			continue; | 
 | 		val = (event->hw.idx == 5) ? pmc5 : pmc6; | 
 | 		prev = local64_read(&event->hw.prev_count); | 
 | 		event->hw.idx = 0; | 
 | 		delta = check_and_compute_delta(prev, val); | 
 | 		if (delta) | 
 | 			local64_add(delta, &event->count); | 
 | 	} | 
 | } | 
 |  | 
 | static void thaw_limited_counters(struct cpu_hw_events *cpuhw, | 
 | 				  unsigned long pmc5, unsigned long pmc6) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	u64 val, prev; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cpuhw->n_limited; ++i) { | 
 | 		event = cpuhw->limited_counter[i]; | 
 | 		event->hw.idx = cpuhw->limited_hwidx[i]; | 
 | 		val = (event->hw.idx == 5) ? pmc5 : pmc6; | 
 | 		prev = local64_read(&event->hw.prev_count); | 
 | 		if (check_and_compute_delta(prev, val)) | 
 | 			local64_set(&event->hw.prev_count, val); | 
 | 		perf_event_update_userpage(event); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Since limited events don't respect the freeze conditions, we | 
 |  * have to read them immediately after freezing or unfreezing the | 
 |  * other events.  We try to keep the values from the limited | 
 |  * events as consistent as possible by keeping the delay (in | 
 |  * cycles and instructions) between freezing/unfreezing and reading | 
 |  * the limited events as small and consistent as possible. | 
 |  * Therefore, if any limited events are in use, we read them | 
 |  * both, and always in the same order, to minimize variability, | 
 |  * and do it inside the same asm that writes MMCR0. | 
 |  */ | 
 | static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) | 
 | { | 
 | 	unsigned long pmc5, pmc6; | 
 |  | 
 | 	if (!cpuhw->n_limited) { | 
 | 		mtspr(SPRN_MMCR0, mmcr0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write MMCR0, then read PMC5 and PMC6 immediately. | 
 | 	 * To ensure we don't get a performance monitor interrupt | 
 | 	 * between writing MMCR0 and freezing/thawing the limited | 
 | 	 * events, we first write MMCR0 with the event overflow | 
 | 	 * interrupt enable bits turned off. | 
 | 	 */ | 
 | 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" | 
 | 		     : "=&r" (pmc5), "=&r" (pmc6) | 
 | 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), | 
 | 		       "i" (SPRN_MMCR0), | 
 | 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6)); | 
 |  | 
 | 	if (mmcr0 & MMCR0_FC) | 
 | 		freeze_limited_counters(cpuhw, pmc5, pmc6); | 
 | 	else | 
 | 		thaw_limited_counters(cpuhw, pmc5, pmc6); | 
 |  | 
 | 	/* | 
 | 	 * Write the full MMCR0 including the event overflow interrupt | 
 | 	 * enable bits, if necessary. | 
 | 	 */ | 
 | 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) | 
 | 		mtspr(SPRN_MMCR0, mmcr0); | 
 | } | 
 |  | 
 | /* | 
 |  * Disable all events to prevent PMU interrupts and to allow | 
 |  * events to be added or removed. | 
 |  */ | 
 | static void power_pmu_disable(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw; | 
 | 	unsigned long flags, mmcr0, val; | 
 |  | 
 | 	if (!ppmu) | 
 | 		return; | 
 | 	local_irq_save(flags); | 
 | 	cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	if (!cpuhw->disabled) { | 
 | 		/* | 
 | 		 * Check if we ever enabled the PMU on this cpu. | 
 | 		 */ | 
 | 		if (!cpuhw->pmcs_enabled) { | 
 | 			ppc_enable_pmcs(); | 
 | 			cpuhw->pmcs_enabled = 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 | 
 | 		 */ | 
 | 		val  = mmcr0 = mfspr(SPRN_MMCR0); | 
 | 		val |= MMCR0_FC; | 
 | 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | | 
 | 			 MMCR0_FC56); | 
 |  | 
 | 		/* | 
 | 		 * The barrier is to make sure the mtspr has been | 
 | 		 * executed and the PMU has frozen the events etc. | 
 | 		 * before we return. | 
 | 		 */ | 
 | 		write_mmcr0(cpuhw, val); | 
 | 		mb(); | 
 | 		isync(); | 
 |  | 
 | 		/* | 
 | 		 * Disable instruction sampling if it was enabled | 
 | 		 */ | 
 | 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { | 
 | 			mtspr(SPRN_MMCRA, | 
 | 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | 
 | 			mb(); | 
 | 			isync(); | 
 | 		} | 
 |  | 
 | 		cpuhw->disabled = 1; | 
 | 		cpuhw->n_added = 0; | 
 |  | 
 | 		ebb_switch_out(mmcr0); | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | 		/* | 
 | 		 * These are readable by userspace, may contain kernel | 
 | 		 * addresses and are not switched by context switch, so clear | 
 | 		 * them now to avoid leaking anything to userspace in general | 
 | 		 * including to another process. | 
 | 		 */ | 
 | 		if (ppmu->flags & PPMU_ARCH_207S) { | 
 | 			mtspr(SPRN_SDAR, 0); | 
 | 			mtspr(SPRN_SIAR, 0); | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Re-enable all events if disable == 0. | 
