|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com) | 
|  | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) | 
|  | */ | 
|  |  | 
|  | /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be | 
|  | * programmed to go from @count to @limit and optionally interrupt. | 
|  | * We've designated TIMER0 for clockevents and TIMER1 for clocksource | 
|  | * | 
|  | * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP) | 
|  | * which are suitable for UP and SMP based clocksources respectively | 
|  | */ | 
|  |  | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/bits.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/clk-provider.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/sched_clock.h> | 
|  |  | 
|  | #include <soc/arc/timers.h> | 
|  | #include <soc/arc/mcip.h> | 
|  |  | 
|  |  | 
|  | static unsigned long arc_timer_freq; | 
|  |  | 
|  | static int noinline arc_get_timer_clk(struct device_node *node) | 
|  | { | 
|  | struct clk *clk; | 
|  | int ret; | 
|  |  | 
|  | clk = of_clk_get(node, 0); | 
|  | if (IS_ERR(clk)) { | 
|  | pr_err("timer missing clk\n"); | 
|  | return PTR_ERR(clk); | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(clk); | 
|  | if (ret) { | 
|  | pr_err("Couldn't enable parent clk\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | arc_timer_freq = clk_get_rate(clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********** Clock Source Device *********/ | 
|  |  | 
|  | #ifdef CONFIG_ARC_TIMERS_64BIT | 
|  |  | 
|  | static u64 arc_read_gfrc(struct clocksource *cs) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 l, h; | 
|  |  | 
|  | /* | 
|  | * From a programming model pov, there seems to be just one instance of | 
|  | * MCIP_CMD/MCIP_READBACK however micro-architecturally there's | 
|  | * an instance PER ARC CORE (not per cluster), and there are dedicated | 
|  | * hardware decode logic (per core) inside ARConnect to handle | 
|  | * simultaneous read/write accesses from cores via those two registers. | 
|  | * So several concurrent commands to ARConnect are OK if they are | 
|  | * trying to access two different sub-components (like GFRC, | 
|  | * inter-core interrupt, etc...). HW also supports simultaneously | 
|  | * accessing GFRC by multiple cores. | 
|  | * That's why it is safe to disable hard interrupts on the local CPU | 
|  | * before access to GFRC instead of taking global MCIP spinlock | 
|  | * defined in arch/arc/kernel/mcip.c | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | __mcip_cmd(CMD_GFRC_READ_LO, 0); | 
|  | l = read_aux_reg(ARC_REG_MCIP_READBACK); | 
|  |  | 
|  | __mcip_cmd(CMD_GFRC_READ_HI, 0); | 
|  | h = read_aux_reg(ARC_REG_MCIP_READBACK); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return (((u64)h) << 32) | l; | 
|  | } | 
|  |  | 
|  | static notrace u64 arc_gfrc_clock_read(void) | 
|  | { | 
|  | return arc_read_gfrc(NULL); | 
|  | } | 
|  |  | 
|  | static struct clocksource arc_counter_gfrc = { | 
|  | .name   = "ARConnect GFRC", | 
|  | .rating = 400, | 
|  | .read   = arc_read_gfrc, | 
|  | .mask   = CLOCKSOURCE_MASK(64), | 
|  | .flags  = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | static int __init arc_cs_setup_gfrc(struct device_node *node) | 
|  | { | 
|  | struct mcip_bcr mp; | 
|  | int ret; | 
|  |  | 
|  | READ_BCR(ARC_REG_MCIP_BCR, mp); | 
|  | if (!mp.gfrc) { | 
|  | pr_warn("Global-64-bit-Ctr clocksource not detected\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | ret = arc_get_timer_clk(node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq); | 
|  |  | 
|  | return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq); | 
|  | } | 
|  | TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc); | 
|  |  | 
|  | #define AUX_RTC_CTRL	0x103 | 
|  | #define AUX_RTC_LOW	0x104 | 
|  | #define AUX_RTC_HIGH	0x105 | 
|  |  | 
|  | static u64 arc_read_rtc(struct clocksource *cs) | 
|  | { | 
|  | unsigned long status; | 
|  | u32 l, h; | 
|  |  | 
|  | /* | 
|  | * hardware has an internal state machine which tracks readout of | 
|  | * low/high and updates the CTRL.status if | 
|  | *  - interrupt/exception taken between the two reads | 
|  | *  - high increments after low has been read | 
|  | */ | 
|  | do { | 
|  | l = read_aux_reg(AUX_RTC_LOW); | 
|  | h = read_aux_reg(AUX_RTC_HIGH); | 
|  | status = read_aux_reg(AUX_RTC_CTRL); | 
|  | } while (!(status & BIT(31))); | 
|  |  | 
|  | return (((u64)h) << 32) | l; | 
|  | } | 
|  |  | 
|  | static notrace u64 arc_rtc_clock_read(void) | 
|  | { | 
|  | return arc_read_rtc(NULL); | 
|  | } | 
|  |  | 
|  | static struct clocksource arc_counter_rtc = { | 
|  | .name   = "ARCv2 RTC", | 
|  | .rating = 350, | 
|  | .read   = arc_read_rtc, | 
|  | .mask   = CLOCKSOURCE_MASK(64), | 
|  | .flags  = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | static int __init arc_cs_setup_rtc(struct device_node *node) | 
|  | { | 
|  | struct bcr_timer timer; | 
|  | int ret; | 
|  |  | 
|  | READ_BCR(ARC_REG_TIMERS_BCR, timer); | 
|  | if (!timer.rtc) { | 
|  | pr_warn("Local-64-bit-Ctr clocksource not detected\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Local to CPU hence not usable in SMP */ | 
|  | if (IS_ENABLED(CONFIG_SMP)) { | 
|  | pr_warn("Local-64-bit-Ctr not usable in SMP\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = arc_get_timer_clk(node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | write_aux_reg(AUX_RTC_CTRL, 1); | 
|  |  | 
|  | sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq); | 
|  |  | 
