|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Handle caching attributes in page tables (PAT) | 
|  | * | 
|  | * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
|  | *          Suresh B Siddha <suresh.b.siddha@intel.com> | 
|  | * | 
|  | * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. | 
|  | */ | 
|  |  | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pfn_t.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/rbtree.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/fcntl.h> | 
|  | #include <asm/e820/api.h> | 
|  | #include <asm/mtrr.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/pat.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include "pat_internal.h" | 
|  | #include "mm_internal.h" | 
|  |  | 
|  | #undef pr_fmt | 
|  | #define pr_fmt(fmt) "" fmt | 
|  |  | 
|  | static bool __read_mostly boot_cpu_done; | 
|  | static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT); | 
|  | static bool __read_mostly pat_initialized; | 
|  | static bool __read_mostly init_cm_done; | 
|  |  | 
|  | void pat_disable(const char *reason) | 
|  | { | 
|  | if (pat_disabled) | 
|  | return; | 
|  |  | 
|  | if (boot_cpu_done) { | 
|  | WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pat_disabled = true; | 
|  | pr_info("x86/PAT: %s\n", reason); | 
|  | } | 
|  |  | 
|  | static int __init nopat(char *str) | 
|  | { | 
|  | pat_disable("PAT support disabled."); | 
|  | return 0; | 
|  | } | 
|  | early_param("nopat", nopat); | 
|  |  | 
|  | bool pat_enabled(void) | 
|  | { | 
|  | return pat_initialized; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pat_enabled); | 
|  |  | 
|  | int pat_debug_enable; | 
|  |  | 
|  | static int __init pat_debug_setup(char *str) | 
|  | { | 
|  | pat_debug_enable = 1; | 
|  | return 0; | 
|  | } | 
|  | __setup("debugpat", pat_debug_setup); | 
|  |  | 
|  | #ifdef CONFIG_X86_PAT | 
|  | /* | 
|  | * X86 PAT uses page flags arch_1 and uncached together to keep track of | 
|  | * memory type of pages that have backing page struct. | 
|  | * | 
|  | * X86 PAT supports 4 different memory types: | 
|  | *  - _PAGE_CACHE_MODE_WB | 
|  | *  - _PAGE_CACHE_MODE_WC | 
|  | *  - _PAGE_CACHE_MODE_UC_MINUS | 
|  | *  - _PAGE_CACHE_MODE_WT | 
|  | * | 
|  | * _PAGE_CACHE_MODE_WB is the default type. | 
|  | */ | 
|  |  | 
|  | #define _PGMT_WB		0 | 
|  | #define _PGMT_WC		(1UL << PG_arch_1) | 
|  | #define _PGMT_UC_MINUS		(1UL << PG_uncached) | 
|  | #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1) | 
|  | #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1) | 
|  | #define _PGMT_CLEAR_MASK	(~_PGMT_MASK) | 
|  |  | 
|  | static inline enum page_cache_mode get_page_memtype(struct page *pg) | 
|  | { | 
|  | unsigned long pg_flags = pg->flags & _PGMT_MASK; | 
|  |  | 
|  | if (pg_flags == _PGMT_WB) | 
|  | return _PAGE_CACHE_MODE_WB; | 
|  | else if (pg_flags == _PGMT_WC) | 
|  | return _PAGE_CACHE_MODE_WC; | 
|  | else if (pg_flags == _PGMT_UC_MINUS) | 
|  | return _PAGE_CACHE_MODE_UC_MINUS; | 
|  | else | 
|  | return _PAGE_CACHE_MODE_WT; | 
|  | } | 
|  |  | 
|  | static inline void set_page_memtype(struct page *pg, | 
|  | enum page_cache_mode memtype) | 
|  | { | 
|  | unsigned long memtype_flags; | 
|  | unsigned long old_flags; | 
|  | unsigned long new_flags; | 
|  |  | 
|  | switch (memtype) { | 
|  | case _PAGE_CACHE_MODE_WC: | 
|  | memtype_flags = _PGMT_WC; | 
|  | break; | 
|  | case _PAGE_CACHE_MODE_UC_MINUS: | 
|  | memtype_flags = _PGMT_UC_MINUS; | 
|  | break; | 
|  | case _PAGE_CACHE_MODE_WT: | 
|  | memtype_flags = _PGMT_WT; | 
|  | break; | 
|  | case _PAGE_CACHE_MODE_WB: | 
|  | default: | 
|  | memtype_flags = _PGMT_WB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | do { | 
|  | old_flags = pg->flags; | 
|  | new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags; | 
|  | } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags); | 
|  | } | 
|  | #else | 
|  | static inline enum page_cache_mode get_page_memtype(struct page *pg) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  | static inline void set_page_memtype(struct page *pg, | 
|  | enum page_cache_mode memtype) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | enum { | 
|  | PAT_UC = 0,		/* uncached */ | 
|  | PAT_WC = 1,		/* Write combining */ | 
|  | PAT_WT = 4,		/* Write Through */ | 
|  | PAT_WP = 5,		/* Write Protected */ | 
|  | PAT_WB = 6,		/* Write Back (default) */ | 
|  | PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */ | 
|  | }; | 
|  |  | 
