|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2012 Regents of the University of California | 
|  | * Copyright (C) 2017 SiFive | 
|  | * Copyright (C) 2021 Western Digital Corporation or its affiliates. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/static_key.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(use_asid_allocator); | 
|  |  | 
|  | static unsigned long asid_bits; | 
|  | static unsigned long num_asids; | 
|  | unsigned long asid_mask; | 
|  |  | 
|  | static atomic_long_t current_version; | 
|  |  | 
|  | static DEFINE_RAW_SPINLOCK(context_lock); | 
|  | static cpumask_t context_tlb_flush_pending; | 
|  | static unsigned long *context_asid_map; | 
|  |  | 
|  | static DEFINE_PER_CPU(atomic_long_t, active_context); | 
|  | static DEFINE_PER_CPU(unsigned long, reserved_context); | 
|  |  | 
|  | static bool check_update_reserved_context(unsigned long cntx, | 
|  | unsigned long newcntx) | 
|  | { | 
|  | int cpu; | 
|  | bool hit = false; | 
|  |  | 
|  | /* | 
|  | * Iterate over the set of reserved CONTEXT looking for a match. | 
|  | * If we find one, then we can update our mm to use new CONTEXT | 
|  | * (i.e. the same CONTEXT in the current_version) but we can't | 
|  | * exit the loop early, since we need to ensure that all copies | 
|  | * of the old CONTEXT are updated to reflect the mm. Failure to do | 
|  | * so could result in us missing the reserved CONTEXT in a future | 
|  | * version. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (per_cpu(reserved_context, cpu) == cntx) { | 
|  | hit = true; | 
|  | per_cpu(reserved_context, cpu) = newcntx; | 
|  | } | 
|  | } | 
|  |  | 
|  | return hit; | 
|  | } | 
|  |  | 
|  | static void __flush_context(void) | 
|  | { | 
|  | int i; | 
|  | unsigned long cntx; | 
|  |  | 
|  | /* Must be called with context_lock held */ | 
|  | lockdep_assert_held(&context_lock); | 
|  |  | 
|  | /* Update the list of reserved ASIDs and the ASID bitmap. */ | 
|  | bitmap_clear(context_asid_map, 0, num_asids); | 
|  |  | 
|  | /* Mark already active ASIDs as used */ | 
|  | for_each_possible_cpu(i) { | 
|  | cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0); | 
|  | /* | 
|  | * If this CPU has already been through a rollover, but | 
|  | * hasn't run another task in the meantime, we must preserve | 
|  | * its reserved CONTEXT, as this is the only trace we have of | 
|  | * the process it is still running. | 
|  | */ | 
|  | if (cntx == 0) | 
|  | cntx = per_cpu(reserved_context, i); | 
|  |  | 
|  | __set_bit(cntx & asid_mask, context_asid_map); | 
|  | per_cpu(reserved_context, i) = cntx; | 
|  | } | 
|  |  | 
|  | /* Mark ASID #0 as used because it is used at boot-time */ | 
|  | __set_bit(0, context_asid_map); | 
|  |  | 
|  | /* Queue a TLB invalidation for each CPU on next context-switch */ | 
|  | cpumask_setall(&context_tlb_flush_pending); | 
|  | } | 
|  |  | 
|  | static unsigned long __new_context(struct mm_struct *mm) | 
|  | { | 
|  | static u32 cur_idx = 1; | 
|  | unsigned long cntx = atomic_long_read(&mm->context.id); | 
|  | unsigned long asid, ver = atomic_long_read(¤t_version); | 
|  |  | 
|  | /* Must be called with context_lock held */ | 
|  | lockdep_assert_held(&context_lock); | 
|  |  | 
|  | if (cntx != 0) { | 
|  | unsigned long newcntx = ver | (cntx & asid_mask); | 
|  |  | 
|  | /* | 
|  | * If our current CONTEXT was active during a rollover, we | 
|  | * can continue to use it and this was just a false alarm. | 
|  | */ | 
|  | if (check_update_reserved_context(cntx, newcntx)) | 
|  | return newcntx; | 
|  |  | 
|  | /* | 
|  | * We had a valid CONTEXT in a previous life, so try to | 
|  | * re-use it if possible. | 
|  | */ | 
|  | if (!__test_and_set_bit(cntx & asid_mask, context_asid_map)) | 
|  | return newcntx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a free ASID. If we can't find one then increment | 
