|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. | 
|  | * Copyright (C) 2018-2023 Linaro Ltd. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/bits.h> | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/netdevice.h> | 
|  |  | 
|  | #include "gsi.h" | 
|  | #include "reg.h" | 
|  | #include "gsi_reg.h" | 
|  | #include "gsi_private.h" | 
|  | #include "gsi_trans.h" | 
|  | #include "ipa_gsi.h" | 
|  | #include "ipa_data.h" | 
|  | #include "ipa_version.h" | 
|  |  | 
|  | /** | 
|  | * DOC: The IPA Generic Software Interface | 
|  | * | 
|  | * The generic software interface (GSI) is an integral component of the IPA, | 
|  | * providing a well-defined communication layer between the AP subsystem | 
|  | * and the IPA core.  The modem uses the GSI layer as well. | 
|  | * | 
|  | *	--------	     --------- | 
|  | *	|      |	     |	     | | 
|  | *	|  AP  +<---.	.----+ Modem | | 
|  | *	|      +--. |	| .->+	     | | 
|  | *	|      |  | |	| |  |	     | | 
|  | *	--------  | |	| |  --------- | 
|  | *		  v |	v | | 
|  | *		--+-+---+-+-- | 
|  | *		|    GSI    | | 
|  | *		|-----------| | 
|  | *		|	    | | 
|  | *		|    IPA    | | 
|  | *		|	    | | 
|  | *		------------- | 
|  | * | 
|  | * In the above diagram, the AP and Modem represent "execution environments" | 
|  | * (EEs), which are independent operating environments that use the IPA for | 
|  | * data transfer. | 
|  | * | 
|  | * Each EE uses a set of unidirectional GSI "channels," which allow transfer | 
|  | * of data to or from the IPA.  A channel is implemented as a ring buffer, | 
|  | * with a DRAM-resident array of "transfer elements" (TREs) available to | 
|  | * describe transfers to or from other EEs through the IPA.  A transfer | 
|  | * element can also contain an immediate command, requesting the IPA perform | 
|  | * actions other than data transfer. | 
|  | * | 
|  | * Each TRE refers to a block of data--also located in DRAM.  After writing | 
|  | * one or more TREs to a channel, the writer (either the IPA or an EE) writes | 
|  | * a doorbell register to inform the receiving side how many elements have | 
|  | * been written. | 
|  | * | 
|  | * Each channel has a GSI "event ring" associated with it.  An event ring | 
|  | * is implemented very much like a channel ring, but is always directed from | 
|  | * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel | 
|  | * events by adding an entry to the event ring associated with the channel. | 
|  | * The GSI then writes its doorbell for the event ring, causing the target | 
|  | * EE to be interrupted.  Each entry in an event ring contains a pointer | 
|  | * to the channel TRE whose completion the event represents. | 
|  | * | 
|  | * Each TRE in a channel ring has a set of flags.  One flag indicates whether | 
|  | * the completion of the transfer operation generates an entry (and possibly | 
|  | * an interrupt) in the channel's event ring.  Other flags allow transfer | 
|  | * elements to be chained together, forming a single logical transaction. | 
|  | * TRE flags are used to control whether and when interrupts are generated | 
|  | * to signal completion of channel transfers. | 
|  | * | 
|  | * Elements in channel and event rings are completed (or consumed) strictly | 
|  | * in order.  Completion of one entry implies the completion of all preceding | 
|  | * entries.  A single completion interrupt can therefore communicate the | 
|  | * completion of many transfers. | 
|  | * | 
|  | * Note that all GSI registers are little-endian, which is the assumed | 
|  | * endianness of I/O space accesses.  The accessor functions perform byte | 
|  | * swapping if needed (i.e., for a big endian CPU). | 
|  | */ | 
|  |  | 
|  | /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ | 
|  | #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */ | 
|  |  | 
|  | #define GSI_CMD_TIMEOUT			50	/* milliseconds */ | 
|  |  | 
|  | #define GSI_CHANNEL_STOP_RETRIES	10 | 
|  | #define GSI_CHANNEL_MODEM_HALT_RETRIES	10 | 
|  | #define GSI_CHANNEL_MODEM_FLOW_RETRIES	5	/* disable flow control only */ | 
|  |  | 
|  | #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */ | 
|  | #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */ | 
|  |  | 
|  | #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */ | 
|  |  | 
|  | /* An entry in an event ring */ | 
|  | struct gsi_event { | 
|  | __le64 xfer_ptr; | 
|  | __le16 len; | 
|  | u8 reserved1; | 
|  | u8 code; | 
|  | __le16 reserved2; | 
|  | u8 type; | 
|  | u8 chid; | 
|  | }; | 
|  |  | 
|  | /** gsi_channel_scratch_gpi - GPI protocol scratch register | 
|  | * @max_outstanding_tre: | 
|  | *	Defines the maximum number of TREs allowed in a single transaction | 
|  | *	on a channel (in bytes).  This determines the amount of prefetch | 
|  | *	performed by the hardware.  We configure this to equal the size of | 
|  | *	the TLV FIFO for the channel. | 
|  | * @outstanding_threshold: | 
|  | *	Defines the threshold (in bytes) determining when the sequencer | 
|  | *	should update the channel doorbell.  We configure this to equal | 
|  | *	the size of two TREs. | 
|  | */ | 
|  | struct gsi_channel_scratch_gpi { | 
|  | u64 reserved1; | 
|  | u16 reserved2; | 
|  | u16 max_outstanding_tre; | 
|  | u16 reserved3; | 
|  | u16 outstanding_threshold; | 
|  | }; | 
|  |  | 
|  | /** gsi_channel_scratch - channel scratch configuration area | 
|  | * | 
|  | * The exact interpretation of this register is protocol-specific. | 
|  | * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. | 
|  | */ | 
|  | union gsi_channel_scratch { | 
|  | struct gsi_channel_scratch_gpi gpi; | 
|  | struct { | 
|  | u32 word1; | 
|  | u32 word2; | 
|  | u32 word3; | 
|  | u32 word4; | 
|  | } data; | 
|  | }; | 
|  |  | 
|  | /* Check things that can be validated at build time. */ | 
|  | static void gsi_validate_build(void) | 
|  | { | 
|  | /* This is used as a divisor */ | 
|  | BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); | 
|  |  | 
|  | /* Code assumes the size of channel and event ring element are | 
|  | * the same (and fixed).  Make sure the size of an event ring | 
|  | * element is what's expected. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); | 
|  |  | 
|  | /* Hardware requires a 2^n ring size.  We ensure the number of | 
|  | * elements in an event ring is a power of 2 elsewhere; this | 
|  | * ensure the elements themselves meet the requirement. | 
|  | */ | 
|  | BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); | 
|  | } | 
|  |  | 
|  | /* Return the channel id associated with a given channel */ | 
|  | static u32 gsi_channel_id(struct gsi_channel *channel) | 
|  | { | 
|  | return channel - &channel->gsi->channel[0]; | 
|  | } | 
|  |  | 
|  | /* An initialized channel has a non-null GSI pointer */ | 
|  | static bool gsi_channel_initialized(struct gsi_channel *channel) | 
|  | { | 
|  | return !!channel->gsi; | 
|  | } | 
|  |  | 
|  | /* Encode the channel protocol for the CH_C_CNTXT_0 register */ | 
|  | static u32 ch_c_cntxt_0_type_encode(enum ipa_version version, | 
|  | const struct reg *reg, | 
|  | enum gsi_channel_type type) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = reg_encode(reg, CHTYPE_PROTOCOL, type); | 
|  | if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0) | 
|  | return val; | 
|  |  | 
|  | type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL)); | 
|  |  | 
|  | return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type); | 
|  | } | 
|  |  | 
|  | /* Update the GSI IRQ type register with the cached value */ | 
|  | static void gsi_irq_type_update(struct gsi *gsi, u32 val) | 
|  | { | 
|  | const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK); | 
|  |  | 
|  | gsi->type_enabled_bitmap = val; | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) | 
|  | { | 
|  | gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id); | 
|  | } | 
|  |  | 
|  | static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) | 
|  | { | 
|  | gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id); | 
|  | } | 
|  |  | 
|  | /* Event ring commands are performed one at a time.  Their completion | 
|  | * is signaled by the event ring control GSI interrupt type, which is | 
|  | * only enabled when we issue an event ring command.  Only the event | 
|  | * ring being operated on has this interrupt enabled. | 
|  | */ | 
|  | static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | u32 val = BIT(evt_ring_id); | 
|  | const struct reg *reg; | 
|  |  | 
|  | /* There's a small chance that a previous command completed | 
|  | * after the interrupt was disabled, so make sure we have no | 
|  | * pending interrupts before we enable them. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); | 
|  | iowrite32(~0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  | gsi_irq_type_enable(gsi, GSI_EV_CTRL); | 
|  | } | 
|  |  | 
|  | /* Disable event ring control interrupts */ | 
|  | static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  |  | 
|  | gsi_irq_type_disable(gsi, GSI_EV_CTRL); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | /* Channel commands are performed one at a time.  Their completion is | 
|  | * signaled by the channel control GSI interrupt type, which is only | 
|  | * enabled when we issue a channel command.  Only the channel being | 
|  | * operated on has this interrupt enabled. | 
|  | */ | 
|  | static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | u32 val = BIT(channel_id); | 
|  | const struct reg *reg; | 
|  |  | 
|  | /* There's a small chance that a previous command completed | 
|  | * after the interrupt was disabled, so make sure we have no | 
|  | * pending interrupts before we enable them. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); | 
|  | iowrite32(~0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | gsi_irq_type_enable(gsi, GSI_CH_CTRL); | 
|  | } | 
|  |  | 