|  | #define CM(c) (_PAGE_CACHE_MODE_ ## c) | 
|  |  | 
|  | static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg) | 
|  | { | 
|  | enum page_cache_mode cache; | 
|  | char *cache_mode; | 
|  |  | 
|  | switch (pat_val) { | 
|  | case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break; | 
|  | case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break; | 
|  | case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break; | 
|  | case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break; | 
|  | case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break; | 
|  | case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break; | 
|  | default:           cache = CM(WB);       cache_mode = "WB  "; break; | 
|  | } | 
|  |  | 
|  | memcpy(msg, cache_mode, 4); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | #undef CM | 
|  |  | 
|  | /* | 
|  | * Update the cache mode to pgprot translation tables according to PAT | 
|  | * configuration. | 
|  | * Using lower indices is preferred, so we start with highest index. | 
|  | */ | 
|  | static void __init_cache_modes(u64 pat) | 
|  | { | 
|  | enum page_cache_mode cache; | 
|  | char pat_msg[33]; | 
|  | int i; | 
|  |  | 
|  | pat_msg[32] = 0; | 
|  | for (i = 7; i >= 0; i--) { | 
|  | cache = pat_get_cache_mode((pat >> (i * 8)) & 7, | 
|  | pat_msg + 4 * i); | 
|  | update_cache_mode_entry(i, cache); | 
|  | } | 
|  | pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg); | 
|  |  | 
|  | init_cm_done = true; | 
|  | } | 
|  |  | 
|  | #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8)) | 
|  |  | 
|  | static void pat_bsp_init(u64 pat) | 
|  | { | 
|  | u64 tmp_pat; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_PAT)) { | 
|  | pat_disable("PAT not supported by CPU."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rdmsrl(MSR_IA32_CR_PAT, tmp_pat); | 
|  | if (!tmp_pat) { | 
|  | pat_disable("PAT MSR is 0, disabled."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | wrmsrl(MSR_IA32_CR_PAT, pat); | 
|  | pat_initialized = true; | 
|  |  | 
|  | __init_cache_modes(pat); | 
|  | } | 
|  |  | 
|  | static void pat_ap_init(u64 pat) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_PAT)) { | 
|  | /* | 
|  | * If this happens we are on a secondary CPU, but switched to | 
|  | * PAT on the boot CPU. We have no way to undo PAT. | 
|  | */ | 
|  | panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n"); | 
|  | } | 
|  |  | 
|  | wrmsrl(MSR_IA32_CR_PAT, pat); | 
|  | } | 
|  |  | 
|  | void init_cache_modes(void) | 
|  | { | 
|  | u64 pat = 0; | 
|  |  | 
|  | if (init_cm_done) | 
|  | return; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_PAT)) { | 
|  | /* | 
|  | * CPU supports PAT. Set PAT table to be consistent with | 
|  | * PAT MSR. This case supports "nopat" boot option, and | 
|  | * virtual machine environments which support PAT without | 
|  | * MTRRs. In specific, Xen has unique setup to PAT MSR. | 
|  | * | 
|  | * If PAT MSR returns 0, it is considered invalid and emulates | 
|  | * as No PAT. | 
|  | */ | 
|  | rdmsrl(MSR_IA32_CR_PAT, pat); | 
|  | } | 
|  |  | 
|  | if (!pat) { | 
|  | /* | 
|  | * No PAT. Emulate the PAT table that corresponds to the two | 
|  | * cache bits, PWT (Write Through) and PCD (Cache Disable). | 
|  | * This setup is also the same as the BIOS default setup. | 
|  | * | 
|  | * PTE encoding: | 
|  | * | 
|  | *       PCD | 
|  | *       |PWT  PAT | 
|  | *       ||    slot | 
|  | *       00    0    WB : _PAGE_CACHE_MODE_WB | 
|  | *       01    1    WT : _PAGE_CACHE_MODE_WT | 
|  | *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS | 
|  | *       11    3    UC : _PAGE_CACHE_MODE_UC | 
|  | * | 
|  | * NOTE: When WC or WP is used, it is redirected to UC- per | 
|  | * the default setup in __cachemode2pte_tbl[]. | 
|  | */ | 
|  | pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) | | 
|  | PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC); | 
|  | } | 
|  |  | 
|  | __init_cache_modes(pat); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pat_init - Initialize PAT MSR and PAT table | 
|  | * | 
|  | * This function initializes PAT MSR and PAT table with an OS-defined value | 
|  | * to enable additional cache attributes, WC, WT and WP. | 
|  | * | 
|  | * This function must be called on all CPUs using the specific sequence of | 
|  | * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this | 
|  | * procedure for PAT. | 
|  | */ | 
|  | void pat_init(void) | 
|  | { | 
|  | u64 pat; | 
