|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Generic hugetlb support. | 
|  | * (C) Nadia Yvette Chambers, April 2004 | 
|  | */ | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/mmdebug.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/string_helpers.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/jhash.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/llist.h> | 
|  | #include <linux/cma.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/nospec.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/mm_inline.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/hugetlb_cgroup.h> | 
|  | #include <linux/node.h> | 
|  | #include <linux/page_owner.h> | 
|  | #include "internal.h" | 
|  | #include "hugetlb_vmemmap.h" | 
|  |  | 
|  | int hugetlb_max_hstate __read_mostly; | 
|  | unsigned int default_hstate_idx; | 
|  | struct hstate hstates[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | static struct cma *hugetlb_cma[MAX_NUMNODES]; | 
|  | static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; | 
|  | static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) | 
|  | { | 
|  | return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, | 
|  | 1 << order); | 
|  | } | 
|  | #else | 
|  | static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | static unsigned long hugetlb_cma_size __initdata; | 
|  |  | 
|  | __initdata LIST_HEAD(huge_boot_pages); | 
|  |  | 
|  | /* for command line parsing */ | 
|  | static struct hstate * __initdata parsed_hstate; | 
|  | static unsigned long __initdata default_hstate_max_huge_pages; | 
|  | static bool __initdata parsed_valid_hugepagesz = true; | 
|  | static bool __initdata parsed_default_hugepagesz; | 
|  | static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; | 
|  |  | 
|  | /* | 
|  | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, | 
|  | * free_huge_pages, and surplus_huge_pages. | 
|  | */ | 
|  | DEFINE_SPINLOCK(hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Serializes faults on the same logical page.  This is used to | 
|  | * prevent spurious OOMs when the hugepage pool is fully utilized. | 
|  | */ | 
|  | static int num_fault_mutexes; | 
|  | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; | 
|  |  | 
|  | /* Forward declaration */ | 
|  | static int hugetlb_acct_memory(struct hstate *h, long delta); | 
|  | static void hugetlb_vma_lock_free(struct vm_area_struct *vma); | 
|  | static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); | 
|  | static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); | 
|  | static void hugetlb_unshare_pmds(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, bool take_locks); | 
|  | static struct resv_map *vma_resv_map(struct vm_area_struct *vma); | 
|  |  | 
|  | static inline bool subpool_is_free(struct hugepage_subpool *spool) | 
|  | { | 
|  | if (spool->count) | 
|  | return false; | 
|  | if (spool->max_hpages != -1) | 
|  | return spool->used_hpages == 0; | 
|  | if (spool->min_hpages != -1) | 
|  | return spool->rsv_hpages == spool->min_hpages; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, | 
|  | unsigned long irq_flags) | 
|  | { | 
|  | spin_unlock_irqrestore(&spool->lock, irq_flags); | 
|  |  | 
|  | /* If no pages are used, and no other handles to the subpool | 
|  | * remain, give up any reservations based on minimum size and | 
|  | * free the subpool */ | 
|  | if (subpool_is_free(spool)) { | 
|  | if (spool->min_hpages != -1) | 
|  | hugetlb_acct_memory(spool->hstate, | 
|  | -spool->min_hpages); | 
|  | kfree(spool); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, | 
|  | long min_hpages) | 
|  | { | 
|  | struct hugepage_subpool *spool; | 
|  |  | 
|  | spool = kzalloc(sizeof(*spool), GFP_KERNEL); | 
|  | if (!spool) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_init(&spool->lock); | 
|  | spool->count = 1; | 
|  | spool->max_hpages = max_hpages; | 
|  | spool->hstate = h; | 
|  | spool->min_hpages = min_hpages; | 
|  |  | 
|  | if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | 
|  | kfree(spool); | 
|  | return NULL; | 
|  | } | 
|  | spool->rsv_hpages = min_hpages; | 
|  |  | 
|  | return spool; | 
|  | } | 
|  |  | 
|  | void hugepage_put_subpool(struct hugepage_subpool *spool) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&spool->lock, flags); | 
|  | BUG_ON(!spool->count); | 
|  | spool->count--; | 
|  | unlock_or_release_subpool(spool, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subpool accounting for allocating and reserving pages. | 
|  | * Return -ENOMEM if there are not enough resources to satisfy the | 
|  | * request.  Otherwise, return the number of pages by which the | 
|  | * global pools must be adjusted (upward).  The returned value may | 
|  | * only be different than the passed value (delta) in the case where | 
|  | * a subpool minimum size must be maintained. | 
|  | */ | 
|  | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | 
|  | long delta) | 
|  | { | 
|  | long ret = delta; | 
|  |  | 
|  | if (!spool) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irq(&spool->lock); | 
|  |  | 
|  | if (spool->max_hpages != -1) {		/* maximum size accounting */ | 
|  | if ((spool->used_hpages + delta) <= spool->max_hpages) | 
|  | spool->used_hpages += delta; | 
|  | else { | 
|  | ret = -ENOMEM; | 
|  | goto unlock_ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* minimum size accounting */ | 
|  | if (spool->min_hpages != -1 && spool->rsv_hpages) { | 
|  | if (delta > spool->rsv_hpages) { | 
|  | /* | 
|  | * Asking for more reserves than those already taken on | 
|  | * behalf of subpool.  Return difference. | 
|  | */ | 
|  | ret = delta - spool->rsv_hpages; | 
|  | spool->rsv_hpages = 0; | 
|  | } else { | 
|  | ret = 0;	/* reserves already accounted for */ | 
|  | spool->rsv_hpages -= delta; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock_ret: | 
|  | spin_unlock_irq(&spool->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subpool accounting for freeing and unreserving pages. | 
|  | * Return the number of global page reservations that must be dropped. | 
|  | * The return value may only be different than the passed value (delta) | 
|  | * in the case where a subpool minimum size must be maintained. | 
|  | */ | 
|  | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | 
|  | long delta) | 
|  | { | 
|  | long ret = delta; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!spool) | 
|  | return delta; | 
|  |  | 
|  | spin_lock_irqsave(&spool->lock, flags); | 
|  |  | 
|  | if (spool->max_hpages != -1)		/* maximum size accounting */ | 
|  | spool->used_hpages -= delta; | 
|  |  | 
|  | /* minimum size accounting */ | 
|  | if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { | 
|  | if (spool->rsv_hpages + delta <= spool->min_hpages) | 
|  | ret = 0; | 
|  | else | 
|  | ret = spool->rsv_hpages + delta - spool->min_hpages; | 
|  |  | 
|  | spool->rsv_hpages += delta; | 
|  | if (spool->rsv_hpages > spool->min_hpages) | 
|  | spool->rsv_hpages = spool->min_hpages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If hugetlbfs_put_super couldn't free spool due to an outstanding | 
|  | * quota reference, free it now. | 
|  | */ | 
|  | unlock_or_release_subpool(spool, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | 
|  | { | 
|  | return HUGETLBFS_SB(inode->i_sb)->spool; | 
|  | } | 
|  |  | 
|  | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | return subpool_inode(file_inode(vma->vm_file)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb vma_lock helper routines | 
|  | */ | 
|  | void hugetlb_vma_lock_read(struct vm_area_struct *vma) | 
|  | { | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | down_read(&vma_lock->rw_sema); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | down_read(&resv_map->rw_sema); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hugetlb_vma_unlock_read(struct vm_area_struct *vma) | 
|  | { | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | up_read(&vma_lock->rw_sema); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | up_read(&resv_map->rw_sema); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hugetlb_vma_lock_write(struct vm_area_struct *vma) | 
|  | { | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | down_write(&vma_lock->rw_sema); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | down_write(&resv_map->rw_sema); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hugetlb_vma_unlock_write(struct vm_area_struct *vma) | 
|  | { | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | up_write(&vma_lock->rw_sema); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | up_write(&resv_map->rw_sema); | 
|  | } | 
|  | } | 
|  |  | 
|  | int hugetlb_vma_trylock_write(struct vm_area_struct *vma) | 
|  | { | 
|  |  | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | return down_write_trylock(&vma_lock->rw_sema); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | return down_write_trylock(&resv_map->rw_sema); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void hugetlb_vma_assert_locked(struct vm_area_struct *vma) | 
|  | { | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | lockdep_assert_held(&vma_lock->rw_sema); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | lockdep_assert_held(&resv_map->rw_sema); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hugetlb_vma_lock_release(struct kref *kref) | 
|  | { | 
|  | struct hugetlb_vma_lock *vma_lock = container_of(kref, | 
|  | struct hugetlb_vma_lock, refs); | 
|  |  | 
|  | kfree(vma_lock); | 
|  | } | 
|  |  | 
|  | static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) | 
|  | { | 
|  | struct vm_area_struct *vma = vma_lock->vma; | 
|  |  | 
|  | /* | 
|  | * vma_lock structure may or not be released as a result of put, | 
|  | * it certainly will no longer be attached to vma so clear pointer. | 
|  | * Semaphore synchronizes access to vma_lock->vma field. | 
|  | */ | 
|  | vma_lock->vma = NULL; | 
|  | vma->vm_private_data = NULL; | 
|  | up_write(&vma_lock->rw_sema); | 
|  | kref_put(&vma_lock->refs, hugetlb_vma_lock_release); | 
|  | } | 
|  |  | 
|  | static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) | 
|  | { | 
|  | if (__vma_shareable_lock(vma)) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | __hugetlb_vma_unlock_write_put(vma_lock); | 
|  | } else if (__vma_private_lock(vma)) { | 
|  | struct resv_map *resv_map = vma_resv_map(vma); | 
|  |  | 
|  | /* no free for anon vmas, but still need to unlock */ | 
|  | up_write(&resv_map->rw_sema); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hugetlb_vma_lock_free(struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * Only present in sharable vmas. | 
|  | */ | 
|  | if (!vma || !__vma_shareable_lock(vma)) | 
|  | return; | 
|  |  | 
|  | if (vma->vm_private_data) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | down_write(&vma_lock->rw_sema); | 
|  | __hugetlb_vma_unlock_write_put(vma_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) | 
|  | { | 
|  | struct hugetlb_vma_lock *vma_lock; | 
|  |  | 
|  | /* Only establish in (flags) sharable vmas */ | 
|  | if (!vma || !(vma->vm_flags & VM_MAYSHARE)) | 
|  | return; | 
|  |  | 
|  | /* Should never get here with non-NULL vm_private_data */ | 
|  | if (vma->vm_private_data) | 
|  | return; | 
|  |  | 
|  | vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); | 
|  | if (!vma_lock) { | 
|  | /* | 
|  | * If we can not allocate structure, then vma can not | 
|  | * participate in pmd sharing.  This is only a possible | 
|  | * performance enhancement and memory saving issue. | 
|  | * However, the lock is also used to synchronize page | 
|  | * faults with truncation.  If the lock is not present, | 
|  | * unlikely races could leave pages in a file past i_size | 
|  | * until the file is removed.  Warn in the unlikely case of | 
|  | * allocation failure. | 
|  | */ | 
|  | pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kref_init(&vma_lock->refs); | 
|  | init_rwsem(&vma_lock->rw_sema); | 
|  | vma_lock->vma = vma; | 
|  | vma->vm_private_data = vma_lock; | 
|  | } | 
|  |  | 
|  | /* Helper that removes a struct file_region from the resv_map cache and returns | 
|  | * it for use. | 
|  | */ | 
|  | static struct file_region * | 
|  | get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) | 
|  | { | 
|  | struct file_region *nrg; | 
|  |  | 
|  | VM_BUG_ON(resv->region_cache_count <= 0); | 
|  |  | 
|  | resv->region_cache_count--; | 
|  | nrg = list_first_entry(&resv->region_cache, struct file_region, link); | 
|  | list_del(&nrg->link); | 
|  |  | 
|  | nrg->from = from; | 
|  | nrg->to = to; | 
|  |  | 
|  | return nrg; | 
|  | } | 
|  |  | 
|  | static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, | 
|  | struct file_region *rg) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_HUGETLB | 
|  | nrg->reservation_counter = rg->reservation_counter; | 
|  | nrg->css = rg->css; | 
|  | if (rg->css) | 
|  | css_get(rg->css); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Helper that records hugetlb_cgroup uncharge info. */ | 
|  | static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, | 
|  | struct hstate *h, | 
|  | struct resv_map *resv, | 
|  | struct file_region *nrg) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_HUGETLB | 
|  | if (h_cg) { | 
|  | nrg->reservation_counter = | 
|  | &h_cg->rsvd_hugepage[hstate_index(h)]; | 
|  | nrg->css = &h_cg->css; | 
|  | /* | 
|  | * The caller will hold exactly one h_cg->css reference for the | 
|  | * whole contiguous reservation region. But this area might be | 
|  | * scattered when there are already some file_regions reside in | 
|  | * it. As a result, many file_regions may share only one css | 
|  | * reference. In order to ensure that one file_region must hold | 
|  | * exactly one h_cg->css reference, we should do css_get for | 
|  | * each file_region and leave the reference held by caller | 
|  | * untouched. | 
|  | */ | 
|  | css_get(&h_cg->css); | 
|  | if (!resv->pages_per_hpage) | 
|  | resv->pages_per_hpage = pages_per_huge_page(h); | 
|  | /* pages_per_hpage should be the same for all entries in | 
|  | * a resv_map. | 
|  | */ | 
|  | VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); | 
|  | } else { | 
|  | nrg->reservation_counter = NULL; | 
|  | nrg->css = NULL; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void put_uncharge_info(struct file_region *rg) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_HUGETLB | 
|  | if (rg->css) | 
|  | css_put(rg->css); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool has_same_uncharge_info(struct file_region *rg, | 
|  | struct file_region *org) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_HUGETLB | 
|  | return rg->reservation_counter == org->reservation_counter && | 
|  | rg->css == org->css; | 
|  |  | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) | 
|  | { | 
|  | struct file_region *nrg, *prg; | 
|  |  | 
|  | prg = list_prev_entry(rg, link); | 
|  | if (&prg->link != &resv->regions && prg->to == rg->from && | 
|  | has_same_uncharge_info(prg, rg)) { | 
|  | prg->to = rg->to; | 
|  |  | 
|  | list_del(&rg->link); | 
|  | put_uncharge_info(rg); | 
|  | kfree(rg); | 
|  |  | 
|  | rg = prg; | 
|  | } | 
|  |  | 
|  | nrg = list_next_entry(rg, link); | 
|  | if (&nrg->link != &resv->regions && nrg->from == rg->to && | 
|  | has_same_uncharge_info(nrg, rg)) { | 
|  | nrg->from = rg->from; | 
|  |  | 
|  | list_del(&rg->link); | 
|  | put_uncharge_info(rg); | 
|  | kfree(rg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline long | 
|  | hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, | 
|  | long to, struct hstate *h, struct hugetlb_cgroup *cg, | 
|  | long *regions_needed) | 
|  | { | 
|  | struct file_region *nrg; | 
|  |  | 
|  | if (!regions_needed) { | 
|  | nrg = get_file_region_entry_from_cache(map, from, to); | 
|  | record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); | 
|  | list_add(&nrg->link, rg); | 
|  | coalesce_file_region(map, nrg); | 
|  | } else | 
|  | *regions_needed += 1; | 
|  |  | 
|  | return to - from; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with resv->lock held. | 
|  | * | 
|  | * Calling this with regions_needed != NULL will count the number of pages | 
|  | * to be added but will not modify the linked list. And regions_needed will | 
|  | * indicate the number of file_regions needed in the cache to carry out to add | 
|  | * the regions for this range. | 
|  | */ | 
|  | static long add_reservation_in_range(struct resv_map *resv, long f, long t, | 
|  | struct hugetlb_cgroup *h_cg, | 
|  | struct hstate *h, long *regions_needed) | 
|  | { | 
|  | long add = 0; | 
|  | struct list_head *head = &resv->regions; | 
|  | long last_accounted_offset = f; | 
|  | struct file_region *iter, *trg = NULL; | 
|  | struct list_head *rg = NULL; | 
|  |  | 
|  | if (regions_needed) | 
|  | *regions_needed = 0; | 
|  |  | 
|  | /* In this loop, we essentially handle an entry for the range | 
|  | * [last_accounted_offset, iter->from), at every iteration, with some | 
|  | * bounds checking. | 
|  | */ | 
|  | list_for_each_entry_safe(iter, trg, head, link) { | 
|  | /* Skip irrelevant regions that start before our range. */ | 
|  | if (iter->from < f) { | 
|  | /* If this region ends after the last accounted offset, | 
|  | * then we need to update last_accounted_offset. | 
|  | */ | 
|  | if (iter->to > last_accounted_offset) | 
|  | last_accounted_offset = iter->to; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* When we find a region that starts beyond our range, we've | 
|  | * finished. | 
|  | */ | 
|  | if (iter->from >= t) { | 
|  | rg = iter->link.prev; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Add an entry for last_accounted_offset -> iter->from, and | 
|  | * update last_accounted_offset. | 
|  | */ | 
|  | if (iter->from > last_accounted_offset) | 
|  | add += hugetlb_resv_map_add(resv, iter->link.prev, | 
|  | last_accounted_offset, | 
|  | iter->from, h, h_cg, | 
|  | regions_needed); | 
|  |  | 
|  | last_accounted_offset = iter->to; | 
|  | } | 
|  |  | 
|  | /* Handle the case where our range extends beyond | 
|  | * last_accounted_offset. | 
|  | */ | 
|  | if (!rg) | 
|  | rg = head->prev; | 
|  | if (last_accounted_offset < t) | 
|  | add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, | 
|  | t, h, h_cg, regions_needed); | 
|  |  | 
|  | return add; | 
|  | } | 
|  |  | 
|  | /* Must be called with resv->lock acquired. Will drop lock to allocate entries. | 
|  | */ | 
|  | static int allocate_file_region_entries(struct resv_map *resv, | 
|  | int regions_needed) | 
|  | __must_hold(&resv->lock) | 
|  | { | 
|  | LIST_HEAD(allocated_regions); | 
|  | int to_allocate = 0, i = 0; | 
|  | struct file_region *trg = NULL, *rg = NULL; | 
|  |  | 
|  | VM_BUG_ON(regions_needed < 0); | 
|  |  | 
|  | /* | 
|  | * Check for sufficient descriptors in the cache to accommodate | 
|  | * the number of in progress add operations plus regions_needed. | 
|  | * | 
|  | * This is a while loop because when we drop the lock, some other call | 
|  | * to region_add or region_del may have consumed some region_entries, | 
|  | * so we keep looping here until we finally have enough entries for | 
|  | * (adds_in_progress + regions_needed). | 
|  | */ | 
|  | while (resv->region_cache_count < | 
|  | (resv->adds_in_progress + regions_needed)) { | 
|  | to_allocate = resv->adds_in_progress + regions_needed - | 
|  | resv->region_cache_count; | 
|  |  | 
|  | /* At this point, we should have enough entries in the cache | 
|  | * for all the existing adds_in_progress. We should only be | 
|  | * needing to allocate for regions_needed. | 
|  | */ | 
|  | VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); | 
|  |  | 
|  | spin_unlock(&resv->lock); | 
|  | for (i = 0; i < to_allocate; i++) { | 
|  | trg = kmalloc(sizeof(*trg), GFP_KERNEL); | 
|  | if (!trg) | 
|  | goto out_of_memory; | 
|  | list_add(&trg->link, &allocated_regions); | 
|  | } | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  |  | 
|  | list_splice(&allocated_regions, &resv->region_cache); | 
|  | resv->region_cache_count += to_allocate; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_of_memory: | 
|  | list_for_each_entry_safe(rg, trg, &allocated_regions, link) { | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the huge page range represented by [f, t) to the reserve | 
|  | * map.  Regions will be taken from the cache to fill in this range. | 
|  | * Sufficient regions should exist in the cache due to the previous | 
|  | * call to region_chg with the same range, but in some cases the cache will not | 
|  | * have sufficient entries due to races with other code doing region_add or | 
|  | * region_del.  The extra needed entries will be allocated. | 
|  | * | 
|  | * regions_needed is the out value provided by a previous call to region_chg. | 
|  | * | 
|  | * Return the number of new huge pages added to the map.  This number is greater | 
|  | * than or equal to zero.  If file_region entries needed to be allocated for | 
|  | * this operation and we were not able to allocate, it returns -ENOMEM. | 
|  | * region_add of regions of length 1 never allocate file_regions and cannot | 
|  | * fail; region_chg will always allocate at least 1 entry and a region_add for | 
|  | * 1 page will only require at most 1 entry. | 
|  | */ | 
|  | static long region_add(struct resv_map *resv, long f, long t, | 
|  | long in_regions_needed, struct hstate *h, | 
|  | struct hugetlb_cgroup *h_cg) | 
|  | { | 
|  | long add = 0, actual_regions_needed = 0; | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  | retry: | 
|  |  | 
|  | /* Count how many regions are actually needed to execute this add. */ | 
|  | add_reservation_in_range(resv, f, t, NULL, NULL, | 
|  | &actual_regions_needed); | 
|  |  | 
|  | /* | 
|  | * Check for sufficient descriptors in the cache to accommodate | 
|  | * this add operation. Note that actual_regions_needed may be greater | 
|  | * than in_regions_needed, as the resv_map may have been modified since | 
|  | * the region_chg call. In this case, we need to make sure that we | 
|  | * allocate extra entries, such that we have enough for all the | 
|  | * existing adds_in_progress, plus the excess needed for this | 
|  | * operation. | 
|  | */ | 
|  | if (actual_regions_needed > in_regions_needed && | 
|  | resv->region_cache_count < | 
|  | resv->adds_in_progress + | 
|  | (actual_regions_needed - in_regions_needed)) { | 
|  | /* region_add operation of range 1 should never need to | 
|  | * allocate file_region entries. | 
|  | */ | 
|  | VM_BUG_ON(t - f <= 1); | 
|  |  | 
|  | if (allocate_file_region_entries( | 
|  | resv, actual_regions_needed - in_regions_needed)) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); | 
|  |  | 
|  | resv->adds_in_progress -= in_regions_needed; | 
|  |  | 
|  | spin_unlock(&resv->lock); | 
|  | return add; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine the existing reserve map and determine how many | 
|  | * huge pages in the specified range [f, t) are NOT currently | 
|  | * represented.  This routine is called before a subsequent | 
|  | * call to region_add that will actually modify the reserve | 
|  | * map to add the specified range [f, t).  region_chg does | 
|  | * not change the number of huge pages represented by the | 
|  | * map.  A number of new file_region structures is added to the cache as a | 
|  | * placeholder, for the subsequent region_add call to use. At least 1 | 
|  | * file_region structure is added. | 
|  | * | 
|  | * out_regions_needed is the number of regions added to the | 
|  | * resv->adds_in_progress.  This value needs to be provided to a follow up call | 
|  | * to region_add or region_abort for proper accounting. | 
|  | * | 
|  | * Returns the number of huge pages that need to be added to the existing | 
|  | * reservation map for the range [f, t).  This number is greater or equal to | 
|  | * zero.  -ENOMEM is returned if a new file_region structure or cache entry | 
|  | * is needed and can not be allocated. | 
|  | */ | 
|  | static long region_chg(struct resv_map *resv, long f, long t, | 
|  | long *out_regions_needed) | 
|  | { | 
|  | long chg = 0; | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  |  | 
|  | /* Count how many hugepages in this range are NOT represented. */ | 
|  | chg = add_reservation_in_range(resv, f, t, NULL, NULL, | 
|  | out_regions_needed); | 
|  |  | 
|  | if (*out_regions_needed == 0) | 
|  | *out_regions_needed = 1; | 
|  |  | 
|  | if (allocate_file_region_entries(resv, *out_regions_needed)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | resv->adds_in_progress += *out_regions_needed; | 
|  |  | 
|  | spin_unlock(&resv->lock); | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Abort the in progress add operation.  The adds_in_progress field | 
|  | * of the resv_map keeps track of the operations in progress between | 
|  | * calls to region_chg and region_add.  Operations are sometimes | 
|  | * aborted after the call to region_chg.  In such cases, region_abort | 
|  | * is called to decrement the adds_in_progress counter. regions_needed | 
|  | * is the value returned by the region_chg call, it is used to decrement | 
|  | * the adds_in_progress counter. | 
|  | * | 
|  | * NOTE: The range arguments [f, t) are not needed or used in this | 
|  | * routine.  They are kept to make reading the calling code easier as | 
|  | * arguments will match the associated region_chg call. | 
|  | */ | 
|  | static void region_abort(struct resv_map *resv, long f, long t, | 
|  | long regions_needed) | 
|  | { | 
|  | spin_lock(&resv->lock); | 
|  | VM_BUG_ON(!resv->region_cache_count); | 
|  | resv->adds_in_progress -= regions_needed; | 
|  | spin_unlock(&resv->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete the specified range [f, t) from the reserve map.  If the | 
|  | * t parameter is LONG_MAX, this indicates that ALL regions after f | 
|  | * should be deleted.  Locate the regions which intersect [f, t) | 
|  | * and either trim, delete or split the existing regions. | 
|  | * | 
|  | * Returns the number of huge pages deleted from the reserve map. | 
|  | * In the normal case, the return value is zero or more.  In the | 
|  | * case where a region must be split, a new region descriptor must | 
|  | * be allocated.  If the allocation fails, -ENOMEM will be returned. | 
|  | * NOTE: If the parameter t == LONG_MAX, then we will never split | 
|  | * a region and possibly return -ENOMEM.  Callers specifying | 
|  | * t == LONG_MAX do not need to check for -ENOMEM error. | 
|  | */ | 
|  | static long region_del(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | struct list_head *head = &resv->regions; | 
|  | struct file_region *rg, *trg; | 
|  | struct file_region *nrg = NULL; | 
|  | long del = 0; | 
|  |  | 
|  | retry: | 
|  | spin_lock(&resv->lock); | 
|  | list_for_each_entry_safe(rg, trg, head, link) { | 
|  | /* | 
|  | * Skip regions before the range to be deleted.  file_region | 
|  | * ranges are normally of the form [from, to).  However, there | 
|  | * may be a "placeholder" entry in the map which is of the form | 
|  | * (from, to) with from == to.  Check for placeholder entries | 
|  | * at the beginning of the range to be deleted. | 
|  | */ | 
|  | if (rg->to <= f && (rg->to != rg->from || rg->to != f)) | 
|  | continue; | 
|  |  | 
|  | if (rg->from >= t) | 
|  | break; | 
|  |  | 
|  | if (f > rg->from && t < rg->to) { /* Must split region */ | 
|  | /* | 
|  | * Check for an entry in the cache before dropping | 
|  | * lock and attempting allocation. | 
|  | */ | 
|  | if (!nrg && | 
|  | resv->region_cache_count > resv->adds_in_progress) { | 
|  | nrg = list_first_entry(&resv->region_cache, | 
|  | struct file_region, | 
|  | link); | 
|  | list_del(&nrg->link); | 
|  | resv->region_cache_count--; | 
|  | } | 
|  |  | 
|  | if (!nrg) { | 
|  | spin_unlock(&resv->lock); | 
|  | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
|  | if (!nrg) | 
|  | return -ENOMEM; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | del += t - f; | 
|  | hugetlb_cgroup_uncharge_file_region( | 
|  | resv, rg, t - f, false); | 
|  |  | 
|  | /* New entry for end of split region */ | 
|  | nrg->from = t; | 
|  | nrg->to = rg->to; | 
|  |  | 
|  | copy_hugetlb_cgroup_uncharge_info(nrg, rg); | 
|  |  | 
|  | INIT_LIST_HEAD(&nrg->link); | 
|  |  | 
|  | /* Original entry is trimmed */ | 
|  | rg->to = f; | 
|  |  | 
|  | list_add(&nrg->link, &rg->link); | 
|  | nrg = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (f <= rg->from && t >= rg->to) { /* Remove entire region */ | 
|  | del += rg->to - rg->from; | 
|  | hugetlb_cgroup_uncharge_file_region(resv, rg, | 
|  | rg->to - rg->from, true); | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (f <= rg->from) {	/* Trim beginning of region */ | 
|  | hugetlb_cgroup_uncharge_file_region(resv, rg, | 
|  | t - rg->from, false); | 
|  |  | 
|  | del += t - rg->from; | 
|  | rg->from = t; | 
|  | } else {		/* Trim end of region */ | 
|  | hugetlb_cgroup_uncharge_file_region(resv, rg, | 
|  | rg->to - f, false); | 
|  |  | 
|  | del += rg->to - f; | 
|  | rg->to = f; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&resv->lock); | 
|  | kfree(nrg); | 
|  | return del; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A rare out of memory error was encountered which prevented removal of | 