 |  * If we were previously disabled and events were added, then | 
 |  * put the new config on the PMU. | 
 |  */ | 
 | static void power_pmu_enable(struct pmu *pmu) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	struct cpu_hw_events *cpuhw; | 
 | 	unsigned long flags; | 
 | 	long i; | 
 | 	unsigned long val, mmcr0; | 
 | 	s64 left; | 
 | 	unsigned int hwc_index[MAX_HWEVENTS]; | 
 | 	int n_lim; | 
 | 	int idx; | 
 | 	bool ebb; | 
 |  | 
 | 	if (!ppmu) | 
 | 		return; | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	if (!cpuhw->disabled) | 
 | 		goto out; | 
 |  | 
 | 	if (cpuhw->n_events == 0) { | 
 | 		ppc_set_pmu_inuse(0); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cpuhw->disabled = 0; | 
 |  | 
 | 	/* | 
 | 	 * EBB requires an exclusive group and all events must have the EBB | 
 | 	 * flag set, or not set, so we can just check a single event. Also we | 
 | 	 * know we have at least one event. | 
 | 	 */ | 
 | 	ebb = is_ebb_event(cpuhw->event[0]); | 
 |  | 
 | 	/* | 
 | 	 * If we didn't change anything, or only removed events, | 
 | 	 * no need to recalculate MMCR* settings and reset the PMCs. | 
 | 	 * Just reenable the PMU with the current MMCR* settings | 
 | 	 * (possibly updated for removal of events). | 
 | 	 */ | 
 | 	if (!cpuhw->n_added) { | 
 | 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | 
 | 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | 
 | 		goto out_enable; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear all MMCR settings and recompute them for the new set of events. | 
 | 	 */ | 
 | 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); | 
 |  | 
 | 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, | 
 | 			       cpuhw->mmcr, cpuhw->event)) { | 
 | 		/* shouldn't ever get here */ | 
 | 		printk(KERN_ERR "oops compute_mmcr failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!(ppmu->flags & PPMU_ARCH_207S)) { | 
 | 		/* | 
 | 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* | 
 | 		 * bits for the first event. We have already checked that all | 
 | 		 * events have the same value for these bits as the first event. | 
 | 		 */ | 
 | 		event = cpuhw->event[0]; | 
 | 		if (event->attr.exclude_user) | 
 | 			cpuhw->mmcr[0] |= MMCR0_FCP; | 
 | 		if (event->attr.exclude_kernel) | 
 | 			cpuhw->mmcr[0] |= freeze_events_kernel; | 
 | 		if (event->attr.exclude_hv) | 
 | 			cpuhw->mmcr[0] |= MMCR0_FCHV; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write the new configuration to MMCR* with the freeze | 
 | 	 * bit set and set the hardware events to their initial values. | 
 | 	 * Then unfreeze the events. | 
 | 	 */ | 
 | 	ppc_set_pmu_inuse(1); | 
 | 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | 
 | 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | 
 | 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | 
 | 				| MMCR0_FC); | 
 | 	if (ppmu->flags & PPMU_ARCH_207S) | 
 | 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); | 
 |  | 
 | 	/* | 
 | 	 * Read off any pre-existing events that need to move | 
 | 	 * to another PMC. | 
 | 	 */ | 
 | 	for (i = 0; i < cpuhw->n_events; ++i) { | 
 | 		event = cpuhw->event[i]; | 
 | 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { | 
 | 			power_pmu_read(event); | 
 | 			write_pmc(event->hw.idx, 0); | 
 | 			event->hw.idx = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize the PMCs for all the new and moved events. | 
 | 	 */ | 
 | 	cpuhw->n_limited = n_lim = 0; | 
 | 	for (i = 0; i < cpuhw->n_events; ++i) { | 
 | 		event = cpuhw->event[i]; | 
 | 		if (event->hw.idx) | 
 | 			continue; | 
 | 		idx = hwc_index[i] + 1; | 
 | 		if (is_limited_pmc(idx)) { | 
 | 			cpuhw->limited_counter[n_lim] = event; | 
 | 			cpuhw->limited_hwidx[n_lim] = idx; | 
 | 			++n_lim; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (ebb) | 
 | 			val = local64_read(&event->hw.prev_count); | 
 | 		else { | 
 | 			val = 0; | 
 | 			if (event->hw.sample_period) { | 
 | 				left = local64_read(&event->hw.period_left); | 
 | 				if (left < 0x80000000L) | 
 | 					val = 0x80000000L - left; | 
 | 			} | 
 | 			local64_set(&event->hw.prev_count, val); | 
 | 		} | 
 |  | 
 | 		event->hw.idx = idx; | 
 | 		if (event->hw.state & PERF_HES_STOPPED) | 
 | 			val = 0; | 
 | 		write_pmc(idx, val); | 
 |  | 
 | 		perf_event_update_userpage(event); | 
 | 	} | 
 | 	cpuhw->n_limited = n_lim; | 
 | 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; | 
 |  | 
 |  out_enable: | 
 | 	pmao_restore_workaround(ebb); | 
 |  | 
 | 	mmcr0 = ebb_switch_in(ebb, cpuhw); | 
 |  | 
 | 	mb(); | 