|  | struct cpuinfo_x86 *c = &boot_cpu_data; | 
|  |  | 
|  | if (pat_disabled) | 
|  | return; | 
|  |  | 
|  | if ((c->x86_vendor == X86_VENDOR_INTEL) && | 
|  | (((c->x86 == 0x6) && (c->x86_model <= 0xd)) || | 
|  | ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) { | 
|  | /* | 
|  | * PAT support with the lower four entries. Intel Pentium 2, | 
|  | * 3, M, and 4 are affected by PAT errata, which makes the | 
|  | * upper four entries unusable. To be on the safe side, we don't | 
|  | * use those. | 
|  | * | 
|  | *  PTE encoding: | 
|  | *      PAT | 
|  | *      |PCD | 
|  | *      ||PWT  PAT | 
|  | *      |||    slot | 
|  | *      000    0    WB : _PAGE_CACHE_MODE_WB | 
|  | *      001    1    WC : _PAGE_CACHE_MODE_WC | 
|  | *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS | 
|  | *      011    3    UC : _PAGE_CACHE_MODE_UC | 
|  | * PAT bit unused | 
|  | * | 
|  | * NOTE: When WT or WP is used, it is redirected to UC- per | 
|  | * the default setup in __cachemode2pte_tbl[]. | 
|  | */ | 
|  | pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | | 
|  | PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC); | 
|  | } else { | 
|  | /* | 
|  | * Full PAT support.  We put WT in slot 7 to improve | 
|  | * robustness in the presence of errata that might cause | 
|  | * the high PAT bit to be ignored.  This way, a buggy slot 7 | 
|  | * access will hit slot 3, and slot 3 is UC, so at worst | 
|  | * we lose performance without causing a correctness issue. | 
|  | * Pentium 4 erratum N46 is an example for such an erratum, | 
|  | * although we try not to use PAT at all on affected CPUs. | 
|  | * | 
|  | *  PTE encoding: | 
|  | *      PAT | 
|  | *      |PCD | 
|  | *      ||PWT  PAT | 
|  | *      |||    slot | 
|  | *      000    0    WB : _PAGE_CACHE_MODE_WB | 
|  | *      001    1    WC : _PAGE_CACHE_MODE_WC | 
|  | *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS | 
|  | *      011    3    UC : _PAGE_CACHE_MODE_UC | 
|  | *      100    4    WB : Reserved | 
|  | *      101    5    WP : _PAGE_CACHE_MODE_WP | 
|  | *      110    6    UC-: Reserved | 
|  | *      111    7    WT : _PAGE_CACHE_MODE_WT | 
|  | * | 
|  | * The reserved slots are unused, but mapped to their | 
|  | * corresponding types in the presence of PAT errata. | 
|  | */ | 
|  | pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | | 
|  | PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT); | 
|  | } | 
|  |  | 
|  | if (!boot_cpu_done) { | 
|  | pat_bsp_init(pat); | 
|  | boot_cpu_done = true; | 
|  | } else { | 
|  | pat_ap_init(pat); | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef PAT | 
|  |  | 
|  | static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */ | 
|  |  | 
|  | /* | 
|  | * Does intersection of PAT memory type and MTRR memory type and returns | 
|  | * the resulting memory type as PAT understands it. | 
|  | * (Type in pat and mtrr will not have same value) | 
|  | * The intersection is based on "Effective Memory Type" tables in IA-32 | 
|  | * SDM vol 3a | 
|  | */ | 
|  | static unsigned long pat_x_mtrr_type(u64 start, u64 end, | 
|  | enum page_cache_mode req_type) | 
|  | { | 
|  | /* | 
|  | * Look for MTRR hint to get the effective type in case where PAT | 
|  | * request is for WB. | 
|  | */ | 
|  | if (req_type == _PAGE_CACHE_MODE_WB) { | 
|  | u8 mtrr_type, uniform; | 
|  |  | 
|  | mtrr_type = mtrr_type_lookup(start, end, &uniform); | 
|  | if (mtrr_type != MTRR_TYPE_WRBACK) | 
|  | return _PAGE_CACHE_MODE_UC_MINUS; | 
|  |  | 
|  | return _PAGE_CACHE_MODE_WB; | 
|  | } | 
|  |  | 
|  | return req_type; | 
|  | } | 
|  |  | 
|  | struct pagerange_state { | 
|  | unsigned long		cur_pfn; | 
|  | int			ram; | 
|  | int			not_ram; | 
|  | }; | 
|  |  | 
|  | static int | 
|  | pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg) | 
|  | { | 
|  | struct pagerange_state *state = arg; | 
|  |  | 
|  | state->not_ram	|= initial_pfn > state->cur_pfn; | 
|  | state->ram	|= total_nr_pages > 0; | 
|  | state->cur_pfn	 = initial_pfn + total_nr_pages; | 
|  |  | 
|  | return state->ram && state->not_ram; | 
|  | } | 
|  |  | 
|  | static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long start_pfn = start >> PAGE_SHIFT; | 
|  | unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | struct pagerange_state state = {start_pfn, 0, 0}; | 
|  |  | 
|  | /* | 
|  | * For legacy reasons, physical address range in the legacy ISA | 
|  | * region is tracked as non-RAM. This will allow users of | 