|  | * the reserve map region for a page.  The huge page itself was free'ed | 
|  | * and removed from the page cache.  This routine will adjust the subpool | 
|  | * usage count, and the global reserve count if needed.  By incrementing | 
|  | * these counts, the reserve map entry which could not be deleted will | 
|  | * appear as a "reserved" entry instead of simply dangling with incorrect | 
|  | * counts. | 
|  | */ | 
|  | void hugetlb_fix_reserve_counts(struct inode *inode) | 
|  | { | 
|  | struct hugepage_subpool *spool = subpool_inode(inode); | 
|  | long rsv_adjust; | 
|  | bool reserved = false; | 
|  |  | 
|  | rsv_adjust = hugepage_subpool_get_pages(spool, 1); | 
|  | if (rsv_adjust > 0) { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  |  | 
|  | if (!hugetlb_acct_memory(h, 1)) | 
|  | reserved = true; | 
|  | } else if (!rsv_adjust) { | 
|  | reserved = true; | 
|  | } | 
|  |  | 
|  | if (!reserved) | 
|  | pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Count and return the number of huge pages in the reserve map | 
|  | * that intersect with the range [f, t). | 
|  | */ | 
|  | static long region_count(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | struct list_head *head = &resv->regions; | 
|  | struct file_region *rg; | 
|  | long chg = 0; | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  | /* Locate each segment we overlap with, and count that overlap. */ | 
|  | list_for_each_entry(rg, head, link) { | 
|  | long seg_from; | 
|  | long seg_to; | 
|  |  | 
|  | if (rg->to <= f) | 
|  | continue; | 
|  | if (rg->from >= t) | 
|  | break; | 
|  |  | 
|  | seg_from = max(rg->from, f); | 
|  | seg_to = min(rg->to, t); | 
|  |  | 
|  | chg += seg_to - seg_from; | 
|  | } | 
|  | spin_unlock(&resv->lock); | 
|  |  | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the address within this vma to the page offset within | 
|  | * the mapping, in pagecache page units; huge pages here. | 
|  | */ | 
|  | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
|  | (vma->vm_pgoff >> huge_page_order(h)); | 
|  | } | 
|  |  | 
|  | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | return vma_hugecache_offset(hstate_vma(vma), vma, address); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(linear_hugepage_index); | 
|  |  | 
|  | /** | 
|  | * vma_kernel_pagesize - Page size granularity for this VMA. | 
|  | * @vma: The user mapping. | 
|  | * | 
|  | * Folios in this VMA will be aligned to, and at least the size of the | 
|  | * number of bytes returned by this function. | 
|  | * | 
|  | * Return: The default size of the folios allocated when backing a VMA. | 
|  | */ | 
|  | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_ops && vma->vm_ops->pagesize) | 
|  | return vma->vm_ops->pagesize(vma); | 
|  | return PAGE_SIZE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); | 
|  |  | 
|  | /* | 
|  | * Return the page size being used by the MMU to back a VMA. In the majority | 
|  | * of cases, the page size used by the kernel matches the MMU size. On | 
|  | * architectures where it differs, an architecture-specific 'strong' | 
|  | * version of this symbol is required. | 
|  | */ | 
|  | __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | return vma_kernel_pagesize(vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
|  | * bits of the reservation map pointer, which are always clear due to | 
|  | * alignment. | 
|  | */ | 
|  | #define HPAGE_RESV_OWNER    (1UL << 0) | 
|  | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
|  | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
|  |  | 
|  | /* | 
|  | * These helpers are used to track how many pages are reserved for | 
|  | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
|  | * is guaranteed to have their future faults succeed. | 
|  | * | 
|  | * With the exception of hugetlb_dup_vma_private() which is called at fork(), | 
|  | * the reserve counters are updated with the hugetlb_lock held. It is safe | 
|  | * to reset the VMA at fork() time as it is not in use yet and there is no | 
|  | * chance of the global counters getting corrupted as a result of the values. | 
|  | * | 
|  | * The private mapping reservation is represented in a subtly different | 
|  | * manner to a shared mapping.  A shared mapping has a region map associated | 
|  | * with the underlying file, this region map represents the backing file | 
|  | * pages which have ever had a reservation assigned which this persists even | 
|  | * after the page is instantiated.  A private mapping has a region map | 
|  | * associated with the original mmap which is attached to all VMAs which | 
|  | * reference it, this region map represents those offsets which have consumed | 
|  | * reservation ie. where pages have been instantiated. | 
|  | */ | 
|  | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
|  | { | 
|  | return (unsigned long)vma->vm_private_data; | 
|  | } | 
|  |  | 
|  | static void set_vma_private_data(struct vm_area_struct *vma, | 
|  | unsigned long value) | 
|  | { | 
|  | vma->vm_private_data = (void *)value; | 
|  | } | 
|  |  | 
|  | static void | 
|  | resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, | 
|  | struct hugetlb_cgroup *h_cg, | 
|  | struct hstate *h) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_HUGETLB | 
|  | if (!h_cg || !h) { | 
|  | resv_map->reservation_counter = NULL; | 
|  | resv_map->pages_per_hpage = 0; | 
|  | resv_map->css = NULL; | 
|  | } else { | 
|  | resv_map->reservation_counter = | 
|  | &h_cg->rsvd_hugepage[hstate_index(h)]; | 
|  | resv_map->pages_per_hpage = pages_per_huge_page(h); | 
|  | resv_map->css = &h_cg->css; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct resv_map *resv_map_alloc(void) | 
|  | { | 
|  | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
|  | struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); | 
|  |  | 
|  | if (!resv_map || !rg) { | 
|  | kfree(resv_map); | 
|  | kfree(rg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | kref_init(&resv_map->refs); | 
|  | spin_lock_init(&resv_map->lock); | 
|  | INIT_LIST_HEAD(&resv_map->regions); | 
|  | init_rwsem(&resv_map->rw_sema); | 
|  |  | 
|  | resv_map->adds_in_progress = 0; | 
|  | /* | 
|  | * Initialize these to 0. On shared mappings, 0's here indicate these | 
|  | * fields don't do cgroup accounting. On private mappings, these will be | 
|  | * re-initialized to the proper values, to indicate that hugetlb cgroup | 
|  | * reservations are to be un-charged from here. | 
|  | */ | 
|  | resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); | 
|  |  | 
|  | INIT_LIST_HEAD(&resv_map->region_cache); | 
|  | list_add(&rg->link, &resv_map->region_cache); | 
|  | resv_map->region_cache_count = 1; | 
|  |  | 
|  | return resv_map; | 
|  | } | 
|  |  | 
|  | void resv_map_release(struct kref *ref) | 
|  | { | 
|  | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
|  | struct list_head *head = &resv_map->region_cache; | 
|  | struct file_region *rg, *trg; | 
|  |  | 
|  | /* Clear out any active regions before we release the map. */ | 
|  | region_del(resv_map, 0, LONG_MAX); | 
|  |  | 
|  | /* ... and any entries left in the cache */ | 
|  | list_for_each_entry_safe(rg, trg, head, link) { | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(resv_map->adds_in_progress); | 
|  |  | 
|  | kfree(resv_map); | 
|  | } | 
|  |  | 
|  | static inline struct resv_map *inode_resv_map(struct inode *inode) | 
|  | { | 
|  | /* | 
|  | * At inode evict time, i_mapping may not point to the original | 
|  | * address space within the inode.  This original address space | 
|  | * contains the pointer to the resv_map.  So, always use the | 
|  | * address space embedded within the inode. | 
|  | * The VERY common case is inode->mapping == &inode->i_data but, | 
|  | * this may not be true for device special inodes. | 
|  | */ | 
|  | return (struct resv_map *)(&inode->i_data)->private_data; | 
|  | } | 
|  |  | 
|  | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | return inode_resv_map(inode); | 
|  |  | 
|  | } else { | 
|  | return (struct resv_map *)(get_vma_private_data(vma) & | 
|  | ~HPAGE_RESV_MASK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
|  |  | 
|  | set_vma_private_data(vma, (unsigned long)map); | 
|  | } | 
|  |  | 
|  | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
|  |  | 
|  | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
|  | } | 
|  |  | 
|  | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  |  | 
|  | return (get_vma_private_data(vma) & flag) != 0; | 
|  | } | 
|  |  | 
|  | bool __vma_private_lock(struct vm_area_struct *vma) | 
|  | { | 
|  | return !(vma->vm_flags & VM_MAYSHARE) && | 
|  | get_vma_private_data(vma) & ~HPAGE_RESV_MASK && | 
|  | is_vma_resv_set(vma, HPAGE_RESV_OWNER); | 
|  | } | 
|  |  | 
|  | void hugetlb_dup_vma_private(struct vm_area_struct *vma) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | /* | 
|  | * Clear vm_private_data | 
|  | * - For shared mappings this is a per-vma semaphore that may be | 
|  | *   allocated in a subsequent call to hugetlb_vm_op_open. | 
|  | *   Before clearing, make sure pointer is not associated with vma | 
|  | *   as this will leak the structure.  This is the case when called | 
|  | *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already | 
|  | *   been called to allocate a new structure. | 
|  | * - For MAP_PRIVATE mappings, this is the reserve map which does | 
|  | *   not apply to children.  Faults generated by the children are | 
|  | *   not guaranteed to succeed, even if read-only. | 
|  | */ | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | if (vma_lock && vma_lock->vma != vma) | 
|  | vma->vm_private_data = NULL; | 
|  | } else | 
|  | vma->vm_private_data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset and decrement one ref on hugepage private reservation. | 
|  | * Called with mm->mmap_lock writer semaphore held. | 
|  | * This function should be only used by move_vma() and operate on | 
|  | * same sized vma. It should never come here with last ref on the | 
|  | * reservation. | 
|  | */ | 
|  | void clear_vma_resv_huge_pages(struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * Clear the old hugetlb private page reservation. | 
|  | * It has already been transferred to new_vma. | 
|  | * | 
|  | * During a mremap() operation of a hugetlb vma we call move_vma() | 
|  | * which copies vma into new_vma and unmaps vma. After the copy | 
|  | * operation both new_vma and vma share a reference to the resv_map | 
|  | * struct, and at that point vma is about to be unmapped. We don't | 
|  | * want to return the reservation to the pool at unmap of vma because | 
|  | * the reservation still lives on in new_vma, so simply decrement the | 
|  | * ref here and remove the resv_map reference from this vma. | 
|  | */ | 
|  | struct resv_map *reservations = vma_resv_map(vma); | 
|  |  | 
|  | if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | resv_map_put_hugetlb_cgroup_uncharge_info(reservations); | 
|  | kref_put(&reservations->refs, resv_map_release); | 
|  | } | 
|  |  | 
|  | hugetlb_dup_vma_private(vma); | 
|  | } | 
|  |  | 
|  | /* Returns true if the VMA has associated reserve pages */ | 
|  | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) | 
|  | { | 
|  | if (vma->vm_flags & VM_NORESERVE) { | 
|  | /* | 
|  | * This address is already reserved by other process(chg == 0), | 
|  | * so, we should decrement reserved count. Without decrementing, | 
|  | * reserve count remains after releasing inode, because this | 
|  | * allocated page will go into page cache and is regarded as | 
|  | * coming from reserved pool in releasing step.  Currently, we | 
|  | * don't have any other solution to deal with this situation | 
|  | * properly, so add work-around here. | 
|  | */ | 
|  | if (vma->vm_flags & VM_MAYSHARE && chg == 0) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Shared mappings always use reserves */ | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | /* | 
|  | * We know VM_NORESERVE is not set.  Therefore, there SHOULD | 
|  | * be a region map for all pages.  The only situation where | 
|  | * there is no region map is if a hole was punched via | 
|  | * fallocate.  In this case, there really are no reserves to | 
|  | * use.  This situation is indicated if chg != 0. | 
|  | */ | 
|  | if (chg) | 
|  | return false; | 
|  | else | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only the process that called mmap() has reserves for | 
|  | * private mappings. | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | /* | 
|  | * Like the shared case above, a hole punch or truncate | 
|  | * could have been performed on the private mapping. | 
|  | * Examine the value of chg to determine if reserves | 
|  | * actually exist or were previously consumed. | 
|  | * Very Subtle - The value of chg comes from a previous | 
|  | * call to vma_needs_reserves().  The reserve map for | 
|  | * private mappings has different (opposite) semantics | 
|  | * than that of shared mappings.  vma_needs_reserves() | 
|  | * has already taken this difference in semantics into | 
|  | * account.  Therefore, the meaning of chg is the same | 
|  | * as in the shared case above.  Code could easily be | 
|  | * combined, but keeping it separate draws attention to | 
|  | * subtle differences. | 
|  | */ | 
|  | if (chg) | 
|  | return false; | 
|  | else | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) | 
|  | { | 
|  | int nid = folio_nid(folio); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); | 
|  |  | 
|  | list_move(&folio->lru, &h->hugepage_freelists[nid]); | 
|  | h->free_huge_pages++; | 
|  | h->free_huge_pages_node[nid]++; | 
|  | folio_set_hugetlb_freed(folio); | 
|  | } | 
|  |  | 
|  | static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, | 
|  | int nid) | 
|  | { | 
|  | struct folio *folio; | 
|  | bool pin = !!(current->flags & PF_MEMALLOC_PIN); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { | 
|  | if (pin && !folio_is_longterm_pinnable(folio)) | 
|  | continue; | 
|  |  | 
|  | if (folio_test_hwpoison(folio)) | 
|  | continue; | 
|  |  | 
|  | list_move(&folio->lru, &h->hugepage_activelist); | 
|  | folio_ref_unfreeze(folio, 1); | 
|  | folio_clear_hugetlb_freed(folio); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[nid]--; | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nmask) | 
|  | { | 
|  | unsigned int cpuset_mems_cookie; | 
|  | struct zonelist *zonelist; | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  | int node = NUMA_NO_NODE; | 
|  |  | 
|  | zonelist = node_zonelist(nid, gfp_mask); | 
|  |  | 
|  | retry_cpuset: | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { | 
|  | struct folio *folio; | 
|  |  | 
|  | if (!cpuset_zone_allowed(zone, gfp_mask)) | 
|  | continue; | 
|  | /* | 
|  | * no need to ask again on the same node. Pool is node rather than | 
|  | * zone aware | 
|  | */ | 
|  | if (zone_to_nid(zone) == node) | 
|  | continue; | 
|  | node = zone_to_nid(zone); | 
|  |  | 
|  | folio = dequeue_hugetlb_folio_node_exact(h, node); | 
|  | if (folio) | 
|  | return folio; | 
|  | } | 
|  | if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) | 
|  | goto retry_cpuset; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long available_huge_pages(struct hstate *h) | 
|  | { | 
|  | return h->free_huge_pages - h->resv_huge_pages; | 
|  | } | 
|  |  | 
|  | static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, int avoid_reserve, | 
|  | long chg) | 
|  | { | 
|  | struct folio *folio = NULL; | 
|  | struct mempolicy *mpol; | 
|  | gfp_t gfp_mask; | 
|  | nodemask_t *nodemask; | 
|  | int nid; | 
|  |  | 
|  | /* | 
|  | * A child process with MAP_PRIVATE mappings created by their parent | 
|  | * have no page reserves. This check ensures that reservations are | 
|  | * not "stolen". The child may still get SIGKILLed | 
|  | */ | 
|  | if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) | 
|  | goto err; | 
|  |  | 
|  | /* If reserves cannot be used, ensure enough pages are in the pool */ | 
|  | if (avoid_reserve && !available_huge_pages(h)) | 
|  | goto err; | 
|  |  | 
|  | gfp_mask = htlb_alloc_mask(h); | 
|  | nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
|  |  | 
|  | if (mpol_is_preferred_many(mpol)) { | 
|  | folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, | 
|  | nid, nodemask); | 
|  |  | 
|  | /* Fallback to all nodes if page==NULL */ | 
|  | nodemask = NULL; | 
|  | } | 
|  |  | 
|  | if (!folio) | 
|  | folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, | 
|  | nid, nodemask); | 
|  |  | 
|  | if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { | 
|  | folio_set_hugetlb_restore_reserve(folio); | 
|  | h->resv_huge_pages--; | 
|  | } | 
|  |  | 
|  | mpol_cond_put(mpol); | 
|  | return folio; | 
|  |  | 
|  | err: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * common helper functions for hstate_next_node_to_{alloc|free}. | 
|  | * We may have allocated or freed a huge page based on a different | 
|  | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | 
|  | * be outside of *nodes_allowed.  Ensure that we use an allowed | 
|  | * node for alloc or free. | 
|  | */ | 
|  | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | 
|  | { | 
|  | nid = next_node_in(nid, *nodes_allowed); | 
|  | VM_BUG_ON(nid >= MAX_NUMNODES); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | 
|  | { | 
|  | if (!node_isset(nid, *nodes_allowed)) | 
|  | nid = next_node_allowed(nid, nodes_allowed); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns the previously saved node ["this node"] from which to | 
|  | * allocate a persistent huge page for the pool and advance the | 
|  | * next node from which to allocate, handling wrap at end of node | 
|  | * mask. | 
|  | */ | 
|  | static int hstate_next_node_to_alloc(struct hstate *h, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | VM_BUG_ON(!nodes_allowed); | 
|  |  | 
|  | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | 
|  | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for remove_pool_huge_page() - return the previously saved | 
|  | * node ["this node"] from which to free a huge page.  Advance the | 
|  | * next node id whether or not we find a free huge page to free so | 
|  | * that the next attempt to free addresses the next node. | 
|  | */ | 
|  | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | VM_BUG_ON(!nodes_allowed); | 
|  |  | 
|  | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | 
|  | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\ | 
|  | for (nr_nodes = nodes_weight(*mask);				\ | 
|  | nr_nodes > 0 &&						\ | 
|  | ((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\ | 
|  | nr_nodes--) | 
|  |  | 
|  | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\ | 
|  | for (nr_nodes = nodes_weight(*mask);				\ | 
|  | nr_nodes > 0 &&						\ | 
|  | ((node = hstate_next_node_to_free(hs, mask)) || 1);	\ | 
|  | nr_nodes--) | 
|  |  | 
|  | /* used to demote non-gigantic_huge pages as well */ | 
|  | static void __destroy_compound_gigantic_folio(struct folio *folio, | 
|  | unsigned int order, bool demote) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  | struct page *p; | 
|  |  | 
|  | atomic_set(&folio->_entire_mapcount, 0); | 
|  | atomic_set(&folio->_nr_pages_mapped, 0); | 
|  | atomic_set(&folio->_pincount, 0); | 
|  |  | 
|  | for (i = 1; i < nr_pages; i++) { | 
|  | p = folio_page(folio, i); | 
|  | p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; | 
|  | p->mapping = NULL; | 
|  | clear_compound_head(p); | 
|  | if (!demote) | 
|  | set_page_refcounted(p); | 
|  | } | 
|  |  | 
|  | __folio_clear_head(folio); | 
|  | } | 
|  |  | 
|  | static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, | 
|  | unsigned int order) | 
|  | { | 
|  | __destroy_compound_gigantic_folio(folio, order, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE | 
|  | static void destroy_compound_gigantic_folio(struct folio *folio, | 
|  | unsigned int order) | 
|  | { | 
|  | __destroy_compound_gigantic_folio(folio, order, false); | 
|  | } | 
|  |  | 
|  | static void free_gigantic_folio(struct folio *folio, unsigned int order) | 
|  | { | 
|  | /* | 
|  | * If the page isn't allocated using the cma allocator, | 
|  | * cma_release() returns false. | 
|  | */ | 
|  | #ifdef CONFIG_CMA | 
|  | int nid = folio_nid(folio); | 
|  |  | 
|  | if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | free_contig_range(folio_pfn(folio), 1 << order); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CONTIG_ALLOC | 
|  | static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nodemask) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long nr_pages = pages_per_huge_page(h); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nid = numa_mem_id(); | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | { | 
|  | int node; | 
|  |  | 
|  | if (hugetlb_cma[nid]) { | 
|  | page = cma_alloc(hugetlb_cma[nid], nr_pages, | 
|  | huge_page_order(h), true); | 
|  | if (page) | 
|  | return page_folio(page); | 
|  | } | 
|  |  | 
|  | if (!(gfp_mask & __GFP_THISNODE)) { | 
|  | for_each_node_mask(node, *nodemask) { | 
|  | if (node == nid || !hugetlb_cma[node]) | 
|  | continue; | 
|  |  | 
|  | page = cma_alloc(hugetlb_cma[node], nr_pages, | 
|  | huge_page_order(h), true); | 
|  | if (page) | 
|  | return page_folio(page); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); | 
|  | return page ? page_folio(page) : NULL; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_CONTIG_ALLOC */ | 
|  | static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nodemask) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif /* CONFIG_CONTIG_ALLOC */ | 
|  |  | 
|  | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ | 
|  | static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nodemask) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | static inline void free_gigantic_folio(struct folio *folio, | 
|  | unsigned int order) { } | 
|  | static inline void destroy_compound_gigantic_folio(struct folio *folio, | 
|  | unsigned int order) { } | 
|  | #endif | 
|  |  | 
|  | static inline void __clear_hugetlb_destructor(struct hstate *h, | 
|  | struct folio *folio) | 
|  | { | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  |  | 
|  | __folio_clear_hugetlb(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove hugetlb folio from lists. | 
|  | * If vmemmap exists for the folio, update dtor so that the folio appears | 
|  | * as just a compound page.  Otherwise, wait until after allocating vmemmap | 
|  | * to update dtor. | 
|  | * | 
|  | * A reference is held on the folio, except in the case of demote. | 
|  | * | 
|  | * Must be called with hugetlb lock held. | 
|  | */ | 
|  | static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, | 
|  | bool adjust_surplus, | 
|  | bool demote) | 
|  | { | 
|  | int nid = folio_nid(folio); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); | 
|  | VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
|  | return; | 
|  |  | 
|  | list_del(&folio->lru); | 
|  |  | 
|  | if (folio_test_hugetlb_freed(folio)) { | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[nid]--; | 
|  | } | 
|  | if (adjust_surplus) { | 
|  | h->surplus_huge_pages--; | 
|  | h->surplus_huge_pages_node[nid]--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can only clear the hugetlb destructor after allocating vmemmap | 
|  | * pages.  Otherwise, someone (memory error handling) may try to write | 
|  | * to tail struct pages. | 
|  | */ | 
|  | if (!folio_test_hugetlb_vmemmap_optimized(folio)) | 
|  | __clear_hugetlb_destructor(h, folio); | 
|  |  | 
|  | /* | 
|  | * In the case of demote we do not ref count the page as it will soon | 
|  | * be turned into a page of smaller size. | 
|  | */ | 
|  | if (!demote) | 
|  | folio_ref_unfreeze(folio, 1); | 
|  |  | 
|  | h->nr_huge_pages--; | 
|  | h->nr_huge_pages_node[nid]--; | 
|  | } | 
|  |  | 
|  | static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, | 
|  | bool adjust_surplus) | 
|  | { | 
|  | __remove_hugetlb_folio(h, folio, adjust_surplus, false); | 
|  | } | 
|  |  | 
|  | static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, | 
|  | bool adjust_surplus) | 
|  | { | 
|  | __remove_hugetlb_folio(h, folio, adjust_surplus, true); | 
|  | } | 
|  |  | 
|  | static void add_hugetlb_folio(struct hstate *h, struct folio *folio, | 
|  | bool adjust_surplus) | 
|  | { | 
|  | int zeroed; | 
|  | int nid = folio_nid(folio); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  |  | 
|  | INIT_LIST_HEAD(&folio->lru); | 
|  | h->nr_huge_pages++; | 
|  | h->nr_huge_pages_node[nid]++; | 
|  |  | 
|  | if (adjust_surplus) { | 
|  | h->surplus_huge_pages++; | 
|  | h->surplus_huge_pages_node[nid]++; | 
|  | } | 
|  |  | 
|  | __folio_set_hugetlb(folio); | 
|  | folio_change_private(folio, NULL); | 
|  | /* | 
|  | * We have to set hugetlb_vmemmap_optimized again as above | 
|  | * folio_change_private(folio, NULL) cleared it. | 
|  | */ | 
|  | folio_set_hugetlb_vmemmap_optimized(folio); | 
|  |  | 
|  | /* | 
|  | * This folio is about to be managed by the hugetlb allocator and | 
|  | * should have no users.  Drop our reference, and check for others | 
|  | * just in case. | 
|  | */ | 
|  | zeroed = folio_put_testzero(folio); | 
|  | if (unlikely(!zeroed)) | 
|  | /* | 
|  | * It is VERY unlikely soneone else has taken a ref | 
|  | * on the folio.  In this case, we simply return as | 
|  | * free_huge_folio() will be called when this other ref | 
|  | * is dropped. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | arch_clear_hugepage_flags(&folio->page); | 
|  | enqueue_hugetlb_folio(h, folio); | 
|  | } | 
|  |  | 
|  | static void __update_and_free_hugetlb_folio(struct hstate *h, | 
|  | struct folio *folio) | 
|  | { | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we don't know which subpages are hwpoisoned, we can't free | 
|  | * the hugepage, so it's leaked intentionally. | 
|  | */ | 
|  | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) | 
|  | return; | 
|  |  | 
|  | if (hugetlb_vmemmap_restore(h, &folio->page)) { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | /* | 
|  | * If we cannot allocate vmemmap pages, just refuse to free the | 
|  | * page and put the page back on the hugetlb free list and treat | 
|  | * as a surplus page. | 
|  | */ | 
|  | add_hugetlb_folio(h, folio, true); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If vmemmap pages were allocated above, then we need to clear the | 
|  | * hugetlb destructor under the hugetlb lock. | 
|  | */ | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | __clear_hugetlb_destructor(h, folio); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move PageHWPoison flag from head page to the raw error pages, | 
|  | * which makes any healthy subpages reusable. | 
|  | */ | 
|  | if (unlikely(folio_test_hwpoison(folio))) | 
|  | folio_clear_hugetlb_hwpoison(folio); | 
|  |  | 
|  | /* | 
|  | * Non-gigantic pages demoted from CMA allocated gigantic pages | 
|  | * need to be given back to CMA in free_gigantic_folio. | 
|  | */ | 
|  | if (hstate_is_gigantic(h) || | 
|  | hugetlb_cma_folio(folio, huge_page_order(h))) { | 
|  | destroy_compound_gigantic_folio(folio, huge_page_order(h)); | 
|  | free_gigantic_folio(folio, huge_page_order(h)); | 
|  | } else { | 
|  | INIT_LIST_HEAD(&folio->_deferred_list); | 
|  | __free_pages(&folio->page, huge_page_order(h)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As update_and_free_hugetlb_folio() can be called under any context, so we cannot | 
|  | * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the | 
|  | * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate | 
|  | * the vmemmap pages. | 
|  | * | 
|  | * free_hpage_workfn() locklessly retrieves the linked list of pages to be | 
|  | * freed and frees them one-by-one. As the page->mapping pointer is going | 
|  | * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node | 
|  | * structure of a lockless linked list of huge pages to be freed. | 
|  | */ | 
|  | static LLIST_HEAD(hpage_freelist); | 
|  |  | 
|  | static void free_hpage_workfn(struct work_struct *work) | 
|  | { | 
|  | struct llist_node *node; | 
|  |  | 
|  | node = llist_del_all(&hpage_freelist); | 
|  |  | 
|  | while (node) { | 
|  | struct page *page; | 
|  | struct hstate *h; | 
|  |  | 
|  | page = container_of((struct address_space **)node, | 
|  | struct page, mapping); | 
|  | node = node->next; | 
|  | page->mapping = NULL; | 
|  | /* | 
|  | * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in | 
|  | * folio_hstate() is going to trigger because a previous call to | 
|  | * remove_hugetlb_folio() will clear the hugetlb bit, so do | 
|  | * not use folio_hstate() directly. | 
|  | */ | 
|  | h = size_to_hstate(page_size(page)); | 
|  |  | 
|  | __update_and_free_hugetlb_folio(h, page_folio(page)); | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | static DECLARE_WORK(free_hpage_work, free_hpage_workfn); | 
|  |  | 
|  | static inline void flush_free_hpage_work(struct hstate *h) | 
|  | { | 
|  | if (hugetlb_vmemmap_optimizable(h)) | 
|  | flush_work(&free_hpage_work); | 
|  | } | 
|  |  | 
|  | static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, | 
|  | bool atomic) | 
|  | { | 
|  | if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { | 
|  | __update_and_free_hugetlb_folio(h, folio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. | 