|  | /* Disable channel control interrupts */ | 
|  | static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  |  | 
|  | gsi_irq_type_disable(gsi, GSI_CH_CTRL); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | bool enable_ieob = !gsi->ieob_enabled_bitmap; | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); | 
|  | val = gsi->ieob_enabled_bitmap; | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | /* Enable the interrupt type if this is the first channel enabled */ | 
|  | if (enable_ieob) | 
|  | gsi_irq_type_enable(gsi, GSI_IEOB); | 
|  | } | 
|  |  | 
|  | static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | gsi->ieob_enabled_bitmap &= ~event_mask; | 
|  |  | 
|  | /* Disable the interrupt type if this was the last enabled channel */ | 
|  | if (!gsi->ieob_enabled_bitmap) | 
|  | gsi_irq_type_disable(gsi, GSI_IEOB); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); | 
|  | val = gsi->ieob_enabled_bitmap; | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); | 
|  | } | 
|  |  | 
|  | /* Enable all GSI_interrupt types */ | 
|  | static void gsi_irq_enable(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | /* Global interrupts include hardware error reports.  Enable | 
|  | * that so we can at least report the error should it occur. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); | 
|  | iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE); | 
|  |  | 
|  | /* General GSI interrupts are reported to all EEs; if they occur | 
|  | * they are unrecoverable (without reset).  A breakpoint interrupt | 
|  | * also exists, but we don't support that.  We want to be notified | 
|  | * of errors so we can report them, even if they can't be handled. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); | 
|  | val = BUS_ERROR; | 
|  | val |= CMD_FIFO_OVRFLOW; | 
|  | val |= MCS_STACK_OVRFLOW; | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL); | 
|  | } | 
|  |  | 
|  | /* Disable all GSI interrupt types */ | 
|  | static void gsi_irq_disable(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  |  | 
|  | gsi_irq_type_update(gsi, 0); | 
|  |  | 
|  | /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ | 
|  | reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | /* Return the virtual address associated with a ring index */ | 
|  | void *gsi_ring_virt(struct gsi_ring *ring, u32 index) | 
|  | { | 
|  | /* Note: index *must* be used modulo the ring count here */ | 
|  | return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; | 
|  | } | 
|  |  | 
|  | /* Return the 32-bit DMA address associated with a ring index */ | 
|  | static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) | 
|  | { | 
|  | return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; | 
|  | } | 
|  |  | 
|  | /* Return the ring index of a 32-bit ring offset */ | 
|  | static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) | 
|  | { | 
|  | return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; | 
|  | } | 
|  |  | 
|  | /* Issue a GSI command by writing a value to a register, then wait for | 
|  | * completion to be signaled.  Returns true if the command completes | 
|  | * or false if it times out. | 
|  | */ | 
|  | static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) | 
|  | { | 
|  | unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); | 
|  | struct completion *completion = &gsi->completion; | 
|  |  | 
|  | reinit_completion(completion); | 
|  |  | 
|  | iowrite32(val, gsi->virt + reg); | 
|  |  | 
|  | return !!wait_for_completion_timeout(completion, timeout); | 
|  | } | 
|  |  | 
|  | /* Return the hardware's notion of the current state of an event ring */ | 
|  | static enum gsi_evt_ring_state | 
|  | gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); | 
|  | u32 val; | 
|  |  | 
|  | val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | return reg_decode(reg, EV_CHSTATE, val); | 
|  | } | 
|  |  | 
|  | /* Issue an event ring command and wait for it to complete */ | 
|  | static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, | 
|  | enum gsi_evt_cmd_opcode opcode) | 
|  | { | 
|  | struct device *dev = gsi->dev; | 
|  | const struct reg *reg; | 
|  | bool timeout; | 
|  | u32 val; | 
|  |  | 
|  | /* Enable the completion interrupt for the command */ | 
|  | gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_CMD); | 
|  | val = reg_encode(reg, EV_CHID, evt_ring_id); | 
|  | val |= reg_encode(reg, EV_OPCODE, opcode); | 
|  |  | 
|  | timeout = !gsi_command(gsi, reg_offset(reg), val); | 
|  |  | 
|  | gsi_irq_ev_ctrl_disable(gsi); | 
|  |  | 
|  | if (!timeout) | 
|  | return; | 
|  |  | 
|  | dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", | 
|  | opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); | 
|  | } | 
|  |  | 
|  | /* Allocate an event ring in NOT_ALLOCATED state */ | 
|  | static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | enum gsi_evt_ring_state state; | 
|  |  | 
|  | /* Get initial event ring state */ | 
|  | state = gsi_evt_ring_state(gsi, evt_ring_id); | 
|  | if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { | 
|  | dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", | 
|  | evt_ring_id, state); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); | 
|  |  | 
|  | /* If successful the event ring state will have changed */ | 
|  | state = gsi_evt_ring_state(gsi, evt_ring_id); | 
|  | if (state == GSI_EVT_RING_STATE_ALLOCATED) | 
|  | return 0; | 
|  |  | 
|  | dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", | 
|  | evt_ring_id, state); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Reset a GSI event ring in ALLOCATED or ERROR state. */ | 
|  | static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | enum gsi_evt_ring_state state; | 
|  |  | 
|  | state = gsi_evt_ring_state(gsi, evt_ring_id); | 
|  | if (state != GSI_EVT_RING_STATE_ALLOCATED && | 
|  | state != GSI_EVT_RING_STATE_ERROR) { | 
|  | dev_err(gsi->dev, "event ring %u bad state %u before reset\n", | 
|  | evt_ring_id, state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); | 
|  |  | 
|  | /* If successful the event ring state will have changed */ | 
|  | state = gsi_evt_ring_state(gsi, evt_ring_id); | 
|  | if (state == GSI_EVT_RING_STATE_ALLOCATED) | 
|  | return; | 
|  |  | 
|  | dev_err(gsi->dev, "event ring %u bad state %u after reset\n", | 
|  | evt_ring_id, state); | 
|  | } | 
|  |  | 
|  | /* Issue a hardware de-allocation request for an allocated event ring */ | 
|  | static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | enum gsi_evt_ring_state state; | 
|  |  | 
|  | state = gsi_evt_ring_state(gsi, evt_ring_id); | 
|  | if (state != GSI_EVT_RING_STATE_ALLOCATED) { | 
|  | dev_err(gsi->dev, "event ring %u state %u before dealloc\n", | 
|  | evt_ring_id, state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); | 
|  |  | 
|  | /* If successful the event ring state will have changed */ | 
|  | state = gsi_evt_ring_state(gsi, evt_ring_id); | 
|  | if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) | 
|  | return; | 
|  |  | 
|  | dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", | 
|  | evt_ring_id, state); | 
|  | } | 
|  |  | 
|  | /* Fetch the current state of a channel from hardware */ | 
|  | static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) | 
|  | { | 
|  | const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0); | 
|  | u32 channel_id = gsi_channel_id(channel); | 
|  | struct gsi *gsi = channel->gsi; | 
|  | void __iomem *virt = gsi->virt; | 
|  | u32 val; | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_CNTXT_0); | 
|  | val = ioread32(virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | return reg_decode(reg, CHSTATE, val); | 
|  | } | 
|  |  | 
|  | /* Issue a channel command and wait for it to complete */ | 
|  | static void | 
|  | gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) | 
|  | { | 
|  | u32 channel_id = gsi_channel_id(channel); | 
|  | struct gsi *gsi = channel->gsi; | 
|  | struct device *dev = gsi->dev; | 
|  | const struct reg *reg; | 
|  | bool timeout; | 
|  | u32 val; | 
|  |  | 
|  | /* Enable the completion interrupt for the command */ | 
|  | gsi_irq_ch_ctrl_enable(gsi, channel_id); | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_CMD); | 
|  | val = reg_encode(reg, CH_CHID, channel_id); | 
|  | val |= reg_encode(reg, CH_OPCODE, opcode); | 
|  |  | 
|  | timeout = !gsi_command(gsi, reg_offset(reg), val); | 
|  |  | 
|  | gsi_irq_ch_ctrl_disable(gsi); | 
|  |  | 
|  | if (!timeout) | 
|  | return; | 
|  |  | 
|  | dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", | 
|  | opcode, channel_id, gsi_channel_state(channel)); | 
|  | } | 
|  |  | 
|  | /* Allocate GSI channel in NOT_ALLOCATED state */ | 
|  | static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | struct device *dev = gsi->dev; | 
|  | enum gsi_channel_state state; | 
|  |  | 
|  | /* Get initial channel state */ | 
|  | state = gsi_channel_state(channel); | 
|  | if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { | 
|  | dev_err(dev, "channel %u bad state %u before alloc\n", | 
|  | channel_id, state); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | gsi_channel_command(channel, GSI_CH_ALLOCATE); | 
|  |  | 
|  | /* If successful the channel state will have changed */ | 
|  | state = gsi_channel_state(channel); | 
|  | if (state == GSI_CHANNEL_STATE_ALLOCATED) | 
|  | return 0; | 
|  |  | 
|  | dev_err(dev, "channel %u bad state %u after alloc\n", | 
|  | channel_id, state); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Start an ALLOCATED channel */ | 
|  | static int gsi_channel_start_command(struct gsi_channel *channel) | 
|  | { | 
|  | struct device *dev = channel->gsi->dev; | 
|  | enum gsi_channel_state state; | 
|  |  | 
|  | state = gsi_channel_state(channel); | 
|  | if (state != GSI_CHANNEL_STATE_ALLOCATED && | 
|  | state != GSI_CHANNEL_STATE_STOPPED) { | 
