| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Copyright 2014 IBM Corp. | 
 |  */ | 
 |  | 
 | #include <linux/interrupt.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/pid.h> | 
 | #include <asm/cputable.h> | 
 | #include <misc/cxl-base.h> | 
 |  | 
 | #include "cxl.h" | 
 | #include "trace.h" | 
 |  | 
 | static int afu_irq_range_start(void) | 
 | { | 
 | 	if (cpu_has_feature(CPU_FTR_HVMODE)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t schedule_cxl_fault(struct cxl_context *ctx, u64 dsisr, u64 dar) | 
 | { | 
 | 	ctx->dsisr = dsisr; | 
 | 	ctx->dar = dar; | 
 | 	schedule_work(&ctx->fault_work); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | irqreturn_t cxl_irq_psl9(int irq, struct cxl_context *ctx, struct cxl_irq_info *irq_info) | 
 | { | 
 | 	u64 dsisr, dar; | 
 |  | 
 | 	dsisr = irq_info->dsisr; | 
 | 	dar = irq_info->dar; | 
 |  | 
 | 	trace_cxl_psl9_irq(ctx, irq, dsisr, dar); | 
 |  | 
 | 	pr_devel("CXL interrupt %i for afu pe: %i DSISR: %#llx DAR: %#llx\n", irq, ctx->pe, dsisr, dar); | 
 |  | 
 | 	if (dsisr & CXL_PSL9_DSISR_An_TF) { | 
 | 		pr_devel("CXL interrupt: Scheduling translation fault handling for later (pe: %i)\n", ctx->pe); | 
 | 		return schedule_cxl_fault(ctx, dsisr, dar); | 
 | 	} | 
 |  | 
 | 	if (dsisr & CXL_PSL9_DSISR_An_PE) | 
 | 		return cxl_ops->handle_psl_slice_error(ctx, dsisr, | 
 | 						irq_info->errstat); | 
 | 	if (dsisr & CXL_PSL9_DSISR_An_AE) { | 
 | 		pr_devel("CXL interrupt: AFU Error 0x%016llx\n", irq_info->afu_err); | 
 |  | 
 | 		if (ctx->pending_afu_err) { | 
 | 			/* | 
 | 			 * This shouldn't happen - the PSL treats these errors | 
 | 			 * as fatal and will have reset the AFU, so there's not | 
 | 			 * much point buffering multiple AFU errors. | 
 | 			 * OTOH if we DO ever see a storm of these come in it's | 
 | 			 * probably best that we log them somewhere: | 
 | 			 */ | 
 | 			dev_err_ratelimited(&ctx->afu->dev, "CXL AFU Error undelivered to pe %i: 0x%016llx\n", | 
 | 					    ctx->pe, irq_info->afu_err); | 
 | 		} else { | 
 | 			spin_lock(&ctx->lock); | 
 | 			ctx->afu_err = irq_info->afu_err; | 
 | 			ctx->pending_afu_err = 1; | 
 | 			spin_unlock(&ctx->lock); | 
 |  | 
 | 			wake_up_all(&ctx->wq); | 
 | 		} | 
 |  | 
 | 		cxl_ops->ack_irq(ctx, CXL_PSL_TFC_An_A, 0); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 | 	if (dsisr & CXL_PSL9_DSISR_An_OC) | 
 | 		pr_devel("CXL interrupt: OS Context Warning\n"); | 
 |  | 
 | 	WARN(1, "Unhandled CXL PSL IRQ\n"); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | irqreturn_t cxl_irq_psl8(int irq, struct cxl_context *ctx, struct cxl_irq_info *irq_info) | 
 | { | 
 | 	u64 dsisr, dar; | 
 |  | 
 | 	dsisr = irq_info->dsisr; | 
 | 	dar = irq_info->dar; | 
 |  | 
 | 	trace_cxl_psl_irq(ctx, irq, dsisr, dar); | 
 |  | 
 | 	pr_devel("CXL interrupt %i for afu pe: %i DSISR: %#llx DAR: %#llx\n", irq, ctx->pe, dsisr, dar); | 
 |  | 
 | 	if (dsisr & CXL_PSL_DSISR_An_DS) { | 
 | 		/* | 
 | 		 * We don't inherently need to sleep to handle this, but we do | 
 | 		 * need to get a ref to the task's mm, which we can't do from | 
