blob: 95b6e41c48ec25a84cbdb9ccf9ba40162b85112b [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Rockchip ISP1 Driver - CSI-2 Receiver
*
* Copyright (C) 2019 Collabora, Ltd.
* Copyright (C) 2022 Ideas on Board
*
* Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd.
* Copyright (C) 2017 Rockchip Electronics Co., Ltd.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/lockdep.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include "rkisp1-common.h"
#include "rkisp1-csi.h"
#define RKISP1_CSI_DEV_NAME RKISP1_DRIVER_NAME "_csi"
#define RKISP1_CSI_DEF_FMT MEDIA_BUS_FMT_SRGGB10_1X10
static inline struct rkisp1_csi *to_rkisp1_csi(struct v4l2_subdev *sd)
{
return container_of(sd, struct rkisp1_csi, sd);
}
static struct v4l2_mbus_framefmt *
rkisp1_csi_get_pad_fmt(struct rkisp1_csi *csi,
struct v4l2_subdev_state *sd_state,
unsigned int pad, u32 which)
{
struct v4l2_subdev_state state = {
.pads = csi->pad_cfg
};
lockdep_assert_held(&csi->lock);
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_format(&csi->sd, sd_state, pad);
else
return v4l2_subdev_get_try_format(&csi->sd, &state, pad);
}
int rkisp1_csi_link_sensor(struct rkisp1_device *rkisp1, struct v4l2_subdev *sd,
struct rkisp1_sensor_async *s_asd,
unsigned int source_pad)
{
struct rkisp1_csi *csi = &rkisp1->csi;
int ret;
s_asd->pixel_rate_ctrl = v4l2_ctrl_find(sd->ctrl_handler,
V4L2_CID_PIXEL_RATE);
if (!s_asd->pixel_rate_ctrl) {
dev_err(rkisp1->dev, "No pixel rate control in subdev %s\n",
sd->name);
return -EINVAL;
}
/* Create the link from the sensor to the CSI receiver. */
ret = media_create_pad_link(&sd->entity, source_pad,
&csi->sd.entity, RKISP1_CSI_PAD_SINK,
!s_asd->index ? MEDIA_LNK_FL_ENABLED : 0);
if (ret) {
dev_err(csi->rkisp1->dev, "failed to link src pad of %s\n",
sd->name);
return ret;
}
return 0;
}
static int rkisp1_csi_config(struct rkisp1_csi *csi,
const struct rkisp1_sensor_async *sensor)
{
struct rkisp1_device *rkisp1 = csi->rkisp1;
unsigned int lanes = sensor->lanes;
u32 mipi_ctrl;
if (lanes < 1 || lanes > 4)
return -EINVAL;
mipi_ctrl = RKISP1_CIF_MIPI_CTRL_NUM_LANES(lanes - 1) |
RKISP1_CIF_MIPI_CTRL_SHUTDOWNLANES(0xf) |
RKISP1_CIF_MIPI_CTRL_ERR_SOT_SYNC_HS_SKIP |
RKISP1_CIF_MIPI_CTRL_CLOCKLANE_ENA;
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_CTRL, mipi_ctrl);
/* V12 could also use a newer csi2-host, but we don't want that yet */
if (rkisp1->info->isp_ver == RKISP1_V12)
rkisp1_write(rkisp1, RKISP1_CIF_ISP_CSI0_CTRL0, 0);
/* Configure Data Type and Virtual Channel */
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_IMG_DATA_SEL,
RKISP1_CIF_MIPI_DATA_SEL_DT(csi->sink_fmt->mipi_dt) |
RKISP1_CIF_MIPI_DATA_SEL_VC(0));
/* Clear MIPI interrupts */
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_ICR, ~0);
/*
* Disable RKISP1_CIF_MIPI_ERR_DPHY interrupt here temporary for
* isp bus may be dead when switch isp.