 | 	if (cpuhw->bhrb_users) | 
 | 		ppmu->config_bhrb(cpuhw->bhrb_filter); | 
 |  | 
 | 	write_mmcr0(cpuhw, mmcr0); | 
 |  | 
 | 	/* | 
 | 	 * Enable instruction sampling if necessary | 
 | 	 */ | 
 | 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { | 
 | 		mb(); | 
 | 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); | 
 | 	} | 
 |  | 
 |  out: | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static int collect_events(struct perf_event *group, int max_count, | 
 | 			  struct perf_event *ctrs[], u64 *events, | 
 | 			  unsigned int *flags) | 
 | { | 
 | 	int n = 0; | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (group->pmu->task_ctx_nr == perf_hw_context) { | 
 | 		if (n >= max_count) | 
 | 			return -1; | 
 | 		ctrs[n] = group; | 
 | 		flags[n] = group->hw.event_base; | 
 | 		events[n++] = group->hw.config; | 
 | 	} | 
 | 	for_each_sibling_event(event, group) { | 
 | 		if (event->pmu->task_ctx_nr == perf_hw_context && | 
 | 		    event->state != PERF_EVENT_STATE_OFF) { | 
 | 			if (n >= max_count) | 
 | 				return -1; | 
 | 			ctrs[n] = event; | 
 | 			flags[n] = event->hw.event_base; | 
 | 			events[n++] = event->hw.config; | 
 | 		} | 
 | 	} | 
 | 	return n; | 
 | } | 
 |  | 
 | /* | 
 |  * Add an event to the PMU. | 
 |  * If all events are not already frozen, then we disable and | 
 |  * re-enable the PMU in order to get hw_perf_enable to do the | 
 |  * actual work of reconfiguring the PMU. | 
 |  */ | 
 | static int power_pmu_add(struct perf_event *event, int ef_flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw; | 
 | 	unsigned long flags; | 
 | 	int n0; | 
 | 	int ret = -EAGAIN; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	/* | 
 | 	 * Add the event to the list (if there is room) | 
 | 	 * and check whether the total set is still feasible. | 
 | 	 */ | 
 | 	cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	n0 = cpuhw->n_events; | 
 | 	if (n0 >= ppmu->n_counter) | 
 | 		goto out; | 
 | 	cpuhw->event[n0] = event; | 
 | 	cpuhw->events[n0] = event->hw.config; | 
 | 	cpuhw->flags[n0] = event->hw.event_base; | 
 |  | 
 | 	/* | 
 | 	 * This event may have been disabled/stopped in record_and_restart() | 
 | 	 * because we exceeded the ->event_limit. If re-starting the event, | 
 | 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user | 
 | 	 * notification is re-enabled. | 
 | 	 */ | 
 | 	if (!(ef_flags & PERF_EF_START)) | 
 | 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
 | 	else | 
 | 		event->hw.state = 0; | 
 |  | 
 | 	/* | 
 | 	 * If group events scheduling transaction was started, | 
 | 	 * skip the schedulability test here, it will be performed | 
 | 	 * at commit time(->commit_txn) as a whole | 
 | 	 */ | 
 | 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) | 
 | 		goto nocheck; | 
 |  | 
 | 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) | 
 | 		goto out; | 
 | 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) | 
 | 		goto out; | 
 | 	event->hw.config = cpuhw->events[n0]; | 
 |  | 
 | nocheck: | 
 | 	ebb_event_add(event); | 
 |  | 
 | 	++cpuhw->n_events; | 
 | 	++cpuhw->n_added; | 
 |  | 
 | 	ret = 0; | 
 |  out: | 
 | 	if (has_branch_stack(event)) { | 
 | 		u64 bhrb_filter = -1; | 
 |  | 
 | 		if (ppmu->bhrb_filter_map) | 
 | 			bhrb_filter = ppmu->bhrb_filter_map( | 
 | 				event->attr.branch_sample_type); | 
 |  | 
 | 		if (bhrb_filter != -1) { | 
 | 			cpuhw->bhrb_filter = bhrb_filter; | 
 | 			power_pmu_bhrb_enable(event); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	perf_pmu_enable(event->pmu); | 
 | 	local_irq_restore(flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove an event from the PMU. | 
 |  */ | 
 | static void power_pmu_del(struct perf_event *event, int ef_flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw; | 
 | 	long i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	power_pmu_read(event); | 
 |  | 
 | 	cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	for (i = 0; i < cpuhw->n_events; ++i) { | 
 | 		if (event == cpuhw->event[i]) { | 
 | 			while (++i < cpuhw->n_events) { | 
 | 				cpuhw->event[i-1] = cpuhw->event[i]; | 
 | 				cpuhw->events[i-1] = cpuhw->events[i]; | 
 | 				cpuhw->flags[i-1] = cpuhw->flags[i]; | 
 | 			} | 
 | 			--cpuhw->n_events; | 
 | 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); | 
 | 			if (event->hw.idx) { | 
 | 				write_pmc(event->hw.idx, 0); | 
 | 				event->hw.idx = 0; | 
 | 			} | 
 | 			perf_event_update_userpage(event); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i < cpuhw->n_limited; ++i) | 
 | 		if (event == cpuhw->limited_counter[i]) | 
 | 			break; | 
 | 	if (i < cpuhw->n_limited) { | 