|  | * /dev/mem to map portions of legacy ISA region, even when | 
|  | * some of those portions are listed(or not even listed) with | 
|  | * different e820 types(RAM/reserved/..) | 
|  | */ | 
|  | if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT) | 
|  | start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT; | 
|  |  | 
|  | if (start_pfn < end_pfn) { | 
|  | ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, | 
|  | &state, pagerange_is_ram_callback); | 
|  | } | 
|  |  | 
|  | return (ret > 0) ? -1 : (state.ram ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For RAM pages, we use page flags to mark the pages with appropriate type. | 
|  | * The page flags are limited to four types, WB (default), WC, WT and UC-. | 
|  | * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting | 
|  | * a new memory type is only allowed for a page mapped with the default WB | 
|  | * type. | 
|  | * | 
|  | * Here we do two passes: | 
|  | * - Find the memtype of all the pages in the range, look for any conflicts. | 
|  | * - In case of no conflicts, set the new memtype for pages in the range. | 
|  | */ | 
|  | static int reserve_ram_pages_type(u64 start, u64 end, | 
|  | enum page_cache_mode req_type, | 
|  | enum page_cache_mode *new_type) | 
|  | { | 
|  | struct page *page; | 
|  | u64 pfn; | 
|  |  | 
|  | if (req_type == _PAGE_CACHE_MODE_WP) { | 
|  | if (new_type) | 
|  | *new_type = _PAGE_CACHE_MODE_UC_MINUS; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (req_type == _PAGE_CACHE_MODE_UC) { | 
|  | /* We do not support strong UC */ | 
|  | WARN_ON_ONCE(1); | 
|  | req_type = _PAGE_CACHE_MODE_UC_MINUS; | 
|  | } | 
|  |  | 
|  | for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { | 
|  | enum page_cache_mode type; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | type = get_page_memtype(page); | 
|  | if (type != _PAGE_CACHE_MODE_WB) { | 
|  | pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n", | 
|  | start, end - 1, type, req_type); | 
|  | if (new_type) | 
|  | *new_type = type; | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (new_type) | 
|  | *new_type = req_type; | 
|  |  | 
|  | for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { | 
|  | page = pfn_to_page(pfn); | 
|  | set_page_memtype(page, req_type); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int free_ram_pages_type(u64 start, u64 end) | 
|  | { | 
|  | struct page *page; | 
|  | u64 pfn; | 
|  |  | 
|  | for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { | 
|  | page = pfn_to_page(pfn); | 
|  | set_page_memtype(page, _PAGE_CACHE_MODE_WB); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 sanitize_phys(u64 address) | 
|  | { | 
|  | /* | 
|  | * When changing the memtype for pages containing poison allow | 
|  | * for a "decoy" virtual address (bit 63 clear) passed to | 
|  | * set_memory_X(). __pa() on a "decoy" address results in a | 
|  | * physical address with bit 63 set. | 
|  | * | 
|  | * Decoy addresses are not present for 32-bit builds, see | 
|  | * set_mce_nospec(). | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_X86_64)) | 
|  | return address & __PHYSICAL_MASK; | 
|  | return address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * req_type typically has one of the: | 
|  | * - _PAGE_CACHE_MODE_WB | 
|  | * - _PAGE_CACHE_MODE_WC | 
|  | * - _PAGE_CACHE_MODE_UC_MINUS | 
|  | * - _PAGE_CACHE_MODE_UC | 
|  | * - _PAGE_CACHE_MODE_WT | 
|  | * | 
|  | * If new_type is NULL, function will return an error if it cannot reserve the | 
|  | * region with req_type. If new_type is non-NULL, function will return | 
|  | * available type in new_type in case of no error. In case of any error | 
|  | * it will return a negative return value. | 
|  | */ | 
|  | int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type, | 
|  | enum page_cache_mode *new_type) | 
|  | { | 
|  | struct memtype *new; | 
|  | enum page_cache_mode actual_type; | 
|  | int is_range_ram; | 
|  | int err = 0; | 
|  |  | 
|  | start = sanitize_phys(start); | 
|  | end = sanitize_phys(end); | 
|  | if (start >= end) { | 
|  | WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__, | 
|  | start, end - 1, cattr_name(req_type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!pat_enabled()) { | 
|  | /* This is identical to page table setting without PAT */ | 
|  | if (new_type) | 
|  | *new_type = req_type; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Low ISA region is always mapped WB in page table. No need to track */ | 