|  | * | 
|  | * Only call schedule_work() if hpage_freelist is previously | 
|  | * empty. Otherwise, schedule_work() had been called but the workfn | 
|  | * hasn't retrieved the list yet. | 
|  | */ | 
|  | if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) | 
|  | schedule_work(&free_hpage_work); | 
|  | } | 
|  |  | 
|  | static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) | 
|  | { | 
|  | struct page *page, *t_page; | 
|  | struct folio *folio; | 
|  |  | 
|  | list_for_each_entry_safe(page, t_page, list, lru) { | 
|  | folio = page_folio(page); | 
|  | update_and_free_hugetlb_folio(h, folio, false); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct hstate *size_to_hstate(unsigned long size) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | if (huge_page_size(h) == size) | 
|  | return h; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void free_huge_folio(struct folio *folio) | 
|  | { | 
|  | /* | 
|  | * Can't pass hstate in here because it is called from the | 
|  | * compound page destructor. | 
|  | */ | 
|  | struct hstate *h = folio_hstate(folio); | 
|  | int nid = folio_nid(folio); | 
|  | struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); | 
|  | bool restore_reserve; | 
|  | unsigned long flags; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); | 
|  | VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); | 
|  |  | 
|  | hugetlb_set_folio_subpool(folio, NULL); | 
|  | if (folio_test_anon(folio)) | 
|  | __ClearPageAnonExclusive(&folio->page); | 
|  | folio->mapping = NULL; | 
|  | restore_reserve = folio_test_hugetlb_restore_reserve(folio); | 
|  | folio_clear_hugetlb_restore_reserve(folio); | 
|  |  | 
|  | /* | 
|  | * If HPageRestoreReserve was set on page, page allocation consumed a | 
|  | * reservation.  If the page was associated with a subpool, there | 
|  | * would have been a page reserved in the subpool before allocation | 
|  | * via hugepage_subpool_get_pages().  Since we are 'restoring' the | 
|  | * reservation, do not call hugepage_subpool_put_pages() as this will | 
|  | * remove the reserved page from the subpool. | 
|  | */ | 
|  | if (!restore_reserve) { | 
|  | /* | 
|  | * A return code of zero implies that the subpool will be | 
|  | * under its minimum size if the reservation is not restored | 
|  | * after page is free.  Therefore, force restore_reserve | 
|  | * operation. | 
|  | */ | 
|  | if (hugepage_subpool_put_pages(spool, 1) == 0) | 
|  | restore_reserve = true; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&hugetlb_lock, flags); | 
|  | folio_clear_hugetlb_migratable(folio); | 
|  | hugetlb_cgroup_uncharge_folio(hstate_index(h), | 
|  | pages_per_huge_page(h), folio); | 
|  | hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), | 
|  | pages_per_huge_page(h), folio); | 
|  | if (restore_reserve) | 
|  | h->resv_huge_pages++; | 
|  |  | 
|  | if (folio_test_hugetlb_temporary(folio)) { | 
|  | remove_hugetlb_folio(h, folio, false); | 
|  | spin_unlock_irqrestore(&hugetlb_lock, flags); | 
|  | update_and_free_hugetlb_folio(h, folio, true); | 
|  | } else if (h->surplus_huge_pages_node[nid]) { | 
|  | /* remove the page from active list */ | 
|  | remove_hugetlb_folio(h, folio, true); | 
|  | spin_unlock_irqrestore(&hugetlb_lock, flags); | 
|  | update_and_free_hugetlb_folio(h, folio, true); | 
|  | } else { | 
|  | arch_clear_hugepage_flags(&folio->page); | 
|  | enqueue_hugetlb_folio(h, folio); | 
|  | spin_unlock_irqrestore(&hugetlb_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with the hugetlb lock held | 
|  | */ | 
|  | static void __prep_account_new_huge_page(struct hstate *h, int nid) | 
|  | { | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | h->nr_huge_pages++; | 
|  | h->nr_huge_pages_node[nid]++; | 
|  | } | 
|  |  | 
|  | static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) | 
|  | { | 
|  | hugetlb_vmemmap_optimize(h, &folio->page); | 
|  | INIT_LIST_HEAD(&folio->lru); | 
|  | __folio_set_hugetlb(folio); | 
|  | hugetlb_set_folio_subpool(folio, NULL); | 
|  | set_hugetlb_cgroup(folio, NULL); | 
|  | set_hugetlb_cgroup_rsvd(folio, NULL); | 
|  | } | 
|  |  | 
|  | static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) | 
|  | { | 
|  | __prep_new_hugetlb_folio(h, folio); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | __prep_account_new_huge_page(h, nid); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | static bool __prep_compound_gigantic_folio(struct folio *folio, | 
|  | unsigned int order, bool demote) | 
|  | { | 
|  | int i, j; | 
|  | int nr_pages = 1 << order; | 
|  | struct page *p; | 
|  |  | 
|  | __folio_clear_reserved(folio); | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | p = folio_page(folio, i); | 
|  |  | 
|  | /* | 
|  | * For gigantic hugepages allocated through bootmem at | 
|  | * boot, it's safer to be consistent with the not-gigantic | 
|  | * hugepages and clear the PG_reserved bit from all tail pages | 
|  | * too.  Otherwise drivers using get_user_pages() to access tail | 
|  | * pages may get the reference counting wrong if they see | 
|  | * PG_reserved set on a tail page (despite the head page not | 
|  | * having PG_reserved set).  Enforcing this consistency between | 
|  | * head and tail pages allows drivers to optimize away a check | 
|  | * on the head page when they need know if put_page() is needed | 
|  | * after get_user_pages(). | 
|  | */ | 
|  | if (i != 0)	/* head page cleared above */ | 
|  | __ClearPageReserved(p); | 
|  | /* | 
|  | * Subtle and very unlikely | 
|  | * | 
|  | * Gigantic 'page allocators' such as memblock or cma will | 
|  | * return a set of pages with each page ref counted.  We need | 
|  | * to turn this set of pages into a compound page with tail | 
|  | * page ref counts set to zero.  Code such as speculative page | 
|  | * cache adding could take a ref on a 'to be' tail page. | 
|  | * We need to respect any increased ref count, and only set | 
|  | * the ref count to zero if count is currently 1.  If count | 
|  | * is not 1, we return an error.  An error return indicates | 
|  | * the set of pages can not be converted to a gigantic page. | 
|  | * The caller who allocated the pages should then discard the | 
|  | * pages using the appropriate free interface. | 
|  | * | 
|  | * In the case of demote, the ref count will be zero. | 
|  | */ | 
|  | if (!demote) { | 
|  | if (!page_ref_freeze(p, 1)) { | 
|  | pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); | 
|  | goto out_error; | 
|  | } | 
|  | } else { | 
|  | VM_BUG_ON_PAGE(page_count(p), p); | 
|  | } | 
|  | if (i != 0) | 
|  | set_compound_head(p, &folio->page); | 
|  | } | 
|  | __folio_set_head(folio); | 
|  | /* we rely on prep_new_hugetlb_folio to set the destructor */ | 
|  | folio_set_order(folio, order); | 
|  | atomic_set(&folio->_entire_mapcount, -1); | 
|  | atomic_set(&folio->_nr_pages_mapped, 0); | 
|  | atomic_set(&folio->_pincount, 0); | 
|  | return true; | 
|  |  | 
|  | out_error: | 
|  | /* undo page modifications made above */ | 
|  | for (j = 0; j < i; j++) { | 
|  | p = folio_page(folio, j); | 
|  | if (j != 0) | 
|  | clear_compound_head(p); | 
|  | set_page_refcounted(p); | 
|  | } | 
|  | /* need to clear PG_reserved on remaining tail pages  */ | 
|  | for (; j < nr_pages; j++) { | 
|  | p = folio_page(folio, j); | 
|  | __ClearPageReserved(p); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool prep_compound_gigantic_folio(struct folio *folio, | 
|  | unsigned int order) | 
|  | { | 
|  | return __prep_compound_gigantic_folio(folio, order, false); | 
|  | } | 
|  |  | 
|  | static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, | 
|  | unsigned int order) | 
|  | { | 
|  | return __prep_compound_gigantic_folio(folio, order, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and lock address space (mapping) in write mode. | 
|  | * | 
|  | * Upon entry, the page is locked which means that page_mapping() is | 
|  | * stable.  Due to locking order, we can only trylock_write.  If we can | 
|  | * not get the lock, simply return NULL to caller. | 
|  | */ | 
|  | struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) | 
|  | { | 
|  | struct address_space *mapping = page_mapping(hpage); | 
|  |  | 
|  | if (!mapping) | 
|  | return mapping; | 
|  |  | 
|  | if (i_mmap_trylock_write(mapping)) | 
|  | return mapping; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pgoff_t hugetlb_basepage_index(struct page *page) | 
|  | { | 
|  | struct page *page_head = compound_head(page); | 
|  | pgoff_t index = page_index(page_head); | 
|  | unsigned long compound_idx; | 
|  |  | 
|  | if (compound_order(page_head) > MAX_ORDER) | 
|  | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | 
|  | else | 
|  | compound_idx = page - page_head; | 
|  |  | 
|  | return (index << compound_order(page_head)) + compound_idx; | 
|  | } | 
|  |  | 
|  | static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, | 
|  | gfp_t gfp_mask, int nid, nodemask_t *nmask, | 
|  | nodemask_t *node_alloc_noretry) | 
|  | { | 
|  | int order = huge_page_order(h); | 
|  | struct page *page; | 
|  | bool alloc_try_hard = true; | 
|  | bool retry = true; | 
|  |  | 
|  | /* | 
|  | * By default we always try hard to allocate the page with | 
|  | * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in | 
|  | * a loop (to adjust global huge page counts) and previous allocation | 
|  | * failed, do not continue to try hard on the same node.  Use the | 
|  | * node_alloc_noretry bitmap to manage this state information. | 
|  | */ | 
|  | if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) | 
|  | alloc_try_hard = false; | 
|  | gfp_mask |= __GFP_COMP|__GFP_NOWARN; | 
|  | if (alloc_try_hard) | 
|  | gfp_mask |= __GFP_RETRY_MAYFAIL; | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nid = numa_mem_id(); | 
|  | retry: | 
|  | page = __alloc_pages(gfp_mask, order, nid, nmask); | 
|  |  | 
|  | /* Freeze head page */ | 
|  | if (page && !page_ref_freeze(page, 1)) { | 
|  | __free_pages(page, order); | 
|  | if (retry) {	/* retry once */ | 
|  | retry = false; | 
|  | goto retry; | 
|  | } | 
|  | /* WOW!  twice in a row. */ | 
|  | pr_warn("HugeTLB head page unexpected inflated ref count\n"); | 
|  | page = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this | 
|  | * indicates an overall state change.  Clear bit so that we resume | 
|  | * normal 'try hard' allocations. | 
|  | */ | 
|  | if (node_alloc_noretry && page && !alloc_try_hard) | 
|  | node_clear(nid, *node_alloc_noretry); | 
|  |  | 
|  | /* | 
|  | * If we tried hard to get a page but failed, set bit so that | 
|  | * subsequent attempts will not try as hard until there is an | 
|  | * overall state change. | 
|  | */ | 
|  | if (node_alloc_noretry && !page && alloc_try_hard) | 
|  | node_set(nid, *node_alloc_noretry); | 
|  |  | 
|  | if (!page) { | 
|  | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | __count_vm_event(HTLB_BUDDY_PGALLOC); | 
|  | return page_folio(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common helper to allocate a fresh hugetlb page. All specific allocators | 
|  | * should use this function to get new hugetlb pages | 
|  | * | 
|  | * Note that returned page is 'frozen':  ref count of head page and all tail | 
|  | * pages is zero. | 
|  | */ | 
|  | static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, | 
|  | gfp_t gfp_mask, int nid, nodemask_t *nmask, | 
|  | nodemask_t *node_alloc_noretry) | 
|  | { | 
|  | struct folio *folio; | 
|  | bool retry = false; | 
|  |  | 
|  | retry: | 
|  | if (hstate_is_gigantic(h)) | 
|  | folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); | 
|  | else | 
|  | folio = alloc_buddy_hugetlb_folio(h, gfp_mask, | 
|  | nid, nmask, node_alloc_noretry); | 
|  | if (!folio) | 
|  | return NULL; | 
|  | if (hstate_is_gigantic(h)) { | 
|  | if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { | 
|  | /* | 
|  | * Rare failure to convert pages to compound page. | 
|  | * Free pages and try again - ONCE! | 
|  | */ | 
|  | free_gigantic_folio(folio, huge_page_order(h)); | 
|  | if (!retry) { | 
|  | retry = true; | 
|  | goto retry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | prep_new_hugetlb_folio(h, folio, folio_nid(folio)); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates a fresh page to the hugetlb allocator pool in the node interleaved | 
|  | * manner. | 
|  | */ | 
|  | static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | 
|  | nodemask_t *node_alloc_noretry) | 
|  | { | 
|  | struct folio *folio; | 
|  | int nr_nodes, node; | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
|  |  | 
|  | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
|  | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, | 
|  | nodes_allowed, node_alloc_noretry); | 
|  | if (folio) { | 
|  | free_huge_folio(folio); /* free it into the hugepage allocator */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove huge page from pool from next node to free.  Attempt to keep | 
|  | * persistent huge pages more or less balanced over allowed nodes. | 
|  | * This routine only 'removes' the hugetlb page.  The caller must make | 
|  | * an additional call to free the page to low level allocators. | 
|  | * Called with hugetlb_lock locked. | 
|  | */ | 
|  | static struct page *remove_pool_huge_page(struct hstate *h, | 
|  | nodemask_t *nodes_allowed, | 
|  | bool acct_surplus) | 
|  | { | 
|  | int nr_nodes, node; | 
|  | struct page *page = NULL; | 
|  | struct folio *folio; | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
|  | /* | 
|  | * If we're returning unused surplus pages, only examine | 
|  | * nodes with surplus pages. | 
|  | */ | 
|  | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && | 
|  | !list_empty(&h->hugepage_freelists[node])) { | 
|  | page = list_entry(h->hugepage_freelists[node].next, | 
|  | struct page, lru); | 
|  | folio = page_folio(page); | 
|  | remove_hugetlb_folio(h, folio, acct_surplus); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dissolve a given free hugepage into free buddy pages. This function does | 
|  | * nothing for in-use hugepages and non-hugepages. | 
|  | * This function returns values like below: | 
|  | * | 
|  | *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages | 
|  | *           when the system is under memory pressure and the feature of | 
|  | *           freeing unused vmemmap pages associated with each hugetlb page | 
|  | *           is enabled. | 
|  | *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use | 
|  | *           (allocated or reserved.) | 
|  | *       0:  successfully dissolved free hugepages or the page is not a | 
|  | *           hugepage (considered as already dissolved) | 
|  | */ | 
|  | int dissolve_free_huge_page(struct page *page) | 
|  | { | 
|  | int rc = -EBUSY; | 
|  | struct folio *folio = page_folio(page); | 
|  |  | 
|  | retry: | 
|  | /* Not to disrupt normal path by vainly holding hugetlb_lock */ | 
|  | if (!folio_test_hugetlb(folio)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (!folio_test_hugetlb(folio)) { | 
|  | rc = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!folio_ref_count(folio)) { | 
|  | struct hstate *h = folio_hstate(folio); | 
|  | if (!available_huge_pages(h)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We should make sure that the page is already on the free list | 
|  | * when it is dissolved. | 
|  | */ | 
|  | if (unlikely(!folio_test_hugetlb_freed(folio))) { | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * Theoretically, we should return -EBUSY when we | 
|  | * encounter this race. In fact, we have a chance | 
|  | * to successfully dissolve the page if we do a | 
|  | * retry. Because the race window is quite small. | 
|  | * If we seize this opportunity, it is an optimization | 
|  | * for increasing the success rate of dissolving page. | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | remove_hugetlb_folio(h, folio, false); | 
|  | h->max_huge_pages--; | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Normally update_and_free_hugtlb_folio will allocate required vmemmmap | 
|  | * before freeing the page.  update_and_free_hugtlb_folio will fail to | 
|  | * free the page if it can not allocate required vmemmap.  We | 
|  | * need to adjust max_huge_pages if the page is not freed. | 
|  | * Attempt to allocate vmemmmap here so that we can take | 
|  | * appropriate action on failure. | 
|  | */ | 
|  | rc = hugetlb_vmemmap_restore(h, &folio->page); | 
|  | if (!rc) { | 
|  | update_and_free_hugetlb_folio(h, folio, false); | 
|  | } else { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | add_hugetlb_folio(h, folio, false); | 
|  | h->max_huge_pages++; | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | 
|  | * make specified memory blocks removable from the system. | 
|  | * Note that this will dissolve a free gigantic hugepage completely, if any | 
|  | * part of it lies within the given range. | 
|  | * Also note that if dissolve_free_huge_page() returns with an error, all | 
|  | * free hugepages that were dissolved before that error are lost. | 
|  | */ | 
|  | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | struct page *page; | 
|  | int rc = 0; | 
|  | unsigned int order; | 
|  | struct hstate *h; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return rc; | 
|  |  | 
|  | order = huge_page_order(&default_hstate); | 
|  | for_each_hstate(h) | 
|  | order = min(order, huge_page_order(h)); | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { | 
|  | page = pfn_to_page(pfn); | 
|  | rc = dissolve_free_huge_page(page); | 
|  | if (rc) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates a fresh surplus page from the page allocator. | 
|  | */ | 
|  | static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, | 
|  | gfp_t gfp_mask,	int nid, nodemask_t *nmask) | 
|  | { | 
|  | struct folio *folio = NULL; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) | 
|  | goto out_unlock; | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); | 
|  | if (!folio) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | /* | 
|  | * We could have raced with the pool size change. | 
|  | * Double check that and simply deallocate the new page | 
|  | * if we would end up overcommiting the surpluses. Abuse | 
|  | * temporary page to workaround the nasty free_huge_folio | 
|  | * codeflow | 
|  | */ | 
|  | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
|  | folio_set_hugetlb_temporary(folio); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | free_huge_folio(folio); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | h->surplus_huge_pages++; | 
|  | h->surplus_huge_pages_node[folio_nid(folio)]++; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nmask) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return NULL; | 
|  |  | 
|  | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); | 
|  | if (!folio) | 
|  | return NULL; | 
|  |  | 
|  | /* fresh huge pages are frozen */ | 
|  | folio_ref_unfreeze(folio, 1); | 
|  | /* | 
|  | * We do not account these pages as surplus because they are only | 
|  | * temporary and will be released properly on the last reference | 
|  | */ | 
|  | folio_set_hugetlb_temporary(folio); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the VMA's mpolicy to allocate a huge page from the buddy. | 
|  | */ | 
|  | static | 
|  | struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct folio *folio = NULL; | 
|  | struct mempolicy *mpol; | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h); | 
|  | int nid; | 
|  | nodemask_t *nodemask; | 
|  |  | 
|  | nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); | 
|  | if (mpol_is_preferred_many(mpol)) { | 
|  | gfp_t gfp = gfp_mask | __GFP_NOWARN; | 
|  |  | 
|  | gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | 
|  | folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); | 
|  |  | 
|  | /* Fallback to all nodes if page==NULL */ | 
|  | nodemask = NULL; | 
|  | } | 
|  |  | 
|  | if (!folio) | 
|  | folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); | 
|  | mpol_cond_put(mpol); | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | /* folio migration callback function */ | 
|  | struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, | 
|  | nodemask_t *nmask, gfp_t gfp_mask) | 
|  | { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (available_huge_pages(h)) { | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, | 
|  | preferred_nid, nmask); | 
|  | if (folio) { | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return folio; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); | 
|  | } | 
|  |  | 
|  | /* mempolicy aware migration callback */ | 
|  | struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | struct mempolicy *mpol; | 
|  | nodemask_t *nodemask; | 
|  | struct folio *folio; | 
|  | gfp_t gfp_mask; | 
|  | int node; | 
|  |  | 
|  | gfp_mask = htlb_alloc_mask(h); | 
|  | node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
|  | folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); | 
|  | mpol_cond_put(mpol); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | static nodemask_t *policy_mbind_nodemask(gfp_t gfp) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | struct mempolicy *mpol = get_task_policy(current); | 
|  |  | 
|  | /* | 
|  | * Only enforce MPOL_BIND policy which overlaps with cpuset policy | 
|  | * (from policy_nodemask) specifically for hugetlb case | 
|  | */ | 
|  | if (mpol->mode == MPOL_BIND && | 
|  | (apply_policy_zone(mpol, gfp_zone(gfp)) && | 
|  | cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) | 
|  | return &mpol->nodes; | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase the hugetlb pool such that it can accommodate a reservation | 
|  | * of size 'delta'. | 
|  | */ | 
|  | static int gather_surplus_pages(struct hstate *h, long delta) | 
|  | __must_hold(&hugetlb_lock) | 
|  | { | 
|  | LIST_HEAD(surplus_list); | 
|  | struct folio *folio, *tmp; | 
|  | int ret; | 
|  | long i; | 
|  | long needed, allocated; | 
|  | bool alloc_ok = true; | 
|  | int node; | 
|  | nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
|  | if (needed <= 0) { | 
|  | h->resv_huge_pages += delta; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | allocated = 0; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | retry: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | for (i = 0; i < needed; i++) { | 
|  | folio = NULL; | 
|  | for_each_node_mask(node, cpuset_current_mems_allowed) { | 
|  | if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) { | 
|  | folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), | 
|  | node, NULL); | 
|  | if (folio) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!folio) { | 
|  | alloc_ok = false; | 
|  | break; | 
|  | } | 
|  | list_add(&folio->lru, &surplus_list); | 
|  | cond_resched(); | 
|  | } | 
|  | allocated += i; | 
|  |  | 
|  | /* | 
|  | * After retaking hugetlb_lock, we need to recalculate 'needed' | 
|  | * because either resv_huge_pages or free_huge_pages may have changed. | 
|  | */ | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | needed = (h->resv_huge_pages + delta) - | 
|  | (h->free_huge_pages + allocated); | 
|  | if (needed > 0) { | 
|  | if (alloc_ok) | 
|  | goto retry; | 
|  | /* | 
|  | * We were not able to allocate enough pages to | 
|  | * satisfy the entire reservation so we free what | 
|  | * we've allocated so far. | 
|  | */ | 
|  | goto free; | 
|  | } | 
|  | /* | 
|  | * The surplus_list now contains _at_least_ the number of extra pages | 
|  | * needed to accommodate the reservation.  Add the appropriate number | 
|  | * of pages to the hugetlb pool and free the extras back to the buddy | 
|  | * allocator.  Commit the entire reservation here to prevent another | 
|  | * process from stealing the pages as they are added to the pool but | 
|  | * before they are reserved. | 
|  | */ | 
|  | needed += allocated; | 
|  | h->resv_huge_pages += delta; | 
|  | ret = 0; | 
|  |  | 
|  | /* Free the needed pages to the hugetlb pool */ | 
|  | list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { | 
|  | if ((--needed) < 0) | 
|  | break; | 
|  | /* Add the page to the hugetlb allocator */ | 
|  | enqueue_hugetlb_folio(h, folio); | 
|  | } | 
|  | free: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Free unnecessary surplus pages to the buddy allocator. | 
|  | * Pages have no ref count, call free_huge_folio directly. | 
|  | */ | 
|  | list_for_each_entry_safe(folio, tmp, &surplus_list, lru) | 
|  | free_huge_folio(folio); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine has two main purposes: | 
|  | * 1) Decrement the reservation count (resv_huge_pages) by the value passed | 
|  | *    in unused_resv_pages.  This corresponds to the prior adjustments made | 
|  | *    to the associated reservation map. | 
|  | * 2) Free any unused surplus pages that may have been allocated to satisfy | 
|  | *    the reservation.  As many as unused_resv_pages may be freed. | 
|  | */ | 
|  | static void return_unused_surplus_pages(struct hstate *h, | 
|  | unsigned long unused_resv_pages) | 
|  | { | 
|  | unsigned long nr_pages; | 
|  | struct page *page; | 
|  | LIST_HEAD(page_list); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | /* Uncommit the reservation */ | 
|  | h->resv_huge_pages -= unused_resv_pages; | 
|  |  | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Part (or even all) of the reservation could have been backed | 
|  | * by pre-allocated pages. Only free surplus pages. | 
|  | */ | 
|  | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
|  |  | 
|  | /* | 
|  | * We want to release as many surplus pages as possible, spread | 
|  | * evenly across all nodes with memory. Iterate across these nodes | 
|  | * until we can no longer free unreserved surplus pages. This occurs | 
|  | * when the nodes with surplus pages have no free pages. | 
|  | * remove_pool_huge_page() will balance the freed pages across the | 
|  | * on-line nodes with memory and will handle the hstate accounting. | 
|  | */ | 
|  | while (nr_pages--) { | 
|  | page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); | 
|  | if (!page) | 
|  | goto out; | 
|  |  | 
|  | list_add(&page->lru, &page_list); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | update_and_free_pages_bulk(h, &page_list); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vma_needs_reservation, vma_commit_reservation and vma_end_reservation | 
|  | * are used by the huge page allocation routines to manage reservations. | 
|  | * | 
|  | * vma_needs_reservation is called to determine if the huge page at addr | 
|  | * within the vma has an associated reservation.  If a reservation is | 
|  | * needed, the value 1 is returned.  The caller is then responsible for | 
|  | * managing the global reservation and subpool usage counts.  After | 
|  | * the huge page has been allocated, vma_commit_reservation is called | 
|  | * to add the page to the reservation map.  If the page allocation fails, | 
|  | * the reservation must be ended instead of committed.  vma_end_reservation | 
|  | * is called in such cases. | 
|  | * | 
|  | * In the normal case, vma_commit_reservation returns the same value | 
|  | * as the preceding vma_needs_reservation call.  The only time this | 
|  | * is not the case is if a reserve map was changed between calls.  It | 
|  | * is the responsibility of the caller to notice the difference and | 
|  | * take appropriate action. | 
|  | * | 
|  | * vma_add_reservation is used in error paths where a reservation must | 
|  | * be restored when a newly allocated huge page must be freed.  It is | 
|  | * to be called after calling vma_needs_reservation to determine if a | 
|  | * reservation exists. | 
|  | * | 
|  | * vma_del_reservation is used in error paths where an entry in the reserve | 
|  | * map was created during huge page allocation and must be removed.  It is to | 
|  | * be called after calling vma_needs_reservation to determine if a reservation | 
|  | * exists. | 
|  | */ | 
|  | enum vma_resv_mode { | 
|  | VMA_NEEDS_RESV, | 
|  | VMA_COMMIT_RESV, | 
|  | VMA_END_RESV, | 
|  | VMA_ADD_RESV, | 
|  | VMA_DEL_RESV, | 
|  | }; | 
|  | static long __vma_reservation_common(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr, | 
|  | enum vma_resv_mode mode) | 
|  | { | 
|  | struct resv_map *resv; | 
|  | pgoff_t idx; | 
|  | long ret; | 
|  | long dummy_out_regions_needed; | 
|  |  | 
|  | resv = vma_resv_map(vma); | 
|  | if (!resv) | 
|  | return 1; | 
|  |  | 
|  | idx = vma_hugecache_offset(h, vma, addr); | 
|  | switch (mode) { | 
|  | case VMA_NEEDS_RESV: | 
|  | ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); | 
|  | /* We assume that vma_reservation_* routines always operate on | 
|  | * 1 page, and that adding to resv map a 1 page entry can only | 
|  | * ever require 1 region. | 
|  | */ | 
|  | VM_BUG_ON(dummy_out_regions_needed != 1); | 
|  | break; | 
|  | case VMA_COMMIT_RESV: | 
|  | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | 
|  | /* region_add calls of range 1 should never fail. */ | 
|  | VM_BUG_ON(ret < 0); | 
|  | break; | 
|  | case VMA_END_RESV: | 
|  | region_abort(resv, idx, idx + 1, 1); | 
|  | ret = 0; | 
|  | break; | 
|  | case VMA_ADD_RESV: | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | 
|  | /* region_add calls of range 1 should never fail. */ | 