 | 		while (++i < cpuhw->n_limited) { | 
 | 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; | 
 | 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; | 
 | 		} | 
 | 		--cpuhw->n_limited; | 
 | 	} | 
 | 	if (cpuhw->n_events == 0) { | 
 | 		/* disable exceptions if no events are running */ | 
 | 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); | 
 | 	} | 
 |  | 
 | 	if (has_branch_stack(event)) | 
 | 		power_pmu_bhrb_disable(event); | 
 |  | 
 | 	perf_pmu_enable(event->pmu); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * POWER-PMU does not support disabling individual counters, hence | 
 |  * program their cycle counter to their max value and ignore the interrupts. | 
 |  */ | 
 |  | 
 | static void power_pmu_start(struct perf_event *event, int ef_flags) | 
 | { | 
 | 	unsigned long flags; | 
 | 	s64 left; | 
 | 	unsigned long val; | 
 |  | 
 | 	if (!event->hw.idx || !event->hw.sample_period) | 
 | 		return; | 
 |  | 
 | 	if (!(event->hw.state & PERF_HES_STOPPED)) | 
 | 		return; | 
 |  | 
 | 	if (ef_flags & PERF_EF_RELOAD) | 
 | 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	event->hw.state = 0; | 
 | 	left = local64_read(&event->hw.period_left); | 
 |  | 
 | 	val = 0; | 
 | 	if (left < 0x80000000L) | 
 | 		val = 0x80000000L - left; | 
 |  | 
 | 	write_pmc(event->hw.idx, val); | 
 |  | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_pmu_enable(event->pmu); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void power_pmu_stop(struct perf_event *event, int ef_flags) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!event->hw.idx || !event->hw.sample_period) | 
 | 		return; | 
 |  | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	power_pmu_read(event); | 
 | 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
 | 	write_pmc(event->hw.idx, 0); | 
 |  | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_pmu_enable(event->pmu); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Start group events scheduling transaction | 
 |  * Set the flag to make pmu::enable() not perform the | 
 |  * schedulability test, it will be performed at commit time | 
 |  * | 
 |  * We only support PERF_PMU_TXN_ADD transactions. Save the | 
 |  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD | 
 |  * transactions. | 
 |  */ | 
 | static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */ | 
 |  | 
 | 	cpuhw->txn_flags = txn_flags; | 
 | 	if (txn_flags & ~PERF_PMU_TXN_ADD) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(pmu); | 
 | 	cpuhw->n_txn_start = cpuhw->n_events; | 
 | } | 
 |  | 
 | /* | 
 |  * Stop group events scheduling transaction | 
 |  * Clear the flag and pmu::enable() will perform the | 
 |  * schedulability test. | 
 |  */ | 
 | static void power_pmu_cancel_txn(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	unsigned int txn_flags; | 
 |  | 
 | 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */ | 
 |  | 
 | 	txn_flags = cpuhw->txn_flags; | 
 | 	cpuhw->txn_flags = 0; | 
 | 	if (txn_flags & ~PERF_PMU_TXN_ADD) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_enable(pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * Commit group events scheduling transaction | 
 |  * Perform the group schedulability test as a whole | 
 |  * Return 0 if success | 
 |  */ | 
 | static int power_pmu_commit_txn(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw; | 
 | 	long i, n; | 
 |  | 
 | 	if (!ppmu) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */ | 
 |  | 
 | 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { | 
 | 		cpuhw->txn_flags = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	n = cpuhw->n_events; | 
 | 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) | 
 | 		return -EAGAIN; | 
 | 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); | 
 | 	if (i < 0) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	for (i = cpuhw->n_txn_start; i < n; ++i) | 
 | 		cpuhw->event[i]->hw.config = cpuhw->events[i]; | 
 |  | 
 | 	cpuhw->txn_flags = 0; | 
 | 	perf_pmu_enable(pmu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 if we might be able to put event on a limited PMC, | 
 |  * or 0 if not. | 
 |  * An event can only go on a limited PMC if it counts something | 
 |  * that a limited PMC can count, doesn't require interrupts, and | 
 |  * doesn't exclude any processor mode. | 
 |  */ | 
 | static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, | 
 | 				 unsigned int flags) | 
 | { | 
 | 	int n; | 
 | 	u64 alt[MAX_EVENT_ALTERNATIVES]; | 
 |  | 
 | 	if (event->attr.exclude_user | 
 | 	    || event->attr.exclude_kernel | 
 | 	    || event->attr.exclude_hv | 