 | 		 * irq context without the potential for a deadlock since it | 
 | 		 * takes the task_lock. An alternate option would be to keep a | 
 | 		 * reference to the task's mm the entire time it has cxl open, | 
 | 		 * but to do that we need to solve the issue where we hold a | 
 | 		 * ref to the mm, but the mm can hold a ref to the fd after an | 
 | 		 * mmap preventing anything from being cleaned up. | 
 | 		 */ | 
 | 		pr_devel("Scheduling segment miss handling for later pe: %i\n", ctx->pe); | 
 | 		return schedule_cxl_fault(ctx, dsisr, dar); | 
 | 	} | 
 |  | 
 | 	if (dsisr & CXL_PSL_DSISR_An_M) | 
 | 		pr_devel("CXL interrupt: PTE not found\n"); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_P) | 
 | 		pr_devel("CXL interrupt: Storage protection violation\n"); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_A) | 
 | 		pr_devel("CXL interrupt: AFU lock access to write through or cache inhibited storage\n"); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_S) | 
 | 		pr_devel("CXL interrupt: Access was afu_wr or afu_zero\n"); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_K) | 
 | 		pr_devel("CXL interrupt: Access not permitted by virtual page class key protection\n"); | 
 |  | 
 | 	if (dsisr & CXL_PSL_DSISR_An_DM) { | 
 | 		/* | 
 | 		 * In some cases we might be able to handle the fault | 
 | 		 * immediately if hash_page would succeed, but we still need | 
 | 		 * the task's mm, which as above we can't get without a lock | 
 | 		 */ | 
 | 		pr_devel("Scheduling page fault handling for later pe: %i\n", ctx->pe); | 
 | 		return schedule_cxl_fault(ctx, dsisr, dar); | 
 | 	} | 
 | 	if (dsisr & CXL_PSL_DSISR_An_ST) | 
 | 		WARN(1, "CXL interrupt: Segment Table PTE not found\n"); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_UR) | 
 | 		pr_devel("CXL interrupt: AURP PTE not found\n"); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_PE) | 
 | 		return cxl_ops->handle_psl_slice_error(ctx, dsisr, | 
 | 						irq_info->errstat); | 
 | 	if (dsisr & CXL_PSL_DSISR_An_AE) { | 
 | 		pr_devel("CXL interrupt: AFU Error 0x%016llx\n", irq_info->afu_err); | 
 |  | 
 | 		if (ctx->pending_afu_err) { | 
 | 			/* | 
 | 			 * This shouldn't happen - the PSL treats these errors | 
 | 			 * as fatal and will have reset the AFU, so there's not | 
 | 			 * much point buffering multiple AFU errors. | 
 | 			 * OTOH if we DO ever see a storm of these come in it's | 
 | 			 * probably best that we log them somewhere: | 
 | 			 */ | 
 | 			dev_err_ratelimited(&ctx->afu->dev, "CXL AFU Error " | 
 | 					    "undelivered to pe %i: 0x%016llx\n", | 
 | 					    ctx->pe, irq_info->afu_err); | 
 | 		} else { | 
 | 			spin_lock(&ctx->lock); | 
 | 			ctx->afu_err = irq_info->afu_err; | 
 | 			ctx->pending_afu_err = true; | 
 | 			spin_unlock(&ctx->lock); | 
 |  | 
 | 			wake_up_all(&ctx->wq); | 
 | 		} | 
 |  | 
 | 		cxl_ops->ack_irq(ctx, CXL_PSL_TFC_An_A, 0); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 | 	if (dsisr & CXL_PSL_DSISR_An_OC) | 
 | 		pr_devel("CXL interrupt: OS Context Warning\n"); | 
 |  | 
 | 	WARN(1, "Unhandled CXL PSL IRQ\n"); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static irqreturn_t cxl_irq_afu(int irq, void *data) | 