|  | return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq); | 
|  | } | 
|  | TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * 32bit TIMER1 to keep counting monotonically and wraparound | 
|  | */ | 
|  |  | 
|  | static u64 arc_read_timer1(struct clocksource *cs) | 
|  | { | 
|  | return (u64) read_aux_reg(ARC_REG_TIMER1_CNT); | 
|  | } | 
|  |  | 
|  | static notrace u64 arc_timer1_clock_read(void) | 
|  | { | 
|  | return arc_read_timer1(NULL); | 
|  | } | 
|  |  | 
|  | static struct clocksource arc_counter_timer1 = { | 
|  | .name   = "ARC Timer1", | 
|  | .rating = 300, | 
|  | .read   = arc_read_timer1, | 
|  | .mask   = CLOCKSOURCE_MASK(32), | 
|  | .flags  = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | static int __init arc_cs_setup_timer1(struct device_node *node) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Local to CPU hence not usable in SMP */ | 
|  | if (IS_ENABLED(CONFIG_SMP)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = arc_get_timer_clk(node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX); | 
|  | write_aux_reg(ARC_REG_TIMER1_CNT, 0); | 
|  | write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH); | 
|  |  | 
|  | sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq); | 
|  |  | 
|  | return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq); | 
|  | } | 
|  |  | 
|  | /********** Clock Event Device *********/ | 
|  |  | 
|  | static int arc_timer_irq; | 
|  |  | 
|  | /* | 
|  | * Arm the timer to interrupt after @cycles | 
|  | * The distinction for oneshot/periodic is done in arc_event_timer_ack() below | 
|  | */ | 
|  | static void arc_timer_event_setup(unsigned int cycles) | 
|  | { | 
|  | write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles); | 
|  | write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */ | 
|  |  | 
|  | write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int arc_clkevent_set_next_event(unsigned long delta, | 
|  | struct clock_event_device *dev) | 
|  | { | 
|  | arc_timer_event_setup(delta); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int arc_clkevent_set_periodic(struct clock_event_device *dev) | 
|  | { | 
|  | /* | 
|  | * At X Hz, 1 sec = 1000ms -> X cycles; | 
|  | *		      10ms -> X / 100 cycles | 
|  | */ | 
|  | arc_timer_event_setup(arc_timer_freq / HZ); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { | 
|  | .name			= "ARC Timer0", | 
|  | .features		= CLOCK_EVT_FEAT_ONESHOT | | 
|  | CLOCK_EVT_FEAT_PERIODIC, | 
|  | .rating			= 300, | 
|  | .set_next_event		= arc_clkevent_set_next_event, | 
|  | .set_state_periodic	= arc_clkevent_set_periodic, | 
|  | }; | 
|  |  | 
|  | static irqreturn_t timer_irq_handler(int irq, void *dev_id) | 
|  | { | 
|  | /* | 
|  | * Note that generic IRQ core could have passed @evt for @dev_id if | 
|  | * irq_set_chip_and_handler() asked for handle_percpu_devid_irq() | 
|  | */ | 
|  | struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); | 
|  | int irq_reenable = clockevent_state_periodic(evt); | 
|  |  | 
|  | /* | 
|  | * 1. ACK the interrupt | 
|  | *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite | 
|  | *      Count when [N]ot [H]alted bit. | 
|  | *    - For HS3x, it is a bit subtle. On taken count-down interrupt, | 
|  | *      IP bit [3] is set, which needs to be cleared for ACK'ing. | 
|  | *      The write below can only update the other two bits, hence | 
|  | *      explicitly clears IP bit | 
|  | * 2. Re-arm interrupt if periodic by writing to IE bit [0] | 
|  | */ | 
|  | write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH); | 
|  |  | 
|  | evt->event_handler(evt); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int arc_timer_starting_cpu(unsigned int cpu) | 
|  | { | 
|  | struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); | 
|  |  | 
|  | evt->cpumask = cpumask_of(smp_processor_id()); | 
|  |  | 
|  | clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX); | 
|  | enable_percpu_irq(arc_timer_irq, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int arc_timer_dying_cpu(unsigned int cpu) | 
|  | { | 
|  | disable_percpu_irq(arc_timer_irq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clockevent setup for boot CPU | 
|  | */ | 
|  | static int __init arc_clockevent_setup(struct device_node *node) | 
|  | { | 
|  | struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); | 
|  | int ret; | 
|  |  | 
|  | arc_timer_irq = irq_of_parse_and_map(node, 0); | 
|  | if (arc_timer_irq <= 0) { | 
|  | pr_err("clockevent: missing irq\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = arc_get_timer_clk(node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Needs apriori irq_set_percpu_devid() done in intc map function */ | 
|  | ret = request_percpu_irq(arc_timer_irq, timer_irq_handler, | 
|  | "Timer0 (per-cpu-tick)", evt); | 
|  | if (ret) { | 
|  | pr_err("clockevent: unable to request irq\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING, | 
|  | "clockevents/arc/timer:starting", | 
|  | arc_timer_starting_cpu, | 
|  | arc_timer_dying_cpu); | 
|  | if (ret) { | 
|  | pr_err("Failed to setup hotplug state\n"); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init arc_of_timer_init(struct device_node *np) | 
|  | { | 
|  | static int init_count = 0; | 
|  | int ret; | 
|  |  | 
|  | if (!init_count) { | 
|  | init_count = 1; | 
|  | ret = arc_clockevent_setup(np); | 
|  | } else { | 
|  | ret = arc_cs_setup_timer1(np); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init); |