 | 	    || event->attr.sample_period) | 
 | 		return 0; | 
 |  | 
 | 	if (ppmu->limited_pmc_event(ev)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * The requested event_id isn't on a limited PMC already; | 
 | 	 * see if any alternative code goes on a limited PMC. | 
 | 	 */ | 
 | 	if (!ppmu->get_alternatives) | 
 | 		return 0; | 
 |  | 
 | 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; | 
 | 	n = ppmu->get_alternatives(ev, flags, alt); | 
 |  | 
 | 	return n > 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find an alternative event_id that goes on a normal PMC, if possible, | 
 |  * and return the event_id code, or 0 if there is no such alternative. | 
 |  * (Note: event_id code 0 is "don't count" on all machines.) | 
 |  */ | 
 | static u64 normal_pmc_alternative(u64 ev, unsigned long flags) | 
 | { | 
 | 	u64 alt[MAX_EVENT_ALTERNATIVES]; | 
 | 	int n; | 
 |  | 
 | 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); | 
 | 	n = ppmu->get_alternatives(ev, flags, alt); | 
 | 	if (!n) | 
 | 		return 0; | 
 | 	return alt[0]; | 
 | } | 
 |  | 
 | /* Number of perf_events counting hardware events */ | 
 | static atomic_t num_events; | 
 | /* Used to avoid races in calling reserve/release_pmc_hardware */ | 
 | static DEFINE_MUTEX(pmc_reserve_mutex); | 
 |  | 
 | /* | 
 |  * Release the PMU if this is the last perf_event. | 
 |  */ | 
 | static void hw_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	if (!atomic_add_unless(&num_events, -1, 1)) { | 
 | 		mutex_lock(&pmc_reserve_mutex); | 
 | 		if (atomic_dec_return(&num_events) == 0) | 
 | 			release_pmc_hardware(); | 
 | 		mutex_unlock(&pmc_reserve_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Translate a generic cache event_id config to a raw event_id code. | 
 |  */ | 
 | static int hw_perf_cache_event(u64 config, u64 *eventp) | 
 | { | 
 | 	unsigned long type, op, result; | 
 | 	int ev; | 
 |  | 
 | 	if (!ppmu->cache_events) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* unpack config */ | 
 | 	type = config & 0xff; | 
 | 	op = (config >> 8) & 0xff; | 
 | 	result = (config >> 16) & 0xff; | 
 |  | 
 | 	if (type >= PERF_COUNT_HW_CACHE_MAX || | 
 | 	    op >= PERF_COUNT_HW_CACHE_OP_MAX || | 
 | 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ev = (*ppmu->cache_events)[type][op][result]; | 
 | 	if (ev == 0) | 
 | 		return -EOPNOTSUPP; | 
 | 	if (ev == -1) | 
 | 		return -EINVAL; | 
 | 	*eventp = ev; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool is_event_blacklisted(u64 ev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i=0; i < ppmu->n_blacklist_ev; i++) { | 
 | 		if (ppmu->blacklist_ev[i] == ev) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int power_pmu_event_init(struct perf_event *event) | 
 | { | 
 | 	u64 ev; | 
 | 	unsigned long flags; | 
 | 	struct perf_event *ctrs[MAX_HWEVENTS]; | 
 | 	u64 events[MAX_HWEVENTS]; | 
 | 	unsigned int cflags[MAX_HWEVENTS]; | 
 | 	int n; | 
 | 	int err; | 
 | 	struct cpu_hw_events *cpuhw; | 
 |  | 
 | 	if (!ppmu) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (has_branch_stack(event)) { | 
 | 	        /* PMU has BHRB enabled */ | 
 | 		if (!(ppmu->flags & PPMU_ARCH_207S)) | 
 | 			return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	switch (event->attr.type) { | 
 | 	case PERF_TYPE_HARDWARE: | 
 | 		ev = event->attr.config; | 
 | 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) | 
 | 			return -EOPNOTSUPP; | 
 |  | 
 | 		if (ppmu->blacklist_ev && is_event_blacklisted(ev)) | 
 | 			return -EINVAL; | 
 | 		ev = ppmu->generic_events[ev]; | 
 | 		break; | 
 | 	case PERF_TYPE_HW_CACHE: | 
 | 		err = hw_perf_cache_event(event->attr.config, &ev); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (ppmu->blacklist_ev && is_event_blacklisted(ev)) | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	case PERF_TYPE_RAW: | 
 | 		ev = event->attr.config; | 
 |  | 
 | 		if (ppmu->blacklist_ev && is_event_blacklisted(ev)) | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	default: | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	event->hw.config_base = ev; | 
 | 	event->hw.idx = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we are not running on a hypervisor, force the | 
 | 	 * exclude_hv bit to 0 so that we don't care what | 
 | 	 * the user set it to. | 
 | 	 */ | 
 | 	if (!firmware_has_feature(FW_FEATURE_LPAR)) | 
 | 		event->attr.exclude_hv = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this is a per-task event, then we can use | 
 | 	 * PM_RUN_* events interchangeably with their non RUN_* | 
 | 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. | 