 | { | 
 | 	struct cxl_context *ctx = data; | 
 | 	irq_hw_number_t hwirq = irqd_to_hwirq(irq_get_irq_data(irq)); | 
 | 	int irq_off, afu_irq = 0; | 
 | 	__u16 range; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * Look for the interrupt number. | 
 | 	 * On bare-metal, we know range 0 only contains the PSL | 
 | 	 * interrupt so we could start counting at range 1 and initialize | 
 | 	 * afu_irq at 1. | 
 | 	 * In a guest, range 0 also contains AFU interrupts, so it must | 
 | 	 * be counted for. Therefore we initialize afu_irq at 0 to take into | 
 | 	 * account the PSL interrupt. | 
 | 	 * | 
 | 	 * For code-readability, it just seems easier to go over all | 
 | 	 * the ranges on bare-metal and guest. The end result is the same. | 
 | 	 */ | 
 | 	for (r = 0; r < CXL_IRQ_RANGES; r++) { | 
 | 		irq_off = hwirq - ctx->irqs.offset[r]; | 
 | 		range = ctx->irqs.range[r]; | 
 | 		if (irq_off >= 0 && irq_off < range) { | 
 | 			afu_irq += irq_off; | 
 | 			break; | 
 | 		} | 
 | 		afu_irq += range; | 
 | 	} | 
 | 	if (unlikely(r >= CXL_IRQ_RANGES)) { | 
 | 		WARN(1, "Received AFU IRQ out of range for pe %i (virq %i hwirq %lx)\n", | 
 | 		     ctx->pe, irq, hwirq); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	trace_cxl_afu_irq(ctx, afu_irq, irq, hwirq); | 
 | 	pr_devel("Received AFU interrupt %i for pe: %i (virq %i hwirq %lx)\n", | 
 | 	       afu_irq, ctx->pe, irq, hwirq); | 
 |  | 
 | 	if (unlikely(!ctx->irq_bitmap)) { | 
 | 		WARN(1, "Received AFU IRQ for context with no IRQ bitmap\n"); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 | 	spin_lock(&ctx->lock); | 
 | 	set_bit(afu_irq - 1, ctx->irq_bitmap); | 
 | 	ctx->pending_irq = true; | 
 | 	spin_unlock(&ctx->lock); | 
 |  | 
 | 	wake_up_all(&ctx->wq); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | unsigned int cxl_map_irq(struct cxl *adapter, irq_hw_number_t hwirq, | 
 | 			 irq_handler_t handler, void *cookie, const char *name) | 
 | { | 
 | 	unsigned int virq; | 
 | 	int result; | 
 |  | 
 | 	/* IRQ Domain? */ | 
 | 	virq = irq_create_mapping(NULL, hwirq); | 
 | 	if (!virq) { | 
 | 		dev_warn(&adapter->dev, "cxl_map_irq: irq_create_mapping failed\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (cxl_ops->setup_irq) | 
 | 		cxl_ops->setup_irq(adapter, hwirq, virq); | 
 |  | 
 | 	pr_devel("hwirq %#lx mapped to virq %u\n", hwirq, virq); | 
 |  | 
 | 	result = request_irq(virq, handler, 0, name, cookie); | 
 | 	if (result) { | 
 | 		dev_warn(&adapter->dev, "cxl_map_irq: request_irq failed: %i\n", result); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return virq; | 
 | } | 
 |  | 
 | void cxl_unmap_irq(unsigned int virq, void *cookie) | 
 | { | 
 | 	free_irq(virq, cookie); | 
 | } | 
 |  | 
 | int cxl_register_one_irq(struct cxl *adapter, | 
 | 			irq_handler_t handler, | 
 | 			void *cookie, | 
 | 			irq_hw_number_t *dest_hwirq, | 
 | 			unsigned int *dest_virq, | 
 | 			const char *name) | 
 | { | 
 | 	int hwirq, virq; | 
 |  | 
 | 	if ((hwirq = cxl_ops->alloc_one_irq(adapter)) < 0) | 
 | 		return hwirq; | 
 |  | 