|  | VM_BUG_ON(ret < 0); | 
|  | } else { | 
|  | region_abort(resv, idx, idx + 1, 1); | 
|  | ret = region_del(resv, idx, idx + 1); | 
|  | } | 
|  | break; | 
|  | case VMA_DEL_RESV: | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | region_abort(resv, idx, idx + 1, 1); | 
|  | ret = region_del(resv, idx, idx + 1); | 
|  | } else { | 
|  | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | 
|  | /* region_add calls of range 1 should never fail. */ | 
|  | VM_BUG_ON(ret < 0); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) | 
|  | return ret; | 
|  | /* | 
|  | * We know private mapping must have HPAGE_RESV_OWNER set. | 
|  | * | 
|  | * In most cases, reserves always exist for private mappings. | 
|  | * However, a file associated with mapping could have been | 
|  | * hole punched or truncated after reserves were consumed. | 
|  | * As subsequent fault on such a range will not use reserves. | 
|  | * Subtle - The reserve map for private mappings has the | 
|  | * opposite meaning than that of shared mappings.  If NO | 
|  | * entry is in the reserve map, it means a reservation exists. | 
|  | * If an entry exists in the reserve map, it means the | 
|  | * reservation has already been consumed.  As a result, the | 
|  | * return value of this routine is the opposite of the | 
|  | * value returned from reserve map manipulation routines above. | 
|  | */ | 
|  | if (ret > 0) | 
|  | return 0; | 
|  | if (ret == 0) | 
|  | return 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long vma_needs_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); | 
|  | } | 
|  |  | 
|  | static long vma_commit_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); | 
|  | } | 
|  |  | 
|  | static void vma_end_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); | 
|  | } | 
|  |  | 
|  | static long vma_add_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); | 
|  | } | 
|  |  | 
|  | static long vma_del_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called to restore reservation information on error paths. | 
|  | * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), | 
|  | * and the hugetlb mutex should remain held when calling this routine. | 
|  | * | 
|  | * It handles two specific cases: | 
|  | * 1) A reservation was in place and the folio consumed the reservation. | 
|  | *    hugetlb_restore_reserve is set in the folio. | 
|  | * 2) No reservation was in place for the page, so hugetlb_restore_reserve is | 
|  | *    not set.  However, alloc_hugetlb_folio always updates the reserve map. | 
|  | * | 
|  | * In case 1, free_huge_folio later in the error path will increment the | 
|  | * global reserve count.  But, free_huge_folio does not have enough context | 
|  | * to adjust the reservation map.  This case deals primarily with private | 
|  | * mappings.  Adjust the reserve map here to be consistent with global | 
|  | * reserve count adjustments to be made by free_huge_folio.  Make sure the | 
|  | * reserve map indicates there is a reservation present. | 
|  | * | 
|  | * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. | 
|  | */ | 
|  | void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, | 
|  | unsigned long address, struct folio *folio) | 
|  | { | 
|  | long rc = vma_needs_reservation(h, vma, address); | 
|  |  | 
|  | if (folio_test_hugetlb_restore_reserve(folio)) { | 
|  | if (unlikely(rc < 0)) | 
|  | /* | 
|  | * Rare out of memory condition in reserve map | 
|  | * manipulation.  Clear hugetlb_restore_reserve so | 
|  | * that global reserve count will not be incremented | 
|  | * by free_huge_folio.  This will make it appear | 
|  | * as though the reservation for this folio was | 
|  | * consumed.  This may prevent the task from | 
|  | * faulting in the folio at a later time.  This | 
|  | * is better than inconsistent global huge page | 
|  | * accounting of reserve counts. | 
|  | */ | 
|  | folio_clear_hugetlb_restore_reserve(folio); | 
|  | else if (rc) | 
|  | (void)vma_add_reservation(h, vma, address); | 
|  | else | 
|  | vma_end_reservation(h, vma, address); | 
|  | } else { | 
|  | if (!rc) { | 
|  | /* | 
|  | * This indicates there is an entry in the reserve map | 
|  | * not added by alloc_hugetlb_folio.  We know it was added | 
|  | * before the alloc_hugetlb_folio call, otherwise | 
|  | * hugetlb_restore_reserve would be set on the folio. | 
|  | * Remove the entry so that a subsequent allocation | 
|  | * does not consume a reservation. | 
|  | */ | 
|  | rc = vma_del_reservation(h, vma, address); | 
|  | if (rc < 0) | 
|  | /* | 
|  | * VERY rare out of memory condition.  Since | 
|  | * we can not delete the entry, set | 
|  | * hugetlb_restore_reserve so that the reserve | 
|  | * count will be incremented when the folio | 
|  | * is freed.  This reserve will be consumed | 
|  | * on a subsequent allocation. | 
|  | */ | 
|  | folio_set_hugetlb_restore_reserve(folio); | 
|  | } else if (rc < 0) { | 
|  | /* | 
|  | * Rare out of memory condition from | 
|  | * vma_needs_reservation call.  Memory allocation is | 
|  | * only attempted if a new entry is needed.  Therefore, | 
|  | * this implies there is not an entry in the | 
|  | * reserve map. | 
|  | * | 
|  | * For shared mappings, no entry in the map indicates | 
|  | * no reservation.  We are done. | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | /* | 
|  | * For private mappings, no entry indicates | 
|  | * a reservation is present.  Since we can | 
|  | * not add an entry, set hugetlb_restore_reserve | 
|  | * on the folio so reserve count will be | 
|  | * incremented when freed.  This reserve will | 
|  | * be consumed on a subsequent allocation. | 
|  | */ | 
|  | folio_set_hugetlb_restore_reserve(folio); | 
|  | } else | 
|  | /* | 
|  | * No reservation present, do nothing | 
|  | */ | 
|  | vma_end_reservation(h, vma, address); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve | 
|  | * the old one | 
|  | * @h: struct hstate old page belongs to | 
|  | * @old_folio: Old folio to dissolve | 
|  | * @list: List to isolate the page in case we need to | 
|  | * Returns 0 on success, otherwise negated error. | 
|  | */ | 
|  | static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, | 
|  | struct folio *old_folio, struct list_head *list) | 
|  | { | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
|  | int nid = folio_nid(old_folio); | 
|  | struct folio *new_folio; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Before dissolving the folio, we need to allocate a new one for the | 
|  | * pool to remain stable.  Here, we allocate the folio and 'prep' it | 
|  | * by doing everything but actually updating counters and adding to | 
|  | * the pool.  This simplifies and let us do most of the processing | 
|  | * under the lock. | 
|  | */ | 
|  | new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); | 
|  | if (!new_folio) | 
|  | return -ENOMEM; | 
|  | __prep_new_hugetlb_folio(h, new_folio); | 
|  |  | 
|  | retry: | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (!folio_test_hugetlb(old_folio)) { | 
|  | /* | 
|  | * Freed from under us. Drop new_folio too. | 
|  | */ | 
|  | goto free_new; | 
|  | } else if (folio_ref_count(old_folio)) { | 
|  | bool isolated; | 
|  |  | 
|  | /* | 
|  | * Someone has grabbed the folio, try to isolate it here. | 
|  | * Fail with -EBUSY if not possible. | 
|  | */ | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | isolated = isolate_hugetlb(old_folio, list); | 
|  | ret = isolated ? 0 : -EBUSY; | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | goto free_new; | 
|  | } else if (!folio_test_hugetlb_freed(old_folio)) { | 
|  | /* | 
|  | * Folio's refcount is 0 but it has not been enqueued in the | 
|  | * freelist yet. Race window is small, so we can succeed here if | 
|  | * we retry. | 
|  | */ | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } else { | 
|  | /* | 
|  | * Ok, old_folio is still a genuine free hugepage. Remove it from | 
|  | * the freelist and decrease the counters. These will be | 
|  | * incremented again when calling __prep_account_new_huge_page() | 
|  | * and enqueue_hugetlb_folio() for new_folio. The counters will | 
|  | * remain stable since this happens under the lock. | 
|  | */ | 
|  | remove_hugetlb_folio(h, old_folio, false); | 
|  |  | 
|  | /* | 
|  | * Ref count on new_folio is already zero as it was dropped | 
|  | * earlier.  It can be directly added to the pool free list. | 
|  | */ | 
|  | __prep_account_new_huge_page(h, nid); | 
|  | enqueue_hugetlb_folio(h, new_folio); | 
|  |  | 
|  | /* | 
|  | * Folio has been replaced, we can safely free the old one. | 
|  | */ | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | update_and_free_hugetlb_folio(h, old_folio, false); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | free_new: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | /* Folio has a zero ref count, but needs a ref to be freed */ | 
|  | folio_ref_unfreeze(new_folio, 1); | 
|  | update_and_free_hugetlb_folio(h, new_folio, false); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct folio *folio = page_folio(page); | 
|  | int ret = -EBUSY; | 
|  |  | 
|  | /* | 
|  | * The page might have been dissolved from under our feet, so make sure | 
|  | * to carefully check the state under the lock. | 
|  | * Return success when racing as if we dissolved the page ourselves. | 
|  | */ | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | h = folio_hstate(folio); | 
|  | } else { | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Fence off gigantic pages as there is a cyclic dependency between | 
|  | * alloc_contig_range and them. Return -ENOMEM as this has the effect | 
|  | * of bailing out right away without further retrying. | 
|  | */ | 
|  | if (hstate_is_gigantic(h)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) | 
|  | ret = 0; | 
|  | else if (!folio_ref_count(folio)) | 
|  | ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, | 
|  | unsigned long addr, int avoid_reserve) | 
|  | { | 
|  | struct hugepage_subpool *spool = subpool_vma(vma); | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct folio *folio; | 
|  | long map_chg, map_commit; | 
|  | long gbl_chg; | 
|  | int ret, idx; | 
|  | struct hugetlb_cgroup *h_cg = NULL; | 
|  | bool deferred_reserve; | 
|  |  | 
|  | idx = hstate_index(h); | 
|  | /* | 
|  | * Examine the region/reserve map to determine if the process | 
|  | * has a reservation for the page to be allocated.  A return | 
|  | * code of zero indicates a reservation exists (no change). | 
|  | */ | 
|  | map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); | 
|  | if (map_chg < 0) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Processes that did not create the mapping will have no | 
|  | * reserves as indicated by the region/reserve map. Check | 
|  | * that the allocation will not exceed the subpool limit. | 
|  | * Allocations for MAP_NORESERVE mappings also need to be | 
|  | * checked against any subpool limit. | 
|  | */ | 
|  | if (map_chg || avoid_reserve) { | 
|  | gbl_chg = hugepage_subpool_get_pages(spool, 1); | 
|  | if (gbl_chg < 0) { | 
|  | vma_end_reservation(h, vma, addr); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even though there was no reservation in the region/reserve | 
|  | * map, there could be reservations associated with the | 
|  | * subpool that can be used.  This would be indicated if the | 
|  | * return value of hugepage_subpool_get_pages() is zero. | 
|  | * However, if avoid_reserve is specified we still avoid even | 
|  | * the subpool reservations. | 
|  | */ | 
|  | if (avoid_reserve) | 
|  | gbl_chg = 1; | 
|  | } | 
|  |  | 
|  | /* If this allocation is not consuming a reservation, charge it now. | 
|  | */ | 
|  | deferred_reserve = map_chg || avoid_reserve; | 
|  | if (deferred_reserve) { | 
|  | ret = hugetlb_cgroup_charge_cgroup_rsvd( | 
|  | idx, pages_per_huge_page(h), &h_cg); | 
|  | if (ret) | 
|  | goto out_subpool_put; | 
|  | } | 
|  |  | 
|  | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); | 
|  | if (ret) | 
|  | goto out_uncharge_cgroup_reservation; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | /* | 
|  | * glb_chg is passed to indicate whether or not a page must be taken | 
|  | * from the global free pool (global change).  gbl_chg == 0 indicates | 
|  | * a reservation exists for the allocation. | 
|  | */ | 
|  | folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); | 
|  | if (!folio) { | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); | 
|  | if (!folio) | 
|  | goto out_uncharge_cgroup; | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { | 
|  | folio_set_hugetlb_restore_reserve(folio); | 
|  | h->resv_huge_pages--; | 
|  | } | 
|  | list_add(&folio->lru, &h->hugepage_activelist); | 
|  | folio_ref_unfreeze(folio, 1); | 
|  | /* Fall through */ | 
|  | } | 
|  |  | 
|  | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); | 
|  | /* If allocation is not consuming a reservation, also store the | 
|  | * hugetlb_cgroup pointer on the page. | 
|  | */ | 
|  | if (deferred_reserve) { | 
|  | hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), | 
|  | h_cg, folio); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | hugetlb_set_folio_subpool(folio, spool); | 
|  |  | 
|  | map_commit = vma_commit_reservation(h, vma, addr); | 
|  | if (unlikely(map_chg > map_commit)) { | 
|  | /* | 
|  | * The page was added to the reservation map between | 
|  | * vma_needs_reservation and vma_commit_reservation. | 
|  | * This indicates a race with hugetlb_reserve_pages. | 
|  | * Adjust for the subpool count incremented above AND | 
|  | * in hugetlb_reserve_pages for the same page.  Also, | 
|  | * the reservation count added in hugetlb_reserve_pages | 
|  | * no longer applies. | 
|  | */ | 
|  | long rsv_adjust; | 
|  |  | 
|  | rsv_adjust = hugepage_subpool_put_pages(spool, 1); | 
|  | hugetlb_acct_memory(h, -rsv_adjust); | 
|  | if (deferred_reserve) { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), | 
|  | pages_per_huge_page(h), folio); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | } | 
|  | } | 
|  | return folio; | 
|  |  | 
|  | out_uncharge_cgroup: | 
|  | hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | 
|  | out_uncharge_cgroup_reservation: | 
|  | if (deferred_reserve) | 
|  | hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), | 
|  | h_cg); | 
|  | out_subpool_put: | 
|  | if (map_chg || avoid_reserve) | 
|  | hugepage_subpool_put_pages(spool, 1); | 
|  | vma_end_reservation(h, vma, addr); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | int alloc_bootmem_huge_page(struct hstate *h, int nid) | 
|  | __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); | 
|  | int __alloc_bootmem_huge_page(struct hstate *h, int nid) | 
|  | { | 
|  | struct huge_bootmem_page *m = NULL; /* initialize for clang */ | 
|  | int nr_nodes, node; | 
|  |  | 
|  | /* do node specific alloc */ | 
|  | if (nid != NUMA_NO_NODE) { | 
|  | m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), | 
|  | 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
|  | if (!m) | 
|  | return 0; | 
|  | goto found; | 
|  | } | 
|  | /* allocate from next node when distributing huge pages */ | 
|  | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { | 
|  | m = memblock_alloc_try_nid_raw( | 
|  | huge_page_size(h), huge_page_size(h), | 
|  | 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); | 
|  | /* | 
|  | * Use the beginning of the huge page to store the | 
|  | * huge_bootmem_page struct (until gather_bootmem | 
|  | * puts them into the mem_map). | 
|  | */ | 
|  | if (!m) | 
|  | return 0; | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | found: | 
|  | /* Put them into a private list first because mem_map is not up yet */ | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | list_add(&m->list, &huge_boot_pages); | 
|  | m->hstate = h; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put bootmem huge pages into the standard lists after mem_map is up. | 
|  | * Note: This only applies to gigantic (order > MAX_ORDER) pages. | 
|  | */ | 
|  | static void __init gather_bootmem_prealloc(void) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  |  | 
|  | list_for_each_entry(m, &huge_boot_pages, list) { | 
|  | struct page *page = virt_to_page(m); | 
|  | struct folio *folio = page_folio(page); | 
|  | struct hstate *h = m->hstate; | 
|  |  | 
|  | VM_BUG_ON(!hstate_is_gigantic(h)); | 
|  | WARN_ON(folio_ref_count(folio) != 1); | 
|  | if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { | 
|  | WARN_ON(folio_test_reserved(folio)); | 
|  | prep_new_hugetlb_folio(h, folio, folio_nid(folio)); | 
|  | free_huge_folio(folio); /* add to the hugepage allocator */ | 
|  | } else { | 
|  | /* VERY unlikely inflated ref count on a tail page */ | 
|  | free_gigantic_folio(folio, huge_page_order(h)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to restore the 'stolen' pages to totalram_pages | 
|  | * in order to fix confusing memory reports from free(1) and | 
|  | * other side-effects, like CommitLimit going negative. | 
|  | */ | 
|  | adjust_managed_page_count(page, pages_per_huge_page(h)); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) | 
|  | { | 
|  | unsigned long i; | 
|  | char buf[32]; | 
|  |  | 
|  | for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { | 
|  | if (hstate_is_gigantic(h)) { | 
|  | if (!alloc_bootmem_huge_page(h, nid)) | 
|  | break; | 
|  | } else { | 
|  | struct folio *folio; | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
|  |  | 
|  | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, | 
|  | &node_states[N_MEMORY], NULL); | 
|  | if (!folio) | 
|  | break; | 
|  | free_huge_folio(folio); /* free it into the hugepage allocator */ | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | if (i == h->max_huge_pages_node[nid]) | 
|  | return; | 
|  |  | 
|  | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
|  | pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n", | 
|  | h->max_huge_pages_node[nid], buf, nid, i); | 
|  | h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); | 
|  | h->max_huge_pages_node[nid] = i; | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
|  | { | 
|  | unsigned long i; | 
|  | nodemask_t *node_alloc_noretry; | 
|  | bool node_specific_alloc = false; | 
|  |  | 
|  | /* skip gigantic hugepages allocation if hugetlb_cma enabled */ | 
|  | if (hstate_is_gigantic(h) && hugetlb_cma_size) { | 
|  | pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* do node specific alloc */ | 
|  | for_each_online_node(i) { | 
|  | if (h->max_huge_pages_node[i] > 0) { | 
|  | hugetlb_hstate_alloc_pages_onenode(h, i); | 
|  | node_specific_alloc = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (node_specific_alloc) | 
|  | return; | 
|  |  | 
|  | /* below will do all node balanced alloc */ | 
|  | if (!hstate_is_gigantic(h)) { | 
|  | /* | 
|  | * Bit mask controlling how hard we retry per-node allocations. | 
|  | * Ignore errors as lower level routines can deal with | 
|  | * node_alloc_noretry == NULL.  If this kmalloc fails at boot | 
|  | * time, we are likely in bigger trouble. | 
|  | */ | 
|  | node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), | 
|  | GFP_KERNEL); | 
|  | } else { | 
|  | /* allocations done at boot time */ | 
|  | node_alloc_noretry = NULL; | 
|  | } | 
|  |  | 
|  | /* bit mask controlling how hard we retry per-node allocations */ | 
|  | if (node_alloc_noretry) | 
|  | nodes_clear(*node_alloc_noretry); | 
|  |  | 
|  | for (i = 0; i < h->max_huge_pages; ++i) { | 
|  | if (hstate_is_gigantic(h)) { | 
|  | if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) | 
|  | break; | 
|  | } else if (!alloc_pool_huge_page(h, | 
|  | &node_states[N_MEMORY], | 
|  | node_alloc_noretry)) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | if (i < h->max_huge_pages) { | 
|  | char buf[32]; | 
|  |  | 
|  | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
|  | pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n", | 
|  | h->max_huge_pages, buf, i); | 
|  | h->max_huge_pages = i; | 
|  | } | 
|  | kfree(node_alloc_noretry); | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_init_hstates(void) | 
|  | { | 
|  | struct hstate *h, *h2; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | /* oversize hugepages were init'ed in early boot */ | 
|  | if (!hstate_is_gigantic(h)) | 
|  | hugetlb_hstate_alloc_pages(h); | 
|  |  | 
|  | /* | 
|  | * Set demote order for each hstate.  Note that | 
|  | * h->demote_order is initially 0. | 
|  | * - We can not demote gigantic pages if runtime freeing | 
|  | *   is not supported, so skip this. | 
|  | * - If CMA allocation is possible, we can not demote | 
|  | *   HUGETLB_PAGE_ORDER or smaller size pages. | 
|  | */ | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
|  | continue; | 
|  | if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) | 
|  | continue; | 
|  | for_each_hstate(h2) { | 
|  | if (h2 == h) | 
|  | continue; | 
|  | if (h2->order < h->order && | 
|  | h2->order > h->demote_order) | 
|  | h->demote_order = h2->order; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init report_hugepages(void) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | char buf[32]; | 
|  |  | 
|  | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
|  | pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", | 
|  | buf, h->free_huge_pages); | 
|  | pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", | 
|  | hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | static void try_to_free_low(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | int i; | 
|  | LIST_HEAD(page_list); | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | if (hstate_is_gigantic(h)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Collect pages to be freed on a list, and free after dropping lock | 
|  | */ | 
|  | for_each_node_mask(i, *nodes_allowed) { | 
|  | struct page *page, *next; | 
|  | struct list_head *freel = &h->hugepage_freelists[i]; | 
|  | list_for_each_entry_safe(page, next, freel, lru) { | 
|  | if (count >= h->nr_huge_pages) | 
|  | goto out; | 
|  | if (PageHighMem(page)) | 
|  | continue; | 
|  | remove_hugetlb_folio(h, page_folio(page), false); | 
|  | list_add(&page->lru, &page_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | update_and_free_pages_bulk(h, &page_list); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | } | 
|  | #else | 
|  | static inline void try_to_free_low(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
|  | * balanced by operating on them in a round-robin fashion. | 
|  | * Returns 1 if an adjustment was made. | 
|  | */ | 
|  | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, | 
|  | int delta) | 
|  | { | 
|  | int nr_nodes, node; | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  | VM_BUG_ON(delta != -1 && delta != 1); | 
|  |  | 
|  | if (delta < 0) { | 
|  | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
|  | if (h->surplus_huge_pages_node[node]) | 
|  | goto found; | 
|  | } | 
|  | } else { | 
|  | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
|  | if (h->surplus_huge_pages_node[node] < | 
|  | h->nr_huge_pages_node[node]) | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | found: | 
|  | h->surplus_huge_pages += delta; | 
|  | h->surplus_huge_pages_node[node] += delta; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
|  | static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | unsigned long min_count, ret; | 
|  | struct page *page; | 
|  | LIST_HEAD(page_list); | 
|  | NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); | 
|  |  | 
|  | /* | 
|  | * Bit mask controlling how hard we retry per-node allocations. | 
|  | * If we can not allocate the bit mask, do not attempt to allocate | 
|  | * the requested huge pages. | 
|  | */ | 
|  | if (node_alloc_noretry) | 
|  | nodes_clear(*node_alloc_noretry); | 
|  | else | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * resize_lock mutex prevents concurrent adjustments to number of | 
|  | * pages in hstate via the proc/sysfs interfaces. | 
|  | */ | 
|  | mutex_lock(&h->resize_lock); | 
|  | flush_free_hpage_work(h); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Check for a node specific request. | 
|  | * Changing node specific huge page count may require a corresponding | 
|  | * change to the global count.  In any case, the passed node mask | 
|  | * (nodes_allowed) will restrict alloc/free to the specified node. | 
|  | */ | 
|  | if (nid != NUMA_NO_NODE) { | 
|  | unsigned long old_count = count; | 
|  |  | 
|  | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | 
|  | /* | 
|  | * User may have specified a large count value which caused the | 
|  | * above calculation to overflow.  In this case, they wanted | 
|  | * to allocate as many huge pages as possible.  Set count to | 
|  | * largest possible value to align with their intention. | 
|  | */ | 
|  | if (count < old_count) | 
|  | count = ULONG_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gigantic pages runtime allocation depend on the capability for large | 
|  | * page range allocation. | 
|  | * If the system does not provide this feature, return an error when | 
|  | * the user tries to allocate gigantic pages but let the user free the | 
|  | * boottime allocated gigantic pages. | 
|  | */ | 
|  | if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { | 
|  | if (count > persistent_huge_pages(h)) { | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | mutex_unlock(&h->resize_lock); | 
|  | NODEMASK_FREE(node_alloc_noretry); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Fall through to decrease pool */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase the pool size | 
|  | * First take pages out of surplus state.  Then make up the | 
|  | * remaining difference by allocating fresh huge pages. | 
|  | * | 
|  | * We might race with alloc_surplus_hugetlb_folio() here and be unable | 
|  | * to convert a surplus huge page to a normal huge page. That is | 
|  | * not critical, though, it just means the overall size of the | 
|  | * pool might be one hugepage larger than it needs to be, but | 
|  | * within all the constraints specified by the sysctls. | 
|  | */ | 
|  | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
|  | if (!adjust_pool_surplus(h, nodes_allowed, -1)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (count > persistent_huge_pages(h)) { | 
|  | /* | 
|  | * If this allocation races such that we no longer need the | 
|  | * page, free_huge_folio will handle it by freeing the page | 
|  | * and reducing the surplus. | 
|  | */ | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | /* yield cpu to avoid soft lockup */ | 
|  | cond_resched(); | 
|  |  | 
|  | ret = alloc_pool_huge_page(h, nodes_allowed, | 
|  | node_alloc_noretry); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (!ret) | 
|  | goto out; | 
|  |  | 
|  | /* Bail for signals. Probably ctrl-c from user */ | 
|  | if (signal_pending(current)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrease the pool size | 
|  | * First return free pages to the buddy allocator (being careful | 
|  | * to keep enough around to satisfy reservations).  Then place | 
|  | * pages into surplus state as needed so the pool will shrink | 
|  | * to the desired size as pages become free. | 
|  | * | 
|  | * By placing pages into the surplus state independent of the | 
|  | * overcommit value, we are allowing the surplus pool size to | 
|  | * exceed overcommit. There are few sane options here. Since | 
|  | * alloc_surplus_hugetlb_folio() is checking the global counter, | 
|  | * though, we'll note that we're not allowed to exceed surplus | 
|  | * and won't grow the pool anywhere else. Not until one of the | 
|  | * sysctls are changed, or the surplus pages go out of use. | 
|  | */ | 
|  | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
|  | min_count = max(count, min_count); | 
|  | try_to_free_low(h, min_count, nodes_allowed); | 
|  |  | 
|  | /* | 
|  | * Collect pages to be removed on list without dropping lock | 
|  | */ | 
|  | while (min_count < persistent_huge_pages(h)) { | 
|  | page = remove_pool_huge_page(h, nodes_allowed, 0); | 
|  | if (!page) | 
|  | break; | 
|  |  | 
|  | list_add(&page->lru, &page_list); | 
|  | } | 
|  | /* free the pages after dropping lock */ | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | update_and_free_pages_bulk(h, &page_list); | 
|  | flush_free_hpage_work(h); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  |  | 
|  | while (count < persistent_huge_pages(h)) { | 
|  | if (!adjust_pool_surplus(h, nodes_allowed, 1)) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | h->max_huge_pages = persistent_huge_pages(h); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | mutex_unlock(&h->resize_lock); | 
|  |  | 
|  | NODEMASK_FREE(node_alloc_noretry); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) | 
|  | { | 
|  | int i, nid = folio_nid(folio); | 
|  | struct hstate *target_hstate; | 
|  | struct page *subpage; | 
|  | struct folio *inner_folio; | 
|  | int rc = 0; | 
|  |  | 
|  | target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); | 
|  |  | 
|  | remove_hugetlb_folio_for_demote(h, folio, false); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | rc = hugetlb_vmemmap_restore(h, &folio->page); | 
|  | if (rc) { | 
