|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Virtual Memory Map support | 
|  | * | 
|  | * (C) 2007 sgi. Christoph Lameter. | 
|  | * | 
|  | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, | 
|  | * virt_to_page, page_address() to be implemented as a base offset | 
|  | * calculation without memory access. | 
|  | * | 
|  | * However, virtual mappings need a page table and TLBs. Many Linux | 
|  | * architectures already map their physical space using 1-1 mappings | 
|  | * via TLBs. For those arches the virtual memory map is essentially | 
|  | * for free if we use the same page size as the 1-1 mappings. In that | 
|  | * case the overhead consists of a few additional pages that are | 
|  | * allocated to create a view of memory for vmemmap. | 
|  | * | 
|  | * The architecture is expected to provide a vmemmap_populate() function | 
|  | * to instantiate the mapping. | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pgtable.h> | 
|  | #include <linux/bootmem_info.h> | 
|  |  | 
|  | #include <asm/dma.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | /** | 
|  | * struct vmemmap_remap_walk - walk vmemmap page table | 
|  | * | 
|  | * @remap_pte:		called for each lowest-level entry (PTE). | 
|  | * @nr_walked:		the number of walked pte. | 
|  | * @reuse_page:		the page which is reused for the tail vmemmap pages. | 
|  | * @reuse_addr:		the virtual address of the @reuse_page page. | 
|  | * @vmemmap_pages:	the list head of the vmemmap pages that can be freed | 
|  | *			or is mapped from. | 
|  | */ | 
|  | struct vmemmap_remap_walk { | 
|  | void (*remap_pte)(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk); | 
|  | unsigned long nr_walked; | 
|  | struct page *reuse_page; | 
|  | unsigned long reuse_addr; | 
|  | struct list_head *vmemmap_pages; | 
|  | }; | 
|  |  | 
|  | static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pmd_t __pmd; | 
|  | int i; | 
|  | unsigned long addr = start; | 
|  | struct page *page = pmd_page(*pmd); | 
|  | pte_t *pgtable = pte_alloc_one_kernel(&init_mm); | 
|  |  | 
|  | if (!pgtable) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pmd_populate_kernel(&init_mm, &__pmd, pgtable); | 
|  |  | 
|  | for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) { | 
|  | pte_t entry, *pte; | 
|  | pgprot_t pgprot = PAGE_KERNEL; | 
|  |  | 
|  | entry = mk_pte(page + i, pgprot); | 
|  | pte = pte_offset_kernel(&__pmd, addr); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  |  | 
|  | /* Make pte visible before pmd. See comment in __pte_alloc(). */ | 
|  | smp_wmb(); | 
|  | pmd_populate_kernel(&init_mm, pmd, pgtable); | 
|  |  | 
|  | flush_tlb_kernel_range(start, start + PMD_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pte_t *pte = pte_offset_kernel(pmd, addr); | 
|  |  | 
|  | /* | 
|  | * The reuse_page is found 'first' in table walk before we start | 
|  | * remapping (which is calling @walk->remap_pte). | 
|  | */ | 
|  | if (!walk->reuse_page) { | 
|  | walk->reuse_page = pte_page(*pte); | 
|  | /* | 
|  | * Because the reuse address is part of the range that we are | 
|  | * walking, skip the reuse address range. | 
|  | */ | 
|  | addr += PAGE_SIZE; | 
|  | pte++; | 
|  | walk->nr_walked++; | 
|  | } | 
|  |  | 
|  | for (; addr != end; addr += PAGE_SIZE, pte++) { | 
|  | walk->remap_pte(pte, addr, walk); | 
|  | walk->nr_walked++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | if (pmd_leaf(*pmd)) { | 
|  | int ret; | 
|  |  | 
|  | ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | next = pmd_addr_end(addr, end); | 
|  | vmemmap_pte_range(pmd, addr, next, walk); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | next = pud_addr_end(addr, end); | 
|  | ret = vmemmap_pmd_range(pud, addr, next, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | next = p4d_addr_end(addr, end); | 
|  | ret = vmemmap_pud_range(p4d, addr, next, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_remap_range(unsigned long start, unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | unsigned long addr = start; | 