 | 	if (!(virq = cxl_map_irq(adapter, hwirq, handler, cookie, name))) | 
 | 		goto err; | 
 |  | 
 | 	*dest_hwirq = hwirq; | 
 | 	*dest_virq = virq; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	cxl_ops->release_one_irq(adapter, hwirq); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void afu_irq_name_free(struct cxl_context *ctx) | 
 | { | 
 | 	struct cxl_irq_name *irq_name, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(irq_name, tmp, &ctx->irq_names, list) { | 
 | 		kfree(irq_name->name); | 
 | 		list_del(&irq_name->list); | 
 | 		kfree(irq_name); | 
 | 	} | 
 | } | 
 |  | 
 | int afu_allocate_irqs(struct cxl_context *ctx, u32 count) | 
 | { | 
 | 	int rc, r, i, j = 1; | 
 | 	struct cxl_irq_name *irq_name; | 
 | 	int alloc_count; | 
 |  | 
 | 	/* | 
 | 	 * In native mode, range 0 is reserved for the multiplexed | 
 | 	 * PSL interrupt. It has been allocated when the AFU was initialized. | 
 | 	 * | 
 | 	 * In a guest, the PSL interrupt is not mutliplexed, but per-context, | 
 | 	 * and is the first interrupt from range 0. It still needs to be | 
 | 	 * allocated, so bump the count by one. | 
 | 	 */ | 
 | 	if (cpu_has_feature(CPU_FTR_HVMODE)) | 
 | 		alloc_count = count; | 
 | 	else | 
 | 		alloc_count = count + 1; | 
 |  | 
 | 	if ((rc = cxl_ops->alloc_irq_ranges(&ctx->irqs, ctx->afu->adapter, | 
 | 							alloc_count))) | 
 | 		return rc; | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_HVMODE)) { | 
 | 		/* Multiplexed PSL Interrupt */ | 
 | 		ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; | 
 | 		ctx->irqs.range[0] = 1; | 
 | 	} | 
 |  | 
 | 	ctx->irq_count = count; | 
 | 	ctx->irq_bitmap = kcalloc(BITS_TO_LONGS(count), | 
 | 				  sizeof(*ctx->irq_bitmap), GFP_KERNEL); | 
 | 	if (!ctx->irq_bitmap) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Allocate names first.  If any fail, bail out before allocating | 
 | 	 * actual hardware IRQs. | 
 | 	 */ | 
 | 	for (r = afu_irq_range_start(); r < CXL_IRQ_RANGES; r++) { | 
 | 		for (i = 0; i < ctx->irqs.range[r]; i++) { | 
 | 			irq_name = kmalloc(sizeof(struct cxl_irq_name), | 
 | 					   GFP_KERNEL); | 
 | 			if (!irq_name) | 
 | 				goto out; | 
 | 			irq_name->name = kasprintf(GFP_KERNEL, "cxl-%s-pe%i-%i", | 
 | 						   dev_name(&ctx->afu->dev), | 
 | 						   ctx->pe, j); | 
 | 			if (!irq_name->name) { | 
 | 				kfree(irq_name); | 
 | 				goto out; | 
 | 			} | 
 | 			/* Add to tail so next look get the correct order */ | 
 | 			list_add_tail(&irq_name->list, &ctx->irq_names); | 
 | 			j++; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	cxl_ops->release_irq_ranges(&ctx->irqs, ctx->afu->adapter); | 
 | 	bitmap_free(ctx->irq_bitmap); | 
 | 	afu_irq_name_free(ctx); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void afu_register_hwirqs(struct cxl_context *ctx) | 
 | { | 
 | 	irq_hw_number_t hwirq; | 
 | 	struct cxl_irq_name *irq_name; | 
 | 	int r, i; | 
 | 	irqreturn_t (*handler)(int irq, void *data); | 
 |  | 
 | 	/* We've allocated all memory now, so let's do the irq allocations */ | 
 | 	irq_name = list_first_entry(&ctx->irq_names, struct cxl_irq_name, list); | 