 | 	 * XXX we should check if the task is an idle task. | 
 | 	 */ | 
 | 	flags = 0; | 
 | 	if (event->attach_state & PERF_ATTACH_TASK) | 
 | 		flags |= PPMU_ONLY_COUNT_RUN; | 
 |  | 
 | 	/* | 
 | 	 * If this machine has limited events, check whether this | 
 | 	 * event_id could go on a limited event. | 
 | 	 */ | 
 | 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) { | 
 | 		if (can_go_on_limited_pmc(event, ev, flags)) { | 
 | 			flags |= PPMU_LIMITED_PMC_OK; | 
 | 		} else if (ppmu->limited_pmc_event(ev)) { | 
 | 			/* | 
 | 			 * The requested event_id is on a limited PMC, | 
 | 			 * but we can't use a limited PMC; see if any | 
 | 			 * alternative goes on a normal PMC. | 
 | 			 */ | 
 | 			ev = normal_pmc_alternative(ev, flags); | 
 | 			if (!ev) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Extra checks for EBB */ | 
 | 	err = ebb_event_check(event); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* | 
 | 	 * If this is in a group, check if it can go on with all the | 
 | 	 * other hardware events in the group.  We assume the event | 
 | 	 * hasn't been linked into its leader's sibling list at this point. | 
 | 	 */ | 
 | 	n = 0; | 
 | 	if (event->group_leader != event) { | 
 | 		n = collect_events(event->group_leader, ppmu->n_counter - 1, | 
 | 				   ctrs, events, cflags); | 
 | 		if (n < 0) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	events[n] = ev; | 
 | 	ctrs[n] = event; | 
 | 	cflags[n] = flags; | 
 | 	if (check_excludes(ctrs, cflags, n, 1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cpuhw = &get_cpu_var(cpu_hw_events); | 
 | 	err = power_check_constraints(cpuhw, events, cflags, n + 1); | 
 |  | 
 | 	if (has_branch_stack(event)) { | 
 | 		u64 bhrb_filter = -1; | 
 |  | 
 | 		if (ppmu->bhrb_filter_map) | 
 | 			bhrb_filter = ppmu->bhrb_filter_map( | 
 | 					event->attr.branch_sample_type); | 
 |  | 
 | 		if (bhrb_filter == -1) { | 
 | 			put_cpu_var(cpu_hw_events); | 
 | 			return -EOPNOTSUPP; | 
 | 		} | 
 | 		cpuhw->bhrb_filter = bhrb_filter; | 
 | 	} | 
 |  | 
 | 	put_cpu_var(cpu_hw_events); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	event->hw.config = events[n]; | 
 | 	event->hw.event_base = cflags[n]; | 
 | 	event->hw.last_period = event->hw.sample_period; | 
 | 	local64_set(&event->hw.period_left, event->hw.last_period); | 
 |  | 
 | 	/* | 
 | 	 * For EBB events we just context switch the PMC value, we don't do any | 
 | 	 * of the sample_period logic. We use hw.prev_count for this. | 
 | 	 */ | 
 | 	if (is_ebb_event(event)) | 
 | 		local64_set(&event->hw.prev_count, 0); | 
 |  | 
 | 	/* | 
 | 	 * See if we need to reserve the PMU. | 
 | 	 * If no events are currently in use, then we have to take a | 
 | 	 * mutex to ensure that we don't race with another task doing | 
 | 	 * reserve_pmc_hardware or release_pmc_hardware. | 
 | 	 */ | 
 | 	err = 0; | 
 | 	if (!atomic_inc_not_zero(&num_events)) { | 
 | 		mutex_lock(&pmc_reserve_mutex); | 
 | 		if (atomic_read(&num_events) == 0 && | 
 | 		    reserve_pmc_hardware(perf_event_interrupt)) | 
 | 			err = -EBUSY; | 
 | 		else | 
 | 			atomic_inc(&num_events); | 
 | 		mutex_unlock(&pmc_reserve_mutex); | 
 | 	} | 
 | 	event->destroy = hw_perf_event_destroy; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int power_pmu_event_idx(struct perf_event *event) | 
 | { | 
 | 	return event->hw.idx; | 
 | } | 
 |  | 
 | ssize_t power_events_sysfs_show(struct device *dev, | 
 | 				struct device_attribute *attr, char *page) | 
 | { | 
 | 	struct perf_pmu_events_attr *pmu_attr; | 
 |  | 
 | 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); | 
 |  | 
 | 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id); | 
 | } | 
 |  | 
 | static struct pmu power_pmu = { | 
 | 	.pmu_enable	= power_pmu_enable, | 
 | 	.pmu_disable	= power_pmu_disable, | 
 | 	.event_init	= power_pmu_event_init, | 
 | 	.add		= power_pmu_add, | 
 | 	.del		= power_pmu_del, | 
 | 	.start		= power_pmu_start, | 
 | 	.stop		= power_pmu_stop, | 
 | 	.read		= power_pmu_read, | 
 | 	.start_txn	= power_pmu_start_txn, | 
 | 	.cancel_txn	= power_pmu_cancel_txn, | 
 | 	.commit_txn	= power_pmu_commit_txn, | 
 | 	.event_idx	= power_pmu_event_idx, | 
 | 	.sched_task	= power_pmu_sched_task, | 
 | }; | 
 |  | 
 | /* | 
 |  * A counter has overflowed; update its count and record | 
 |  * things if requested.  Note that interrupts are hard-disabled | 
 |  * here so there is no possibility of being interrupted. | 
 |  */ | 
 | static void record_and_restart(struct perf_event *event, unsigned long val, | 
 | 			       struct pt_regs *regs) | 
 | { | 
 | 	u64 period = event->hw.sample_period; | 