|  | unsigned long next; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE)); | 
|  | VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE)); | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | next = pgd_addr_end(addr, end); | 
|  | ret = vmemmap_p4d_range(pgd, addr, next, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | /* | 
|  | * We only change the mapping of the vmemmap virtual address range | 
|  | * [@start + PAGE_SIZE, end), so we only need to flush the TLB which | 
|  | * belongs to the range. | 
|  | */ | 
|  | flush_tlb_kernel_range(start + PAGE_SIZE, end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a vmemmap page. A vmemmap page can be allocated from the memblock | 
|  | * allocator or buddy allocator. If the PG_reserved flag is set, it means | 
|  | * that it allocated from the memblock allocator, just free it via the | 
|  | * free_bootmem_page(). Otherwise, use __free_page(). | 
|  | */ | 
|  | static inline void free_vmemmap_page(struct page *page) | 
|  | { | 
|  | if (PageReserved(page)) | 
|  | free_bootmem_page(page); | 
|  | else | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | /* Free a list of the vmemmap pages */ | 
|  | static void free_vmemmap_page_list(struct list_head *list) | 
|  | { | 
|  | struct page *page, *next; | 
|  |  | 
|  | list_for_each_entry_safe(page, next, list, lru) { | 
|  | list_del(&page->lru); | 
|  | free_vmemmap_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | /* | 
|  | * Remap the tail pages as read-only to catch illegal write operation | 
|  | * to the tail pages. | 
|  | */ | 
|  | pgprot_t pgprot = PAGE_KERNEL_RO; | 
|  | pte_t entry = mk_pte(walk->reuse_page, pgprot); | 
|  | struct page *page = pte_page(*pte); | 
|  |  | 
|  | list_add_tail(&page->lru, walk->vmemmap_pages); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  |  | 
|  | static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pgprot_t pgprot = PAGE_KERNEL; | 
|  | struct page *page; | 
|  | void *to; | 
|  |  | 
|  | BUG_ON(pte_page(*pte) != walk->reuse_page); | 
|  |  | 
|  | page = list_first_entry(walk->vmemmap_pages, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | to = page_to_virt(page); | 
|  | copy_page(to, (void *)walk->reuse_addr); | 
|  |  | 
|  | set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) | 
|  | *			to the page which @reuse is mapped to, then free vmemmap | 
|  | *			which the range are mapped to. | 
|  | * @start:	start address of the vmemmap virtual address range that we want | 
|  | *		to remap. | 
|  | * @end:	end address of the vmemmap virtual address range that we want to | 
|  | *		remap. | 
|  | * @reuse:	reuse address. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int vmemmap_remap_free(unsigned long start, unsigned long end, | 
|  | unsigned long reuse) | 
|  | { | 
|  | int ret; | 
|  | LIST_HEAD(vmemmap_pages); | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= vmemmap_remap_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In order to make remapping routine most efficient for the huge pages, | 
|  | * the routine of vmemmap page table walking has the following rules | 
|  | * (see more details from the vmemmap_pte_range()): | 
|  | * | 
|  | * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) | 
|  | *   should be continuous. | 
|  | * - The @reuse address is part of the range [@reuse, @end) that we are | 
|  | *   walking which is passed to vmemmap_remap_range(). | 
|  | * - The @reuse address is the first in the complete range. | 
|  | * | 
|  | * So we need to make sure that @start and @reuse meet the above rules. | 
|  | */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | mmap_write_lock(&init_mm); | 
|  | ret = vmemmap_remap_range(reuse, end, &walk); | 
|  | mmap_write_downgrade(&init_mm); | 
|  |  | 
|  | if (ret && walk.nr_walked) { | 
|  | end = reuse + walk.nr_walked * PAGE_SIZE; | 
|  | /* | 
|  | * vmemmap_pages contains pages from the previous | 
|  | * vmemmap_remap_range call which failed.  These | 