|  | dev_err(dev, "channel %u bad state %u before start\n", | 
|  | gsi_channel_id(channel), state); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | gsi_channel_command(channel, GSI_CH_START); | 
|  |  | 
|  | /* If successful the channel state will have changed */ | 
|  | state = gsi_channel_state(channel); | 
|  | if (state == GSI_CHANNEL_STATE_STARTED) | 
|  | return 0; | 
|  |  | 
|  | dev_err(dev, "channel %u bad state %u after start\n", | 
|  | gsi_channel_id(channel), state); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Stop a GSI channel in STARTED state */ | 
|  | static int gsi_channel_stop_command(struct gsi_channel *channel) | 
|  | { | 
|  | struct device *dev = channel->gsi->dev; | 
|  | enum gsi_channel_state state; | 
|  |  | 
|  | state = gsi_channel_state(channel); | 
|  |  | 
|  | /* Channel could have entered STOPPED state since last call | 
|  | * if it timed out.  If so, we're done. | 
|  | */ | 
|  | if (state == GSI_CHANNEL_STATE_STOPPED) | 
|  | return 0; | 
|  |  | 
|  | if (state != GSI_CHANNEL_STATE_STARTED && | 
|  | state != GSI_CHANNEL_STATE_STOP_IN_PROC) { | 
|  | dev_err(dev, "channel %u bad state %u before stop\n", | 
|  | gsi_channel_id(channel), state); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | gsi_channel_command(channel, GSI_CH_STOP); | 
|  |  | 
|  | /* If successful the channel state will have changed */ | 
|  | state = gsi_channel_state(channel); | 
|  | if (state == GSI_CHANNEL_STATE_STOPPED) | 
|  | return 0; | 
|  |  | 
|  | /* We may have to try again if stop is in progress */ | 
|  | if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) | 
|  | return -EAGAIN; | 
|  |  | 
|  | dev_err(dev, "channel %u bad state %u after stop\n", | 
|  | gsi_channel_id(channel), state); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Reset a GSI channel in ALLOCATED or ERROR state. */ | 
|  | static void gsi_channel_reset_command(struct gsi_channel *channel) | 
|  | { | 
|  | struct device *dev = channel->gsi->dev; | 
|  | enum gsi_channel_state state; | 
|  |  | 
|  | /* A short delay is required before a RESET command */ | 
|  | usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); | 
|  |  | 
|  | state = gsi_channel_state(channel); | 
|  | if (state != GSI_CHANNEL_STATE_STOPPED && | 
|  | state != GSI_CHANNEL_STATE_ERROR) { | 
|  | /* No need to reset a channel already in ALLOCATED state */ | 
|  | if (state != GSI_CHANNEL_STATE_ALLOCATED) | 
|  | dev_err(dev, "channel %u bad state %u before reset\n", | 
|  | gsi_channel_id(channel), state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gsi_channel_command(channel, GSI_CH_RESET); | 
|  |  | 
|  | /* If successful the channel state will have changed */ | 
|  | state = gsi_channel_state(channel); | 
|  | if (state != GSI_CHANNEL_STATE_ALLOCATED) | 
|  | dev_err(dev, "channel %u bad state %u after reset\n", | 
|  | gsi_channel_id(channel), state); | 
|  | } | 
|  |  | 
|  | /* Deallocate an ALLOCATED GSI channel */ | 
|  | static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | struct device *dev = gsi->dev; | 
|  | enum gsi_channel_state state; | 
|  |  | 
|  | state = gsi_channel_state(channel); | 
|  | if (state != GSI_CHANNEL_STATE_ALLOCATED) { | 
|  | dev_err(dev, "channel %u bad state %u before dealloc\n", | 
|  | channel_id, state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gsi_channel_command(channel, GSI_CH_DE_ALLOC); | 
|  |  | 
|  | /* If successful the channel state will have changed */ | 
|  | state = gsi_channel_state(channel); | 
|  |  | 
|  | if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) | 
|  | dev_err(dev, "channel %u bad state %u after dealloc\n", | 
|  | channel_id, state); | 
|  | } | 
|  |  | 
|  | /* Ring an event ring doorbell, reporting the last entry processed by the AP. | 
|  | * The index argument (modulo the ring count) is the first unfilled entry, so | 
|  | * we supply one less than that with the doorbell.  Update the event ring | 
|  | * index field with the value provided. | 
|  | */ | 
|  | static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) | 
|  | { | 
|  | const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0); | 
|  | struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; | 
|  | u32 val; | 
|  |  | 
|  | ring->index = index;	/* Next unused entry */ | 
|  |  | 
|  | /* Note: index *must* be used modulo the ring count here */ | 
|  | val = gsi_ring_addr(ring, (index - 1) % ring->count); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  | } | 
|  |  | 
|  | /* Program an event ring for use */ | 
|  | static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; | 
|  | struct gsi_ring *ring = &evt_ring->ring; | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); | 
|  | /* We program all event rings as GPI type/protocol */ | 
|  | val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI); | 
|  | /* EV_EE field is 0 (GSI_EE_AP) */ | 
|  | val |= reg_bit(reg, EV_INTYPE); | 
|  | val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_1); | 
|  | val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | /* The context 2 and 3 registers store the low-order and | 
|  | * high-order 32 bits of the address of the event ring, | 
|  | * respectively. | 
|  | */ | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_2); | 
|  | val = lower_32_bits(ring->addr); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_3); | 
|  | val = upper_32_bits(ring->addr); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | /* Enable interrupt moderation by setting the moderation delay */ | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_8); | 
|  | val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT); | 
|  | val |= reg_encode(reg, EV_MODC, 1);	/* comes from channel */ | 
|  | /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */ | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | /* No MSI write data, and MSI high and low address is 0 */ | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_9); | 
|  | iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_10); | 
|  | iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_11); | 
|  | iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | /* We don't need to get event read pointer updates */ | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_12); | 
|  | iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_13); | 
|  | iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); | 
|  |  | 
|  | /* Finally, tell the hardware our "last processed" event (arbitrary) */ | 
|  | gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); | 
|  | } | 
|  |  | 
|  | /* Find the transaction whose completion indicates a channel is quiesced */ | 
|  | static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) | 
|  | { | 
|  | struct gsi_trans_info *trans_info = &channel->trans_info; | 
|  | u32 pending_id = trans_info->pending_id; | 
|  | struct gsi_trans *trans; | 
|  | u16 trans_id; | 
|  |  | 
|  | if (channel->toward_ipa && pending_id != trans_info->free_id) { | 
|  | /* There is a small chance a TX transaction got allocated | 
|  | * just before we disabled transmits, so check for that. | 
|  | * The last allocated, committed, or pending transaction | 
|  | * precedes the first free transaction. | 
|  | */ | 
|  | trans_id = trans_info->free_id - 1; | 
|  | } else if (trans_info->polled_id != pending_id) { | 
|  | /* Otherwise (TX or RX) we want to wait for anything that | 
|  | * has completed, or has been polled but not released yet. | 
|  | * | 
|  | * The last completed or polled transaction precedes the | 
|  | * first pending transaction. | 
|  | */ | 
|  | trans_id = pending_id - 1; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Caller will wait for this, so take a reference */ | 
|  | trans = &trans_info->trans[trans_id % channel->tre_count]; | 
|  | refcount_inc(&trans->refcount); | 
|  |  | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | /* Wait for transaction activity on a channel to complete */ | 
|  | static void gsi_channel_trans_quiesce(struct gsi_channel *channel) | 
|  | { | 
|  | struct gsi_trans *trans; | 
|  |  | 
|  | /* Get the last transaction, and wait for it to complete */ | 
|  | trans = gsi_channel_trans_last(channel); | 
|  | if (trans) { | 
|  | wait_for_completion(&trans->completion); | 
|  | gsi_trans_free(trans); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Program a channel for use; there is no gsi_channel_deprogram() */ | 
|  | static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) | 
|  | { | 
|  | size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; | 
|  | u32 channel_id = gsi_channel_id(channel); | 
|  | union gsi_channel_scratch scr = { }; | 
|  | struct gsi_channel_scratch_gpi *gpi; | 
|  | struct gsi *gsi = channel->gsi; | 
|  | const struct reg *reg; | 
|  | u32 wrr_weight = 0; | 
|  | u32 offset; | 
|  | u32 val; | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_CNTXT_0); | 
|  |  | 
|  | /* We program all channels as GPI type/protocol */ | 
|  | val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI); | 
|  | if (channel->toward_ipa) | 
|  | val |= reg_bit(reg, CHTYPE_DIR); | 
|  | if (gsi->version < IPA_VERSION_5_0) | 
|  | val |= reg_encode(reg, ERINDEX, channel->evt_ring_id); | 
|  | val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_CNTXT_1); | 
|  | val = reg_encode(reg, CH_R_LENGTH, size); | 
|  | if (gsi->version >= IPA_VERSION_5_0) | 
|  | val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | /* The context 2 and 3 registers store the low-order and | 
|  | * high-order 32 bits of the address of the channel ring, | 
|  | * respectively. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CH_C_CNTXT_2); | 
|  | val = lower_32_bits(channel->tre_ring.addr); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_CNTXT_3); | 
|  | val = upper_32_bits(channel->tre_ring.addr); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_QOS); | 
|  |  | 