 | 	for (r = afu_irq_range_start(); r < CXL_IRQ_RANGES; r++) { | 
 | 		hwirq = ctx->irqs.offset[r]; | 
 | 		for (i = 0; i < ctx->irqs.range[r]; hwirq++, i++) { | 
 | 			if (r == 0 && i == 0) | 
 | 				/* | 
 | 				 * The very first interrupt of range 0 is | 
 | 				 * always the PSL interrupt, but we only | 
 | 				 * need to connect a handler for guests, | 
 | 				 * because there's one PSL interrupt per | 
 | 				 * context. | 
 | 				 * On bare-metal, the PSL interrupt is | 
 | 				 * multiplexed and was setup when the AFU | 
 | 				 * was configured. | 
 | 				 */ | 
 | 				handler = cxl_ops->psl_interrupt; | 
 | 			else | 
 | 				handler = cxl_irq_afu; | 
 | 			cxl_map_irq(ctx->afu->adapter, hwirq, handler, ctx, | 
 | 				irq_name->name); | 
 | 			irq_name = list_next_entry(irq_name, list); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int afu_register_irqs(struct cxl_context *ctx, u32 count) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = afu_allocate_irqs(ctx, count); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	afu_register_hwirqs(ctx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void afu_release_irqs(struct cxl_context *ctx, void *cookie) | 
 | { | 
 | 	irq_hw_number_t hwirq; | 
 | 	unsigned int virq; | 
 | 	int r, i; | 
 |  | 
 | 	for (r = afu_irq_range_start(); r < CXL_IRQ_RANGES; r++) { | 
 | 		hwirq = ctx->irqs.offset[r]; | 
 | 		for (i = 0; i < ctx->irqs.range[r]; hwirq++, i++) { | 
 | 			virq = irq_find_mapping(NULL, hwirq); | 
 | 			if (virq) | 
 | 				cxl_unmap_irq(virq, cookie); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	afu_irq_name_free(ctx); | 
 | 	cxl_ops->release_irq_ranges(&ctx->irqs, ctx->afu->adapter); | 
 |  | 
 | 	ctx->irq_count = 0; | 
 | } | 
 |  | 
 | void cxl_afu_decode_psl_serr(struct cxl_afu *afu, u64 serr) | 
 | { | 
 | 	dev_crit(&afu->dev, | 
 | 		 "PSL Slice error received. Check AFU for root cause.\n"); | 
 | 	dev_crit(&afu->dev, "PSL_SERR_An: 0x%016llx\n", serr); | 
 | 	if (serr & CXL_PSL_SERR_An_afuto) | 
 | 		dev_crit(&afu->dev, "AFU MMIO Timeout\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_afudis) | 
 | 		dev_crit(&afu->dev, | 
 | 			 "MMIO targeted Accelerator that was not enabled\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_afuov) | 
 | 		dev_crit(&afu->dev, "AFU CTAG Overflow\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_badsrc) | 
 | 		dev_crit(&afu->dev, "Bad Interrupt Source\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_badctx) | 
 | 		dev_crit(&afu->dev, "Bad Context Handle\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_llcmdis) | 
 | 		dev_crit(&afu->dev, "LLCMD to Disabled AFU\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_llcmdto) | 
 | 		dev_crit(&afu->dev, "LLCMD Timeout to AFU\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_afupar) | 
 | 		dev_crit(&afu->dev, "AFU MMIO Parity Error\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_afudup) | 
 | 		dev_crit(&afu->dev, "AFU MMIO Duplicate CTAG Error\n"); | 
 | 	if (serr & CXL_PSL_SERR_An_AE) | 
 | 		dev_crit(&afu->dev, | 
 | 			 "AFU asserted JDONE with JERROR in AFU Directed Mode\n"); | 
 | } |