 | 	s64 prev, delta, left; | 
 | 	int record = 0; | 
 |  | 
 | 	if (event->hw.state & PERF_HES_STOPPED) { | 
 | 		write_pmc(event->hw.idx, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* we don't have to worry about interrupts here */ | 
 | 	prev = local64_read(&event->hw.prev_count); | 
 | 	delta = check_and_compute_delta(prev, val); | 
 | 	local64_add(delta, &event->count); | 
 |  | 
 | 	/* | 
 | 	 * See if the total period for this event has expired, | 
 | 	 * and update for the next period. | 
 | 	 */ | 
 | 	val = 0; | 
 | 	left = local64_read(&event->hw.period_left) - delta; | 
 | 	if (delta == 0) | 
 | 		left++; | 
 | 	if (period) { | 
 | 		if (left <= 0) { | 
 | 			left += period; | 
 | 			if (left <= 0) | 
 | 				left = period; | 
 |  | 
 | 			/* | 
 | 			 * If address is not requested in the sample via | 
 | 			 * PERF_SAMPLE_IP, just record that sample irrespective | 
 | 			 * of SIAR valid check. | 
 | 			 */ | 
 | 			if (event->attr.sample_type & PERF_SAMPLE_IP) | 
 | 				record = siar_valid(regs); | 
 | 			else | 
 | 				record = 1; | 
 |  | 
 | 			event->hw.last_period = event->hw.sample_period; | 
 | 		} | 
 | 		if (left < 0x80000000LL) | 
 | 			val = 0x80000000LL - left; | 
 | 	} | 
 |  | 
 | 	write_pmc(event->hw.idx, val); | 
 | 	local64_set(&event->hw.prev_count, val); | 
 | 	local64_set(&event->hw.period_left, left); | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	/* | 
 | 	 * Due to hardware limitation, sometimes SIAR could sample a kernel | 
 | 	 * address even when freeze on supervisor state (kernel) is set in | 
 | 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in | 
 | 	 * these cases. | 
 | 	 */ | 
 | 	if (event->attr.exclude_kernel && | 
 | 	    (event->attr.sample_type & PERF_SAMPLE_IP) && | 
 | 	    is_kernel_addr(mfspr(SPRN_SIAR))) | 
 | 		record = 0; | 
 |  | 
 | 	/* | 
 | 	 * Finally record data if requested. | 
 | 	 */ | 
 | 	if (record) { | 
 | 		struct perf_sample_data data; | 
 |  | 
 | 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period); | 
 |  | 
 | 		if (event->attr.sample_type & | 
 | 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) | 
 | 			perf_get_data_addr(event, regs, &data.addr); | 
 |  | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 			struct cpu_hw_events *cpuhw; | 
 | 			cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 			power_pmu_bhrb_read(event, cpuhw); | 
 | 			data.br_stack = &cpuhw->bhrb_stack; | 
 | 		} | 
 |  | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && | 
 | 						ppmu->get_mem_data_src) | 
 | 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); | 
 |  | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && | 
 | 						ppmu->get_mem_weight) | 
 | 			ppmu->get_mem_weight(&data.weight); | 
 |  | 
 | 		if (perf_event_overflow(event, &data, regs)) | 
 | 			power_pmu_stop(event, 0); | 
 | 	} else if (period) { | 
 | 		/* Account for interrupt in case of invalid SIAR */ | 
 | 		if (perf_event_account_interrupt(event)) | 
 | 			power_pmu_stop(event, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called from generic code to get the misc flags (i.e. processor mode) | 
 |  * for an event_id. | 
 |  */ | 
 | unsigned long perf_misc_flags(struct pt_regs *regs) | 
 | { | 
 | 	u32 flags = perf_get_misc_flags(regs); | 
 |  | 
 | 	if (flags) | 
 | 		return flags; | 
 | 	return user_mode(regs) ? PERF_RECORD_MISC_USER : | 
 | 		PERF_RECORD_MISC_KERNEL; | 
 | } | 
 |  | 
 | /* | 
 |  * Called from generic code to get the instruction pointer | 
 |  * for an event_id. | 
 |  */ | 
 | unsigned long perf_instruction_pointer(struct pt_regs *regs) | 
 | { | 
 | 	bool use_siar = regs_use_siar(regs); | 
 |  | 
 | 	if (use_siar && siar_valid(regs)) | 
 | 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); | 
 | 	else if (use_siar) | 
 | 		return 0;		// no valid instruction pointer | 
 | 	else | 
 | 		return regs->nip; | 
 | } | 
 |  | 
 | static bool pmc_overflow_power7(unsigned long val) | 
 | { | 
 | 	/* | 
 | 	 * Events on POWER7 can roll back if a speculative event doesn't | 
 | 	 * eventually complete. Unfortunately in some rare cases they will | 
 | 	 * raise a performance monitor exception. We need to catch this to | 
 | 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less | 
 | 	 * cycles from overflow. | 
 | 	 * | 
 | 	 * We only do this if the first pass fails to find any overflowing | 
 | 	 * PMCs because a user might set a period of less than 256 and we | 
 | 	 * don't want to mistakenly reset them. | 
 | 	 */ | 
 | 	if ((0x80000000 - val) <= 256) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool pmc_overflow(unsigned long val) | 