*/
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_IMSC,
RKISP1_CIF_MIPI_FRAME_END | RKISP1_CIF_MIPI_ERR_CSI |
RKISP1_CIF_MIPI_ERR_DPHY |
RKISP1_CIF_MIPI_SYNC_FIFO_OVFLW(0x03) |
RKISP1_CIF_MIPI_ADD_DATA_OVFLW);
dev_dbg(rkisp1->dev, "\n MIPI_CTRL 0x%08x\n"
" MIPI_IMG_DATA_SEL 0x%08x\n"
" MIPI_STATUS 0x%08x\n"
" MIPI_IMSC 0x%08x\n",
rkisp1_read(rkisp1, RKISP1_CIF_MIPI_CTRL),
rkisp1_read(rkisp1, RKISP1_CIF_MIPI_IMG_DATA_SEL),
rkisp1_read(rkisp1, RKISP1_CIF_MIPI_STATUS),
rkisp1_read(rkisp1, RKISP1_CIF_MIPI_IMSC));
return 0;
}
static void rkisp1_csi_enable(struct rkisp1_csi *csi)
{
struct rkisp1_device *rkisp1 = csi->rkisp1;
u32 val;
val = rkisp1_read(rkisp1, RKISP1_CIF_MIPI_CTRL);
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_CTRL,
val | RKISP1_CIF_MIPI_CTRL_OUTPUT_ENA);
}
static void rkisp1_csi_disable(struct rkisp1_csi *csi)
{
struct rkisp1_device *rkisp1 = csi->rkisp1;
u32 val;
/* Mask MIPI interrupts. */
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_IMSC, 0);
/* Flush posted writes */
rkisp1_read(rkisp1, RKISP1_CIF_MIPI_IMSC);
/*
* Wait until the IRQ handler has ended. The IRQ handler may get called
* even after this, but it will return immediately as the MIPI
* interrupts have been masked.
*/
synchronize_irq(rkisp1->irqs[RKISP1_IRQ_MIPI]);
/* Clear MIPI interrupt status */
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_ICR, ~0);
val = rkisp1_read(rkisp1, RKISP1_CIF_MIPI_CTRL);
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_CTRL,
val & (~RKISP1_CIF_MIPI_CTRL_OUTPUT_ENA));
}
static int rkisp1_csi_start(struct rkisp1_csi *csi,
const struct rkisp1_sensor_async *sensor)
{
struct rkisp1_device *rkisp1 = csi->rkisp1;
union phy_configure_opts opts;
struct phy_configure_opts_mipi_dphy *cfg = &opts.mipi_dphy;
s64 pixel_clock;
int ret;
ret = rkisp1_csi_config(csi, sensor);
if (ret)
return ret;
pixel_clock = v4l2_ctrl_g_ctrl_int64(sensor->pixel_rate_ctrl);
if (!pixel_clock) {
dev_err(rkisp1->dev, "Invalid pixel rate value\n");
return -EINVAL;
}
phy_mipi_dphy_get_default_config(pixel_clock, csi->sink_fmt->bus_width,
sensor->lanes, cfg);
phy_set_mode(csi->dphy, PHY_MODE_MIPI_DPHY);
phy_configure(csi->dphy, &opts);
phy_power_on(csi->dphy);
rkisp1_csi_enable(csi);
/*
* CIF spec says to wait for sufficient time after enabling
* the MIPI interface and before starting the sensor output.
*/
usleep_range(1000, 1200);
return 0;
}
static void rkisp1_csi_stop(struct rkisp1_csi *csi)
{
rkisp1_csi_disable(csi);
phy_power_off(csi->dphy);
}
irqreturn_t rkisp1_csi_isr(int irq, void *ctx)
{
struct device *dev = ctx;
struct rkisp1_device *rkisp1 = dev_get_drvdata(dev);
u32 val, status;
if (!rkisp1->irqs_enabled)
return IRQ_NONE;
status = rkisp1_read(rkisp1, RKISP1_CIF_MIPI_MIS);
if (!status)
return IRQ_NONE;
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_ICR, status);
/*
* Disable DPHY errctrl interrupt, because this dphy
* erctrl signal is asserted until the next changes
* of line state. This time is may be too long and cpu
* is hold in this interrupt.
*/
if (status & RKISP1_CIF_MIPI_ERR_CTRL(0x0f)) {
val = rkisp1_read(rkisp1, RKISP1_CIF_MIPI_IMSC);
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_IMSC,
val & ~RKISP1_CIF_MIPI_ERR_CTRL(0x0f));
rkisp1->csi.is_dphy_errctrl_disabled = true;
}
/*
* Enable DPHY errctrl interrupt again, if mipi have receive
* the whole frame without any error.
*/
if (status == RKISP1_CIF_MIPI_FRAME_END) {
/*
* Enable DPHY errctrl interrupt again, if mipi have receive
* the whole frame without any error.