|  | /* Command channel gets low weighted round-robin priority */ | 
|  | if (channel->command) | 
|  | wrr_weight = reg_field_max(reg, WRR_WEIGHT); | 
|  | val = reg_encode(reg, WRR_WEIGHT, wrr_weight); | 
|  |  | 
|  | /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ | 
|  |  | 
|  | /* No need to use the doorbell engine starting at IPA v4.0 */ | 
|  | if (gsi->version < IPA_VERSION_4_0 && doorbell) | 
|  | val |= reg_bit(reg, USE_DB_ENG); | 
|  |  | 
|  | /* v4.0 introduces an escape buffer for prefetch.  We use it | 
|  | * on all but the AP command channel. | 
|  | */ | 
|  | if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { | 
|  | /* If not otherwise set, prefetch buffers are used */ | 
|  | if (gsi->version < IPA_VERSION_4_5) | 
|  | val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY); | 
|  | else | 
|  | val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY); | 
|  | } | 
|  | /* All channels set DB_IN_BYTES */ | 
|  | if (gsi->version >= IPA_VERSION_4_9) | 
|  | val |= reg_bit(reg, DB_IN_BYTES); | 
|  |  | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | /* Now update the scratch registers for GPI protocol */ | 
|  | gpi = &scr.gpi; | 
|  | gpi->max_outstanding_tre = channel->trans_tre_max * | 
|  | GSI_RING_ELEMENT_SIZE; | 
|  | gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_SCRATCH_0); | 
|  | val = scr.data.word1; | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_SCRATCH_1); | 
|  | val = scr.data.word2; | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_SCRATCH_2); | 
|  | val = scr.data.word3; | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  |  | 
|  | /* We must preserve the upper 16 bits of the last scratch register. | 
|  | * The next sequence assumes those bits remain unchanged between the | 
|  | * read and the write. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CH_C_SCRATCH_3); | 
|  | offset = reg_n_offset(reg, channel_id); | 
|  | val = ioread32(gsi->virt + offset); | 
|  | val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); | 
|  | iowrite32(val, gsi->virt + offset); | 
|  |  | 
|  | /* All done! */ | 
|  | } | 
|  |  | 
|  | static int __gsi_channel_start(struct gsi_channel *channel, bool resume) | 
|  | { | 
|  | struct gsi *gsi = channel->gsi; | 
|  | int ret; | 
|  |  | 
|  | /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ | 
|  | if (resume && gsi->version < IPA_VERSION_4_0) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&gsi->mutex); | 
|  |  | 
|  | ret = gsi_channel_start_command(channel); | 
|  |  | 
|  | mutex_unlock(&gsi->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Start an allocated GSI channel */ | 
|  | int gsi_channel_start(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | int ret; | 
|  |  | 
|  | /* Enable NAPI and the completion interrupt */ | 
|  | napi_enable(&channel->napi); | 
|  | gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); | 
|  |  | 
|  | ret = __gsi_channel_start(channel, false); | 
|  | if (ret) { | 
|  | gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); | 
|  | napi_disable(&channel->napi); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int gsi_channel_stop_retry(struct gsi_channel *channel) | 
|  | { | 
|  | u32 retries = GSI_CHANNEL_STOP_RETRIES; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | ret = gsi_channel_stop_command(channel); | 
|  | if (ret != -EAGAIN) | 
|  | break; | 
|  | usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); | 
|  | } while (retries--); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) | 
|  | { | 
|  | struct gsi *gsi = channel->gsi; | 
|  | int ret; | 
|  |  | 
|  | /* Wait for any underway transactions to complete before stopping. */ | 
|  | gsi_channel_trans_quiesce(channel); | 
|  |  | 
|  | /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ | 
|  | if (suspend && gsi->version < IPA_VERSION_4_0) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&gsi->mutex); | 
|  |  | 
|  | ret = gsi_channel_stop_retry(channel); | 
|  |  | 
|  | mutex_unlock(&gsi->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Stop a started channel */ | 
|  | int gsi_channel_stop(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | int ret; | 
|  |  | 
|  | ret = __gsi_channel_stop(channel, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Disable the completion interrupt and NAPI if successful */ | 
|  | gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); | 
|  | napi_disable(&channel->napi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ | 
|  | void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  |  | 
|  | mutex_lock(&gsi->mutex); | 
|  |  | 
|  | gsi_channel_reset_command(channel); | 
|  | /* Due to a hardware quirk we may need to reset RX channels twice. */ | 
|  | if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) | 
|  | gsi_channel_reset_command(channel); | 
|  |  | 
|  | /* Hardware assumes this is 0 following reset */ | 
|  | channel->tre_ring.index = 0; | 
|  | gsi_channel_program(channel, doorbell); | 
|  | gsi_channel_trans_cancel_pending(channel); | 
|  |  | 
|  | mutex_unlock(&gsi->mutex); | 
|  | } | 
|  |  | 
|  | /* Stop a started channel for suspend */ | 
|  | int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | int ret; | 
|  |  | 
|  | ret = __gsi_channel_stop(channel, true); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Ensure NAPI polling has finished. */ | 
|  | napi_synchronize(&channel->napi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Resume a suspended channel (starting if stopped) */ | 
|  | int gsi_channel_resume(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  |  | 
|  | return __gsi_channel_start(channel, true); | 
|  | } | 
|  |  | 
|  | /* Prevent all GSI interrupts while suspended */ | 
|  | void gsi_suspend(struct gsi *gsi) | 
|  | { | 
|  | disable_irq(gsi->irq); | 
|  | } | 
|  |  | 
|  | /* Allow all GSI interrupts again when resuming */ | 
|  | void gsi_resume(struct gsi *gsi) | 
|  | { | 
|  | enable_irq(gsi->irq); | 
|  | } | 
|  |  | 
|  | void gsi_trans_tx_committed(struct gsi_trans *trans) | 
|  | { | 
|  | struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; | 
|  |  | 
|  | channel->trans_count++; | 
|  | channel->byte_count += trans->len; | 
|  |  | 
|  | trans->trans_count = channel->trans_count; | 
|  | trans->byte_count = channel->byte_count; | 
|  | } | 
|  |  | 
|  | void gsi_trans_tx_queued(struct gsi_trans *trans) | 
|  | { | 
|  | u32 channel_id = trans->channel_id; | 
|  | struct gsi *gsi = trans->gsi; | 
|  | struct gsi_channel *channel; | 
|  | u32 trans_count; | 
|  | u32 byte_count; | 
|  |  | 
|  | channel = &gsi->channel[channel_id]; | 
|  |  | 
|  | byte_count = channel->byte_count - channel->queued_byte_count; | 
|  | trans_count = channel->trans_count - channel->queued_trans_count; | 
|  | channel->queued_byte_count = channel->byte_count; | 
|  | channel->queued_trans_count = channel->trans_count; | 
|  |  | 
|  | ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gsi_trans_tx_completed() - Report completed TX transactions | 
|  | * @trans:	TX channel transaction that has completed | 
|  | * | 
|  | * Report that a transaction on a TX channel has completed.  At the time a | 
|  | * transaction is committed, we record *in the transaction* its channel's | 
|  | * committed transaction and byte counts.  Transactions are completed in | 
|  | * order, and the difference between the channel's byte/transaction count | 
|  | * when the transaction was committed and when it completes tells us | 
|  | * exactly how much data has been transferred while the transaction was | 
|  | * pending. | 
|  | * | 
|  | * We report this information to the network stack, which uses it to manage | 
|  | * the rate at which data is sent to hardware. | 
|  | */ | 
|  | static void gsi_trans_tx_completed(struct gsi_trans *trans) | 
|  | { | 
|  | u32 channel_id = trans->channel_id; | 
|  | struct gsi *gsi = trans->gsi; | 
|  | struct gsi_channel *channel; | 
|  | u32 trans_count; | 
|  | u32 byte_count; | 
|  |  | 
|  | channel = &gsi->channel[channel_id]; | 
|  | trans_count = trans->trans_count - channel->compl_trans_count; | 
|  | byte_count = trans->byte_count - channel->compl_byte_count; | 
|  |  | 
|  | channel->compl_trans_count += trans_count; | 
|  | channel->compl_byte_count += byte_count; | 
|  |  | 
|  | ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); | 
|  | } | 
|  |  | 
|  | /* Channel control interrupt handler */ | 
|  | static void gsi_isr_chan_ctrl(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 channel_mask; | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ); | 
|  | channel_mask = ioread32(gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); | 
|  | iowrite32(channel_mask, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | while (channel_mask) { | 
|  | u32 channel_id = __ffs(channel_mask); | 
|  |  | 
|  | channel_mask ^= BIT(channel_id); | 
|  |  | 
|  | complete(&gsi->completion); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Event ring control interrupt handler */ | 
|  | static void gsi_isr_evt_ctrl(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 event_mask; | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ); | 
|  | event_mask = ioread32(gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); | 
|  | iowrite32(event_mask, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | while (event_mask) { | 
|  | u32 evt_ring_id = __ffs(event_mask); | 
|  |  | 
|  | event_mask ^= BIT(evt_ring_id); | 
|  |  | 
|  | complete(&gsi->completion); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Global channel error interrupt handler */ | 
|  | static void | 
|  | gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) | 
|  | { | 
|  | if (code == GSI_OUT_OF_RESOURCES) { | 
|  | dev_err(gsi->dev, "channel %u out of resources\n", channel_id); | 
|  | complete(&gsi->completion); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Report, but otherwise ignore all other error codes */ | 