|  | if (x86_platform.is_untracked_pat_range(start, end)) { | 
|  | if (new_type) | 
|  | *new_type = _PAGE_CACHE_MODE_WB; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call mtrr_lookup to get the type hint. This is an | 
|  | * optimization for /dev/mem mmap'ers into WB memory (BIOS | 
|  | * tools and ACPI tools). Use WB request for WB memory and use | 
|  | * UC_MINUS otherwise. | 
|  | */ | 
|  | actual_type = pat_x_mtrr_type(start, end, req_type); | 
|  |  | 
|  | if (new_type) | 
|  | *new_type = actual_type; | 
|  |  | 
|  | is_range_ram = pat_pagerange_is_ram(start, end); | 
|  | if (is_range_ram == 1) { | 
|  |  | 
|  | err = reserve_ram_pages_type(start, end, req_type, new_type); | 
|  |  | 
|  | return err; | 
|  | } else if (is_range_ram < 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | new  = kzalloc(sizeof(struct memtype), GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new->start	= start; | 
|  | new->end	= end; | 
|  | new->type	= actual_type; | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  |  | 
|  | err = rbt_memtype_check_insert(new, new_type); | 
|  | if (err) { | 
|  | pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n", | 
|  | start, end - 1, | 
|  | cattr_name(new->type), cattr_name(req_type)); | 
|  | kfree(new); | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n", | 
|  | start, end - 1, cattr_name(new->type), cattr_name(req_type), | 
|  | new_type ? cattr_name(*new_type) : "-"); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int free_memtype(u64 start, u64 end) | 
|  | { | 
|  | int err = -EINVAL; | 
|  | int is_range_ram; | 
|  | struct memtype *entry; | 
|  |  | 
|  | if (!pat_enabled()) | 
|  | return 0; | 
|  |  | 
|  | start = sanitize_phys(start); | 
|  | end = sanitize_phys(end); | 
|  |  | 
|  | /* Low ISA region is always mapped WB. No need to track */ | 
|  | if (x86_platform.is_untracked_pat_range(start, end)) | 
|  | return 0; | 
|  |  | 
|  | is_range_ram = pat_pagerange_is_ram(start, end); | 
|  | if (is_range_ram == 1) { | 
|  |  | 
|  | err = free_ram_pages_type(start, end); | 
|  |  | 
|  | return err; | 
|  | } else if (is_range_ram < 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  | entry = rbt_memtype_erase(start, end); | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | if (IS_ERR(entry)) { | 
|  | pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n", | 
|  | current->comm, current->pid, start, end - 1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | kfree(entry); | 
|  |  | 
|  | dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * lookup_memtype - Looksup the memory type for a physical address | 
|  | * @paddr: physical address of which memory type needs to be looked up | 
|  | * | 
|  | * Only to be called when PAT is enabled | 
|  | * | 
|  | * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS | 
|  | * or _PAGE_CACHE_MODE_WT. | 
|  | */ | 
|  | static enum page_cache_mode lookup_memtype(u64 paddr) | 
|  | { | 
|  | enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB; | 
|  | struct memtype *entry; | 
|  |  | 
|  | if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE)) | 
|  | return rettype; | 
|  |  | 
|  | if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = pfn_to_page(paddr >> PAGE_SHIFT); | 
|  | return get_page_memtype(page); | 
|  | } | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  |  | 
|  | entry = rbt_memtype_lookup(paddr); | 
|  | if (entry != NULL) | 
|  | rettype = entry->type; | 
|  | else | 
|  | rettype = _PAGE_CACHE_MODE_UC_MINUS; | 
|  |  | 
|  | spin_unlock(&memtype_lock); | 
|  | return rettype; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type | 
|  | * of @pfn cannot be overridden by UC MTRR memory type. | 
|  | * | 
|  | * Only to be called when PAT is enabled. | 
|  | * | 
|  | * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC. | 
|  | * Returns false in other cases. | 
|  | */ | 
|  | bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn) | 
|  | { | 
|  | enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn)); | 
|  |  | 
|  | return cm == _PAGE_CACHE_MODE_UC || | 
|  | cm == _PAGE_CACHE_MODE_UC_MINUS || | 
|  | cm == _PAGE_CACHE_MODE_WC; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr); | 
|  |  | 
|  | /** | 
|  | * io_reserve_memtype - Request a memory type mapping for a region of memory | 
|  | * @start: start (physical address) of the region | 
|  | * @end: end (physical address) of the region | 
|  | * @type: A pointer to memtype, with requested type. On success, requested | 