|  | /* Allocation of vmemmmap failed, we can not demote folio */ | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | folio_ref_unfreeze(folio, 1); | 
|  | add_hugetlb_folio(h, folio, false); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use destroy_compound_hugetlb_folio_for_demote for all huge page | 
|  | * sizes as it will not ref count folios. | 
|  | */ | 
|  | destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); | 
|  |  | 
|  | /* | 
|  | * Taking target hstate mutex synchronizes with set_max_huge_pages. | 
|  | * Without the mutex, pages added to target hstate could be marked | 
|  | * as surplus. | 
|  | * | 
|  | * Note that we already hold h->resize_lock.  To prevent deadlock, | 
|  | * use the convention of always taking larger size hstate mutex first. | 
|  | */ | 
|  | mutex_lock(&target_hstate->resize_lock); | 
|  | for (i = 0; i < pages_per_huge_page(h); | 
|  | i += pages_per_huge_page(target_hstate)) { | 
|  | subpage = folio_page(folio, i); | 
|  | inner_folio = page_folio(subpage); | 
|  | if (hstate_is_gigantic(target_hstate)) | 
|  | prep_compound_gigantic_folio_for_demote(inner_folio, | 
|  | target_hstate->order); | 
|  | else | 
|  | prep_compound_page(subpage, target_hstate->order); | 
|  | folio_change_private(inner_folio, NULL); | 
|  | prep_new_hugetlb_folio(target_hstate, inner_folio, nid); | 
|  | free_huge_folio(inner_folio); | 
|  | } | 
|  | mutex_unlock(&target_hstate->resize_lock); | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Not absolutely necessary, but for consistency update max_huge_pages | 
|  | * based on pool changes for the demoted page. | 
|  | */ | 
|  | h->max_huge_pages--; | 
|  | target_hstate->max_huge_pages += | 
|  | pages_per_huge_page(h) / pages_per_huge_page(target_hstate); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) | 
|  | __must_hold(&hugetlb_lock) | 
|  | { | 
|  | int nr_nodes, node; | 
|  | struct folio *folio; | 
|  |  | 
|  | lockdep_assert_held(&hugetlb_lock); | 
|  |  | 
|  | /* We should never get here if no demote order */ | 
|  | if (!h->demote_order) { | 
|  | pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); | 
|  | return -EINVAL;		/* internal error */ | 
|  | } | 
|  |  | 
|  | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
|  | list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { | 
|  | if (folio_test_hwpoison(folio)) | 
|  | continue; | 
|  | return demote_free_hugetlb_folio(h, folio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only way to get here is if all pages on free lists are poisoned. | 
|  | * Return -EBUSY so that caller will not retry. | 
|  | */ | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | #define HSTATE_ATTR_RO(_name) \ | 
|  | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
|  |  | 
|  | #define HSTATE_ATTR_WO(_name) \ | 
|  | static struct kobj_attribute _name##_attr = __ATTR_WO(_name) | 
|  |  | 
|  | #define HSTATE_ATTR(_name) \ | 
|  | static struct kobj_attribute _name##_attr = __ATTR_RW(_name) | 
|  |  | 
|  | static struct kobject *hugepages_kobj; | 
|  | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); | 
|  |  | 
|  | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
|  | if (hstate_kobjs[i] == kobj) { | 
|  | if (nidp) | 
|  | *nidp = NUMA_NO_NODE; | 
|  | return &hstates[i]; | 
|  | } | 
|  |  | 
|  | return kobj_to_node_hstate(kobj, nidp); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_show_common(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long nr_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nr_huge_pages = h->nr_huge_pages; | 
|  | else | 
|  | nr_huge_pages = h->nr_huge_pages_node[nid]; | 
|  |  | 
|  | return sysfs_emit(buf, "%lu\n", nr_huge_pages); | 
|  | } | 
|  |  | 
|  | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, | 
|  | struct hstate *h, int nid, | 
|  | unsigned long count, size_t len) | 
|  | { | 
|  | int err; | 
|  | nodemask_t nodes_allowed, *n_mask; | 
|  |  | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (nid == NUMA_NO_NODE) { | 
|  | /* | 
|  | * global hstate attribute | 
|  | */ | 
|  | if (!(obey_mempolicy && | 
|  | init_nodemask_of_mempolicy(&nodes_allowed))) | 
|  | n_mask = &node_states[N_MEMORY]; | 
|  | else | 
|  | n_mask = &nodes_allowed; | 
|  | } else { | 
|  | /* | 
|  | * Node specific request.  count adjustment happens in | 
|  | * set_max_huge_pages() after acquiring hugetlb_lock. | 
|  | */ | 
|  | init_nodemask_of_node(&nodes_allowed, nid); | 
|  | n_mask = &nodes_allowed; | 
|  | } | 
|  |  | 
|  | err = set_max_huge_pages(h, count, nid, n_mask); | 
|  |  | 
|  | return err ? err : len; | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, | 
|  | struct kobject *kobj, const char *buf, | 
|  | size_t len) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long count; | 
|  | int nid; | 
|  | int err; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &count); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return nr_hugepages_show_common(kobj, attr, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | return nr_hugepages_store_common(false, kobj, buf, len); | 
|  | } | 
|  | HSTATE_ATTR(nr_hugepages); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * hstate attribute for optionally mempolicy-based constraint on persistent | 
|  | * huge page alloc/free. | 
|  | */ | 
|  | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return nr_hugepages_show_common(kobj, attr, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | return nr_hugepages_store_common(true, kobj, buf, len); | 
|  | } | 
|  | HSTATE_ATTR(nr_hugepages_mempolicy); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long input; | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &input); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | h->nr_overcommit_huge_pages = input; | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | HSTATE_ATTR(nr_overcommit_hugepages); | 
|  |  | 
|  | static ssize_t free_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long free_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | free_huge_pages = h->free_huge_pages; | 
|  | else | 
|  | free_huge_pages = h->free_huge_pages_node[nid]; | 
|  |  | 
|  | return sysfs_emit(buf, "%lu\n", free_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(free_hugepages); | 
|  |  | 
|  | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(resv_hugepages); | 
|  |  | 
|  | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long surplus_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | surplus_huge_pages = h->surplus_huge_pages; | 
|  | else | 
|  | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | 
|  |  | 
|  | return sysfs_emit(buf, "%lu\n", surplus_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(surplus_hugepages); | 
|  |  | 
|  | static ssize_t demote_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | unsigned long nr_demote; | 
|  | unsigned long nr_available; | 
|  | nodemask_t nodes_allowed, *n_mask; | 
|  | struct hstate *h; | 
|  | int err; | 
|  | int nid; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &nr_demote); | 
|  | if (err) | 
|  | return err; | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  |  | 
|  | if (nid != NUMA_NO_NODE) { | 
|  | init_nodemask_of_node(&nodes_allowed, nid); | 
|  | n_mask = &nodes_allowed; | 
|  | } else { | 
|  | n_mask = &node_states[N_MEMORY]; | 
|  | } | 
|  |  | 
|  | /* Synchronize with other sysfs operations modifying huge pages */ | 
|  | mutex_lock(&h->resize_lock); | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  |  | 
|  | while (nr_demote) { | 
|  | /* | 
|  | * Check for available pages to demote each time thorough the | 
|  | * loop as demote_pool_huge_page will drop hugetlb_lock. | 
|  | */ | 
|  | if (nid != NUMA_NO_NODE) | 
|  | nr_available = h->free_huge_pages_node[nid]; | 
|  | else | 
|  | nr_available = h->free_huge_pages; | 
|  | nr_available -= h->resv_huge_pages; | 
|  | if (!nr_available) | 
|  | break; | 
|  |  | 
|  | err = demote_pool_huge_page(h, n_mask); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | nr_demote--; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | mutex_unlock(&h->resize_lock); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | return len; | 
|  | } | 
|  | HSTATE_ATTR_WO(demote); | 
|  |  | 
|  | static ssize_t demote_size_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; | 
|  |  | 
|  | return sysfs_emit(buf, "%lukB\n", demote_size); | 
|  | } | 
|  |  | 
|  | static ssize_t demote_size_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct hstate *h, *demote_hstate; | 
|  | unsigned long demote_size; | 
|  | unsigned int demote_order; | 
|  |  | 
|  | demote_size = (unsigned long)memparse(buf, NULL); | 
|  |  | 
|  | demote_hstate = size_to_hstate(demote_size); | 
|  | if (!demote_hstate) | 
|  | return -EINVAL; | 
|  | demote_order = demote_hstate->order; | 
|  | if (demote_order < HUGETLB_PAGE_ORDER) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* demote order must be smaller than hstate order */ | 
|  | h = kobj_to_hstate(kobj, NULL); | 
|  | if (demote_order >= h->order) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* resize_lock synchronizes access to demote size and writes */ | 
|  | mutex_lock(&h->resize_lock); | 
|  | h->demote_order = demote_order; | 
|  | mutex_unlock(&h->resize_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | HSTATE_ATTR(demote_size); | 
|  |  | 
|  | static struct attribute *hstate_attrs[] = { | 
|  | &nr_hugepages_attr.attr, | 
|  | &nr_overcommit_hugepages_attr.attr, | 
|  | &free_hugepages_attr.attr, | 
|  | &resv_hugepages_attr.attr, | 
|  | &surplus_hugepages_attr.attr, | 
|  | #ifdef CONFIG_NUMA | 
|  | &nr_hugepages_mempolicy_attr.attr, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group hstate_attr_group = { | 
|  | .attrs = hstate_attrs, | 
|  | }; | 
|  |  | 
|  | static struct attribute *hstate_demote_attrs[] = { | 
|  | &demote_size_attr.attr, | 
|  | &demote_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group hstate_demote_attr_group = { | 
|  | .attrs = hstate_demote_attrs, | 
|  | }; | 
|  |  | 
|  | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, | 
|  | struct kobject **hstate_kobjs, | 
|  | const struct attribute_group *hstate_attr_group) | 
|  | { | 
|  | int retval; | 
|  | int hi = hstate_index(h); | 
|  |  | 
|  | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); | 
|  | if (!hstate_kobjs[hi]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); | 
|  | if (retval) { | 
|  | kobject_put(hstate_kobjs[hi]); | 
|  | hstate_kobjs[hi] = NULL; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if (h->demote_order) { | 
|  | retval = sysfs_create_group(hstate_kobjs[hi], | 
|  | &hstate_demote_attr_group); | 
|  | if (retval) { | 
|  | pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); | 
|  | sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); | 
|  | kobject_put(hstate_kobjs[hi]); | 
|  | hstate_kobjs[hi] = NULL; | 
|  | return retval; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static bool hugetlb_sysfs_initialized __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * node_hstate/s - associate per node hstate attributes, via their kobjects, | 
|  | * with node devices in node_devices[] using a parallel array.  The array | 
|  | * index of a node device or _hstate == node id. | 
|  | * This is here to avoid any static dependency of the node device driver, in | 
|  | * the base kernel, on the hugetlb module. | 
|  | */ | 
|  | struct node_hstate { | 
|  | struct kobject		*hugepages_kobj; | 
|  | struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE]; | 
|  | }; | 
|  | static struct node_hstate node_hstates[MAX_NUMNODES]; | 
|  |  | 
|  | /* | 
|  | * A subset of global hstate attributes for node devices | 
|  | */ | 
|  | static struct attribute *per_node_hstate_attrs[] = { | 
|  | &nr_hugepages_attr.attr, | 
|  | &free_hugepages_attr.attr, | 
|  | &surplus_hugepages_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group per_node_hstate_attr_group = { | 
|  | .attrs = per_node_hstate_attrs, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. | 
|  | * Returns node id via non-NULL nidp. | 
|  | */ | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for (nid = 0; nid < nr_node_ids; nid++) { | 
|  | struct node_hstate *nhs = &node_hstates[nid]; | 
|  | int i; | 
|  | for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
|  | if (nhs->hstate_kobjs[i] == kobj) { | 
|  | if (nidp) | 
|  | *nidp = nid; | 
|  | return &hstates[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister hstate attributes from a single node device. | 
|  | * No-op if no hstate attributes attached. | 
|  | */ | 
|  | void hugetlb_unregister_node(struct node *node) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
|  |  | 
|  | if (!nhs->hugepages_kobj) | 
|  | return;		/* no hstate attributes */ | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | int idx = hstate_index(h); | 
|  | struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; | 
|  |  | 
|  | if (!hstate_kobj) | 
|  | continue; | 
|  | if (h->demote_order) | 
|  | sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); | 
|  | sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); | 
|  | kobject_put(hstate_kobj); | 
|  | nhs->hstate_kobjs[idx] = NULL; | 
|  | } | 
|  |  | 
|  | kobject_put(nhs->hugepages_kobj); | 
|  | nhs->hugepages_kobj = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Register hstate attributes for a single node device. | 
|  | * No-op if attributes already registered. | 
|  | */ | 
|  | void hugetlb_register_node(struct node *node) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
|  | int err; | 
|  |  | 
|  | if (!hugetlb_sysfs_initialized) | 
|  | return; | 
|  |  | 
|  | if (nhs->hugepages_kobj) | 
|  | return;		/* already allocated */ | 
|  |  | 
|  | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | 
|  | &node->dev.kobj); | 
|  | if (!nhs->hugepages_kobj) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | 
|  | nhs->hstate_kobjs, | 
|  | &per_node_hstate_attr_group); | 
|  | if (err) { | 
|  | pr_err("HugeTLB: Unable to add hstate %s for node %d\n", | 
|  | h->name, node->dev.id); | 
|  | hugetlb_unregister_node(node); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb init time:  register hstate attributes for all registered node | 
|  | * devices of nodes that have memory.  All on-line nodes should have | 
|  | * registered their associated device by this time. | 
|  | */ | 
|  | static void __init hugetlb_register_all_nodes(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for_each_online_node(nid) | 
|  | hugetlb_register_node(node_devices[nid]); | 
|  | } | 
|  | #else	/* !CONFIG_NUMA */ | 
|  |  | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | BUG(); | 
|  | if (nidp) | 
|  | *nidp = -1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void hugetlb_register_all_nodes(void) { } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | static void __init hugetlb_cma_check(void); | 
|  | #else | 
|  | static inline __init void hugetlb_cma_check(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __init hugetlb_sysfs_init(void) | 
|  | { | 
|  | struct hstate *h; | 
|  | int err; | 
|  |  | 
|  | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
|  | if (!hugepages_kobj) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | 
|  | hstate_kobjs, &hstate_attr_group); | 
|  | if (err) | 
|  | pr_err("HugeTLB: Unable to add hstate %s", h->name); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | hugetlb_sysfs_initialized = true; | 
|  | #endif | 
|  | hugetlb_register_all_nodes(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static void hugetlb_sysctl_init(void); | 
|  | #else | 
|  | static inline void hugetlb_sysctl_init(void) { } | 
|  | #endif | 
|  |  | 
|  | static int __init hugetlb_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < | 
|  | __NR_HPAGEFLAGS); | 
|  |  | 
|  | if (!hugepages_supported()) { | 
|  | if (hugetlb_max_hstate || default_hstate_max_huge_pages) | 
|  | pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some | 
|  | * architectures depend on setup being done here. | 
|  | */ | 
|  | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
|  | if (!parsed_default_hugepagesz) { | 
|  | /* | 
|  | * If we did not parse a default huge page size, set | 
|  | * default_hstate_idx to HPAGE_SIZE hstate. And, if the | 
|  | * number of huge pages for this default size was implicitly | 
|  | * specified, set that here as well. | 
|  | * Note that the implicit setting will overwrite an explicit | 
|  | * setting.  A warning will be printed in this case. | 
|  | */ | 
|  | default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); | 
|  | if (default_hstate_max_huge_pages) { | 
|  | if (default_hstate.max_huge_pages) { | 
|  | char buf[32]; | 
|  |  | 
|  | string_get_size(huge_page_size(&default_hstate), | 
|  | 1, STRING_UNITS_2, buf, 32); | 
|  | pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", | 
|  | default_hstate.max_huge_pages, buf); | 
|  | pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", | 
|  | default_hstate_max_huge_pages); | 
|  | } | 
|  | default_hstate.max_huge_pages = | 
|  | default_hstate_max_huge_pages; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | default_hstate.max_huge_pages_node[i] = | 
|  | default_hugepages_in_node[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | hugetlb_cma_check(); | 
|  | hugetlb_init_hstates(); | 
|  | gather_bootmem_prealloc(); | 
|  | report_hugepages(); | 
|  |  | 
|  | hugetlb_sysfs_init(); | 
|  | hugetlb_cgroup_file_init(); | 
|  | hugetlb_sysctl_init(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | 
|  | #else | 
|  | num_fault_mutexes = 1; | 
|  | #endif | 
|  | hugetlb_fault_mutex_table = | 
|  | kmalloc_array(num_fault_mutexes, sizeof(struct mutex), | 
|  | GFP_KERNEL); | 
|  | BUG_ON(!hugetlb_fault_mutex_table); | 
|  |  | 
|  | for (i = 0; i < num_fault_mutexes; i++) | 
|  | mutex_init(&hugetlb_fault_mutex_table[i]); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(hugetlb_init); | 
|  |  | 
|  | /* Overwritten by architectures with more huge page sizes */ | 
|  | bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) | 
|  | { | 
|  | return size == HPAGE_SIZE; | 
|  | } | 
|  |  | 
|  | void __init hugetlb_add_hstate(unsigned int order) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long i; | 
|  |  | 
|  | if (size_to_hstate(PAGE_SIZE << order)) { | 
|  | return; | 
|  | } | 
|  | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); | 
|  | BUG_ON(order == 0); | 
|  | h = &hstates[hugetlb_max_hstate++]; | 
|  | __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); | 
|  | h->order = order; | 
|  | h->mask = ~(huge_page_size(h) - 1); | 
|  | for (i = 0; i < MAX_NUMNODES; ++i) | 
|  | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
|  | INIT_LIST_HEAD(&h->hugepage_activelist); | 
|  | h->next_nid_to_alloc = first_memory_node; | 
|  | h->next_nid_to_free = first_memory_node; | 
|  | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
|  | huge_page_size(h)/SZ_1K); | 
|  |  | 
|  | parsed_hstate = h; | 
|  | } | 
|  |  | 
|  | bool __init __weak hugetlb_node_alloc_supported(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __init hugepages_clear_pages_in_node(void) | 
|  | { | 
|  | if (!hugetlb_max_hstate) { | 
|  | default_hstate_max_huge_pages = 0; | 
|  | memset(default_hugepages_in_node, 0, | 
|  | sizeof(default_hugepages_in_node)); | 
|  | } else { | 
|  | parsed_hstate->max_huge_pages = 0; | 
|  | memset(parsed_hstate->max_huge_pages_node, 0, | 
|  | sizeof(parsed_hstate->max_huge_pages_node)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugepages command line processing | 
|  | * hugepages normally follows a valid hugepagsz or default_hugepagsz | 
|  | * specification.  If not, ignore the hugepages value.  hugepages can also | 
|  | * be the first huge page command line  option in which case it implicitly | 
|  | * specifies the number of huge pages for the default size. | 
|  | */ | 
|  | static int __init hugepages_setup(char *s) | 
|  | { | 
|  | unsigned long *mhp; | 
|  | static unsigned long *last_mhp; | 
|  | int node = NUMA_NO_NODE; | 
|  | int count; | 
|  | unsigned long tmp; | 
|  | char *p = s; | 
|  |  | 
|  | if (!parsed_valid_hugepagesz) { | 
|  | pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); | 
|  | parsed_valid_hugepagesz = true; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter | 
|  | * yet, so this hugepages= parameter goes to the "default hstate". | 
|  | * Otherwise, it goes with the previously parsed hugepagesz or | 
|  | * default_hugepagesz. | 
|  | */ | 
|  | else if (!hugetlb_max_hstate) | 
|  | mhp = &default_hstate_max_huge_pages; | 
|  | else | 
|  | mhp = &parsed_hstate->max_huge_pages; | 
|  |  | 
|  | if (mhp == last_mhp) { | 
|  | pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | while (*p) { | 
|  | count = 0; | 
|  | if (sscanf(p, "%lu%n", &tmp, &count) != 1) | 
|  | goto invalid; | 
|  | /* Parameter is node format */ | 
|  | if (p[count] == ':') { | 
|  | if (!hugetlb_node_alloc_supported()) { | 
|  | pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); | 
|  | return 1; | 
|  | } | 
|  | if (tmp >= MAX_NUMNODES || !node_online(tmp)) | 
|  | goto invalid; | 
|  | node = array_index_nospec(tmp, MAX_NUMNODES); | 
|  | p += count + 1; | 
|  | /* Parse hugepages */ | 
|  | if (sscanf(p, "%lu%n", &tmp, &count) != 1) | 
|  | goto invalid; | 
|  | if (!hugetlb_max_hstate) | 
|  | default_hugepages_in_node[node] = tmp; | 
|  | else | 
|  | parsed_hstate->max_huge_pages_node[node] = tmp; | 
|  | *mhp += tmp; | 
|  | /* Go to parse next node*/ | 
|  | if (p[count] == ',') | 
|  | p += count + 1; | 
|  | else | 
|  | break; | 
|  | } else { | 
|  | if (p != s) | 
|  | goto invalid; | 
|  | *mhp = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Global state is always initialized later in hugetlb_init. | 
|  | * But we need to allocate gigantic hstates here early to still | 
|  | * use the bootmem allocator. | 
|  | */ | 
|  | if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) | 
|  | hugetlb_hstate_alloc_pages(parsed_hstate); | 
|  |  | 
|  | last_mhp = mhp; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | invalid: | 
|  | pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); | 
|  | hugepages_clear_pages_in_node(); | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepages=", hugepages_setup); | 
|  |  | 
|  | /* | 
|  | * hugepagesz command line processing | 
|  | * A specific huge page size can only be specified once with hugepagesz. | 
|  | * hugepagesz is followed by hugepages on the command line.  The global | 
|  | * variable 'parsed_valid_hugepagesz' is used to determine if prior | 
|  | * hugepagesz argument was valid. | 
|  | */ | 
|  | static int __init hugepagesz_setup(char *s) | 
|  | { | 
|  | unsigned long size; | 
|  | struct hstate *h; | 
|  |  | 
|  | parsed_valid_hugepagesz = false; | 
|  | size = (unsigned long)memparse(s, NULL); | 
|  |  | 
|  | if (!arch_hugetlb_valid_size(size)) { | 
|  | pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | h = size_to_hstate(size); | 
|  | if (h) { | 
|  | /* | 
|  | * hstate for this size already exists.  This is normally | 
|  | * an error, but is allowed if the existing hstate is the | 
|  | * default hstate.  More specifically, it is only allowed if | 
|  | * the number of huge pages for the default hstate was not | 
|  | * previously specified. | 
|  | */ | 
|  | if (!parsed_default_hugepagesz ||  h != &default_hstate || | 
|  | default_hstate.max_huge_pages) { | 
|  | pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to call hugetlb_add_hstate() as hstate already | 
|  | * exists.  But, do set parsed_hstate so that a following | 
|  | * hugepages= parameter will be applied to this hstate. | 
|  | */ | 
|  | parsed_hstate = h; | 
|  | parsed_valid_hugepagesz = true; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); | 
|  | parsed_valid_hugepagesz = true; | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepagesz=", hugepagesz_setup); | 
|  |  | 
|  | /* | 
|  | * default_hugepagesz command line input | 
|  | * Only one instance of default_hugepagesz allowed on command line. | 
|  | */ | 
|  | static int __init default_hugepagesz_setup(char *s) | 
|  | { | 
|  | unsigned long size; | 
|  | int i; | 
|  |  | 
|  | parsed_valid_hugepagesz = false; | 
|  | if (parsed_default_hugepagesz) { | 
|  | pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size = (unsigned long)memparse(s, NULL); | 
|  |  | 
|  | if (!arch_hugetlb_valid_size(size)) { | 
|  | pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); | 
|  | parsed_valid_hugepagesz = true; | 
|  | parsed_default_hugepagesz = true; | 
|  | default_hstate_idx = hstate_index(size_to_hstate(size)); | 
|  |  | 
|  | /* | 
|  | * The number of default huge pages (for this size) could have been | 
|  | * specified as the first hugetlb parameter: hugepages=X.  If so, | 
|  | * then default_hstate_max_huge_pages is set.  If the default huge | 
|  | * page size is gigantic (> MAX_ORDER), then the pages must be | 
|  | * allocated here from bootmem allocator. | 
|  | */ | 
|  | if (default_hstate_max_huge_pages) { | 
|  | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
|  | for_each_online_node(i) | 
|  | default_hstate.max_huge_pages_node[i] = | 
|  | default_hugepages_in_node[i]; | 
|  | if (hstate_is_gigantic(&default_hstate)) | 
|  | hugetlb_hstate_alloc_pages(&default_hstate); | 
|  | default_hstate_max_huge_pages = 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("default_hugepagesz=", default_hugepagesz_setup); | 
|  |  | 
|  | static unsigned int allowed_mems_nr(struct hstate *h) | 
|  | { | 
|  | int node; | 
|  | unsigned int nr = 0; | 
|  | nodemask_t *mbind_nodemask; | 
|  | unsigned int *array = h->free_huge_pages_node; | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h); | 
|  |  | 
|  | mbind_nodemask = policy_mbind_nodemask(gfp_mask); | 
|  | for_each_node_mask(node, cpuset_current_mems_allowed) { | 
|  | if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) | 
|  | nr += array[node]; | 
|  | } | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, | 
|  | loff_t *ppos, unsigned long *out) | 
|  | { | 
|  | struct ctl_table dup_table; | 
|  |  | 
|  | /* | 
|  | * In order to avoid races with __do_proc_doulongvec_minmax(), we | 
|  | * can duplicate the @table and alter the duplicate of it. | 
|  | */ | 
|  | dup_table = *table; | 
|  | dup_table.data = out; | 
|  |  | 
|  | return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); | 
|  | } | 
|  |  | 
|  | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, | 
|  | struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | unsigned long tmp = h->max_huge_pages; | 
|  | int ret; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, | 
|  | &tmp); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (write) | 
|  | ret = __nr_hugepages_store_common(obey_mempolicy, h, | 
|  | NUMA_NO_NODE, tmp, *length); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  |  | 
|  | return hugetlb_sysctl_handler_common(false, table, write, | 
|  | buffer, length, ppos); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | return hugetlb_sysctl_handler_common(true, table, write, | 
|  | buffer, length, ppos); | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | static int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | unsigned long tmp; | 
|  | int ret; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | tmp = h->nr_overcommit_huge_pages; | 
|  |  | 
|  | if (write && hstate_is_gigantic(h)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, | 
|  | &tmp); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (write) { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | h->nr_overcommit_huge_pages = tmp; | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct ctl_table hugetlb_table[] = { | 
|  | { | 
|  | .procname	= "nr_hugepages", | 
|  | .data		= NULL, | 
|  | .maxlen		= sizeof(unsigned long), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= hugetlb_sysctl_handler, | 
|  | }, | 
|  | #ifdef CONFIG_NUMA | 
|  | { | 
|  | .procname       = "nr_hugepages_mempolicy", | 
|  | .data           = NULL, | 
|  | .maxlen         = sizeof(unsigned long), | 
|  | .mode           = 0644, | 
|  | .proc_handler   = &hugetlb_mempolicy_sysctl_handler, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .procname	= "hugetlb_shm_group", | 
|  | .data		= &sysctl_hugetlb_shm_group, | 
|  | .maxlen		= sizeof(gid_t), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "nr_overcommit_hugepages", | 
|  | .data		= NULL, | 
|  | .maxlen		= sizeof(unsigned long), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= hugetlb_overcommit_handler, | 
|  | }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | static void __init hugetlb_sysctl_init(void) | 
|  | { | 
|  | register_sysctl_init("vm", hugetlb_table); | 
|  | } | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | void hugetlb_report_meminfo(struct seq_file *m) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long total = 0; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | unsigned long count = h->nr_huge_pages; | 
|  |  | 
|  | total += huge_page_size(h) * count; | 
|  |  | 
|  | if (h == &default_hstate) | 
|  | seq_printf(m, | 
|  | "HugePages_Total:   %5lu\n" | 
|  | "HugePages_Free:    %5lu\n" | 
|  | "HugePages_Rsvd:    %5lu\n" | 
|  | "HugePages_Surp:    %5lu\n" | 
|  | "Hugepagesize:   %8lu kB\n", | 
|  | count, | 
|  | h->free_huge_pages, | 