|  | dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", | 
|  | channel_id, err_ee, code); | 
|  | } | 
|  |  | 
|  | /* Global event error interrupt handler */ | 
|  | static void | 
|  | gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) | 
|  | { | 
|  | if (code == GSI_OUT_OF_RESOURCES) { | 
|  | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; | 
|  | u32 channel_id = gsi_channel_id(evt_ring->channel); | 
|  |  | 
|  | complete(&gsi->completion); | 
|  | dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", | 
|  | channel_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Report, but otherwise ignore all other error codes */ | 
|  | dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", | 
|  | evt_ring_id, err_ee, code); | 
|  | } | 
|  |  | 
|  | /* Global error interrupt handler */ | 
|  | static void gsi_isr_glob_err(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *log_reg; | 
|  | const struct reg *clr_reg; | 
|  | enum gsi_err_type type; | 
|  | enum gsi_err_code code; | 
|  | u32 offset; | 
|  | u32 which; | 
|  | u32 val; | 
|  | u32 ee; | 
|  |  | 
|  | /* Get the logged error, then reinitialize the log */ | 
|  | log_reg = gsi_reg(gsi, ERROR_LOG); | 
|  | offset = reg_offset(log_reg); | 
|  | val = ioread32(gsi->virt + offset); | 
|  | iowrite32(0, gsi->virt + offset); | 
|  |  | 
|  | clr_reg = gsi_reg(gsi, ERROR_LOG_CLR); | 
|  | iowrite32(~0, gsi->virt + reg_offset(clr_reg)); | 
|  |  | 
|  | /* Parse the error value */ | 
|  | ee = reg_decode(log_reg, ERR_EE, val); | 
|  | type = reg_decode(log_reg, ERR_TYPE, val); | 
|  | which = reg_decode(log_reg, ERR_VIRT_IDX, val); | 
|  | code = reg_decode(log_reg, ERR_CODE, val); | 
|  |  | 
|  | if (type == GSI_ERR_TYPE_CHAN) | 
|  | gsi_isr_glob_chan_err(gsi, ee, which, code); | 
|  | else if (type == GSI_ERR_TYPE_EVT) | 
|  | gsi_isr_glob_evt_err(gsi, ee, which, code); | 
|  | else	/* type GSI_ERR_TYPE_GLOB should be fatal */ | 
|  | dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); | 
|  | } | 
|  |  | 
|  | /* Generic EE interrupt handler */ | 
|  | static void gsi_isr_gp_int1(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 result; | 
|  | u32 val; | 
|  |  | 
|  | /* This interrupt is used to handle completions of GENERIC GSI | 
|  | * commands.  We use these to allocate and halt channels on the | 
|  | * modem's behalf due to a hardware quirk on IPA v4.2.  The modem | 
|  | * "owns" channels even when the AP allocates them, and have no | 
|  | * way of knowing whether a modem channel's state has been changed. | 
|  | * | 
|  | * We also use GENERIC commands to enable/disable channel flow | 
|  | * control for IPA v4.2+. | 
|  | * | 
|  | * It is recommended that we halt the modem channels we allocated | 
|  | * when shutting down, but it's possible the channel isn't running | 
|  | * at the time we issue the HALT command.  We'll get an error in | 
|  | * that case, but it's harmless (the channel is already halted). | 
|  | * Similarly, we could get an error back when updating flow control | 
|  | * on a channel because it's not in the proper state. | 
|  | * | 
|  | * In either case, we silently ignore a INCORRECT_CHANNEL_STATE | 
|  | * error if we receive it. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CNTXT_SCRATCH_0); | 
|  | val = ioread32(gsi->virt + reg_offset(reg)); | 
|  | result = reg_decode(reg, GENERIC_EE_RESULT, val); | 
|  |  | 
|  | switch (result) { | 
|  | case GENERIC_EE_SUCCESS: | 
|  | case GENERIC_EE_INCORRECT_CHANNEL_STATE: | 
|  | gsi->result = 0; | 
|  | break; | 
|  |  | 
|  | case GENERIC_EE_RETRY: | 
|  | gsi->result = -EAGAIN; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(gsi->dev, "global INT1 generic result %u\n", result); | 
|  | gsi->result = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | complete(&gsi->completion); | 
|  | } | 
|  |  | 
|  | /* Inter-EE interrupt handler */ | 
|  | static void gsi_isr_glob_ee(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS); | 
|  | val = ioread32(gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | if (val & ERROR_INT) | 
|  | gsi_isr_glob_err(gsi); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR); | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | val &= ~ERROR_INT; | 
|  |  | 
|  | if (val & GP_INT1) { | 
|  | val ^= GP_INT1; | 
|  | gsi_isr_gp_int1(gsi); | 
|  | } | 
|  |  | 
|  | if (val) | 
|  | dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); | 
|  | } | 
|  |  | 
|  | /* I/O completion interrupt event */ | 
|  | static void gsi_isr_ieob(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 event_mask; | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ); | 
|  | event_mask = ioread32(gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | gsi_irq_ieob_disable(gsi, event_mask); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR); | 
|  | iowrite32(event_mask, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | while (event_mask) { | 
|  | u32 evt_ring_id = __ffs(event_mask); | 
|  |  | 
|  | event_mask ^= BIT(evt_ring_id); | 
|  |  | 
|  | napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* General event interrupts represent serious problems, so report them */ | 
|  | static void gsi_isr_general(struct gsi *gsi) | 
|  | { | 
|  | struct device *dev = gsi->dev; | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS); | 
|  | val = ioread32(gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR); | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | dev_err(dev, "unexpected general interrupt 0x%08x\n", val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gsi_isr() - Top level GSI interrupt service routine | 
|  | * @irq:	Interrupt number (ignored) | 
|  | * @dev_id:	GSI pointer supplied to request_irq() | 
|  | * | 
|  | * This is the main handler function registered for the GSI IRQ. Each type | 
|  | * of interrupt has a separate handler function that is called from here. | 
|  | */ | 
|  | static irqreturn_t gsi_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct gsi *gsi = dev_id; | 
|  | const struct reg *reg; | 
|  | u32 intr_mask; | 
|  | u32 cnt = 0; | 
|  | u32 offset; | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_TYPE_IRQ); | 
|  | offset = reg_offset(reg); | 
|  |  | 
|  | /* enum gsi_irq_type_id defines GSI interrupt types */ | 
|  | while ((intr_mask = ioread32(gsi->virt + offset))) { | 
|  | /* intr_mask contains bitmask of pending GSI interrupts */ | 
|  | do { | 
|  | u32 gsi_intr = BIT(__ffs(intr_mask)); | 
|  |  | 
|  | intr_mask ^= gsi_intr; | 
|  |  | 
|  | /* Note: the IRQ condition for each type is cleared | 
|  | * when the type-specific register is updated. | 
|  | */ | 
|  | switch (gsi_intr) { | 
|  | case GSI_CH_CTRL: | 
|  | gsi_isr_chan_ctrl(gsi); | 
|  | break; | 
|  | case GSI_EV_CTRL: | 
|  | gsi_isr_evt_ctrl(gsi); | 
|  | break; | 
|  | case GSI_GLOB_EE: | 
|  | gsi_isr_glob_ee(gsi); | 
|  | break; | 
|  | case GSI_IEOB: | 
|  | gsi_isr_ieob(gsi); | 
|  | break; | 
|  | case GSI_GENERAL: | 
|  | gsi_isr_general(gsi); | 
|  | break; | 
|  | default: | 
|  | dev_err(gsi->dev, | 
|  | "unrecognized interrupt type 0x%08x\n", | 
|  | gsi_intr); | 
|  | break; | 
|  | } | 
|  | } while (intr_mask); | 
|  |  | 
|  | if (++cnt > GSI_ISR_MAX_ITER) { | 
|  | dev_err(gsi->dev, "interrupt flood\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ | 
|  | static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = platform_get_irq_byname(pdev, "gsi"); | 
|  | if (ret <= 0) | 
|  | return ret ? : -EINVAL; | 
|  |  | 
|  | gsi->irq = ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the transaction associated with a transfer completion event */ | 
|  | static struct gsi_trans * | 
|  | gsi_event_trans(struct gsi *gsi, struct gsi_event *event) | 
|  | { | 
|  | u32 channel_id = event->chid; | 
|  | struct gsi_channel *channel; | 
|  | struct gsi_trans *trans; | 
|  | u32 tre_offset; | 
|  | u32 tre_index; | 
|  |  | 
|  | channel = &gsi->channel[channel_id]; | 
|  | if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) | 
|  | return NULL; | 
|  |  | 
|  | /* Event xfer_ptr records the TRE it's associated with */ | 
|  | tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); | 
|  | tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); | 
|  |  | 
|  | trans = gsi_channel_trans_mapped(channel, tre_index); | 
|  |  | 
|  | if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) | 
|  | return NULL; | 
|  |  | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gsi_evt_ring_update() - Update transaction state from hardware | 
|  | * @gsi:		GSI pointer | 
|  | * @evt_ring_id:	Event ring ID | 
|  | * @index:		Event index in ring reported by hardware | 
|  | * | 
|  | * Events for RX channels contain the actual number of bytes received into | 
|  | * the buffer.  Every event has a transaction associated with it, and here | 
|  | * we update transactions to record their actual received lengths. | 
|  | * | 
|  | * When an event for a TX channel arrives we use information in the | 
|  | * transaction to report the number of requests and bytes that have | 
|  | * been transferred. | 
|  | * | 
|  | * This function is called whenever we learn that the GSI hardware has filled | 
|  | * new events since the last time we checked.  The ring's index field tells | 
|  | * the first entry in need of processing.  The index provided is the | 
|  | * first *unfilled* event in the ring (following the last filled one). | 
|  | * | 
|  | * Events are sequential within the event ring, and transactions are | 
|  | * sequential within the transaction array. | 
|  | * | 
|  | * Note that @index always refers to an element *within* the event ring. | 
|  | */ | 
|  | static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) | 
|  | { | 
|  | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; | 
|  | struct gsi_ring *ring = &evt_ring->ring; | 
|  | struct gsi_event *event_done; | 
|  | struct gsi_event *event; | 
|  | u32 event_avail; | 
|  | u32 old_index; | 
|  |  | 
|  | /* Starting with the oldest un-processed event, determine which | 
|  | * transaction (and which channel) is associated with the event. | 
|  | * For RX channels, update each completed transaction with the | 
|  | * number of bytes that were actually received.  For TX channels | 
|  | * associated with a network device, report to the network stack | 
|  | * the number of transfers and bytes this completion represents. | 
|  | */ | 
|  | old_index = ring->index; | 
|  | event = gsi_ring_virt(ring, old_index); | 
|  |  | 
|  | /* Compute the number of events to process before we wrap, | 
|  | * and determine when we'll be done processing events. | 
|  | */ | 
|  | event_avail = ring->count - old_index % ring->count; | 
|  | event_done = gsi_ring_virt(ring, index); | 
|  | do { | 
|  | struct gsi_trans *trans; | 
|  |  | 
|  | trans = gsi_event_trans(gsi, event); | 
|  | if (!trans) | 
|  | return; | 
|  |  | 
|  | if (trans->direction == DMA_FROM_DEVICE) | 
|  | trans->len = __le16_to_cpu(event->len); | 
|  | else | 
|  | gsi_trans_tx_completed(trans); | 
|  |  | 
|  | gsi_trans_move_complete(trans); | 
|  |  | 
|  | /* Move on to the next event and transaction */ | 
|  | if (--event_avail) | 
|  | event++; | 
|  | else | 
|  | event = gsi_ring_virt(ring, 0); | 
|  | } while (event != event_done); | 
|  |  | 
|  | /* Tell the hardware we've handled these events */ | 
|  | gsi_evt_ring_doorbell(gsi, evt_ring_id, index); | 
|  | } | 
|  |  | 
|  | /* Initialize a ring, including allocating DMA memory for its entries */ | 
|  | static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) | 
|  | { | 
|  | u32 size = count * GSI_RING_ELEMENT_SIZE; | 
|  | struct device *dev = gsi->dev; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | /* Hardware requires a 2^n ring size, with alignment equal to size. | 
|  | * The DMA address returned by dma_alloc_coherent() is guaranteed to | 
|  | * be a power-of-2 number of pages, which satisfies the requirement. | 
|  | */ | 
|  | ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); | 
|  | if (!ring->virt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ring->addr = addr; | 
|  | ring->count = count; | 
|  | ring->index = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free a previously-allocated ring */ | 
|  | static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) | 
|  | { | 
|  | size_t size = ring->count * GSI_RING_ELEMENT_SIZE; | 
|  |  | 
|  | dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); | 
|  | } | 
|  |  | 
|  | /* Allocate an available event ring id */ | 
|  | static int gsi_evt_ring_id_alloc(struct gsi *gsi) | 
|  | { | 
|  | u32 evt_ring_id; | 
|  |  | 
|  | if (gsi->event_bitmap == ~0U) { | 
|  | dev_err(gsi->dev, "event rings exhausted\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | evt_ring_id = ffz(gsi->event_bitmap); | 
|  | gsi->event_bitmap |= BIT(evt_ring_id); | 
|  |  | 
|  | return (int)evt_ring_id; | 
|  | } | 
|  |  | 
|  | /* Free a previously-allocated event ring id */ | 
|  | static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) | 
|  | { | 
|  | gsi->event_bitmap &= ~BIT(evt_ring_id); | 
|  | } | 
|  |  | 
|  | /* Ring a channel doorbell, reporting the first un-filled entry */ | 
|  | void gsi_channel_doorbell(struct gsi_channel *channel) | 
|  | { | 
|  | struct gsi_ring *tre_ring = &channel->tre_ring; | 
|  | u32 channel_id = gsi_channel_id(channel); | 
|  | struct gsi *gsi = channel->gsi; | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  |  | 
|  | reg = gsi_reg(gsi, CH_C_DOORBELL_0); | 
|  | /* Note: index *must* be used modulo the ring count here */ | 
|  | val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); | 
|  | iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); | 
|  | } | 
|  |  | 
|  | /* Consult hardware, move newly completed transactions to completed state */ | 
|  | void gsi_channel_update(struct gsi_channel *channel) | 
|  | { | 
|  | u32 evt_ring_id = channel->evt_ring_id; | 
|  | struct gsi *gsi = channel->gsi; | 
|  | struct gsi_evt_ring *evt_ring; | 
|  | struct gsi_trans *trans; | 
|  | struct gsi_ring *ring; | 
|  | const struct reg *reg; | 
|  | u32 offset; | 
|  | u32 index; | 
|  |  | 
|  | evt_ring = &gsi->evt_ring[evt_ring_id]; | 
|  | ring = &evt_ring->ring; | 
|  |  | 
|  | /* See if there's anything new to process; if not, we're done.  Note | 
|  | * that index always refers to an entry *within* the event ring. | 
|  | */ | 
|  | reg = gsi_reg(gsi, EV_CH_E_CNTXT_4); | 
|  | offset = reg_n_offset(reg, evt_ring_id); | 
|  | index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); | 
|  | if (index == ring->index % ring->count) | 
|  | return; | 
|  |  | 
|  | /* Get the transaction for the latest completed event. */ | 
|  | trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); | 
|  | if (!trans) | 
|  | return; | 
|  |  | 
|  | /* For RX channels, update each completed transaction with the number | 
|  | * of bytes that were actually received.  For TX channels, report | 
|  | * the number of transactions and bytes this completion represents | 
|  | * up the network stack. | 
|  | */ | 
|  | gsi_evt_ring_update(gsi, evt_ring_id, index); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gsi_channel_poll_one() - Return a single completed transaction on a channel | 
|  | * @channel:	Channel to be polled | 
|  | * | 
|  | * Return:	Transaction pointer, or null if none are available | 
|  | * | 
|  | * This function returns the first of a channel's completed transactions. | 
|  | * If no transactions are in completed state, the hardware is consulted to | 
|  | * determine whether any new transactions have completed.  If so, they're | 
|  | * moved to completed state and the first such transaction is returned. | 
|  | * If there are no more completed transactions, a null pointer is returned. | 
|  | */ | 
|  | static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) | 
|  | { | 
|  | struct gsi_trans *trans; | 
|  |  | 
|  | /* Get the first completed transaction */ | 
|  | trans = gsi_channel_trans_complete(channel); | 
|  | if (trans) | 
|  | gsi_trans_move_polled(trans); | 
|  |  | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gsi_channel_poll() - NAPI poll function for a channel | 
|  | * @napi:	NAPI structure for the channel | 
|  | * @budget:	Budget supplied by NAPI core | 
|  | * | 
|  | * Return:	Number of items polled (<= budget) | 
|  | * | 
|  | * Single transactions completed by hardware are polled until either | 
|  | * the budget is exhausted, or there are no more.  Each transaction | 
|  | * polled is passed to gsi_trans_complete(), to perform remaining | 
|  | * completion processing and retire/free the transaction. | 
|  | */ | 
|  | static int gsi_channel_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct gsi_channel *channel; | 
|  | int count; | 
|  |  | 
|  | channel = container_of(napi, struct gsi_channel, napi); | 
|  | for (count = 0; count < budget; count++) { | 
|  | struct gsi_trans *trans; | 
|  |  | 
|  | trans = gsi_channel_poll_one(channel); | 
|  | if (!trans) | 
|  | break; | 
|  | gsi_trans_complete(trans); | 
|  | } | 
|  |  | 
|  | if (count < budget && napi_complete(napi)) | 
|  | gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* The event bitmap represents which event ids are available for allocation. | 
|  | * Set bits are not available, clear bits can be used.  This function | 
|  | * initializes the map so all events supported by the hardware are available, | 
|  | * then precludes any reserved events from being allocated. | 
|  | */ | 
|  | static u32 gsi_event_bitmap_init(u32 evt_ring_max) | 
|  | { | 
|  | u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); | 
|  |  | 
|  | event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); | 
|  |  | 
|  | return event_bitmap; | 
|  | } | 
|  |  | 
|  | /* Setup function for a single channel */ | 
|  | static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | u32 evt_ring_id = channel->evt_ring_id; | 
|  | int ret; | 
|  |  | 
|  | if (!gsi_channel_initialized(channel)) | 
|  | return 0; | 
|  |  | 
|  | ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | gsi_evt_ring_program(gsi, evt_ring_id); | 
|  |  | 
|  | ret = gsi_channel_alloc_command(gsi, channel_id); | 
|  | if (ret) | 
|  | goto err_evt_ring_de_alloc; | 
|  |  | 
|  | gsi_channel_program(channel, true); | 
|  |  | 
|  | if (channel->toward_ipa) | 
|  | netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, | 
|  | gsi_channel_poll); | 
|  | else | 
|  | netif_napi_add(&gsi->dummy_dev, &channel->napi, | 
|  | gsi_channel_poll); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_evt_ring_de_alloc: | 
|  | /* We've done nothing with the event ring yet so don't reset */ | 
|  | gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_channel_setup_one() */ | 
|  | static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  | u32 evt_ring_id = channel->evt_ring_id; | 
|  |  | 
|  | if (!gsi_channel_initialized(channel)) | 
|  | return; | 
|  |  | 
|  | netif_napi_del(&channel->napi); | 
|  |  | 
|  | gsi_channel_de_alloc_command(gsi, channel_id); | 
|  | gsi_evt_ring_reset_command(gsi, evt_ring_id); | 
|  | gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); | 
|  | } | 
|  |  | 
|  | /* We use generic commands only to operate on modem channels.  We don't have | 
|  | * the ability to determine channel state for a modem channel, so we simply | 
|  | * issue the command and wait for it to complete. | 
|  | */ | 
|  | static int gsi_generic_command(struct gsi *gsi, u32 channel_id, | 
|  | enum gsi_generic_cmd_opcode opcode, | 
|  | u8 params) | 
|  | { | 
|  | const struct reg *reg; | 
|  | bool timeout; | 
|  | u32 offset; | 
|  | u32 val; | 
|  |  | 
|  | /* The error global interrupt type is always enabled (until we tear | 
|  | * down), so we will keep it enabled. | 
|  | * | 