|  | * or any other compatible type that was available for the region is returned | 
|  | * | 
|  | * On success, returns 0 | 
|  | * On failure, returns non-zero | 
|  | */ | 
|  | int io_reserve_memtype(resource_size_t start, resource_size_t end, | 
|  | enum page_cache_mode *type) | 
|  | { | 
|  | resource_size_t size = end - start; | 
|  | enum page_cache_mode req_type = *type; | 
|  | enum page_cache_mode new_type; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON_ONCE(iomem_map_sanity_check(start, size)); | 
|  |  | 
|  | ret = reserve_memtype(start, end, req_type, &new_type); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | if (!is_new_memtype_allowed(start, size, req_type, new_type)) | 
|  | goto out_free; | 
|  |  | 
|  | if (kernel_map_sync_memtype(start, size, new_type) < 0) | 
|  | goto out_free; | 
|  |  | 
|  | *type = new_type; | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | free_memtype(start, end); | 
|  | ret = -EBUSY; | 
|  | out_err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * io_free_memtype - Release a memory type mapping for a region of memory | 
|  | * @start: start (physical address) of the region | 
|  | * @end: end (physical address) of the region | 
|  | */ | 
|  | void io_free_memtype(resource_size_t start, resource_size_t end) | 
|  | { | 
|  | free_memtype(start, end); | 
|  | } | 
|  |  | 
|  | int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size) | 
|  | { | 
|  | enum page_cache_mode type = _PAGE_CACHE_MODE_WC; | 
|  |  | 
|  | return io_reserve_memtype(start, start + size, &type); | 
|  | } | 
|  | EXPORT_SYMBOL(arch_io_reserve_memtype_wc); | 
|  |  | 
|  | void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size) | 
|  | { | 
|  | io_free_memtype(start, start + size); | 
|  | } | 
|  | EXPORT_SYMBOL(arch_io_free_memtype_wc); | 
|  |  | 
|  | pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t vma_prot) | 
|  | { | 
|  | if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size)) | 
|  | vma_prot = pgprot_decrypted(vma_prot); | 
|  |  | 
|  | return vma_prot; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_STRICT_DEVMEM | 
|  | /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */ | 
|  | static inline int range_is_allowed(unsigned long pfn, unsigned long size) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | /* This check is needed to avoid cache aliasing when PAT is enabled */ | 
|  | static inline int range_is_allowed(unsigned long pfn, unsigned long size) | 
|  | { | 
|  | u64 from = ((u64)pfn) << PAGE_SHIFT; | 
|  | u64 to = from + size; | 
|  | u64 cursor = from; | 
|  |  | 
|  | if (!pat_enabled()) | 
|  | return 1; | 
|  |  | 
|  | while (cursor < to) { | 
|  | if (!devmem_is_allowed(pfn)) | 
|  | return 0; | 
|  | cursor += PAGE_SIZE; | 
|  | pfn++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif /* CONFIG_STRICT_DEVMEM */ | 
|  |  | 
|  | int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t *vma_prot) | 
|  | { | 
|  | enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB; | 
|  |  | 
|  | if (!range_is_allowed(pfn, size)) | 
|  | return 0; | 
|  |  | 
|  | if (file->f_flags & O_DSYNC) | 
|  | pcm = _PAGE_CACHE_MODE_UC_MINUS; | 
|  |  | 
|  | *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | | 
|  | cachemode2protval(pcm)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change the memory type for the physial address range in kernel identity | 
|  | * mapping space if that range is a part of identity map. | 
|  | */ | 
|  | int kernel_map_sync_memtype(u64 base, unsigned long size, | 
|  | enum page_cache_mode pcm) | 
|  | { | 
|  | unsigned long id_sz; | 
|  |  | 
|  | if (base > __pa(high_memory-1)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * some areas in the middle of the kernel identity range | 
|  | * are not mapped, like the PCI space. | 
|  | */ | 
|  | if (!page_is_ram(base >> PAGE_SHIFT)) | 
|  | return 0; | 
|  |  | 
|  | id_sz = (__pa(high_memory-1) <= base + size) ? | 
|  | __pa(high_memory) - base : | 
|  | size; | 
|  |  | 
|  | if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) { | 
|  | pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n", | 
|  | current->comm, current->pid, | 
|  | cattr_name(pcm), | 
|  | base, (unsigned long long)(base + size-1)); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Internal interface to reserve a range of physical memory with prot. | 
|  | * Reserved non RAM regions only and after successful reserve_memtype, | 