*/
if (rkisp1->csi.is_dphy_errctrl_disabled) {
val = rkisp1_read(rkisp1, RKISP1_CIF_MIPI_IMSC);
val |= RKISP1_CIF_MIPI_ERR_CTRL(0x0f);
rkisp1_write(rkisp1, RKISP1_CIF_MIPI_IMSC, val);
rkisp1->csi.is_dphy_errctrl_disabled = false;
}
} else {
rkisp1->debug.mipi_error++;
}
return IRQ_HANDLED;
}
/* ----------------------------------------------------------------------------
* Subdev pad operations
*/
static int rkisp1_csi_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct rkisp1_csi *csi = to_rkisp1_csi(sd);
unsigned int i;
int pos = 0;
if (code->pad == RKISP1_CSI_PAD_SRC) {
const struct v4l2_mbus_framefmt *sink_fmt;
if (code->index)
return -EINVAL;
mutex_lock(&csi->lock);
sink_fmt = rkisp1_csi_get_pad_fmt(csi, sd_state,
RKISP1_CSI_PAD_SINK,
code->which);
code->code = sink_fmt->code;
mutex_unlock(&csi->lock);
return 0;
}
for (i = 0; ; i++) {
const struct rkisp1_mbus_info *fmt =
rkisp1_mbus_info_get_by_index(i);
if (!fmt)
return -EINVAL;
if (!(fmt->direction & RKISP1_ISP_SD_SINK))
continue;
if (code->index == pos) {
code->code = fmt->mbus_code;
return 0;
}
pos++;
}
return -EINVAL;
}
static int rkisp1_csi_init_config(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_mbus_framefmt *sink_fmt, *src_fmt;
sink_fmt = v4l2_subdev_get_try_format(sd, sd_state,
RKISP1_CSI_PAD_SINK);
src_fmt = v4l2_subdev_get_try_format(sd, sd_state,
RKISP1_CSI_PAD_SRC);
sink_fmt->width = RKISP1_DEFAULT_WIDTH;
sink_fmt->height = RKISP1_DEFAULT_HEIGHT;
sink_fmt->field = V4L2_FIELD_NONE;
sink_fmt->code = RKISP1_CSI_DEF_FMT;
*src_fmt = *sink_fmt;
return 0;
}
static int rkisp1_csi_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct rkisp1_csi *csi = to_rkisp1_csi(sd);
mutex_lock(&csi->lock);
fmt->format = *rkisp1_csi_get_pad_fmt(csi, sd_state, fmt->pad,
fmt->which);
mutex_unlock(&csi->lock);
return 0;
}
static int rkisp1_csi_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct rkisp1_csi *csi = to_rkisp1_csi(sd);
const struct rkisp1_mbus_info *mbus_info;
struct v4l2_mbus_framefmt *sink_fmt, *src_fmt;
/* The format on the source pad always matches the sink pad. */
if (fmt->pad == RKISP1_CSI_PAD_SRC)
return rkisp1_csi_get_fmt(sd, sd_state, fmt);
mutex_lock(&csi->lock);
sink_fmt = rkisp1_csi_get_pad_fmt(csi, sd_state, RKISP1_CSI_PAD_SINK,
fmt->which);
sink_fmt->code = fmt->format.code;
mbus_info = rkisp1_mbus_info_get_by_code(sink_fmt->code);
if (!mbus_info || !(mbus_info->direction & RKISP1_ISP_SD_SINK)) {
sink_fmt->code = RKISP1_CSI_DEF_FMT;
mbus_info = rkisp1_mbus_info_get_by_code(sink_fmt->code);
}
sink_fmt->width = clamp_t(u32, fmt->format.width,
RKISP1_ISP_MIN_WIDTH,
RKISP1_ISP_MAX_WIDTH);
sink_fmt->height = clamp_t(u32, fmt->format.height,
RKISP1_ISP_MIN_HEIGHT,
RKISP1_ISP_MAX_HEIGHT);
fmt->format = *sink_fmt;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
csi->sink_fmt = mbus_info;
/* Propagate the format to the source pad. */
src_fmt = rkisp1_csi_get_pad_fmt(csi, sd_state, RKISP1_CSI_PAD_SRC,
fmt->which);
*src_fmt = *sink_fmt;
mutex_unlock(&csi->lock);
return 0;
}
/* ----------------------------------------------------------------------------
* Subdev video operations
*/
static int rkisp1_csi_s_stream(struct v4l2_subdev *sd, int enable)
{
struct rkisp1_csi *csi = to_rkisp1_csi(sd);
struct rkisp1_device *rkisp1 = csi->rkisp1;
struct rkisp1_sensor_async *source_asd;