|  | * A generic EE command completes with a GSI global interrupt of | 
|  | * type GP_INT1.  We only perform one generic command at a time | 
|  | * (to allocate, halt, or enable/disable flow control on a modem | 
|  | * channel), and only from this function.  So we enable the GP_INT1 | 
|  | * IRQ type here, and disable it again after the command completes. | 
|  | */ | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); | 
|  | val = ERROR_INT | GP_INT1; | 
|  | iowrite32(val, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | /* First zero the result code field */ | 
|  | reg = gsi_reg(gsi, CNTXT_SCRATCH_0); | 
|  | offset = reg_offset(reg); | 
|  | val = ioread32(gsi->virt + offset); | 
|  |  | 
|  | val &= ~reg_fmask(reg, GENERIC_EE_RESULT); | 
|  | iowrite32(val, gsi->virt + offset); | 
|  |  | 
|  | /* Now issue the command */ | 
|  | reg = gsi_reg(gsi, GENERIC_CMD); | 
|  | val = reg_encode(reg, GENERIC_OPCODE, opcode); | 
|  | val |= reg_encode(reg, GENERIC_CHID, channel_id); | 
|  | val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM); | 
|  | if (gsi->version >= IPA_VERSION_4_11) | 
|  | val |= reg_encode(reg, GENERIC_PARAMS, params); | 
|  |  | 
|  | timeout = !gsi_command(gsi, reg_offset(reg), val); | 
|  |  | 
|  | /* Disable the GP_INT1 IRQ type again */ | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); | 
|  | iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | if (!timeout) | 
|  | return gsi->result; | 
|  |  | 
|  | dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", | 
|  | opcode, channel_id); | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | return gsi_generic_command(gsi, channel_id, | 
|  | GSI_GENERIC_ALLOCATE_CHANNEL, 0); | 
|  | } | 
|  |  | 
|  | static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; | 
|  | int ret; | 
|  |  | 
|  | do | 
|  | ret = gsi_generic_command(gsi, channel_id, | 
|  | GSI_GENERIC_HALT_CHANNEL, 0); | 
|  | while (ret == -EAGAIN && retries--); | 
|  |  | 
|  | if (ret) | 
|  | dev_err(gsi->dev, "error %d halting modem channel %u\n", | 
|  | ret, channel_id); | 
|  | } | 
|  |  | 
|  | /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ | 
|  | void | 
|  | gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) | 
|  | { | 
|  | u32 retries = 0; | 
|  | u32 command; | 
|  | int ret; | 
|  |  | 
|  | command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL | 
|  | : GSI_GENERIC_DISABLE_FLOW_CONTROL; | 
|  | /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable | 
|  | * is underway.  In this case we need to retry the command. | 
|  | */ | 
|  | if (!enable && gsi->version >= IPA_VERSION_4_11) | 
|  | retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; | 
|  |  | 
|  | do | 
|  | ret = gsi_generic_command(gsi, channel_id, command, 0); | 
|  | while (ret == -EAGAIN && retries--); | 
|  |  | 
|  | if (ret) | 
|  | dev_err(gsi->dev, | 
|  | "error %d %sabling mode channel %u flow control\n", | 
|  | ret, enable ? "en" : "dis", channel_id); | 
|  | } | 
|  |  | 
|  | /* Setup function for channels */ | 
|  | static int gsi_channel_setup(struct gsi *gsi) | 
|  | { | 
|  | u32 channel_id = 0; | 
|  | u32 mask; | 
|  | int ret; | 
|  |  | 
|  | gsi_irq_enable(gsi); | 
|  |  | 
|  | mutex_lock(&gsi->mutex); | 
|  |  | 
|  | do { | 
|  | ret = gsi_channel_setup_one(gsi, channel_id); | 
|  | if (ret) | 
|  | goto err_unwind; | 
|  | } while (++channel_id < gsi->channel_count); | 
|  |  | 
|  | /* Make sure no channels were defined that hardware does not support */ | 
|  | while (channel_id < GSI_CHANNEL_COUNT_MAX) { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id++]; | 
|  |  | 
|  | if (!gsi_channel_initialized(channel)) | 
|  | continue; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | dev_err(gsi->dev, "channel %u not supported by hardware\n", | 
|  | channel_id - 1); | 
|  | channel_id = gsi->channel_count; | 
|  | goto err_unwind; | 
|  | } | 
|  |  | 
|  | /* Allocate modem channels if necessary */ | 
|  | mask = gsi->modem_channel_bitmap; | 
|  | while (mask) { | 
|  | u32 modem_channel_id = __ffs(mask); | 
|  |  | 
|  | ret = gsi_modem_channel_alloc(gsi, modem_channel_id); | 
|  | if (ret) | 
|  | goto err_unwind_modem; | 
|  |  | 
|  | /* Clear bit from mask only after success (for unwind) */ | 
|  | mask ^= BIT(modem_channel_id); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&gsi->mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unwind_modem: | 
|  | /* Compute which modem channels need to be deallocated */ | 
|  | mask ^= gsi->modem_channel_bitmap; | 
|  | while (mask) { | 
|  | channel_id = __fls(mask); | 
|  |  | 
|  | mask ^= BIT(channel_id); | 
|  |  | 
|  | gsi_modem_channel_halt(gsi, channel_id); | 
|  | } | 
|  |  | 
|  | err_unwind: | 
|  | while (channel_id--) | 
|  | gsi_channel_teardown_one(gsi, channel_id); | 
|  |  | 
|  | mutex_unlock(&gsi->mutex); | 
|  |  | 
|  | gsi_irq_disable(gsi); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_channel_setup() */ | 
|  | static void gsi_channel_teardown(struct gsi *gsi) | 
|  | { | 
|  | u32 mask = gsi->modem_channel_bitmap; | 
|  | u32 channel_id; | 
|  |  | 
|  | mutex_lock(&gsi->mutex); | 
|  |  | 
|  | while (mask) { | 
|  | channel_id = __fls(mask); | 
|  |  | 
|  | mask ^= BIT(channel_id); | 
|  |  | 
|  | gsi_modem_channel_halt(gsi, channel_id); | 
|  | } | 
|  |  | 
|  | channel_id = gsi->channel_count - 1; | 
|  | do | 
|  | gsi_channel_teardown_one(gsi, channel_id); | 
|  | while (channel_id--); | 
|  |  | 
|  | mutex_unlock(&gsi->mutex); | 
|  |  | 
|  | gsi_irq_disable(gsi); | 
|  | } | 
|  |  | 
|  | /* Turn off all GSI interrupts initially */ | 
|  | static int gsi_irq_setup(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | int ret; | 
|  |  | 
|  | /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ | 
|  | reg = gsi_reg(gsi, CNTXT_INTSET); | 
|  | iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | /* Disable all interrupt types */ | 
|  | gsi_irq_type_update(gsi, 0); | 
|  |  | 
|  | /* Clear all type-specific interrupt masks */ | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ | 
|  | if (gsi->version > IPA_VERSION_3_1) { | 
|  | reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); | 
|  | if (ret) | 
|  | dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void gsi_irq_teardown(struct gsi *gsi) | 
|  | { | 
|  | free_irq(gsi->irq, gsi); | 
|  | } | 
|  |  | 
|  | /* Get # supported channel and event rings; there is no gsi_ring_teardown() */ | 
|  | static int gsi_ring_setup(struct gsi *gsi) | 
|  | { | 
|  | struct device *dev = gsi->dev; | 
|  | const struct reg *reg; | 
|  | u32 count; | 
|  | u32 val; | 
|  |  | 
|  | if (gsi->version < IPA_VERSION_3_5_1) { | 
|  | /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ | 
|  | gsi->channel_count = GSI_CHANNEL_COUNT_MAX; | 
|  | gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | reg = gsi_reg(gsi, HW_PARAM_2); | 
|  | val = ioread32(gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | count = reg_decode(reg, NUM_CH_PER_EE, val); | 
|  | if (!count) { | 
|  | dev_err(dev, "GSI reports zero channels supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (count > GSI_CHANNEL_COUNT_MAX) { | 
|  | dev_warn(dev, "limiting to %u channels; hardware supports %u\n", | 
|  | GSI_CHANNEL_COUNT_MAX, count); | 
|  | count = GSI_CHANNEL_COUNT_MAX; | 
|  | } | 
|  | gsi->channel_count = count; | 
|  |  | 
|  | if (gsi->version < IPA_VERSION_5_0) { | 
|  | count = reg_decode(reg, NUM_EV_PER_EE, val); | 
|  | } else { | 
|  | reg = gsi_reg(gsi, HW_PARAM_4); | 
|  | count = reg_decode(reg, EV_PER_EE, val); | 
|  | } | 
|  | if (!count) { | 
|  | dev_err(dev, "GSI reports zero event rings supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (count > GSI_EVT_RING_COUNT_MAX) { | 
|  | dev_warn(dev, | 
|  | "limiting to %u event rings; hardware supports %u\n", | 
|  | GSI_EVT_RING_COUNT_MAX, count); | 
|  | count = GSI_EVT_RING_COUNT_MAX; | 
|  | } | 
|  | gsi->evt_ring_count = count; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Setup function for GSI.  GSI firmware must be loaded and initialized */ | 
|  | int gsi_setup(struct gsi *gsi) | 
|  | { | 
|  | const struct reg *reg; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | /* Here is where we first touch the GSI hardware */ | 
|  | reg = gsi_reg(gsi, GSI_STATUS); | 
|  | val = ioread32(gsi->virt + reg_offset(reg)); | 
|  | if (!(val & reg_bit(reg, ENABLED))) { | 
|  | dev_err(gsi->dev, "GSI has not been enabled\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ret = gsi_irq_setup(gsi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = gsi_ring_setup(gsi);	/* No matching teardown required */ | 
|  | if (ret) | 
|  | goto err_irq_teardown; | 
|  |  | 
|  | /* Initialize the error log */ | 
|  | reg = gsi_reg(gsi, ERROR_LOG); | 
|  | iowrite32(0, gsi->virt + reg_offset(reg)); | 
|  |  | 
|  | ret = gsi_channel_setup(gsi); | 
|  | if (ret) | 
|  | goto err_irq_teardown; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_irq_teardown: | 
|  | gsi_irq_teardown(gsi); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_setup() */ | 
|  | void gsi_teardown(struct gsi *gsi) | 
|  | { | 
|  | gsi_channel_teardown(gsi); | 
|  | gsi_irq_teardown(gsi); | 
|  | } | 
|  |  | 
|  | /* Initialize a channel's event ring */ | 
|  | static int gsi_channel_evt_ring_init(struct gsi_channel *channel) | 
|  | { | 
|  | struct gsi *gsi = channel->gsi; | 
|  | struct gsi_evt_ring *evt_ring; | 
|  | int ret; | 
|  |  | 
|  | ret = gsi_evt_ring_id_alloc(gsi); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | channel->evt_ring_id = ret; | 
|  |  | 
|  | evt_ring = &gsi->evt_ring[channel->evt_ring_id]; | 
|  | evt_ring->channel = channel; | 
|  |  | 
|  | ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); | 
|  | if (!ret) | 
|  | return 0;	/* Success! */ | 
|  |  | 
|  | dev_err(gsi->dev, "error %d allocating channel %u event ring\n", | 
|  | ret, gsi_channel_id(channel)); | 