|  | h->resv_huge_pages, | 
|  | h->surplus_huge_pages, | 
|  | huge_page_size(h) / SZ_1K); | 
|  | } | 
|  |  | 
|  | seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K); | 
|  | } | 
|  |  | 
|  | int hugetlb_report_node_meminfo(char *buf, int len, int nid) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return 0; | 
|  |  | 
|  | return sysfs_emit_at(buf, len, | 
|  | "Node %d HugePages_Total: %5u\n" | 
|  | "Node %d HugePages_Free:  %5u\n" | 
|  | "Node %d HugePages_Surp:  %5u\n", | 
|  | nid, h->nr_huge_pages_node[nid], | 
|  | nid, h->free_huge_pages_node[nid], | 
|  | nid, h->surplus_huge_pages_node[nid]); | 
|  | } | 
|  |  | 
|  | void hugetlb_show_meminfo_node(int nid) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) | 
|  | printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | 
|  | nid, | 
|  | h->nr_huge_pages_node[nid], | 
|  | h->free_huge_pages_node[nid], | 
|  | h->surplus_huge_pages_node[nid], | 
|  | huge_page_size(h) / SZ_1K); | 
|  | } | 
|  |  | 
|  | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) | 
|  | { | 
|  | seq_printf(m, "HugetlbPages:\t%8lu kB\n", | 
|  | K(atomic_long_read(&mm->hugetlb_usage))); | 
|  | } | 
|  |  | 
|  | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
|  | unsigned long hugetlb_total_pages(void) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long nr_total_pages = 0; | 
|  |  | 
|  | for_each_hstate(h) | 
|  | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | 
|  | return nr_total_pages; | 
|  | } | 
|  |  | 
|  | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
|  | { | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | if (!delta) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | /* | 
|  | * When cpuset is configured, it breaks the strict hugetlb page | 
|  | * reservation as the accounting is done on a global variable. Such | 
|  | * reservation is completely rubbish in the presence of cpuset because | 
|  | * the reservation is not checked against page availability for the | 
|  | * current cpuset. Application can still potentially OOM'ed by kernel | 
|  | * with lack of free htlb page in cpuset that the task is in. | 
|  | * Attempt to enforce strict accounting with cpuset is almost | 
|  | * impossible (or too ugly) because cpuset is too fluid that | 
|  | * task or memory node can be dynamically moved between cpusets. | 
|  | * | 
|  | * The change of semantics for shared hugetlb mapping with cpuset is | 
|  | * undesirable. However, in order to preserve some of the semantics, | 
|  | * we fall back to check against current free page availability as | 
|  | * a best attempt and hopefully to minimize the impact of changing | 
|  | * semantics that cpuset has. | 
|  | * | 
|  | * Apart from cpuset, we also have memory policy mechanism that | 
|  | * also determines from which node the kernel will allocate memory | 
|  | * in a NUMA system. So similar to cpuset, we also should consider | 
|  | * the memory policy of the current task. Similar to the description | 
|  | * above. | 
|  | */ | 
|  | if (delta > 0) { | 
|  | if (gather_surplus_pages(h, delta) < 0) | 
|  | goto out; | 
|  |  | 
|  | if (delta > allowed_mems_nr(h)) { | 
|  | return_unused_surplus_pages(h, delta); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (delta < 0) | 
|  | return_unused_surplus_pages(h, (unsigned long) -delta); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
|  | { | 
|  | struct resv_map *resv = vma_resv_map(vma); | 
|  |  | 
|  | /* | 
|  | * HPAGE_RESV_OWNER indicates a private mapping. | 
|  | * This new VMA should share its siblings reservation map if present. | 
|  | * The VMA will only ever have a valid reservation map pointer where | 
|  | * it is being copied for another still existing VMA.  As that VMA | 
|  | * has a reference to the reservation map it cannot disappear until | 
|  | * after this open call completes.  It is therefore safe to take a | 
|  | * new reference here without additional locking. | 
|  | */ | 
|  | if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | resv_map_dup_hugetlb_cgroup_uncharge_info(resv); | 
|  | kref_get(&resv->refs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_lock structure for sharable mappings is vma specific. | 
|  | * Clear old pointer (if copied via vm_area_dup) and allocate | 
|  | * new structure.  Before clearing, make sure vma_lock is not | 
|  | * for this vma. | 
|  | */ | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | 
|  |  | 
|  | if (vma_lock) { | 
|  | if (vma_lock->vma != vma) { | 
|  | vma->vm_private_data = NULL; | 
|  | hugetlb_vma_lock_alloc(vma); | 
|  | } else | 
|  | pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); | 
|  | } else | 
|  | hugetlb_vma_lock_alloc(vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct resv_map *resv; | 
|  | struct hugepage_subpool *spool = subpool_vma(vma); | 
|  | unsigned long reserve, start, end; | 
|  | long gbl_reserve; | 
|  |  | 
|  | hugetlb_vma_lock_free(vma); | 
|  |  | 
|  | resv = vma_resv_map(vma); | 
|  | if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
|  | return; | 
|  |  | 
|  | start = vma_hugecache_offset(h, vma, vma->vm_start); | 
|  | end = vma_hugecache_offset(h, vma, vma->vm_end); | 
|  |  | 
|  | reserve = (end - start) - region_count(resv, start, end); | 
|  | hugetlb_cgroup_uncharge_counter(resv, start, end); | 
|  | if (reserve) { | 
|  | /* | 
|  | * Decrement reserve counts.  The global reserve count may be | 
|  | * adjusted if the subpool has a minimum size. | 
|  | */ | 
|  | gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | 
|  | hugetlb_acct_memory(h, -gbl_reserve); | 
|  | } | 
|  |  | 
|  | kref_put(&resv->refs, resv_map_release); | 
|  | } | 
|  |  | 
|  | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | if (addr & ~(huge_page_mask(hstate_vma(vma)))) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | /* | 
|  | * PMD sharing is only possible for PUD_SIZE-aligned address ranges | 
|  | * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this | 
|  | * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. | 
|  | * This function is called in the middle of a VMA split operation, with | 
|  | * MM, VMA and rmap all write-locked to prevent concurrent page table | 
|  | * walks (except hardware and gup_fast()). | 
|  | */ | 
|  | vma_assert_write_locked(vma); | 
|  | i_mmap_assert_write_locked(vma->vm_file->f_mapping); | 
|  |  | 
|  | if (addr & ~PUD_MASK) { | 
|  | unsigned long floor = addr & PUD_MASK; | 
|  | unsigned long ceil = floor + PUD_SIZE; | 
|  |  | 
|  | if (floor >= vma->vm_start && ceil <= vma->vm_end) { | 
|  | /* | 
|  | * Locking: | 
|  | * Use take_locks=false here. | 
|  | * The file rmap lock is already held. | 
|  | * The hugetlb VMA lock can't be taken when we already | 
|  | * hold the file rmap lock, and we don't need it because | 
|  | * its purpose is to synchronize against concurrent page | 
|  | * table walks, which are not possible thanks to the | 
|  | * locks held by our caller. | 
|  | */ | 
|  | hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | return huge_page_size(hstate_vma(vma)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
|  | * handle_mm_fault() to try to instantiate regular-sized pages in the | 
|  | * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
|  | * this far. | 
|  | */ | 
|  | static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a new function is introduced to vm_operations_struct and added | 
|  | * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. | 
|  | * This is because under System V memory model, mappings created via | 
|  | * shmget/shmat with "huge page" specified are backed by hugetlbfs files, | 
|  | * their original vm_ops are overwritten with shm_vm_ops. | 
|  | */ | 
|  | const struct vm_operations_struct hugetlb_vm_ops = { | 
|  | .fault = hugetlb_vm_op_fault, | 
|  | .open = hugetlb_vm_op_open, | 
|  | .close = hugetlb_vm_op_close, | 
|  | .may_split = hugetlb_vm_op_split, | 
|  | .pagesize = hugetlb_vm_op_pagesize, | 
|  | }; | 
|  |  | 
|  | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
|  | int writable) | 
|  | { | 
|  | pte_t entry; | 
|  | unsigned int shift = huge_page_shift(hstate_vma(vma)); | 
|  |  | 
|  | if (writable) { | 
|  | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, | 
|  | vma->vm_page_prot))); | 
|  | } else { | 
|  | entry = huge_pte_wrprotect(mk_huge_pte(page, | 
|  | vma->vm_page_prot)); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | entry = arch_make_huge_pte(entry, shift, vma->vm_flags); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); | 
|  | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) | 
|  | update_mmu_cache(vma, address, ptep); | 
|  | } | 
|  |  | 
|  | bool is_hugetlb_entry_migration(pte_t pte) | 
|  | { | 
|  | swp_entry_t swp; | 
|  |  | 
|  | if (huge_pte_none(pte) || pte_present(pte)) | 
|  | return false; | 
|  | swp = pte_to_swp_entry(pte); | 
|  | if (is_migration_entry(swp)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool is_hugetlb_entry_hwpoisoned(pte_t pte) | 
|  | { | 
|  | swp_entry_t swp; | 
|  |  | 
|  | if (huge_pte_none(pte) || pte_present(pte)) | 
|  | return false; | 
|  | swp = pte_to_swp_entry(pte); | 
|  | if (is_hwpoison_entry(swp)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, | 
|  | struct folio *new_folio, pte_t old, unsigned long sz) | 
|  | { | 
|  | pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); | 
|  |  | 
|  | __folio_mark_uptodate(new_folio); | 
|  | hugepage_add_new_anon_rmap(new_folio, vma, addr); | 
|  | if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) | 
|  | newpte = huge_pte_mkuffd_wp(newpte); | 
|  | set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); | 
|  | hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); | 
|  | folio_set_hugetlb_migratable(new_folio); | 
|  | } | 
|  |  | 
|  | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
|  | struct vm_area_struct *dst_vma, | 
|  | struct vm_area_struct *src_vma) | 
|  | { | 
|  | pte_t *src_pte, *dst_pte, entry; | 
|  | struct folio *pte_folio; | 
|  | unsigned long addr; | 
|  | bool cow = is_cow_mapping(src_vma->vm_flags); | 
|  | struct hstate *h = hstate_vma(src_vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | unsigned long npages = pages_per_huge_page(h); | 
|  | struct mmu_notifier_range range; | 
|  | unsigned long last_addr_mask; | 
|  | int ret = 0; | 
|  |  | 
|  | if (cow) { | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, | 
|  | src_vma->vm_start, | 
|  | src_vma->vm_end); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | vma_assert_write_locked(src_vma); | 
|  | raw_write_seqcount_begin(&src->write_protect_seq); | 
|  | } else { | 
|  | /* | 
|  | * For shared mappings the vma lock must be held before | 
|  | * calling hugetlb_walk() in the src vma. Otherwise, the | 
|  | * returned ptep could go away if part of a shared pmd and | 
|  | * another thread calls huge_pmd_unshare. | 
|  | */ | 
|  | hugetlb_vma_lock_read(src_vma); | 
|  | } | 
|  |  | 
|  | last_addr_mask = hugetlb_mask_last_page(h); | 
|  | for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | src_pte = hugetlb_walk(src_vma, addr, sz); | 
|  | if (!src_pte) { | 
|  | addr |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  | dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); | 
|  | if (!dst_pte) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the pagetables are shared don't copy or take references. | 
|  | * | 
|  | * dst_pte == src_pte is the common case of src/dest sharing. | 
|  | * However, src could have 'unshared' and dst shares with | 
|  | * another vma. So page_count of ptep page is checked instead | 
|  | * to reliably determine whether pte is shared. | 
|  | */ | 
|  | if (page_count(virt_to_page(dst_pte)) > 1) { | 
|  | addr |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dst_ptl = huge_pte_lock(h, dst, dst_pte); | 
|  | src_ptl = huge_pte_lockptr(h, src, src_pte); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | entry = huge_ptep_get(src_pte); | 
|  | again: | 
|  | if (huge_pte_none(entry)) { | 
|  | /* | 
|  | * Skip if src entry none. | 
|  | */ | 
|  | ; | 
|  | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { | 
|  | if (!userfaultfd_wp(dst_vma)) | 
|  | entry = huge_pte_clear_uffd_wp(entry); | 
|  | set_huge_pte_at(dst, addr, dst_pte, entry, sz); | 
|  | } else if (unlikely(is_hugetlb_entry_migration(entry))) { | 
|  | swp_entry_t swp_entry = pte_to_swp_entry(entry); | 
|  | bool uffd_wp = pte_swp_uffd_wp(entry); | 
|  |  | 
|  | if (!is_readable_migration_entry(swp_entry) && cow) { | 
|  | /* | 
|  | * COW mappings require pages in both | 
|  | * parent and child to be set to read. | 
|  | */ | 
|  | swp_entry = make_readable_migration_entry( | 
|  | swp_offset(swp_entry)); | 
|  | entry = swp_entry_to_pte(swp_entry); | 
|  | if (userfaultfd_wp(src_vma) && uffd_wp) | 
|  | entry = pte_swp_mkuffd_wp(entry); | 
|  | set_huge_pte_at(src, addr, src_pte, entry, sz); | 
|  | } | 
|  | if (!userfaultfd_wp(dst_vma)) | 
|  | entry = huge_pte_clear_uffd_wp(entry); | 
|  | set_huge_pte_at(dst, addr, dst_pte, entry, sz); | 
|  | } else if (unlikely(is_pte_marker(entry))) { | 
|  | pte_marker marker = copy_pte_marker( | 
|  | pte_to_swp_entry(entry), dst_vma); | 
|  |  | 
|  | if (marker) | 
|  | set_huge_pte_at(dst, addr, dst_pte, | 
|  | make_pte_marker(marker), sz); | 
|  | } else { | 
|  | entry = huge_ptep_get(src_pte); | 
|  | pte_folio = page_folio(pte_page(entry)); | 
|  | folio_get(pte_folio); | 
|  |  | 
|  | /* | 
|  | * Failing to duplicate the anon rmap is a rare case | 
|  | * where we see pinned hugetlb pages while they're | 
|  | * prone to COW. We need to do the COW earlier during | 
|  | * fork. | 
|  | * | 
|  | * When pre-allocating the page or copying data, we | 
|  | * need to be without the pgtable locks since we could | 
|  | * sleep during the process. | 
|  | */ | 
|  | if (!folio_test_anon(pte_folio)) { | 
|  | page_dup_file_rmap(&pte_folio->page, true); | 
|  | } else if (page_try_dup_anon_rmap(&pte_folio->page, | 
|  | true, src_vma)) { | 
|  | pte_t src_pte_old = entry; | 
|  | struct folio *new_folio; | 
|  |  | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | /* Do not use reserve as it's private owned */ | 
|  | new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); | 
|  | if (IS_ERR(new_folio)) { | 
|  | folio_put(pte_folio); | 
|  | ret = PTR_ERR(new_folio); | 
|  | break; | 
|  | } | 
|  | ret = copy_user_large_folio(new_folio, | 
|  | pte_folio, | 
|  | addr, dst_vma); | 
|  | folio_put(pte_folio); | 
|  | if (ret) { | 
|  | folio_put(new_folio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Install the new hugetlb folio if src pte stable */ | 
|  | dst_ptl = huge_pte_lock(h, dst, dst_pte); | 
|  | src_ptl = huge_pte_lockptr(h, src, src_pte); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | entry = huge_ptep_get(src_pte); | 
|  | if (!pte_same(src_pte_old, entry)) { | 
|  | restore_reserve_on_error(h, dst_vma, addr, | 
|  | new_folio); | 
|  | folio_put(new_folio); | 
|  | /* huge_ptep of dst_pte won't change as in child */ | 
|  | goto again; | 
|  | } | 
|  | hugetlb_install_folio(dst_vma, dst_pte, addr, | 
|  | new_folio, src_pte_old, sz); | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (cow) { | 
|  | /* | 
|  | * No need to notify as we are downgrading page | 
|  | * table protection not changing it to point | 
|  | * to a new page. | 
|  | * | 
|  | * See Documentation/mm/mmu_notifier.rst | 
|  | */ | 
|  | huge_ptep_set_wrprotect(src, addr, src_pte); | 
|  | entry = huge_pte_wrprotect(entry); | 
|  | } | 
|  |  | 
|  | if (!userfaultfd_wp(dst_vma)) | 
|  | entry = huge_pte_clear_uffd_wp(entry); | 
|  |  | 
|  | set_huge_pte_at(dst, addr, dst_pte, entry, sz); | 
|  | hugetlb_count_add(npages, dst); | 
|  | } | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | } | 
|  |  | 
|  | if (cow) { | 
|  | raw_write_seqcount_end(&src->write_protect_seq); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | } else { | 
|  | hugetlb_vma_unlock_read(src_vma); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, | 
|  | unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, | 
|  | unsigned long sz) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | pte_t pte; | 
|  |  | 
|  | dst_ptl = huge_pte_lock(h, mm, dst_pte); | 
|  | src_ptl = huge_pte_lockptr(h, mm, src_pte); | 
|  |  | 
|  | /* | 
|  | * We don't have to worry about the ordering of src and dst ptlocks | 
|  | * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. | 
|  | */ | 
|  | if (src_ptl != dst_ptl) | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); | 
|  | set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); | 
|  |  | 
|  | if (src_ptl != dst_ptl) | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | } | 
|  |  | 
|  | int move_hugetlb_page_tables(struct vm_area_struct *vma, | 
|  | struct vm_area_struct *new_vma, | 
|  | unsigned long old_addr, unsigned long new_addr, | 
|  | unsigned long len) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | unsigned long sz = huge_page_size(h); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long old_end = old_addr + len; | 
|  | unsigned long last_addr_mask; | 
|  | pte_t *src_pte, *dst_pte; | 
|  | struct mmu_notifier_range range; | 
|  | bool shared_pmd = false; | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, | 
|  | old_end); | 
|  | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | 
|  | /* | 
|  | * In case of shared PMDs, we should cover the maximum possible | 
|  | * range. | 
|  | */ | 
|  | flush_cache_range(vma, range.start, range.end); | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | last_addr_mask = hugetlb_mask_last_page(h); | 
|  | /* Prevent race with file truncation */ | 
|  | hugetlb_vma_lock_write(vma); | 
|  | i_mmap_lock_write(mapping); | 
|  | for (; old_addr < old_end; old_addr += sz, new_addr += sz) { | 
|  | src_pte = hugetlb_walk(vma, old_addr, sz); | 
|  | if (!src_pte) { | 
|  | old_addr |= last_addr_mask; | 
|  | new_addr |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  | if (huge_pte_none(huge_ptep_get(src_pte))) | 
|  | continue; | 
|  |  | 
|  | if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { | 
|  | shared_pmd = true; | 
|  | old_addr |= last_addr_mask; | 
|  | new_addr |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); | 
|  | if (!dst_pte) | 
|  | break; | 
|  |  | 
|  | move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); | 
|  | } | 
|  |  | 
|  | if (shared_pmd) | 
|  | flush_hugetlb_tlb_range(vma, range.start, range.end); | 
|  | else | 
|  | flush_hugetlb_tlb_range(vma, old_end - len, old_end); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | i_mmap_unlock_write(mapping); | 
|  | hugetlb_vma_unlock_write(vma); | 
|  |  | 
|  | return len + old_addr - old_end; | 
|  | } | 
|  |  | 
|  | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, | 
|  | struct page *ref_page, zap_flags_t zap_flags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | unsigned long last_addr_mask; | 
|  | bool force_flush = false; | 
|  |  | 
|  | WARN_ON(!is_vm_hugetlb_page(vma)); | 
|  | BUG_ON(start & ~huge_page_mask(h)); | 
|  | BUG_ON(end & ~huge_page_mask(h)); | 
|  |  | 
|  | /* | 
|  | * This is a hugetlb vma, all the pte entries should point | 
|  | * to huge page. | 
|  | */ | 
|  | tlb_change_page_size(tlb, sz); | 
|  | tlb_start_vma(tlb, vma); | 
|  |  | 
|  | last_addr_mask = hugetlb_mask_last_page(h); | 
|  | address = start; | 
|  | for (; address < end; address += sz) { | 
|  | ptep = hugetlb_walk(vma, address, sz); | 
|  | if (!ptep) { | 
|  | address |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | if (huge_pmd_unshare(mm, vma, address, ptep)) { | 
|  | spin_unlock(ptl); | 
|  | tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); | 
|  | force_flush = true; | 
|  | address |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pte = huge_ptep_get(ptep); | 
|  | if (huge_pte_none(pte)) { | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrating hugepage or HWPoisoned hugepage is already | 
|  | * unmapped and its refcount is dropped, so just clear pte here. | 
|  | */ | 
|  | if (unlikely(!pte_present(pte))) { | 
|  | /* | 
|  | * If the pte was wr-protected by uffd-wp in any of the | 
|  | * swap forms, meanwhile the caller does not want to | 
|  | * drop the uffd-wp bit in this zap, then replace the | 
|  | * pte with a marker. | 
|  | */ | 
|  | if (pte_swp_uffd_wp_any(pte) && | 
|  | !(zap_flags & ZAP_FLAG_DROP_MARKER)) | 
|  | set_huge_pte_at(mm, address, ptep, | 
|  | make_pte_marker(PTE_MARKER_UFFD_WP), | 
|  | sz); | 
|  | else | 
|  | huge_pte_clear(mm, address, ptep, sz); | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | page = pte_page(pte); | 
|  | /* | 
|  | * If a reference page is supplied, it is because a specific | 
|  | * page is being unmapped, not a range. Ensure the page we | 
|  | * are about to unmap is the actual page of interest. | 
|  | */ | 
|  | if (ref_page) { | 
|  | if (page != ref_page) { | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Mark the VMA as having unmapped its page so that | 
|  | * future faults in this VMA will fail rather than | 
|  | * looking like data was lost | 
|  | */ | 
|  | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
|  | } | 
|  |  | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep, sz); | 
|  | tlb_remove_huge_tlb_entry(h, tlb, ptep, address); | 
|  | if (huge_pte_dirty(pte)) | 
|  | set_page_dirty(page); | 
|  | /* Leave a uffd-wp pte marker if needed */ | 
|  | if (huge_pte_uffd_wp(pte) && | 
|  | !(zap_flags & ZAP_FLAG_DROP_MARKER)) | 
|  | set_huge_pte_at(mm, address, ptep, | 
|  | make_pte_marker(PTE_MARKER_UFFD_WP), | 
|  | sz); | 
|  | hugetlb_count_sub(pages_per_huge_page(h), mm); | 
|  | page_remove_rmap(page, vma, true); | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | tlb_remove_page_size(tlb, page, huge_page_size(h)); | 
|  | /* | 
|  | * Bail out after unmapping reference page if supplied | 
|  | */ | 
|  | if (ref_page) | 
|  | break; | 
|  | } | 
|  | tlb_end_vma(tlb, vma); | 
|  |  | 
|  | /* | 
|  | * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We | 
|  | * could defer the flush until now, since by holding i_mmap_rwsem we | 
|  | * guaranteed that the last refernece would not be dropped. But we must | 
|  | * do the flushing before we return, as otherwise i_mmap_rwsem will be | 
|  | * dropped and the last reference to the shared PMDs page might be | 
|  | * dropped as well. | 
|  | * | 
|  | * In theory we could defer the freeing of the PMD pages as well, but | 
|  | * huge_pmd_unshare() relies on the exact page_count for the PMD page to | 
|  | * detect sharing, so we cannot defer the release of the page either. | 
|  | * Instead, do flush now. | 
|  | */ | 
|  | if (force_flush) | 
|  | tlb_flush_mmu_tlbonly(tlb); | 
|  | } | 
|  |  | 
|  | void __hugetlb_zap_begin(struct vm_area_struct *vma, | 
|  | unsigned long *start, unsigned long *end) | 
|  | { | 
|  | if (!vma->vm_file)	/* hugetlbfs_file_mmap error */ | 
|  | return; | 
|  |  | 
|  | adjust_range_if_pmd_sharing_possible(vma, start, end); | 
|  | hugetlb_vma_lock_write(vma); | 
|  | if (vma->vm_file) | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | void __hugetlb_zap_end(struct vm_area_struct *vma, | 
|  | struct zap_details *details) | 
|  | { | 
|  | zap_flags_t zap_flags = details ? details->zap_flags : 0; | 
|  |  | 
|  | if (!vma->vm_file)	/* hugetlbfs_file_mmap error */ | 
|  | return; | 
|  |  | 
|  | if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */ | 
|  | /* | 
|  | * Unlock and free the vma lock before releasing i_mmap_rwsem. | 
|  | * When the vma_lock is freed, this makes the vma ineligible | 
|  | * for pmd sharing.  And, i_mmap_rwsem is required to set up | 
|  | * pmd sharing.  This is important as page tables for this | 
|  | * unmapped range will be asynchrously deleted.  If the page | 
|  | * tables are shared, there will be issues when accessed by | 
|  | * someone else. | 
|  | */ | 
|  | __hugetlb_vma_unlock_write_free(vma); | 
|  | } else { | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | } | 
|  |  | 
|  | if (vma->vm_file) | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, struct page *ref_page, | 
|  | zap_flags_t zap_flags) | 
|  | { | 
|  | struct mmu_notifier_range range; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, | 
|  | start, end); | 
|  | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | tlb_gather_mmu(&tlb, vma->vm_mm); | 
|  |  | 
|  | __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | tlb_finish_mmu(&tlb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
|  | * mapping it owns the reserve page for. The intention is to unmap the page | 
|  | * from other VMAs and let the children be SIGKILLed if they are faulting the | 
|  | * same region. | 
|  | */ | 
|  | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct page *page, unsigned long address) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct vm_area_struct *iter_vma; | 
|  | struct address_space *mapping; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | /* | 
|  | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
|  | * from page cache lookup which is in HPAGE_SIZE units. | 
|  | */ | 
|  | address = address & huge_page_mask(h); | 
|  | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + | 
|  | vma->vm_pgoff; | 
|  | mapping = vma->vm_file->f_mapping; | 
|  |  | 
|  | /* | 
|  | * Take the mapping lock for the duration of the table walk. As | 
|  | * this mapping should be shared between all the VMAs, | 
|  | * __unmap_hugepage_range() is called as the lock is already held | 
|  | */ | 
|  | i_mmap_lock_write(mapping); | 
|  | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { | 
|  | /* Do not unmap the current VMA */ | 
|  | if (iter_vma == vma) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Shared VMAs have their own reserves and do not affect | 
|  | * MAP_PRIVATE accounting but it is possible that a shared | 
|  | * VMA is using the same page so check and skip such VMAs. | 
|  | */ | 
|  | if (iter_vma->vm_flags & VM_MAYSHARE) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Unmap the page from other VMAs without their own reserves. | 
|  | * They get marked to be SIGKILLed if they fault in these | 
|  | * areas. This is because a future no-page fault on this VMA | 
|  | * could insert a zeroed page instead of the data existing | 
|  | * from the time of fork. This would look like data corruption | 
|  | */ | 
|  | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
|  | unmap_hugepage_range(iter_vma, address, | 
|  | address + huge_page_size(h), page, 0); | 
|  | } | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb_wp() should be called with page lock of the original hugepage held. | 
|  | * Called with hugetlb_fault_mutex_table held and pte_page locked so we | 
|  | * cannot race with other handlers or page migration. | 
|  | * Keep the pte_same checks anyway to make transition from the mutex easier. | 
|  | */ | 
|  | static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, unsigned int flags, | 
|  | struct folio *pagecache_folio, spinlock_t *ptl) | 
|  | { | 
|  | const bool unshare = flags & FAULT_FLAG_UNSHARE; | 
|  | pte_t pte = huge_ptep_get(ptep); | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct folio *old_folio; | 
|  | struct folio *new_folio; | 
|  | int outside_reserve = 0; | 
|  | vm_fault_t ret = 0; | 
|  | unsigned long haddr = address & huge_page_mask(h); | 
|  | struct mmu_notifier_range range; | 
|  |  | 
|  | /* | 
|  | * Never handle CoW for uffd-wp protected pages.  It should be only | 
|  | * handled when the uffd-wp protection is removed. | 
|  | * | 
|  | * Note that only the CoW optimization path (in hugetlb_no_page()) | 
|  | * can trigger this, because hugetlb_fault() will always resolve | 
|  | * uffd-wp bit first. | 
|  | */ | 
|  | if (!unshare && huge_pte_uffd_wp(pte)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * hugetlb does not support FOLL_FORCE-style write faults that keep the | 
|  | * PTE mapped R/O such as maybe_mkwrite() would do. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) | 
|  | return VM_FAULT_SIGSEGV; | 
|  |  | 
|  | /* Let's take out MAP_SHARED mappings first. */ | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | set_huge_ptep_writable(vma, haddr, ptep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | old_folio = page_folio(pte_page(pte)); | 
|  |  | 
|  | delayacct_wpcopy_start(); | 
|  |  | 
|  | retry_avoidcopy: | 
|  | /* | 
|  | * If no-one else is actually using this page, we're the exclusive | 
|  | * owner and can reuse this page. | 
|  | */ | 
|  | if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { | 
|  | if (!PageAnonExclusive(&old_folio->page)) | 
|  | page_move_anon_rmap(&old_folio->page, vma); | 
|  | if (likely(!unshare)) | 
|  | set_huge_ptep_writable(vma, haddr, ptep); | 
|  |  | 
|  | delayacct_wpcopy_end(); | 
|  | return 0; | 
|  | } | 
|  | VM_BUG_ON_PAGE(folio_test_anon(old_folio) && | 
|  | PageAnonExclusive(&old_folio->page), &old_folio->page); | 
|  |  | 
|  | /* | 
|  | * If the process that created a MAP_PRIVATE mapping is about to | 
|  | * perform a COW due to a shared page count, attempt to satisfy | 
|  | * the allocation without using the existing reserves. The pagecache | 
|  | * page is used to determine if the reserve at this address was | 
|  | * consumed or not. If reserves were used, a partial faulted mapping | 
|  | * at the time of fork() could consume its reserves on COW instead | 
|  | * of the full address range. | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
|  | old_folio != pagecache_folio) | 
|  | outside_reserve = 1; | 
|  |  | 
|  | folio_get(old_folio); | 
|  |  | 
|  | /* | 
|  | * Drop page table lock as buddy allocator may be called. It will | 
|  | * be acquired again before returning to the caller, as expected. | 
|  | */ | 
|  | spin_unlock(ptl); | 
|  | new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); | 
|  |  | 
|  | if (IS_ERR(new_folio)) { | 
|  | /* | 
|  | * If a process owning a MAP_PRIVATE mapping fails to COW, | 
|  | * it is due to references held by a child and an insufficient | 
|  | * huge page pool. To guarantee the original mappers | 
|  | * reliability, unmap the page from child processes. The child | 
|  | * may get SIGKILLed if it later faults. | 
|  | */ | 
|  | if (outside_reserve) { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | pgoff_t idx; | 
|  | u32 hash; | 
|  |  | 
|  | folio_put(old_folio); | 
|  | /* | 
|  | * Drop hugetlb_fault_mutex and vma_lock before | 
|  | * unmapping.  unmapping needs to hold vma_lock | 
|  | * in write mode.  Dropping vma_lock in read mode | 
|  | * here is OK as COW mappings do not interact with | 
|  | * PMD sharing. | 
|  | * | 
|  | * Reacquire both after unmap operation. | 
|  | */ | 
|  | idx = vma_hugecache_offset(h, vma, haddr); | 
|  | hash = hugetlb_fault_mutex_hash(mapping, idx); | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | unmap_ref_private(mm, vma, &old_folio->page, haddr); | 
|  |  | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  | hugetlb_vma_lock_read(vma); | 
|  | spin_lock(ptl); | 
|  | ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); | 
|  | if (likely(ptep && | 
|  | pte_same(huge_ptep_get(ptep), pte))) | 
|  | goto retry_avoidcopy; | 
|  | /* | 
|  | * race occurs while re-acquiring page table | 
|  | * lock, and our job is done. | 
|  | */ | 
|  | delayacct_wpcopy_end(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = vmf_error(PTR_ERR(new_folio)); | 
|  | goto out_release_old; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the original hugepage is shared one, it does not have | 
|  | * anon_vma prepared. | 
|  | */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_release_all; | 
|  | } | 
|  |  | 
|  | if (copy_user_large_folio(new_folio, old_folio, address, vma)) { | 
|  | ret = VM_FAULT_HWPOISON_LARGE; | 
|  | goto out_release_all; | 
|  | } | 
|  | __folio_mark_uptodate(new_folio); | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, | 
|  | haddr + huge_page_size(h)); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | /* | 
|  | * Retake the page table lock to check for racing updates | 
|  | * before the page tables are altered | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); | 
|  | if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { | 
|  | pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); | 
|  |  | 
|  | /* Break COW or unshare */ | 
|  | huge_ptep_clear_flush(vma, haddr, ptep); | 
|  | page_remove_rmap(&old_folio->page, vma, true); | 
|  | hugepage_add_new_anon_rmap(new_folio, vma, haddr); | 
|  | if (huge_pte_uffd_wp(pte)) | 
|  | newpte = huge_pte_mkuffd_wp(newpte); | 
|  | set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); | 
|  | folio_set_hugetlb_migratable(new_folio); | 
|  | /* Make the old page be freed below */ | 
|  | new_folio = old_folio; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | out_release_all: | 
|  | /* | 
|  | * No restore in case of successful pagetable update (Break COW or | 
|  | * unshare) | 
|  | */ | 
|  | if (new_folio != old_folio) | 
|  | restore_reserve_on_error(h, vma, haddr, new_folio); | 
|  | folio_put(new_folio); | 
|  | out_release_old: | 
|  | folio_put(old_folio); | 
|  |  | 
|  | spin_lock(ptl); /* Caller expects lock to be held */ | 
|  |  | 
|  | delayacct_wpcopy_end(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return whether there is a pagecache page to back given address within VMA. | 
|  | */ | 
|  | static bool hugetlbfs_pagecache_present(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | pgoff_t idx = vma_hugecache_offset(h, vma, address); | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = filemap_get_folio(mapping, idx); | 
|  | if (IS_ERR(folio)) | 
|  | return false; | 
|  | folio_put(folio); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, | 
|  | pgoff_t idx) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | int err; | 
|  |  | 
|  | __folio_set_locked(folio); | 
|  | err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | __folio_clear_locked(folio); | 
|  | return err; | 
|  | } | 
|  | folio_clear_hugetlb_restore_reserve(folio); | 
|  |  | 
|  | /* | 
|  | * mark folio dirty so that it will not be removed from cache/file | 
|  | * by non-hugetlbfs specific code paths. | 
|  | */ | 
|  | folio_mark_dirty(folio); | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_blocks += blocks_per_huge_page(h); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, | 
|  | struct address_space *mapping, | 
|  | pgoff_t idx, | 
|  | unsigned int flags, | 
|  | unsigned long haddr, | 
|  | unsigned long addr, | 
|  | unsigned long reason) | 
|  | { | 
|  | u32 hash; | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = haddr, | 
|  | .real_address = addr, | 
|  | .flags = flags, | 
|  |  | 
|  | /* | 
|  | * Hard to debug if it ends up being | 
|  | * used by a callee that assumes | 
|  | * something about the other | 
|  | * uninitialized fields... same as in | 
|  | * memory.c | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * vma_lock and hugetlb_fault_mutex must be dropped before handling | 
|  | * userfault. Also mmap_lock could be dropped due to handling | 
|  | * userfault, any vma operation should be careful from here. | 
|  | */ | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | hash = hugetlb_fault_mutex_hash(mapping, idx); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | return handle_userfault(&vmf, reason); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recheck pte with pgtable lock.  Returns true if pte didn't change, or | 
|  | * false if pte changed or is changing. | 
|  | */ | 
|  | static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, | 
|  | pte_t *ptep, pte_t old_pte) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | bool same; | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | same = pte_same(huge_ptep_get(ptep), old_pte); | 
|  | spin_unlock(ptl); | 
|  |  | 
|  | return same; | 
|  | } | 
|  |  | 
|  | static vm_fault_t hugetlb_no_page(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | struct address_space *mapping, pgoff_t idx, | 
|  | unsigned long address, pte_t *ptep, | 
|  | pte_t old_pte, unsigned int flags) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | vm_fault_t ret = VM_FAULT_SIGBUS; | 
|  | int anon_rmap = 0; | 
|  | unsigned long size; | 
|  | struct folio *folio; | 
|  | pte_t new_pte; | 
|  | spinlock_t *ptl; | 
|  | unsigned long haddr = address & huge_page_mask(h); | 
|  | bool new_folio, new_pagecache_folio = false; | 
|  | u32 hash = hugetlb_fault_mutex_hash(mapping, idx); | 
|  |  | 
|  | /* | 
|  | * Currently, we are forced to kill the process in the event the | 
|  | * original mapper has unmapped pages from the child due to a failed | 
|  | * COW/unsharing. Warn that such a situation has occurred as it may not | 
|  | * be obvious. | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
|  | pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", | 
|  | current->pid); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use page lock to guard against racing truncation | 
|  | * before we get page_table_lock. | 
|  | */ | 
|  | new_folio = false; | 
|  | folio = filemap_lock_folio(mapping, idx); | 
|  | if (IS_ERR(folio)) { | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | if (idx >= size) | 
|  | goto out; | 
|  | /* Check for page in userfault range */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | /* | 
|  | * Since hugetlb_no_page() was examining pte | 
|  | * without pgtable lock, we need to re-test under | 
|  | * lock because the pte may not be stable and could | 
|  | * have changed from under us.  Try to detect | 
|  | * either changed or during-changing ptes and retry | 
|  | * properly when needed. | 
|  | * | 
|  | * Note that userfaultfd is actually fine with | 
|  | * false positives (e.g. caused by pte changed), | 
|  | * but not wrong logical events (e.g. caused by | 
|  | * reading a pte during changing).  The latter can | 
|  | * confuse the userspace, so the strictness is very | 
|  | * much preferred.  E.g., MISSING event should | 
|  | * never happen on the page after UFFDIO_COPY has | 
|  | * correctly installed the page and returned. | 
|  | */ | 
|  | if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return hugetlb_handle_userfault(vma, mapping, idx, flags, | 
|  | haddr, address, | 
|  | VM_UFFD_MISSING); | 
|  | } | 
|  |  | 
|  | folio = alloc_hugetlb_folio(vma, haddr, 0); | 
|  | if (IS_ERR(folio)) { | 
|  | /* | 
|  | * Returning error will result in faulting task being | 
|  | * sent SIGBUS.  The hugetlb fault mutex prevents two | 
|  | * tasks from racing to fault in the same page which | 
|  | * could result in false unable to allocate errors. | 
|  | * Page migration does not take the fault mutex, but | 
|  | * does a clear then write of pte's under page table | 
|  | * lock.  Page fault code could race with migration, | 
|  | * notice the clear pte and try to allocate a page | 
|  | * here.  Before returning error, get ptl and make | 
|  | * sure there really is no pte entry. | 
|  | */ | 
|  | if (hugetlb_pte_stable(h, mm, ptep, old_pte)) | 
|  | ret = vmf_error(PTR_ERR(folio)); | 
|  | else | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | clear_huge_page(&folio->page, address, pages_per_huge_page(h)); | 
|  | __folio_mark_uptodate(folio); | 
|  | new_folio = true; | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | int err = hugetlb_add_to_page_cache(folio, mapping, idx); | 
|  | if (err) { | 
|  | /* | 
|  | * err can't be -EEXIST which implies someone | 
|  | * else consumed the reservation since hugetlb | 
|  | * fault mutex is held when add a hugetlb page | 
|  | * to the page cache. So it's safe to call | 
|  | * restore_reserve_on_error() here. | 
|  | */ | 
|  | restore_reserve_on_error(h, vma, haddr, folio); | 
|  | folio_put(folio); | 
|  | goto out; | 
|  | } | 
|  | new_pagecache_folio = true; | 
|  | } else { | 
|  | folio_lock(folio); | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto backout_unlocked; | 
|  | } | 
|  | anon_rmap = 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If memory error occurs between mmap() and fault, some process | 
|  | * don't have hwpoisoned swap entry for errored virtual address. | 
|  | * So we need to block hugepage fault by PG_hwpoison bit check. | 
|  | */ | 
|  | if (unlikely(folio_test_hwpoison(folio))) { | 
|  | ret = VM_FAULT_HWPOISON_LARGE | | 
|  | VM_FAULT_SET_HINDEX(hstate_index(h)); | 
|  | goto backout_unlocked; | 
|  | } | 
|  |  | 
|  | /* Check for page in userfault range. */ | 
|  | if (userfaultfd_minor(vma)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | /* See comment in userfaultfd_missing() block above */ | 
|  | if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | return hugetlb_handle_userfault(vma, mapping, idx, flags, | 
|  | haddr, address, | 
|  | VM_UFFD_MINOR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are going to COW a private mapping later, we examine the | 
|  | * pending reservations for this page now. This will ensure that | 
|  | * any allocations necessary to record that reservation occur outside | 
|  | * the spinlock. | 
|  | */ | 
|  | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
|  | if (vma_needs_reservation(h, vma, haddr) < 0) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto backout_unlocked; | 
|  | } | 
|  | /* Just decrements count, does not deallocate */ | 
|  | vma_end_reservation(h, vma, haddr); | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | ret = 0; | 
|  | /* If pte changed from under us, retry */ | 
|  | if (!pte_same(huge_ptep_get(ptep), old_pte)) | 
|  | goto backout; | 
|  |  | 
|  | if (anon_rmap) | 
|  | hugepage_add_new_anon_rmap(folio, vma, haddr); | 
|  | else | 
|  | page_dup_file_rmap(&folio->page, true); | 
|  | new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) | 
|  | && (vma->vm_flags & VM_SHARED))); | 
|  | /* | 
|  | * If this pte was previously wr-protected, keep it wr-protected even | 
|  | * if populated. | 
|  | */ | 
|  | if (unlikely(pte_marker_uffd_wp(old_pte))) | 
|  | new_pte = huge_pte_mkuffd_wp(new_pte); | 
|  | set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); | 
|  |  | 
|  | hugetlb_count_add(pages_per_huge_page(h), mm); | 
|  | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
|  | /* Optimization, do the COW without a second fault */ | 
|  | ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); | 
|  | } | 
|  |  | 
|  | spin_unlock(ptl); | 
|  |  | 
|  | /* | 
|  | * Only set hugetlb_migratable in newly allocated pages.  Existing pages | 
|  | * found in the pagecache may not have hugetlb_migratable if they have | 
|  | * been isolated for migration. | 
|  | */ | 
|  | if (new_folio) | 
|  | folio_set_hugetlb_migratable(folio); | 
|  |  | 
|  | folio_unlock(folio); | 
|  | out: | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | return ret; | 
|  |  | 
|  | backout: | 
|  | spin_unlock(ptl); | 
|  | backout_unlocked: | 
|  | if (new_folio && !new_pagecache_folio) | 
|  | restore_reserve_on_error(h, vma, haddr, folio); | 
|  |  | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) | 
|  | { | 
|  | unsigned long key[2]; | 
|  | u32 hash; | 
|  |  | 
|  | key[0] = (unsigned long) mapping; | 
|  | key[1] = idx; | 
|  |  | 
|  | hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); | 
|  |  | 
|  | return hash & (num_fault_mutexes - 1); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * For uniprocessor systems we always use a single mutex, so just | 
|  | * return 0 and avoid the hashing overhead. | 
|  | */ | 
|  | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags) | 
|  | { | 
|  | pte_t *ptep, entry; | 
|  | spinlock_t *ptl; | 
|  | vm_fault_t ret; | 
|  | u32 hash; | 
|  | pgoff_t idx; | 
|  | struct folio *folio = NULL; | 
|  | struct folio *pagecache_folio = NULL; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct address_space *mapping; | 
|  | int need_wait_lock = 0; | 
|  | unsigned long haddr = address & huge_page_mask(h); | 
|  |  | 
|  | /* TODO: Handle faults under the VMA lock */ | 
|  | if (flags & FAULT_FLAG_VMA_LOCK) { | 
|  | vma_end_read(vma); | 
|  | return VM_FAULT_RETRY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Serialize hugepage allocation and instantiation, so that we don't | 
|  | * get spurious allocation failures if two CPUs race to instantiate | 
|  | * the same page in the page cache. | 
|  | */ | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, haddr); | 
|  | hash = hugetlb_fault_mutex_hash(mapping, idx); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | /* | 
|  | * Acquire vma lock before calling huge_pte_alloc and hold | 
|  | * until finished with ptep.  This prevents huge_pmd_unshare from | 
|  | * being called elsewhere and making the ptep no longer valid. | 
|  | */ | 
|  | hugetlb_vma_lock_read(vma); | 
|  | ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); | 
|  | if (!ptep) { | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | entry = huge_ptep_get(ptep); | 
|  | if (huge_pte_none_mostly(entry)) { | 
|  | if (is_pte_marker(entry)) { | 
|  | pte_marker marker = | 
|  | pte_marker_get(pte_to_swp_entry(entry)); | 
|  |  | 
|  | if (marker & PTE_MARKER_POISONED) { | 
|  | ret = VM_FAULT_HWPOISON_LARGE; | 
|  | goto out_mutex; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Other PTE markers should be handled the same way as none PTE. | 
|  | * | 
|  | * hugetlb_no_page will drop vma lock and hugetlb fault | 
|  | * mutex internally, which make us return immediately. | 
|  | */ | 
|  | return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, | 
|  | entry, flags); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * entry could be a migration/hwpoison entry at this point, so this | 
|  | * check prevents the kernel from going below assuming that we have | 
|  | * an active hugepage in pagecache. This goto expects the 2nd page | 
|  | * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will | 
|  | * properly handle it. | 
|  | */ | 
|  | if (!pte_present(entry)) { | 
|  | if (unlikely(is_hugetlb_entry_migration(entry))) { | 
|  | /* | 
|  | * Release the hugetlb fault lock now, but retain | 
|  | * the vma lock, because it is needed to guard the | 
|  | * huge_pte_lockptr() later in | 
|  | * migration_entry_wait_huge(). The vma lock will | 
|  | * be released there. | 
|  | */ | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | migration_entry_wait_huge(vma, ptep); | 
|  | return 0; | 
|  | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 
|  | ret = VM_FAULT_HWPOISON_LARGE | | 
|  | VM_FAULT_SET_HINDEX(hstate_index(h)); | 
|  | goto out_mutex; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are going to COW/unshare the mapping later, we examine the | 
|  | * pending reservations for this page now. This will ensure that any | 
|  | * allocations necessary to record that reservation occur outside the | 
|  | * spinlock. Also lookup the pagecache page now as it is used to | 
|  | * determine if a reservation has been consumed. | 
|  | */ | 
|  | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && | 
|  | !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { | 
|  | if (vma_needs_reservation(h, vma, haddr) < 0) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_mutex; | 
|  | } | 
|  | /* Just decrements count, does not deallocate */ | 
|  | vma_end_reservation(h, vma, haddr); | 
|  |  | 
|  | pagecache_folio = filemap_lock_folio(mapping, idx); | 
|  | if (IS_ERR(pagecache_folio)) | 
|  | pagecache_folio = NULL; | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  |  | 
|  | /* Check for a racing update before calling hugetlb_wp() */ | 
|  | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
|  | goto out_ptl; | 
|  |  | 
|  | /* Handle userfault-wp first, before trying to lock more pages */ | 
|  | if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && | 
|  | (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = haddr, | 
|  | .real_address = address, | 
|  | .flags = flags, | 
|  | }; | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | if (pagecache_folio) { | 
|  | folio_unlock(pagecache_folio); | 
|  | folio_put(pagecache_folio); | 
|  | } | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | return handle_userfault(&vmf, VM_UFFD_WP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb_wp() requires page locks of pte_page(entry) and | 
|  | * pagecache_folio, so here we need take the former one | 
|  | * when folio != pagecache_folio or !pagecache_folio. | 
|  | */ | 
|  | folio = page_folio(pte_page(entry)); | 
|  | if (folio != pagecache_folio) | 
|  | if (!folio_trylock(folio)) { | 
|  | need_wait_lock = 1; | 
|  | goto out_ptl; | 
|  | } | 
|  |  | 
|  | folio_get(folio); | 
|  |  | 
|  | if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { | 
|  | if (!huge_pte_write(entry)) { | 
|  | ret = hugetlb_wp(mm, vma, address, ptep, flags, | 
|  | pagecache_folio, ptl); | 
|  | goto out_put_page; | 
|  | } else if (likely(flags & FAULT_FLAG_WRITE)) { | 
|  | entry = huge_pte_mkdirty(entry); | 
|  | } | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, | 
|  | flags & FAULT_FLAG_WRITE)) | 
|  | update_mmu_cache(vma, haddr, ptep); | 
|  | out_put_page: | 
|  | if (folio != pagecache_folio) | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | out_ptl: | 
|  | spin_unlock(ptl); | 
|  |  | 
|  | if (pagecache_folio) { | 
|  | folio_unlock(pagecache_folio); | 
|  | folio_put(pagecache_folio); | 
|  | } | 
|  | out_mutex: | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | /* | 
|  | * Generally it's safe to hold refcount during waiting page lock. But | 
|  | * here we just wait to defer the next page fault to avoid busy loop and | 
|  | * the page is not used after unlocked before returning from the current | 
|  | * page fault. So we are safe from accessing freed page, even if we wait | 
|  | * here without taking refcount. | 
|  | */ | 
|  | if (need_wait_lock) | 
|  | folio_wait_locked(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERFAULTFD | 
|  | /* | 
|  | * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte | 
|  | * with modifications for hugetlb pages. | 
|  | */ | 
|  | int hugetlb_mfill_atomic_pte(pte_t *dst_pte, | 
|  | struct vm_area_struct *dst_vma, | 
|  | unsigned long dst_addr, | 
|  | unsigned long src_addr, | 
|  | uffd_flags_t flags, | 
|  | struct folio **foliop) | 
|  | { | 
|  | struct mm_struct *dst_mm = dst_vma->vm_mm; | 
|  | bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); | 
|  | bool wp_enabled = (flags & MFILL_ATOMIC_WP); | 
|  | struct hstate *h = hstate_vma(dst_vma); | 
|  | struct address_space *mapping = dst_vma->vm_file->f_mapping; | 
|  | pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); | 
|  | unsigned long size; | 
|  | int vm_shared = dst_vma->vm_flags & VM_SHARED; | 
|  | pte_t _dst_pte; | 
|  | spinlock_t *ptl; | 
|  | int ret = -ENOMEM; | 
|  | struct folio *folio; | 
|  | int writable; | 
|  | bool folio_in_pagecache = false; | 
|  |  | 
|  | if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { | 
|  | ptl = huge_pte_lock(h, dst_mm, dst_pte); | 
|  |  | 
|  | /* Don't overwrite any existing PTEs (even markers) */ | 
|  | if (!huge_pte_none(huge_ptep_get(dst_pte))) { | 
|  | spin_unlock(ptl); | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | _dst_pte = make_pte_marker(PTE_MARKER_POISONED); | 
|  | set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, | 
|  | huge_page_size(h)); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_continue) { | 
|  | ret = -EFAULT; | 
|  | folio = filemap_lock_folio(mapping, idx); | 
|  | if (IS_ERR(folio)) | 
|  | goto out; | 
|  | folio_in_pagecache = true; | 
|  | } else if (!*foliop) { | 
|  | /* If a folio already exists, then it's UFFDIO_COPY for | 
|  | * a non-missing case. Return -EEXIST. | 
|  | */ | 
|  | if (vm_shared && | 
|  | hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { | 
|  | ret = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); | 
|  | if (IS_ERR(folio)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = copy_folio_from_user(folio, (const void __user *) src_addr, | 
|  | false); | 
|  |  | 
|  | /* fallback to copy_from_user outside mmap_lock */ | 
|  | if (unlikely(ret)) { | 
|  | ret = -ENOENT; | 
|  | /* Free the allocated folio which may have | 
|  | * consumed a reservation. | 
|  | */ | 
|  | restore_reserve_on_error(h, dst_vma, dst_addr, folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | /* Allocate a temporary folio to hold the copied | 
|  | * contents. | 
|  | */ | 
|  | folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); | 
|  | if (!folio) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | *foliop = folio; | 
|  | /* Set the outparam foliop and return to the caller to | 
|  | * copy the contents outside the lock. Don't free the | 
|  | * folio. | 
|  | */ | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | if (vm_shared && | 
|  | hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { | 
|  | folio_put(*foliop); | 
|  | ret = -EEXIST; | 
|  | *foliop = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); | 
|  | if (IS_ERR(folio)) { | 
|  | folio_put(*foliop); | 
|  | ret = -ENOMEM; | 
|  | *foliop = NULL; | 
|  | goto out; | 
|  | } | 
|  | ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); | 
|  | folio_put(*foliop); | 
|  | *foliop = NULL; | 
|  | if (ret) { | 
|  | folio_put(folio); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The memory barrier inside __folio_mark_uptodate makes sure that | 
|  | * preceding stores to the page contents become visible before | 
|  | * the set_pte_at() write. | 
|  | */ | 
|  | __folio_mark_uptodate(folio); | 
|  |  | 
|  | /* Add shared, newly allocated pages to the page cache. */ | 
|  | if (vm_shared && !is_continue) { | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | ret = -EFAULT; | 
|  | if (idx >= size) | 
|  | goto out_release_nounlock; | 
|  |  | 
|  | /* | 
|  | * Serialization between remove_inode_hugepages() and | 
|  | * hugetlb_add_to_page_cache() below happens through the | 
|  | * hugetlb_fault_mutex_table that here must be hold by | 
|  | * the caller. | 
|  | */ | 
|  | ret = hugetlb_add_to_page_cache(folio, mapping, idx); | 
|  | if (ret) | 
|  | goto out_release_nounlock; | 
|  | folio_in_pagecache = true; | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lock(h, dst_mm, dst_pte); | 
|  |  | 
|  | ret = -EIO; | 
|  | if (folio_test_hwpoison(folio)) | 
|  | goto out_release_unlock; | 
|  |  | 
|  | /* | 
|  | * We allow to overwrite a pte marker: consider when both MISSING|WP | 
|  | * registered, we firstly wr-protect a none pte which has no page cache | 
|  | * page backing it, then access the page. | 
|  | */ | 
|  | ret = -EEXIST; | 
|  | if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) | 
|  | goto out_release_unlock; | 
|  |  | 
|  | if (folio_in_pagecache) | 
|  | page_dup_file_rmap(&folio->page, true); | 
|  | else | 
|  | hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); | 
|  |  | 
|  | /* | 
|  | * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY | 
|  | * with wp flag set, don't set pte write bit. | 
|  | */ | 
|  | if (wp_enabled || (is_continue && !vm_shared)) | 
|  | writable = 0; | 
|  | else | 
|  | writable = dst_vma->vm_flags & VM_WRITE; | 
|  |  | 
|  | _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); | 
|  | /* | 
|  | * Always mark UFFDIO_COPY page dirty; note that this may not be | 
|  | * extremely important for hugetlbfs for now since swapping is not | 
|  | * supported, but we should still be clear in that this page cannot be | 
|  | * thrown away at will, even if write bit not set. | 
|  | */ | 
|  | _dst_pte = huge_pte_mkdirty(_dst_pte); | 
|  | _dst_pte = pte_mkyoung(_dst_pte); | 
|  |  | 
|  | if (wp_enabled) | 
|  | _dst_pte = huge_pte_mkuffd_wp(_dst_pte); | 
|  |  | 
|  | set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); | 
|  |  | 
|  | hugetlb_count_add(pages_per_huge_page(h), dst_mm); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | if (!is_continue) | 
|  | folio_set_hugetlb_migratable(folio); | 
|  | if (vm_shared || is_continue) | 
|  | folio_unlock(folio); | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | out_release_unlock: | 
|  | spin_unlock(ptl); | 
|  | if (vm_shared || is_continue) | 
|  | folio_unlock(folio); | 
|  | out_release_nounlock: | 
|  | if (!folio_in_pagecache) | 
|  | restore_reserve_on_error(h, dst_vma, dst_addr, folio); | 
|  | folio_put(folio); | 
|  | goto out; | 
|  | } | 
|  | #endif /* CONFIG_USERFAULTFD */ | 
|  |  | 
|  | struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags, | 
|  | unsigned int *page_mask) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long haddr = address & huge_page_mask(h); | 
|  | struct page *page = NULL; | 
|  | spinlock_t *ptl; | 
|  | pte_t *pte, entry; | 
|  | int ret; | 
|  |  | 
|  | hugetlb_vma_lock_read(vma); | 
|  | pte = hugetlb_walk(vma, haddr, huge_page_size(h)); | 
|  | if (!pte) | 
|  | goto out_unlock; | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, pte); | 
|  | entry = huge_ptep_get(pte); | 
|  | if (pte_present(entry)) { | 
|  | page = pte_page(entry); | 
|  |  | 
|  | if (!huge_pte_write(entry)) { | 
|  | if (flags & FOLL_WRITE) { | 
|  | page = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (gup_must_unshare(vma, flags, page)) { | 
|  | /* Tell the caller to do unsharing */ | 
|  | page = ERR_PTR(-EMLINK); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); | 
|  |  | 
|  | /* | 
|  | * Note that page may be a sub-page, and with vmemmap | 
|  | * optimizations the page struct may be read only. | 
|  | * try_grab_page() will increase the ref count on the | 
|  | * head page, so this will be OK. | 
|  | * | 
|  | * try_grab_page() should always be able to get the page here, | 
|  | * because we hold the ptl lock and have verified pte_present(). | 
|  | */ | 
|  | ret = try_grab_folio(page_folio(page), 1, flags); | 
|  |  | 
|  | if (WARN_ON_ONCE(ret)) { | 
|  | page = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *page_mask = (1U << huge_page_order(h)) - 1; | 
|  | } | 
|  | out: | 
|  | spin_unlock(ptl); | 
|  | out_unlock: | 
|  | hugetlb_vma_unlock_read(vma); | 
|  |  | 
|  | /* | 
|  | * Fixup retval for dump requests: if pagecache doesn't exist, | 
|  | * don't try to allocate a new page but just skip it. | 
|  | */ | 
|  | if (!page && (flags & FOLL_DUMP) && | 
|  | !hugetlbfs_pagecache_present(h, vma, address)) | 
|  | page = ERR_PTR(-EFAULT); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | long hugetlb_change_protection(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned long end, | 
|  | pgprot_t newprot, unsigned long cp_flags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long start = address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | long pages = 0, psize = huge_page_size(h); | 
|  | bool shared_pmd = false; | 
|  | struct mmu_notifier_range range; | 
|  | unsigned long last_addr_mask; | 
|  | bool uffd_wp = cp_flags & MM_CP_UFFD_WP; | 
|  | bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; | 
|  |  | 
|  | /* | 
|  | * In the case of shared PMDs, the area to flush could be beyond | 
|  | * start/end.  Set range.start/range.end to cover the maximum possible | 
|  | * range if PMD sharing is possible. | 
|  | */ | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, | 
|  | 0, mm, start, end); | 
|  | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | 
|  |  | 
|  | BUG_ON(address >= end); | 
|  | flush_cache_range(vma, range.start, range.end); | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | hugetlb_vma_lock_write(vma); | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | last_addr_mask = hugetlb_mask_last_page(h); | 
|  | for (; address < end; address += psize) { | 
|  | spinlock_t *ptl; | 
|  | ptep = hugetlb_walk(vma, address, psize); | 
|  | if (!ptep) { | 
|  | if (!uffd_wp) { | 
|  | address |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Userfaultfd wr-protect requires pgtable | 
|  | * pre-allocations to install pte markers. | 
|  | */ | 
|  | ptep = huge_pte_alloc(mm, vma, address, psize); | 
|  | if (!ptep) { | 
|  | pages = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | if (huge_pmd_unshare(mm, vma, address, ptep)) { | 
|  | /* | 
|  | * When uffd-wp is enabled on the vma, unshare | 
|  | * shouldn't happen at all.  Warn about it if it | 
|  | * happened due to some reason. | 
|  | */ | 
|  | WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); | 
|  | pages++; | 
|  | spin_unlock(ptl); | 
|  | shared_pmd = true; | 
|  | address |= last_addr_mask; | 
|  | continue; | 
|  | } | 
|  | pte = huge_ptep_get(ptep); | 
|  | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | 
|  | /* Nothing to do. */ | 
|  | } else if (unlikely(is_hugetlb_entry_migration(pte))) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  | struct page *page = pfn_swap_entry_to_page(entry); | 
|  | pte_t newpte = pte; | 
|  |  | 
|  | if (is_writable_migration_entry(entry)) { | 
|  | if (PageAnon(page)) | 
|  | entry = make_readable_exclusive_migration_entry( | 
|  | swp_offset(entry)); | 
|  | else | 
|  | entry = make_readable_migration_entry( | 
|  | swp_offset(entry)); | 
|  | newpte = swp_entry_to_pte(entry); | 
|  | pages++; | 
|  | } | 
|  |  | 
|  | if (uffd_wp) | 
|  | newpte = pte_swp_mkuffd_wp(newpte); | 
|  | else if (uffd_wp_resolve) | 
|  | newpte = pte_swp_clear_uffd_wp(newpte); | 
|  | if (!pte_same(pte, newpte)) | 
|  | set_huge_pte_at(mm, address, ptep, newpte, psize); | 
|  | } else if (unlikely(is_pte_marker(pte))) { | 
|  | /* | 
|  | * Do nothing on a poison marker; page is | 
|  | * corrupted, permissons do not apply.  Here | 
|  | * pte_marker_uffd_wp()==true implies !poison | 
|  | * because they're mutual exclusive. | 
|  | */ | 
|  | if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) | 
|  | /* Safe to modify directly (non-present->none). */ | 
|  | huge_pte_clear(mm, address, ptep, psize); | 
|  | } else if (!huge_pte_none(pte)) { | 
|  | pte_t old_pte; | 
|  | unsigned int shift = huge_page_shift(hstate_vma(vma)); | 
|  |  | 
|  | old_pte = huge_ptep_modify_prot_start(vma, address, ptep); | 
|  | pte = huge_pte_modify(old_pte, newprot); | 
|  | pte = arch_make_huge_pte(pte, shift, vma->vm_flags); | 
|  | if (uffd_wp) | 
|  | pte = huge_pte_mkuffd_wp(pte); | 
|  | else if (uffd_wp_resolve) | 
|  | pte = huge_pte_clear_uffd_wp(pte); | 
|  | huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); | 
|  | pages++; | 
|  | } else { | 
|  | /* None pte */ | 
|  | if (unlikely(uffd_wp)) | 
|  | /* Safe to modify directly (none->non-present). */ | 
|  | set_huge_pte_at(mm, address, ptep, | 
|  | make_pte_marker(PTE_MARKER_UFFD_WP), | 
|  | psize); | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | /* | 
|  | * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare | 
|  | * may have cleared our pud entry and done put_page on the page table: | 
|  | * once we release i_mmap_rwsem, another task can do the final put_page | 
|  | * and that page table be reused and filled with junk.  If we actually | 
|  | * did unshare a page of pmds, flush the range corresponding to the pud. | 
|  | */ | 
|  | if (shared_pmd) | 
|  | flush_hugetlb_tlb_range(vma, range.start, range.end); | 
|  | else | 
|  | flush_hugetlb_tlb_range(vma, start, end); | 
|  | /* | 
|  | * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are | 
|  | * downgrading page table protection not changing it to point to a new | 
|  | * page. | 
|  | * | 
|  | * See Documentation/mm/mmu_notifier.rst | 
|  | */ | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | return pages > 0 ? (pages << h->order) : pages; | 
|  | } | 
|  |  | 
|  | /* Return true if reservation was successful, false otherwise.  */ | 
|  | bool hugetlb_reserve_pages(struct inode *inode, | 
|  | long from, long to, | 
|  | struct vm_area_struct *vma, | 
|  | vm_flags_t vm_flags) | 
|  | { | 
|  | long chg = -1, add = -1; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct hugepage_subpool *spool = subpool_inode(inode); | 
|  | struct resv_map *resv_map; | 
|  | struct hugetlb_cgroup *h_cg = NULL; | 
|  | long gbl_reserve, regions_needed = 0; | 
|  |  | 
|  | /* This should never happen */ | 
|  | if (from > to) { | 
|  | VM_WARN(1, "%s called with a negative range\n", __func__); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma specific semaphore used for pmd sharing and fault/truncation | 
|  | * synchronization | 
|  | */ | 
|  | hugetlb_vma_lock_alloc(vma); | 
|  |  | 
|  | /* | 
|  | * Only apply hugepage reservation if asked. At fault time, an | 
|  | * attempt will be made for VM_NORESERVE to allocate a page | 
|  | * without using reserves | 
|  | */ | 
|  | if (vm_flags & VM_NORESERVE) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Shared mappings base their reservation on the number of pages that | 
|  | * are already allocated on behalf of the file. Private mappings need | 
|  | * to reserve the full area even if read-only as mprotect() may be | 
|  | * called to make the mapping read-write. Assume !vma is a shm mapping | 
|  | */ | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
|  | /* | 
|  | * resv_map can not be NULL as hugetlb_reserve_pages is only | 
|  | * called for inodes for which resv_maps were created (see | 
|  | * hugetlbfs_get_inode). | 
|  | */ | 
|  | resv_map = inode_resv_map(inode); | 
|  |  | 
|  | chg = region_chg(resv_map, from, to, ®ions_needed); | 
|  | } else { | 
|  | /* Private mapping. */ | 
|  | resv_map = resv_map_alloc(); | 
|  | if (!resv_map) | 
|  | goto out_err; | 
|  |  | 
|  | chg = to - from; | 
|  |  | 
|  | set_vma_resv_map(vma, resv_map); | 
|  | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
|  | } | 
|  |  | 
|  | if (chg < 0) | 
|  | goto out_err; | 
|  |  | 
|  | if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), | 
|  | chg * pages_per_huge_page(h), &h_cg) < 0) | 
|  | goto out_err; | 
|  |  | 
|  | if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { | 
|  | /* For private mappings, the hugetlb_cgroup uncharge info hangs | 
|  | * of the resv_map. | 
|  | */ | 
|  | resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There must be enough pages in the subpool for the mapping. If | 
|  | * the subpool has a minimum size, there may be some global | 
|  | * reservations already in place (gbl_reserve). | 
|  | */ | 
|  | gbl_reserve = hugepage_subpool_get_pages(spool, chg); | 
|  | if (gbl_reserve < 0) | 
|  | goto out_uncharge_cgroup; | 
|  |  | 
|  | /* | 
|  | * Check enough hugepages are available for the reservation. | 
|  | * Hand the pages back to the subpool if there are not | 
|  | */ | 
|  | if (hugetlb_acct_memory(h, gbl_reserve) < 0) | 
|  | goto out_put_pages; | 
|  |  | 
|  | /* | 
|  | * Account for the reservations made. Shared mappings record regions | 
|  | * that have reservations as they are shared by multiple VMAs. | 
|  | * When the last VMA disappears, the region map says how much | 
|  | * the reservation was and the page cache tells how much of | 
|  | * the reservation was consumed. Private mappings are per-VMA and | 
|  | * only the consumed reservations are tracked. When the VMA | 
|  | * disappears, the original reservation is the VMA size and the | 
|  | * consumed reservations are stored in the map. Hence, nothing | 
|  | * else has to be done for private mappings here | 
|  | */ | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
|  | add = region_add(resv_map, from, to, regions_needed, h, h_cg); | 
|  |  | 
|  | if (unlikely(add < 0)) { | 
|  | hugetlb_acct_memory(h, -gbl_reserve); | 
|  | goto out_put_pages; | 
|  | } else if (unlikely(chg > add)) { | 
|  | /* | 
|  | * pages in this range were added to the reserve | 
|  | * map between region_chg and region_add.  This | 
|  | * indicates a race with alloc_hugetlb_folio.  Adjust | 
|  | * the subpool and reserve counts modified above | 
|  | * based on the difference. | 
|  | */ | 
|  | long rsv_adjust; | 
|  |  | 
|  | /* | 
|  | * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the | 
|  | * reference to h_cg->css. See comment below for detail. | 
|  | */ | 
|  | hugetlb_cgroup_uncharge_cgroup_rsvd( | 
|  | hstate_index(h), | 
|  | (chg - add) * pages_per_huge_page(h), h_cg); | 
|  |  | 
|  | rsv_adjust = hugepage_subpool_put_pages(spool, | 
|  | chg - add); | 
|  | hugetlb_acct_memory(h, -rsv_adjust); | 
|  | } else if (h_cg) { | 
|  | /* | 
|  | * The file_regions will hold their own reference to | 
|  | * h_cg->css. So we should release the reference held | 
|  | * via hugetlb_cgroup_charge_cgroup_rsvd() when we are | 
|  | * done. | 
|  | */ | 
|  | hugetlb_cgroup_put_rsvd_cgroup(h_cg); | 
|  | } | 
|  | } | 
|  | return true; | 
|  |  | 
|  | out_put_pages: | 
|  | /* put back original number of pages, chg */ | 
|  | (void)hugepage_subpool_put_pages(spool, chg); | 
|  | out_uncharge_cgroup: | 
|  | hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), | 
|  | chg * pages_per_huge_page(h), h_cg); | 
|  | out_err: | 
|  | hugetlb_vma_lock_free(vma); | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) | 
|  | /* Only call region_abort if the region_chg succeeded but the | 
|  | * region_add failed or didn't run. | 
|  | */ | 
|  | if (chg >= 0 && add < 0) | 
|  | region_abort(resv_map, from, to, regions_needed); | 
|  | if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | kref_put(&resv_map->refs, resv_map_release); | 
|  | set_vma_resv_map(vma, NULL); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, | 
|  | long freed) | 
|  | { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct resv_map *resv_map = inode_resv_map(inode); | 
|  | long chg = 0; | 
|  | struct hugepage_subpool *spool = subpool_inode(inode); | 
|  | long gbl_reserve; | 
|  |  | 
|  | /* | 
|  | * Since this routine can be called in the evict inode path for all | 
|  | * hugetlbfs inodes, resv_map could be NULL. | 
|  | */ | 
|  | if (resv_map) { | 
|  | chg = region_del(resv_map, start, end); | 
|  | /* | 
|  | * region_del() can fail in the rare case where a region | 
|  | * must be split and another region descriptor can not be | 
|  | * allocated.  If end == LONG_MAX, it will not fail. | 
|  | */ | 
|  | if (chg < 0) | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_blocks -= (blocks_per_huge_page(h) * freed); | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | /* | 
|  | * If the subpool has a minimum size, the number of global | 
|  | * reservations to be released may be adjusted. | 
|  | * | 
|  | * Note that !resv_map implies freed == 0. So (chg - freed) | 
|  | * won't go negative. | 
|  | */ | 
|  | gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | 
|  | hugetlb_acct_memory(h, -gbl_reserve); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING | 
|  | static unsigned long page_table_shareable(struct vm_area_struct *svma, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, pgoff_t idx) | 
|  | { | 
|  | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | 
|  | svma->vm_start; | 
|  | unsigned long sbase = saddr & PUD_MASK; | 
|  | unsigned long s_end = sbase + PUD_SIZE; | 
|  |  | 
|  | /* Allow segments to share if only one is marked locked */ | 
|  | unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; | 
|  | unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; | 
|  |  | 
|  | /* | 
|  | * match the virtual addresses, permission and the alignment of the | 
|  | * page table page. | 
|  | * | 
|  | * Also, vma_lock (vm_private_data) is required for sharing. | 
|  | */ | 
|  | if (pmd_index(addr) != pmd_index(saddr) || | 
|  | vm_flags != svm_flags || | 
|  | !range_in_vma(svma, sbase, s_end) || | 
|  | !svma->vm_private_data) | 
|  | return 0; | 
|  |  | 
|  | return saddr; | 
|  | } | 
|  |  | 
|  | bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | unsigned long start = addr & PUD_MASK; | 
|  | unsigned long end = start + PUD_SIZE; | 
|  |  | 
|  | #ifdef CONFIG_USERFAULTFD | 
|  | if (uffd_disable_huge_pmd_share(vma)) | 
|  | return false; | 
|  | #endif | 
|  | /* | 
|  | * check on proper vm_flags and page table alignment | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | return false; | 
|  | if (!vma->vm_private_data)	/* vma lock required for sharing */ | 
|  | return false; | 
|  | if (!range_in_vma(vma, start, end)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if start,end range within vma could be mapped by shared pmd. | 
|  | * If yes, adjust start and end to cover range associated with possible | 
|  | * shared pmd mappings. | 
|  | */ | 
|  | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | 
|  | unsigned long *start, unsigned long *end) | 
|  | { | 
|  | unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), | 
|  | v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); | 
|  |  | 
|  | /* | 
|  | * vma needs to span at least one aligned PUD size, and the range | 
|  | * must be at least partially within in. | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || | 
|  | (*end <= v_start) || (*start >= v_end)) | 
|  | return; | 
|  |  | 
|  | /* Extend the range to be PUD aligned for a worst case scenario */ | 
|  | if (*start > v_start) | 
|  | *start = ALIGN_DOWN(*start, PUD_SIZE); | 
|  |  | 
|  | if (*end < v_end) | 
|  | *end = ALIGN(*end, PUD_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | 
|  | * and returns the corresponding pte. While this is not necessary for the | 
|  | * !shared pmd case because we can allocate the pmd later as well, it makes the | 
|  | * code much cleaner. pmd allocation is essential for the shared case because | 
|  | * pud has to be populated inside the same i_mmap_rwsem section - otherwise | 
|  | * racing tasks could either miss the sharing (see huge_pte_offset) or select a | 
|  | * bad pmd for sharing. | 
|  | */ | 
|  | pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, pud_t *pud) | 
|  | { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | 
|  | vma->vm_pgoff; | 
|  | struct vm_area_struct *svma; | 
|  | unsigned long saddr; | 
|  | pte_t *spte = NULL; | 
|  | pte_t *pte; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { | 
|  | if (svma == vma) | 
|  | continue; | 
|  |  | 
|  | saddr = page_table_shareable(svma, vma, addr, idx); | 
|  | if (saddr) { | 
|  | spte = hugetlb_walk(svma, saddr, | 
|  | vma_mmu_pagesize(svma)); | 
|  | if (spte) { | 
|  | ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!spte) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (pud_none(*pud)) { | 
|  | pud_populate(mm, pud, | 
|  | (pmd_t *)((unsigned long)spte & PAGE_MASK)); | 
|  | mm_inc_nr_pmds(mm); | 
|  | } else { | 
|  | ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | out: | 
|  | pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
|  | i_mmap_unlock_read(mapping); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unmap huge page backed by shared pte. | 
|  | * | 
|  | * Called with page table lock held. | 
|  | * | 
|  | * returns: 1 successfully unmapped a shared pte page | 
|  | *	    0 the underlying pte page is not shared, or it is the last user | 
|  | */ | 
|  | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | unsigned long sz = huge_page_size(hstate_vma(vma)); | 
|  | pgd_t *pgd = pgd_offset(mm, addr); | 
|  | p4d_t *p4d = p4d_offset(pgd, addr); | 
|  | pud_t *pud = pud_offset(p4d, addr); | 
|  |  | 
|  | i_mmap_assert_write_locked(vma->vm_file->f_mapping); | 
|  | hugetlb_vma_assert_locked(vma); | 
|  | if (sz != PMD_SIZE) | 
|  | return 0; | 
|  | if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) | 
|  | return 0; | 
|  |  | 
|  | pud_clear(pud); | 
|  | /* | 
|  | * Once our caller drops the rmap lock, some other process might be | 
|  | * using this page table as a normal, non-hugetlb page table. | 
|  | * Wait for pending gup_fast() in other threads to finish before letting | 
|  | * that happen. | 
|  | */ | 
|  | tlb_remove_table_sync_one(); | 
|  | ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); | 
|  | mm_dec_nr_pmds(mm); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ | 
|  |  | 
|  | pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, pud_t *pud) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | 
|  | unsigned long *start, unsigned long *end) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB | 
|  | pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pte_t *pte = NULL; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | p4d = p4d_alloc(mm, pgd, addr); | 
|  | if (!p4d) | 
|  | return NULL; | 
|  | pud = pud_alloc(mm, p4d, addr); | 
|  | if (pud) { | 
|  | if (sz == PUD_SIZE) { | 
|  | pte = (pte_t *)pud; | 
|  | } else { | 
|  | BUG_ON(sz != PMD_SIZE); | 
|  | if (want_pmd_share(vma, addr) && pud_none(*pud)) | 
|  | pte = huge_pmd_share(mm, vma, addr, pud); | 
|  | else | 
|  | pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pte) { | 
|  | pte_t pteval = ptep_get_lockless(pte); | 
|  |  | 
|  | BUG_ON(pte_present(pteval) && !pte_huge(pteval)); | 
|  | } | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * huge_pte_offset() - Walk the page table to resolve the hugepage | 
|  | * entry at address @addr | 
|  | * | 
|  | * Return: Pointer to page table entry (PUD or PMD) for | 
|  | * address @addr, or NULL if a !p*d_present() entry is encountered and the | 
|  | * size @sz doesn't match the hugepage size at this level of the page | 
|  | * table. | 
|  | */ | 
|  | pte_t *huge_pte_offset(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | if (!pgd_present(*pgd)) | 
|  | return NULL; | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | if (!p4d_present(*p4d)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | if (sz == PUD_SIZE) | 
|  | /* must be pud huge, non-present or none */ | 
|  | return (pte_t *)pud; | 
|  | if (!pud_present(*pud)) | 
|  | return NULL; | 
|  | /* must have a valid entry and size to go further */ | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | /* must be pmd huge, non-present or none */ | 
|  | return (pte_t *)pmd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a mask that can be used to update an address to the last huge | 
|  | * page in a page table page mapping size.  Used to skip non-present | 
|  | * page table entries when linearly scanning address ranges.  Architectures | 
|  | * with unique huge page to page table relationships can define their own | 
|  | * version of this routine. | 
|  | */ | 
|  | unsigned long hugetlb_mask_last_page(struct hstate *h) | 
|  | { | 
|  | unsigned long hp_size = huge_page_size(h); | 
|  |  | 
|  | if (hp_size == PUD_SIZE) | 
|  | return P4D_SIZE - PUD_SIZE; | 
|  | else if (hp_size == PMD_SIZE) | 
|  | return PUD_SIZE - PMD_SIZE; | 
|  | else | 
|  | return 0UL; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* See description above.  Architectures can provide their own version. */ | 
|  | __weak unsigned long hugetlb_mask_last_page(struct hstate *h) | 
|  | { | 
|  | #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING | 
|  | if (huge_page_size(h) == PMD_SIZE) | 
|  | return PUD_SIZE - PMD_SIZE; | 
|  | #endif | 
|  | return 0UL; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ | 
|  |  | 
|  | /* | 
|  | * These functions are overwritable if your architecture needs its own | 
|  | * behavior. | 
|  | */ | 
|  | bool isolate_hugetlb(struct folio *folio, struct list_head *list) | 
|  | { | 
|  | bool ret = true; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (!folio_test_hugetlb(folio) || | 
|  | !folio_test_hugetlb_migratable(folio) || | 
|  | !folio_try_get(folio)) { | 
|  | ret = false; | 
|  | goto unlock; | 
|  | } | 
|  | folio_clear_hugetlb_migratable(folio); | 
|  | list_move_tail(&folio->lru, list); | 
|  | unlock: | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | *hugetlb = false; | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | *hugetlb = true; | 
|  | if (folio_test_hugetlb_freed(folio)) | 
|  | ret = 0; | 
|  | else if (folio_test_hugetlb_migratable(folio) || unpoison) | 
|  | ret = folio_try_get(folio); | 
|  | else | 
|  | ret = -EBUSY; | 
|  | } | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int get_huge_page_for_hwpoison(unsigned long pfn, int flags, | 
|  | bool *migratable_cleared) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void folio_putback_active_hugetlb(struct folio *folio) | 
|  | { | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | folio_set_hugetlb_migratable(folio); | 
|  | list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) | 
|  | { | 
|  | struct hstate *h = folio_hstate(old_folio); | 
|  |  | 
|  | hugetlb_cgroup_migrate(old_folio, new_folio); | 
|  | set_page_owner_migrate_reason(&new_folio->page, reason); | 
|  |  | 
|  | /* | 
|  | * transfer temporary state of the new hugetlb folio. This is | 
|  | * reverse to other transitions because the newpage is going to | 
|  | * be final while the old one will be freed so it takes over | 
|  | * the temporary status. | 
|  | * | 
|  | * Also note that we have to transfer the per-node surplus state | 
|  | * here as well otherwise the global surplus count will not match | 
|  | * the per-node's. | 
|  | */ | 
|  | if (folio_test_hugetlb_temporary(new_folio)) { | 
|  | int old_nid = folio_nid(old_folio); | 
|  | int new_nid = folio_nid(new_folio); | 
|  |  | 
|  | folio_set_hugetlb_temporary(old_folio); | 
|  | folio_clear_hugetlb_temporary(new_folio); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * There is no need to transfer the per-node surplus state | 
|  | * when we do not cross the node. | 
|  | */ | 
|  | if (new_nid == old_nid) | 
|  | return; | 
|  | spin_lock_irq(&hugetlb_lock); | 
|  | if (h->surplus_huge_pages_node[old_nid]) { | 
|  | h->surplus_huge_pages_node[old_nid]--; | 
|  | h->surplus_huge_pages_node[new_nid]++; | 
|  | } | 
|  | spin_unlock_irq(&hugetlb_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If @take_locks is false, the caller must ensure that no concurrent page table | 
|  | * access can happen (except for gup_fast() and hardware page walks). | 
|  | * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like | 
|  | * concurrent page fault handling) and the file rmap lock. | 
|  | */ | 
|  | static void hugetlb_unshare_pmds(struct vm_area_struct *vma, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | bool take_locks) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mmu_notifier_range range; | 
|  | unsigned long address; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | return; | 
|  |  | 
|  | if (start >= end) | 
|  | return; | 
|  |  | 
|  | flush_cache_range(vma, start, end); | 
|  | /* | 
|  | * No need to call adjust_range_if_pmd_sharing_possible(), because | 
|  | * we have already done the PUD_SIZE alignment. | 
|  | */ | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, | 
|  | start, end); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | if (take_locks) { | 
|  | hugetlb_vma_lock_write(vma); | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | } else { | 
|  | i_mmap_assert_write_locked(vma->vm_file->f_mapping); | 
|  | } | 
|  | for (address = start; address < end; address += PUD_SIZE) { | 
|  | ptep = hugetlb_walk(vma, address, sz); | 
|  | if (!ptep) | 
|  | continue; | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | huge_pmd_unshare(mm, vma, address, ptep); | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | flush_hugetlb_tlb_range(vma, start, end); | 
|  | if (take_locks) { | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | hugetlb_vma_unlock_write(vma); | 
|  | } | 
|  | /* | 
|  | * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see | 
|  | * Documentation/mm/mmu_notifier.rst. | 
|  | */ | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function will unconditionally remove all the shared pmd pgtable entries | 
|  | * within the specific vma for a hugetlbfs memory range. | 
|  | */ | 
|  | void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) | 
|  | { | 
|  | hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), | 
|  | ALIGN_DOWN(vma->vm_end, PUD_SIZE), | 
|  | /* take_locks = */ true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | static bool cma_reserve_called __initdata; | 
|  |  | 
|  | static int __init cmdline_parse_hugetlb_cma(char *p) | 
|  | { | 
|  | int nid, count = 0; | 
|  | unsigned long tmp; | 
|  | char *s = p; | 
|  |  | 
|  | while (*s) { | 
|  | if (sscanf(s, "%lu%n", &tmp, &count) != 1) | 
|  | break; | 
|  |  | 
|  | if (s[count] == ':') { | 
|  | if (tmp >= MAX_NUMNODES) | 
|  | break; | 
|  | nid = array_index_nospec(tmp, MAX_NUMNODES); | 
|  |  | 
|  | s += count + 1; | 
|  | tmp = memparse(s, &s); | 
|  | hugetlb_cma_size_in_node[nid] = tmp; | 
|  | hugetlb_cma_size += tmp; | 
|  |  | 
|  | /* | 
|  | * Skip the separator if have one, otherwise | 
|  | * break the parsing. | 
|  | */ | 
|  | if (*s == ',') | 
|  | s++; | 
|  | else | 
|  | break; | 
|  | } else { | 
|  | hugetlb_cma_size = memparse(p, &p); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); | 
|  |  | 
|  | void __init hugetlb_cma_reserve(int order) | 
|  | { | 
|  | unsigned long size, reserved, per_node; | 
|  | bool node_specific_cma_alloc = false; | 
|  | int nid; | 
|  |  | 
|  | cma_reserve_called = true; | 
|  |  | 
|  | if (!hugetlb_cma_size) | 
|  | return; | 
|  |  | 
|  | for (nid = 0; nid < MAX_NUMNODES; nid++) { | 
|  | if (hugetlb_cma_size_in_node[nid] == 0) | 
|  | continue; | 
|  |  | 
|  | if (!node_online(nid)) { | 
|  | pr_warn("hugetlb_cma: invalid node %d specified\n", nid); | 
|  | hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; | 
|  | hugetlb_cma_size_in_node[nid] = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { | 
|  | pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", | 
|  | nid, (PAGE_SIZE << order) / SZ_1M); | 
|  | hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; | 
|  | hugetlb_cma_size_in_node[nid] = 0; | 
|  | } else { | 
|  | node_specific_cma_alloc = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Validate the CMA size again in case some invalid nodes specified. */ | 
|  | if (!hugetlb_cma_size) | 
|  | return; | 
|  |  | 
|  | if (hugetlb_cma_size < (PAGE_SIZE << order)) { | 
|  | pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", | 
|  | (PAGE_SIZE << order) / SZ_1M); | 
|  | hugetlb_cma_size = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!node_specific_cma_alloc) { | 
|  | /* | 
|  | * If 3 GB area is requested on a machine with 4 numa nodes, | 
|  | * let's allocate 1 GB on first three nodes and ignore the last one. | 
|  | */ | 
|  | per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); | 
|  | pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", | 
|  | hugetlb_cma_size / SZ_1M, per_node / SZ_1M); | 
|  | } | 
|  |  | 
|  | reserved = 0; | 
|  | for_each_online_node(nid) { | 
|  | int res; | 
|  | char name[CMA_MAX_NAME]; | 
|  |  | 
|  | if (node_specific_cma_alloc) { | 
|  | if (hugetlb_cma_size_in_node[nid] == 0) | 
|  | continue; | 
|  |  | 
|  | size = hugetlb_cma_size_in_node[nid]; | 
|  | } else { | 
|  | size = min(per_node, hugetlb_cma_size - reserved); | 
|  | } | 
|  |  | 
|  | size = round_up(size, PAGE_SIZE << order); | 
|  |  | 
|  | snprintf(name, sizeof(name), "hugetlb%d", nid); | 
|  | /* | 
|  | * Note that 'order per bit' is based on smallest size that | 
|  | * may be returned to CMA allocator in the case of | 
|  | * huge page demotion. | 
|  | */ | 
|  | res = cma_declare_contiguous_nid(0, size, 0, | 
|  | PAGE_SIZE << HUGETLB_PAGE_ORDER, | 
|  | HUGETLB_PAGE_ORDER, false, name, | 
|  | &hugetlb_cma[nid], nid); | 
|  | if (res) { | 
|  | pr_warn("hugetlb_cma: reservation failed: err %d, node %d", | 
|  | res, nid); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reserved += size; | 
|  | pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", | 
|  | size / SZ_1M, nid); | 
|  |  | 
|  | if (reserved >= hugetlb_cma_size) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!reserved) | 
|  | /* | 
|  | * hugetlb_cma_size is used to determine if allocations from | 
|  | * cma are possible.  Set to zero if no cma regions are set up. | 
|  | */ | 
|  | hugetlb_cma_size = 0; | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_cma_check(void) | 
|  | { | 
|  | if (!hugetlb_cma_size || cma_reserve_called) | 
|  | return; | 
|  |  | 
|  | pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_CMA */ |