 | { | 
 | 	if ((int)val < 0) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Performance monitor interrupt stuff | 
 |  */ | 
 | static void __perf_event_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	int i, j; | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	struct perf_event *event; | 
 | 	unsigned long val[8]; | 
 | 	int found, active; | 
 | 	int nmi; | 
 |  | 
 | 	if (cpuhw->n_limited) | 
 | 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), | 
 | 					mfspr(SPRN_PMC6)); | 
 |  | 
 | 	perf_read_regs(regs); | 
 |  | 
 | 	nmi = perf_intr_is_nmi(regs); | 
 | 	if (nmi) | 
 | 		nmi_enter(); | 
 | 	else | 
 | 		irq_enter(); | 
 |  | 
 | 	/* Read all the PMCs since we'll need them a bunch of times */ | 
 | 	for (i = 0; i < ppmu->n_counter; ++i) | 
 | 		val[i] = read_pmc(i + 1); | 
 |  | 
 | 	/* Try to find what caused the IRQ */ | 
 | 	found = 0; | 
 | 	for (i = 0; i < ppmu->n_counter; ++i) { | 
 | 		if (!pmc_overflow(val[i])) | 
 | 			continue; | 
 | 		if (is_limited_pmc(i + 1)) | 
 | 			continue; /* these won't generate IRQs */ | 
 | 		/* | 
 | 		 * We've found one that's overflowed.  For active | 
 | 		 * counters we need to log this.  For inactive | 
 | 		 * counters, we need to reset it anyway | 
 | 		 */ | 
 | 		found = 1; | 
 | 		active = 0; | 
 | 		for (j = 0; j < cpuhw->n_events; ++j) { | 
 | 			event = cpuhw->event[j]; | 
 | 			if (event->hw.idx == (i + 1)) { | 
 | 				active = 1; | 
 | 				record_and_restart(event, val[i], regs); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (!active) | 
 | 			/* reset non active counters that have overflowed */ | 
 | 			write_pmc(i + 1, 0); | 
 | 	} | 
 | 	if (!found && pvr_version_is(PVR_POWER7)) { | 
 | 		/* check active counters for special buggy p7 overflow */ | 
 | 		for (i = 0; i < cpuhw->n_events; ++i) { | 
 | 			event = cpuhw->event[i]; | 
 | 			if (!event->hw.idx || is_limited_pmc(event->hw.idx)) | 
 | 				continue; | 
 | 			if (pmc_overflow_power7(val[event->hw.idx - 1])) { | 
 | 				/* event has overflowed in a buggy way*/ | 
 | 				found = 1; | 
 | 				record_and_restart(event, | 
 | 						   val[event->hw.idx - 1], | 
 | 						   regs); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (!found && !nmi && printk_ratelimit()) | 
 | 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); | 
 |  | 
 | 	/* | 
 | 	 * Reset MMCR0 to its normal value.  This will set PMXE and | 
 | 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred) | 
 | 	 * and thus allow interrupts to occur again. | 
 | 	 * XXX might want to use MSR.PM to keep the events frozen until | 
 | 	 * we get back out of this interrupt. | 
 | 	 */ | 
 | 	write_mmcr0(cpuhw, cpuhw->mmcr[0]); | 
 |  | 
 | 	if (nmi) | 
 | 		nmi_exit(); | 
 | 	else | 
 | 		irq_exit(); | 
 | } | 
 |  | 
 | static void perf_event_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	u64 start_clock = sched_clock(); | 
 |  | 
 | 	__perf_event_interrupt(regs); | 
 | 	perf_sample_event_took(sched_clock() - start_clock); | 
 | } | 
 |  | 
 | static int power_pmu_prepare_cpu(unsigned int cpu) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); | 
 |  | 
 | 	if (ppmu) { | 
 | 		memset(cpuhw, 0, sizeof(*cpuhw)); | 
 | 		cpuhw->mmcr[0] = MMCR0_FC; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int register_power_pmu(struct power_pmu *pmu) | 
 | { | 
 | 	if (ppmu) | 
 | 		return -EBUSY;		/* something's already registered */ | 
 |  | 
 | 	ppmu = pmu; | 
 | 	pr_info("%s performance monitor hardware support registered\n", | 
 | 		pmu->name); | 
 |  | 
 | 	power_pmu.attr_groups = ppmu->attr_groups; | 
 |  | 
 | #ifdef MSR_HV | 
 | 	/* | 
 | 	 * Use FCHV to ignore kernel events if MSR.HV is set. | 
 | 	 */ | 
 | 	if (mfmsr() & MSR_HV) | 
 | 		freeze_events_kernel = MMCR0_FCHV; | 
 | #endif /* CONFIG_PPC64 */ | 
 |  | 
 | 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); | 
 | 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", | 
 | 			  power_pmu_prepare_cpu, NULL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | static int __init init_ppc64_pmu(void) | 
 | { | 
 | 	/* run through all the pmu drivers one at a time */ | 
 | 	if (!init_power5_pmu()) | 
 | 		return 0; | 
 | 	else if (!init_power5p_pmu()) | 
 | 		return 0; | 
 | 	else if (!init_power6_pmu()) | 
 | 		return 0; | 
 | 	else if (!init_power7_pmu()) | 
 | 		return 0; | 
 | 	else if (!init_power8_pmu()) | 
 | 		return 0; | 
 | 	else if (!init_power9_pmu()) | 
 | 		return 0; | 
 | 	else if (!init_ppc970_pmu()) | 
 | 		return 0; | 
 | 	else | 
 | 		return init_generic_compat_pmu(); | 
 | } | 
 | early_initcall(init_ppc64_pmu); | 
 | #endif |