|  |  | 
|  | gsi_evt_ring_id_free(gsi, channel->evt_ring_id); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_channel_evt_ring_init() */ | 
|  | static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) | 
|  | { | 
|  | u32 evt_ring_id = channel->evt_ring_id; | 
|  | struct gsi *gsi = channel->gsi; | 
|  | struct gsi_evt_ring *evt_ring; | 
|  |  | 
|  | evt_ring = &gsi->evt_ring[evt_ring_id]; | 
|  | gsi_ring_free(gsi, &evt_ring->ring); | 
|  | gsi_evt_ring_id_free(gsi, evt_ring_id); | 
|  | } | 
|  |  | 
|  | static bool gsi_channel_data_valid(struct gsi *gsi, bool command, | 
|  | const struct ipa_gsi_endpoint_data *data) | 
|  | { | 
|  | const struct gsi_channel_data *channel_data; | 
|  | u32 channel_id = data->channel_id; | 
|  | struct device *dev = gsi->dev; | 
|  |  | 
|  | /* Make sure channel ids are in the range driver supports */ | 
|  | if (channel_id >= GSI_CHANNEL_COUNT_MAX) { | 
|  | dev_err(dev, "bad channel id %u; must be less than %u\n", | 
|  | channel_id, GSI_CHANNEL_COUNT_MAX); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { | 
|  | dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (command && !data->toward_ipa) { | 
|  | dev_err(dev, "command channel %u is not TX\n", channel_id); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | channel_data = &data->channel; | 
|  |  | 
|  | if (!channel_data->tlv_count || | 
|  | channel_data->tlv_count > GSI_TLV_MAX) { | 
|  | dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", | 
|  | channel_id, channel_data->tlv_count, GSI_TLV_MAX); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { | 
|  | dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", | 
|  | channel_id, IPA_COMMAND_TRANS_TRE_MAX, | 
|  | channel_data->tlv_count); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We have to allow at least one maximally-sized transaction to | 
|  | * be outstanding (which would use tlv_count TREs).  Given how | 
|  | * gsi_channel_tre_max() is computed, tre_count has to be almost | 
|  | * twice the TLV FIFO size to satisfy this requirement. | 
|  | */ | 
|  | if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { | 
|  | dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", | 
|  | channel_id, channel_data->tlv_count, | 
|  | channel_data->tre_count); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!is_power_of_2(channel_data->tre_count)) { | 
|  | dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", | 
|  | channel_id, channel_data->tre_count); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!is_power_of_2(channel_data->event_count)) { | 
|  | dev_err(dev, "channel %u bad event_count %u; not power of 2\n", | 
|  | channel_id, channel_data->event_count); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Init function for a single channel */ | 
|  | static int gsi_channel_init_one(struct gsi *gsi, | 
|  | const struct ipa_gsi_endpoint_data *data, | 
|  | bool command) | 
|  | { | 
|  | struct gsi_channel *channel; | 
|  | u32 tre_count; | 
|  | int ret; | 
|  |  | 
|  | if (!gsi_channel_data_valid(gsi, command, data)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Worst case we need an event for every outstanding TRE */ | 
|  | if (data->channel.tre_count > data->channel.event_count) { | 
|  | tre_count = data->channel.event_count; | 
|  | dev_warn(gsi->dev, "channel %u limited to %u TREs\n", | 
|  | data->channel_id, tre_count); | 
|  | } else { | 
|  | tre_count = data->channel.tre_count; | 
|  | } | 
|  |  | 
|  | channel = &gsi->channel[data->channel_id]; | 
|  | memset(channel, 0, sizeof(*channel)); | 
|  |  | 
|  | channel->gsi = gsi; | 
|  | channel->toward_ipa = data->toward_ipa; | 
|  | channel->command = command; | 
|  | channel->trans_tre_max = data->channel.tlv_count; | 
|  | channel->tre_count = tre_count; | 
|  | channel->event_count = data->channel.event_count; | 
|  |  | 
|  | ret = gsi_channel_evt_ring_init(channel); | 
|  | if (ret) | 
|  | goto err_clear_gsi; | 
|  |  | 
|  | ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); | 
|  | if (ret) { | 
|  | dev_err(gsi->dev, "error %d allocating channel %u ring\n", | 
|  | ret, data->channel_id); | 
|  | goto err_channel_evt_ring_exit; | 
|  | } | 
|  |  | 
|  | ret = gsi_channel_trans_init(gsi, data->channel_id); | 
|  | if (ret) | 
|  | goto err_ring_free; | 
|  |  | 
|  | if (command) { | 
|  | u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); | 
|  |  | 
|  | ret = ipa_cmd_pool_init(channel, tre_max); | 
|  | } | 
|  | if (!ret) | 
|  | return 0;	/* Success! */ | 
|  |  | 
|  | gsi_channel_trans_exit(channel); | 
|  | err_ring_free: | 
|  | gsi_ring_free(gsi, &channel->tre_ring); | 
|  | err_channel_evt_ring_exit: | 
|  | gsi_channel_evt_ring_exit(channel); | 
|  | err_clear_gsi: | 
|  | channel->gsi = NULL;	/* Mark it not (fully) initialized */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_channel_init_one() */ | 
|  | static void gsi_channel_exit_one(struct gsi_channel *channel) | 
|  | { | 
|  | if (!gsi_channel_initialized(channel)) | 
|  | return; | 
|  |  | 
|  | if (channel->command) | 
|  | ipa_cmd_pool_exit(channel); | 
|  | gsi_channel_trans_exit(channel); | 
|  | gsi_ring_free(channel->gsi, &channel->tre_ring); | 
|  | gsi_channel_evt_ring_exit(channel); | 
|  | } | 
|  |  | 
|  | /* Init function for channels */ | 
|  | static int gsi_channel_init(struct gsi *gsi, u32 count, | 
|  | const struct ipa_gsi_endpoint_data *data) | 
|  | { | 
|  | bool modem_alloc; | 
|  | int ret = 0; | 
|  | u32 i; | 
|  |  | 
|  | /* IPA v4.2 requires the AP to allocate channels for the modem */ | 
|  | modem_alloc = gsi->version == IPA_VERSION_4_2; | 
|  |  | 
|  | gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); | 
|  | gsi->ieob_enabled_bitmap = 0; | 
|  |  | 
|  | /* The endpoint data array is indexed by endpoint name */ | 
|  | for (i = 0; i < count; i++) { | 
|  | bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; | 
|  |  | 
|  | if (ipa_gsi_endpoint_data_empty(&data[i])) | 
|  | continue;	/* Skip over empty slots */ | 
|  |  | 
|  | /* Mark modem channels to be allocated (hardware workaround) */ | 
|  | if (data[i].ee_id == GSI_EE_MODEM) { | 
|  | if (modem_alloc) | 
|  | gsi->modem_channel_bitmap |= | 
|  | BIT(data[i].channel_id); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = gsi_channel_init_one(gsi, &data[i], command); | 
|  | if (ret) | 
|  | goto err_unwind; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | err_unwind: | 
|  | while (i--) { | 
|  | if (ipa_gsi_endpoint_data_empty(&data[i])) | 
|  | continue; | 
|  | if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { | 
|  | gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); | 
|  | continue; | 
|  | } | 
|  | gsi_channel_exit_one(&gsi->channel[data->channel_id]); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_channel_init() */ | 
|  | static void gsi_channel_exit(struct gsi *gsi) | 
|  | { | 
|  | u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; | 
|  |  | 
|  | do | 
|  | gsi_channel_exit_one(&gsi->channel[channel_id]); | 
|  | while (channel_id--); | 
|  | gsi->modem_channel_bitmap = 0; | 
|  | } | 
|  |  | 
|  | /* Init function for GSI.  GSI hardware does not need to be "ready" */ | 
|  | int gsi_init(struct gsi *gsi, struct platform_device *pdev, | 
|  | enum ipa_version version, u32 count, | 
|  | const struct ipa_gsi_endpoint_data *data) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | gsi_validate_build(); | 
|  |  | 
|  | gsi->dev = &pdev->dev; | 
|  | gsi->version = version; | 
|  |  | 
|  | /* GSI uses NAPI on all channels.  Create a dummy network device | 
|  | * for the channel NAPI contexts to be associated with. | 
|  | */ | 
|  | init_dummy_netdev(&gsi->dummy_dev); | 
|  | init_completion(&gsi->completion); | 
|  |  | 
|  | ret = gsi_reg_init(gsi, pdev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = gsi_irq_init(gsi, pdev);	/* No matching exit required */ | 
|  | if (ret) | 
|  | goto err_reg_exit; | 
|  |  | 
|  | ret = gsi_channel_init(gsi, count, data); | 
|  | if (ret) | 
|  | goto err_reg_exit; | 
|  |  | 
|  | mutex_init(&gsi->mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_reg_exit: | 
|  | gsi_reg_exit(gsi); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Inverse of gsi_init() */ | 
|  | void gsi_exit(struct gsi *gsi) | 
|  | { | 
|  | mutex_destroy(&gsi->mutex); | 
|  | gsi_channel_exit(gsi); | 
|  | gsi_reg_exit(gsi); | 
|  | } | 
|  |  | 
|  | /* The maximum number of outstanding TREs on a channel.  This limits | 
|  | * a channel's maximum number of transactions outstanding (worst case | 
|  | * is one TRE per transaction). | 
|  | * | 
|  | * The absolute limit is the number of TREs in the channel's TRE ring, | 
|  | * and in theory we should be able use all of them.  But in practice, | 
|  | * doing that led to the hardware reporting exhaustion of event ring | 
|  | * slots for writing completion information.  So the hardware limit | 
|  | * would be (tre_count - 1). | 
|  | * | 
|  | * We reduce it a bit further though.  Transaction resource pools are | 
|  | * sized to be a little larger than this maximum, to allow resource | 
|  | * allocations to always be contiguous.  The number of entries in a | 
|  | * TRE ring buffer is a power of 2, and the extra resources in a pool | 
|  | * tends to nearly double the memory allocated for it.  Reducing the | 
|  | * maximum number of outstanding TREs allows the number of entries in | 
|  | * a pool to avoid crossing that power-of-2 boundary, and this can | 
|  | * substantially reduce pool memory requirements.  The number we | 
|  | * reduce it by matches the number added in gsi_trans_pool_init(). | 
|  | */ | 
|  | u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) | 
|  | { | 
|  | struct gsi_channel *channel = &gsi->channel[channel_id]; | 
|  |  | 
|  | /* Hardware limit is channel->tre_count - 1 */ | 
|  | return channel->tre_count - (channel->trans_tre_max - 1); | 
|  | } |