|  | * are pages which were removed from the vmemmap. | 
|  | * They will be restored in the following call. | 
|  | */ | 
|  | walk = (struct vmemmap_remap_walk) { | 
|  | .remap_pte	= vmemmap_restore_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | }; | 
|  |  | 
|  | vmemmap_remap_range(reuse, end, &walk); | 
|  | } | 
|  | mmap_read_unlock(&init_mm); | 
|  |  | 
|  | free_vmemmap_page_list(&vmemmap_pages); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, | 
|  | gfp_t gfp_mask, struct list_head *list) | 
|  | { | 
|  | unsigned long nr_pages = (end - start) >> PAGE_SHIFT; | 
|  | int nid = page_to_nid((struct page *)start); | 
|  | struct page *page, *next; | 
|  |  | 
|  | while (nr_pages--) { | 
|  | page = alloc_pages_node(nid, gfp_mask, 0); | 
|  | if (!page) | 
|  | goto out; | 
|  | list_add_tail(&page->lru, list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | list_for_each_entry_safe(page, next, list, lru) | 
|  | __free_pages(page, 0); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) | 
|  | *			 to the page which is from the @vmemmap_pages | 
|  | *			 respectively. | 
|  | * @start:	start address of the vmemmap virtual address range that we want | 
|  | *		to remap. | 
|  | * @end:	end address of the vmemmap virtual address range that we want to | 
|  | *		remap. | 
|  | * @reuse:	reuse address. | 
|  | * @gfp_mask:	GFP flag for allocating vmemmap pages. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int vmemmap_remap_alloc(unsigned long start, unsigned long end, | 
|  | unsigned long reuse, gfp_t gfp_mask) | 
|  | { | 
|  | LIST_HEAD(vmemmap_pages); | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= vmemmap_restore_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | }; | 
|  |  | 
|  | /* See the comment in the vmemmap_remap_free(). */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mmap_read_lock(&init_mm); | 
|  | vmemmap_remap_range(reuse, end, &walk); | 
|  | mmap_read_unlock(&init_mm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a block of memory to be used to back the virtual memory map | 
|  | * or to back the page tables that are used to create the mapping. | 
|  | * Uses the main allocators if they are available, else bootmem. | 
|  | */ | 
|  |  | 
|  | static void * __ref __earlyonly_bootmem_alloc(int node, | 
|  | unsigned long size, | 
|  | unsigned long align, | 
|  | unsigned long goal) | 
|  | { | 
|  | return memblock_alloc_try_nid_raw(size, align, goal, | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, node); | 
|  | } | 
|  |  | 
|  | void * __meminit vmemmap_alloc_block(unsigned long size, int node) | 
|  | { | 
|  | /* If the main allocator is up use that, fallback to bootmem. */ | 
|  | if (slab_is_available()) { | 
|  | gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; | 
|  | int order = get_order(size); | 
|  | static bool warned; | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages_node(node, gfp_mask, order); | 
|  | if (page) | 
|  | return page_address(page); | 
|  |  | 
|  | if (!warned) { | 
|  | warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, | 
|  | "vmemmap alloc failure: order:%u", order); | 
|  | warned = true; | 
|  | } | 
|  | return NULL; | 
|  | } else | 
|  | return __earlyonly_bootmem_alloc(node, size, size, | 
|  | __pa(MAX_DMA_ADDRESS)); | 
|  | } | 
|  |  | 
|  | static void * __meminit altmap_alloc_block_buf(unsigned long size, | 
|  | struct vmem_altmap *altmap); | 
|  |  | 
|  | /* need to make sure size is all the same during early stage */ | 
|  | void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | if (altmap) | 
|  | return altmap_alloc_block_buf(size, altmap); | 
|  |  | 
|  | ptr = sparse_buffer_alloc(size); | 
|  | if (!ptr) | 
|  | ptr = vmemmap_alloc_block(size, node); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) | 
|  | { | 
|  | return altmap->base_pfn + altmap->reserve + altmap->alloc | 
|  | + altmap->align; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long allocated = altmap->alloc + altmap->align; | 
|  |  | 
|  | if (altmap->free > allocated) | 
|  | return altmap->free - allocated; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void * __meminit altmap_alloc_block_buf(unsigned long size, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long pfn, nr_pfns, nr_align; | 
|  |  | 
|  | if (size & ~PAGE_MASK) { | 
|  | pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", | 
|  | __func__, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pfn = vmem_altmap_next_pfn(altmap); | 
|  | nr_pfns = size >> PAGE_SHIFT; | 
|  | nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); | 
|  | nr_align = ALIGN(pfn, nr_align) - pfn; | 
|  | if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) | 
|  | return NULL; | 
|  |  | 
|  | altmap->alloc += nr_pfns; | 
|  | altmap->align += nr_align; | 
|  | pfn += nr_align; | 
|  |  | 
|  | pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", | 
|  | __func__, pfn, altmap->alloc, altmap->align, nr_pfns); | 
|  | return __va(__pfn_to_phys(pfn)); | 
|  | } | 
|  |  | 
|  | void __meminit vmemmap_verify(pte_t *pte, int node, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(*pte); | 
|  | int actual_node = early_pfn_to_nid(pfn); | 
|  |  | 
|  | if (node_distance(actual_node, node) > LOCAL_DISTANCE) | 
|  | pr_warn("[%lx-%lx] potential offnode page_structs\n", | 
|  | start, end - 1); | 
|  | } | 
|  |  | 
|  | pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | pte_t *pte = pte_offset_kernel(pmd, addr); | 
|  | if (pte_none(*pte)) { | 
|  | pte_t entry; | 
|  | void *p; | 
|  |  | 
|  | p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); | 
|  | if (!p) | 
|  | return NULL; | 
|  | entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) | 
|  | { | 
|  | void *p = vmemmap_alloc_block(size, node); | 
|  |  | 
|  | if (!p) | 
|  | return NULL; | 
|  | memset(p, 0, size); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pmd_populate_kernel(&init_mm, pmd, p); | 
|  | } | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) | 
|  | { | 
|  | pud_t *pud = pud_offset(p4d, addr); | 
|  | if (pud_none(*pud)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pud_populate(&init_mm, pud, p); | 
|  | } | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) | 
|  | { | 
|  | p4d_t *p4d = p4d_offset(pgd, addr); | 
|  | if (p4d_none(*p4d)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | p4d_populate(&init_mm, p4d, p); | 
|  | } | 
|  | return p4d; | 
|  | } | 
|  |  | 
|  | pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset_k(addr); | 
|  | if (pgd_none(*pgd)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pgd_populate(&init_mm, pgd, p); | 
|  | } | 
|  | return pgd; | 
|  | } | 
|  |  | 
|  | int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, | 
|  | int node, struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long addr = start; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) { | 
|  | pgd = vmemmap_pgd_populate(addr, node); | 
|  | if (!pgd) | 
|  | return -ENOMEM; | 
|  | p4d = vmemmap_p4d_populate(pgd, addr, node); | 
|  | if (!p4d) | 
|  | return -ENOMEM; | 
|  | pud = vmemmap_pud_populate(p4d, addr, node); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | pmd = vmemmap_pmd_populate(pud, addr, node); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | pte = vmemmap_pte_populate(pmd, addr, node, altmap); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct page * __meminit __populate_section_memmap(unsigned long pfn, | 
|  | unsigned long nr_pages, int nid, struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long start = (unsigned long) pfn_to_page(pfn); | 
|  | unsigned long end = start + nr_pages * sizeof(struct page); | 
|  |  | 
|  | if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || | 
|  | !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) | 
|  | return NULL; | 
|  |  | 
|  | if (vmemmap_populate(start, end, nid, altmap)) | 
|  | return NULL; | 
|  |  | 
|  | return pfn_to_page(pfn); | 
|  | } |