struct media_pad *source_pad;
struct v4l2_subdev *source;
int ret;
if (!enable) {
v4l2_subdev_call(csi->source, video, s_stream, false);
rkisp1_csi_stop(csi);
return 0;
}
source_pad = media_entity_remote_source_pad_unique(&sd->entity);
if (IS_ERR(source_pad)) {
dev_dbg(rkisp1->dev, "Failed to get source for CSI: %ld\n",
PTR_ERR(source_pad));
return -EPIPE;
}
source = media_entity_to_v4l2_subdev(source_pad->entity);
if (!source) {
/* This should really not happen, so is not worth a message. */
return -EPIPE;
}
source_asd = container_of(source->asd, struct rkisp1_sensor_async, asd);
if (source_asd->mbus_type != V4L2_MBUS_CSI2_DPHY)
return -EINVAL;
mutex_lock(&csi->lock);
ret = rkisp1_csi_start(csi, source_asd);
mutex_unlock(&csi->lock);
if (ret)
return ret;
ret = v4l2_subdev_call(source, video, s_stream, true);
if (ret) {
rkisp1_csi_stop(csi);
return ret;
}
csi->source = source;
return 0;
}
/* ----------------------------------------------------------------------------
* Registration
*/
static const struct media_entity_operations rkisp1_csi_media_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_video_ops rkisp1_csi_video_ops = {
.s_stream = rkisp1_csi_s_stream,
};
static const struct v4l2_subdev_pad_ops rkisp1_csi_pad_ops = {
.enum_mbus_code = rkisp1_csi_enum_mbus_code,
.init_cfg = rkisp1_csi_init_config,
.get_fmt = rkisp1_csi_get_fmt,
.set_fmt = rkisp1_csi_set_fmt,
};
static const struct v4l2_subdev_ops rkisp1_csi_ops = {
.video = &rkisp1_csi_video_ops,
.pad = &rkisp1_csi_pad_ops,
};
int rkisp1_csi_register(struct rkisp1_device *rkisp1)
{
struct rkisp1_csi *csi = &rkisp1->csi;
struct v4l2_subdev_state state = {};
struct media_pad *pads;
struct v4l2_subdev *sd;
int ret;
csi->rkisp1 = rkisp1;
mutex_init(&csi->lock);
sd = &csi->sd;
v4l2_subdev_init(sd, &rkisp1_csi_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sd->entity.ops = &rkisp1_csi_media_ops;
sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
sd->owner = THIS_MODULE;
strscpy(sd->name, RKISP1_CSI_DEV_NAME, sizeof(sd->name));
pads = csi->pads;
pads[RKISP1_CSI_PAD_SINK].flags = MEDIA_PAD_FL_SINK |
MEDIA_PAD_FL_MUST_CONNECT;
pads[RKISP1_CSI_PAD_SRC].flags = MEDIA_PAD_FL_SOURCE |
MEDIA_PAD_FL_MUST_CONNECT;
csi->sink_fmt = rkisp1_mbus_info_get_by_code(RKISP1_CSI_DEF_FMT);
ret = media_entity_pads_init(&sd->entity, RKISP1_CSI_PAD_NUM, pads);
if (ret)
goto error;
state.pads = csi->pad_cfg;
rkisp1_csi_init_config(sd, &state);
ret = v4l2_device_register_subdev(&csi->rkisp1->v4l2_dev, sd);
if (ret) {
dev_err(sd->dev, "Failed to register csi receiver subdev\n");
goto error;
}
return 0;
error:
media_entity_cleanup(&sd->entity);
mutex_destroy(&csi->lock);
csi->rkisp1 = NULL;
return ret;
}
void rkisp1_csi_unregister(struct rkisp1_device *rkisp1)
{
struct rkisp1_csi *csi = &rkisp1->csi;
if (!csi->rkisp1)
return;
v4l2_device_unregister_subdev(&csi->sd);
media_entity_cleanup(&csi->sd.entity);
mutex_destroy(&csi->lock);
}
int rkisp1_csi_init(struct rkisp1_device *rkisp1)
{
struct rkisp1_csi *csi = &rkisp1->csi;
csi->rkisp1 = rkisp1;
csi->dphy = devm_phy_get(rkisp1->dev, "dphy");
if (IS_ERR(csi->dphy))
return dev_err_probe(rkisp1->dev, PTR_ERR(csi->dphy),
"Couldn't get the MIPI D-PHY\n");
phy_init(csi->dphy);
return 0;
}
void rkisp1_csi_cleanup(struct rkisp1_device *rkisp1)
{
struct rkisp1_csi *csi = &rkisp1->csi;
phy_exit(csi->dphy);
}