|  | * this func also keeps identity mapping (if any) in sync with this new prot. | 
|  | */ | 
|  | static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, | 
|  | int strict_prot) | 
|  | { | 
|  | int is_ram = 0; | 
|  | int ret; | 
|  | enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot); | 
|  | enum page_cache_mode pcm = want_pcm; | 
|  |  | 
|  | is_ram = pat_pagerange_is_ram(paddr, paddr + size); | 
|  |  | 
|  | /* | 
|  | * reserve_pfn_range() for RAM pages. We do not refcount to keep | 
|  | * track of number of mappings of RAM pages. We can assert that | 
|  | * the type requested matches the type of first page in the range. | 
|  | */ | 
|  | if (is_ram) { | 
|  | if (!pat_enabled()) | 
|  | return 0; | 
|  |  | 
|  | pcm = lookup_memtype(paddr); | 
|  | if (want_pcm != pcm) { | 
|  | pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n", | 
|  | current->comm, current->pid, | 
|  | cattr_name(want_pcm), | 
|  | (unsigned long long)paddr, | 
|  | (unsigned long long)(paddr + size - 1), | 
|  | cattr_name(pcm)); | 
|  | *vma_prot = __pgprot((pgprot_val(*vma_prot) & | 
|  | (~_PAGE_CACHE_MASK)) | | 
|  | cachemode2protval(pcm)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (pcm != want_pcm) { | 
|  | if (strict_prot || | 
|  | !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) { | 
|  | free_memtype(paddr, paddr + size); | 
|  | pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n", | 
|  | current->comm, current->pid, | 
|  | cattr_name(want_pcm), | 
|  | (unsigned long long)paddr, | 
|  | (unsigned long long)(paddr + size - 1), | 
|  | cattr_name(pcm)); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* | 
|  | * We allow returning different type than the one requested in | 
|  | * non strict case. | 
|  | */ | 
|  | *vma_prot = __pgprot((pgprot_val(*vma_prot) & | 
|  | (~_PAGE_CACHE_MASK)) | | 
|  | cachemode2protval(pcm)); | 
|  | } | 
|  |  | 
|  | if (kernel_map_sync_memtype(paddr, size, pcm) < 0) { | 
|  | free_memtype(paddr, paddr + size); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Internal interface to free a range of physical memory. | 
|  | * Frees non RAM regions only. | 
|  | */ | 
|  | static void free_pfn_range(u64 paddr, unsigned long size) | 
|  | { | 
|  | int is_ram; | 
|  |  | 
|  | is_ram = pat_pagerange_is_ram(paddr, paddr + size); | 
|  | if (is_ram == 0) | 
|  | free_memtype(paddr, paddr + size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * track_pfn_copy is called when vma that is covering the pfnmap gets | 
|  | * copied through copy_page_range(). | 
|  | * | 
|  | * If the vma has a linear pfn mapping for the entire range, we get the prot | 
|  | * from pte and reserve the entire vma range with single reserve_pfn_range call. | 
|  | */ | 
|  | int track_pfn_copy(struct vm_area_struct *vma) | 
|  | { | 
|  | resource_size_t paddr; | 
|  | unsigned long prot; | 
|  | unsigned long vma_size = vma->vm_end - vma->vm_start; | 
|  | pgprot_t pgprot; | 
|  |  | 
|  | if (vma->vm_flags & VM_PAT) { | 
|  | /* | 
|  | * reserve the whole chunk covered by vma. We need the | 
|  | * starting address and protection from pte. | 
|  | */ | 
|  | if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { | 
|  | WARN_ON_ONCE(1); | 
|  | return -EINVAL; | 
|  | } | 
|  | pgprot = __pgprot(prot); | 
|  | return reserve_pfn_range(paddr, vma_size, &pgprot, 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prot is passed in as a parameter for the new mapping. If the vma has | 
|  | * a linear pfn mapping for the entire range, or no vma is provided, | 
|  | * reserve the entire pfn + size range with single reserve_pfn_range | 
|  | * call. | 
|  | */ | 
|  | int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, | 
|  | unsigned long pfn, unsigned long addr, unsigned long size) | 
|  | { | 
|  | resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; | 
|  | enum page_cache_mode pcm; | 
|  |  | 
|  | /* reserve the whole chunk starting from paddr */ | 
|  | if (!vma || (addr == vma->vm_start | 
|  | && size == (vma->vm_end - vma->vm_start))) { | 
|  | int ret; | 
|  |  | 
|  | ret = reserve_pfn_range(paddr, size, prot, 0); | 
|  | if (ret == 0 && vma) | 
|  | vma->vm_flags |= VM_PAT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!pat_enabled()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For anything smaller than the vma size we set prot based on the | 
|  | * lookup. | 
|  | */ | 
|  | pcm = lookup_memtype(paddr); | 
|  |  | 
|  | /* Check memtype for the remaining pages */ | 