|  | * current_version and flush all ASIDs. | 
|  | */ | 
|  | asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx); | 
|  | if (asid != num_asids) | 
|  | goto set_asid; | 
|  |  | 
|  | /* We're out of ASIDs, so increment current_version */ | 
|  | ver = atomic_long_add_return_relaxed(num_asids, ¤t_version); | 
|  |  | 
|  | /* Flush everything  */ | 
|  | __flush_context(); | 
|  |  | 
|  | /* We have more ASIDs than CPUs, so this will always succeed */ | 
|  | asid = find_next_zero_bit(context_asid_map, num_asids, 1); | 
|  |  | 
|  | set_asid: | 
|  | __set_bit(asid, context_asid_map); | 
|  | cur_idx = asid; | 
|  | return asid | ver; | 
|  | } | 
|  |  | 
|  | static void set_mm_asid(struct mm_struct *mm, unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool need_flush_tlb = false; | 
|  | unsigned long cntx, old_active_cntx; | 
|  |  | 
|  | cntx = atomic_long_read(&mm->context.id); | 
|  |  | 
|  | /* | 
|  | * If our active_context is non-zero and the context matches the | 
|  | * current_version, then we update the active_context entry with a | 
|  | * relaxed cmpxchg. | 
|  | * | 
|  | * Following is how we handle racing with a concurrent rollover: | 
|  | * | 
|  | * - We get a zero back from the cmpxchg and end up waiting on the | 
|  | *   lock. Taking the lock synchronises with the rollover and so | 
|  | *   we are forced to see the updated verion. | 
|  | * | 
|  | * - We get a valid context back from the cmpxchg then we continue | 
|  | *   using old ASID because __flush_context() would have marked ASID | 
|  | *   of active_context as used and next context switch we will | 
|  | *   allocate new context. | 
|  | */ | 
|  | old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu)); | 
|  | if (old_active_cntx && | 
|  | ((cntx & ~asid_mask) == atomic_long_read(¤t_version)) && | 
|  | atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu), | 
|  | old_active_cntx, cntx)) | 
|  | goto switch_mm_fast; | 
|  |  | 
|  | raw_spin_lock_irqsave(&context_lock, flags); | 
|  |  | 
|  | /* Check that our ASID belongs to the current_version. */ | 
|  | cntx = atomic_long_read(&mm->context.id); | 
|  | if ((cntx & ~asid_mask) != atomic_long_read(¤t_version)) { | 
|  | cntx = __new_context(mm); | 
|  | atomic_long_set(&mm->context.id, cntx); | 
|  | } | 
|  |  | 
|  | if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending)) | 
|  | need_flush_tlb = true; | 
|  |  | 
|  | atomic_long_set(&per_cpu(active_context, cpu), cntx); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&context_lock, flags); | 
|  |  | 
|  | switch_mm_fast: | 
|  | csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | | 
|  | ((cntx & asid_mask) << SATP_ASID_SHIFT) | | 
|  | satp_mode); | 
|  |  | 
|  | if (need_flush_tlb) | 
|  | local_flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | static void set_mm_noasid(struct mm_struct *mm) | 
|  | { | 
|  | /* Switch the page table and blindly nuke entire local TLB */ | 
|  | csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode); | 
|  | local_flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | static inline void set_mm(struct mm_struct *prev, | 
|  | struct mm_struct *next, unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * The mm_cpumask indicates which harts' TLBs contain the virtual | 
|  | * address mapping of the mm. Compared to noasid, using asid | 
|  | * can't guarantee that stale TLB entries are invalidated because | 
|  | * the asid mechanism wouldn't flush TLB for every switch_mm for | 
|  | * performance. So when using asid, keep all CPUs footmarks in | 
|  | * cpumask() until mm reset. | 
|  | */ | 
|  | cpumask_set_cpu(cpu, mm_cpumask(next)); | 
|  | if (static_branch_unlikely(&use_asid_allocator)) { | 
|  | set_mm_asid(next, cpu); | 
|  | } else { | 
|  | cpumask_clear_cpu(cpu, mm_cpumask(prev)); | 
|  | set_mm_noasid(next); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init asids_init(void) | 
|  | { | 
|  | unsigned long old; | 
|  |  | 
|  | /* Figure-out number of ASID bits in HW */ | 
|  | old = csr_read(CSR_SATP); | 
|  | asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT); | 
|  | csr_write(CSR_SATP, asid_bits); | 
|  | asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK; | 
|  | asid_bits = fls_long(asid_bits); | 
|  | csr_write(CSR_SATP, old); | 
|  |  | 
|  | /* | 
|  | * In the process of determining number of ASID bits (above) | 
|  | * we polluted the TLB of current HART so let's do TLB flushed | 
|  | * to remove unwanted TLB enteries. | 
|  | */ | 
|  | local_flush_tlb_all(); | 
|  |  | 
|  | /* Pre-compute ASID details */ | 
|  | if (asid_bits) { | 
|  | num_asids = 1 << asid_bits; | 
|  | asid_mask = num_asids - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use ASID allocator only if number of HW ASIDs are | 
|  | * at-least twice more than CPUs | 
|  | */ | 
|  | if (num_asids > (2 * num_possible_cpus())) { | 
|  | atomic_long_set(¤t_version, num_asids); | 
|  |  | 
|  | context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL); | 
|  | if (!context_asid_map) | 
|  | panic("Failed to allocate bitmap for %lu ASIDs\n", | 
|  | num_asids); | 
|  |  | 
|  | __set_bit(0, context_asid_map); | 
|  |  | 
|  | static_branch_enable(&use_asid_allocator); | 
|  |  | 
|  | pr_info("ASID allocator using %lu bits (%lu entries)\n", | 
|  | asid_bits, num_asids); | 
|  | } else { | 
|  | pr_info("ASID allocator disabled (%lu bits)\n", asid_bits); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_initcall(asids_init); | 
|  | #else | 
|  | static inline void set_mm(struct mm_struct *prev, | 
|  | struct mm_struct *next, unsigned int cpu) | 
|  | { | 
|  | /* Nothing to do here when there is no MMU */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When necessary, performs a deferred icache flush for the given MM context, | 
|  | * on the local CPU.  RISC-V has no direct mechanism for instruction cache | 
|  | * shoot downs, so instead we send an IPI that informs the remote harts they | 
|  | * need to flush their local instruction caches.  To avoid pathologically slow | 
|  | * behavior in a common case (a bunch of single-hart processes on a many-hart | 
|  | * machine, ie 'make -j') we avoid the IPIs for harts that are not currently | 
|  | * executing a MM context and instead schedule a deferred local instruction | 
|  | * cache flush to be performed before execution resumes on each hart.  This | 
|  | * actually performs that local instruction cache flush, which implicitly only | 
|  | * refers to the current hart. | 
|  | * | 
|  | * The "cpu" argument must be the current local CPU number. | 
|  | */ | 
|  | static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | cpumask_t *mask = &mm->context.icache_stale_mask; | 
|  |  | 
|  | if (cpumask_test_cpu(cpu, mask)) { | 
|  | cpumask_clear_cpu(cpu, mask); | 
|  | /* | 
|  | * Ensure the remote hart's writes are visible to this hart. | 
|  | * This pairs with a barrier in flush_icache_mm. | 
|  | */ | 
|  | smp_mb(); | 
|  | local_flush_icache_all(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void switch_mm(struct mm_struct *prev, struct mm_struct *next, | 
|  | struct task_struct *task) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | if (unlikely(prev == next)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Mark the current MM context as inactive, and the next as | 
|  | * active.  This is at least used by the icache flushing | 
|  | * routines in order to determine who should be flushed. | 
|  | */ | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | set_mm(prev, next, cpu); | 
|  |  | 
|  | flush_icache_deferred(next, cpu); | 
|  | } |