|  | while (size > PAGE_SIZE) { | 
|  | size -= PAGE_SIZE; | 
|  | paddr += PAGE_SIZE; | 
|  | if (pcm != lookup_memtype(paddr)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) | | 
|  | cachemode2protval(pcm)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) | 
|  | { | 
|  | enum page_cache_mode pcm; | 
|  |  | 
|  | if (!pat_enabled()) | 
|  | return; | 
|  |  | 
|  | /* Set prot based on lookup */ | 
|  | pcm = lookup_memtype(pfn_t_to_phys(pfn)); | 
|  | *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) | | 
|  | cachemode2protval(pcm)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * untrack_pfn is called while unmapping a pfnmap for a region. | 
|  | * untrack can be called for a specific region indicated by pfn and size or | 
|  | * can be for the entire vma (in which case pfn, size are zero). | 
|  | */ | 
|  | void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, | 
|  | unsigned long size) | 
|  | { | 
|  | resource_size_t paddr; | 
|  | unsigned long prot; | 
|  |  | 
|  | if (vma && !(vma->vm_flags & VM_PAT)) | 
|  | return; | 
|  |  | 
|  | /* free the chunk starting from pfn or the whole chunk */ | 
|  | paddr = (resource_size_t)pfn << PAGE_SHIFT; | 
|  | if (!paddr && !size) { | 
|  | if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { | 
|  | WARN_ON_ONCE(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | size = vma->vm_end - vma->vm_start; | 
|  | } | 
|  | free_pfn_range(paddr, size); | 
|  | if (vma) | 
|  | vma->vm_flags &= ~VM_PAT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * untrack_pfn_moved is called, while mremapping a pfnmap for a new region, | 
|  | * with the old vma after its pfnmap page table has been removed.  The new | 
|  | * vma has a new pfnmap to the same pfn & cache type with VM_PAT set. | 
|  | */ | 
|  | void untrack_pfn_moved(struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_flags &= ~VM_PAT; | 
|  | } | 
|  |  | 
|  | pgprot_t pgprot_writecombine(pgprot_t prot) | 
|  | { | 
|  | return __pgprot(pgprot_val(prot) | | 
|  | cachemode2protval(_PAGE_CACHE_MODE_WC)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pgprot_writecombine); | 
|  |  | 
|  | pgprot_t pgprot_writethrough(pgprot_t prot) | 
|  | { | 
|  | return __pgprot(pgprot_val(prot) | | 
|  | cachemode2protval(_PAGE_CACHE_MODE_WT)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pgprot_writethrough); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) | 
|  |  | 
|  | static struct memtype *memtype_get_idx(loff_t pos) | 
|  | { | 
|  | struct memtype *print_entry; | 
|  | int ret; | 
|  |  | 
|  | print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL); | 
|  | if (!print_entry) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  | ret = rbt_memtype_copy_nth_element(print_entry, pos); | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | if (!ret) { | 
|  | return print_entry; | 
|  | } else { | 
|  | kfree(print_entry); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | if (*pos == 0) { | 
|  | ++*pos; | 
|  | seq_puts(seq, "PAT memtype list:\n"); | 
|  | } | 
|  |  | 
|  | return memtype_get_idx(*pos); | 
|  | } | 
|  |  | 
|  | static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | ++*pos; | 
|  | return memtype_get_idx(*pos); | 
|  | } | 
|  |  | 
|  | static void memtype_seq_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int memtype_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct memtype *print_entry = (struct memtype *)v; | 
|  |  | 
|  | seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type), | 
|  | print_entry->start, print_entry->end); | 
|  | kfree(print_entry); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations memtype_seq_ops = { | 
|  | .start = memtype_seq_start, | 
|  | .next  = memtype_seq_next, | 
|  | .stop  = memtype_seq_stop, | 
|  | .show  = memtype_seq_show, | 
|  | }; | 
|  |  | 
|  | static int memtype_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &memtype_seq_ops); | 
|  | } | 
|  |  | 
|  | static const struct file_operations memtype_fops = { | 
|  | .open    = memtype_seq_open, | 
|  | .read    = seq_read, | 
|  | .llseek  = seq_lseek, | 
|  | .release = seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init pat_memtype_list_init(void) | 
|  | { | 
|  | if (pat_enabled()) { | 
|  | debugfs_create_file("pat_memtype_list", S_IRUSR, | 
|  | arch_debugfs_dir, NULL, &memtype_fops); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(pat_memtype_list_init); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */ |