|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2011 Fujitsu.  All rights reserved. | 
|  | * Written by Miao Xie <miaox@cn.fujitsu.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/iversion.h> | 
|  | #include "misc.h" | 
|  | #include "delayed-inode.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "ctree.h" | 
|  | #include "qgroup.h" | 
|  | #include "locking.h" | 
|  | #include "inode-item.h" | 
|  |  | 
|  | #define BTRFS_DELAYED_WRITEBACK		512 | 
|  | #define BTRFS_DELAYED_BACKGROUND	128 | 
|  | #define BTRFS_DELAYED_BATCH		16 | 
|  |  | 
|  | static struct kmem_cache *delayed_node_cache; | 
|  |  | 
|  | int __init btrfs_delayed_inode_init(void) | 
|  | { | 
|  | delayed_node_cache = kmem_cache_create("btrfs_delayed_node", | 
|  | sizeof(struct btrfs_delayed_node), | 
|  | 0, | 
|  | SLAB_MEM_SPREAD, | 
|  | NULL); | 
|  | if (!delayed_node_cache) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cold btrfs_delayed_inode_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(delayed_node_cache); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_init_delayed_node( | 
|  | struct btrfs_delayed_node *delayed_node, | 
|  | struct btrfs_root *root, u64 inode_id) | 
|  | { | 
|  | delayed_node->root = root; | 
|  | delayed_node->inode_id = inode_id; | 
|  | refcount_set(&delayed_node->refs, 0); | 
|  | delayed_node->ins_root = RB_ROOT_CACHED; | 
|  | delayed_node->del_root = RB_ROOT_CACHED; | 
|  | mutex_init(&delayed_node->mutex); | 
|  | INIT_LIST_HEAD(&delayed_node->n_list); | 
|  | INIT_LIST_HEAD(&delayed_node->p_list); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_get_delayed_node( | 
|  | struct btrfs_inode *btrfs_inode) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_inode->root; | 
|  | u64 ino = btrfs_ino(btrfs_inode); | 
|  | struct btrfs_delayed_node *node; | 
|  |  | 
|  | node = READ_ONCE(btrfs_inode->delayed_node); | 
|  | if (node) { | 
|  | refcount_inc(&node->refs); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | node = radix_tree_lookup(&root->delayed_nodes_tree, ino); | 
|  |  | 
|  | if (node) { | 
|  | if (btrfs_inode->delayed_node) { | 
|  | refcount_inc(&node->refs);	/* can be accessed */ | 
|  | BUG_ON(btrfs_inode->delayed_node != node); | 
|  | spin_unlock(&root->inode_lock); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible that we're racing into the middle of removing | 
|  | * this node from the radix tree.  In this case, the refcount | 
|  | * was zero and it should never go back to one.  Just return | 
|  | * NULL like it was never in the radix at all; our release | 
|  | * function is in the process of removing it. | 
|  | * | 
|  | * Some implementations of refcount_inc refuse to bump the | 
|  | * refcount once it has hit zero.  If we don't do this dance | 
|  | * here, refcount_inc() may decide to just WARN_ONCE() instead | 
|  | * of actually bumping the refcount. | 
|  | * | 
|  | * If this node is properly in the radix, we want to bump the | 
|  | * refcount twice, once for the inode and once for this get | 
|  | * operation. | 
|  | */ | 
|  | if (refcount_inc_not_zero(&node->refs)) { | 
|  | refcount_inc(&node->refs); | 
|  | btrfs_inode->delayed_node = node; | 
|  | } else { | 
|  | node = NULL; | 
|  | } | 
|  |  | 
|  | spin_unlock(&root->inode_lock); | 
|  | return node; | 
|  | } | 
|  | spin_unlock(&root->inode_lock); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Will return either the node or PTR_ERR(-ENOMEM) */ | 
|  | static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( | 
|  | struct btrfs_inode *btrfs_inode) | 
|  | { | 
|  | struct btrfs_delayed_node *node; | 
|  | struct btrfs_root *root = btrfs_inode->root; | 
|  | u64 ino = btrfs_ino(btrfs_inode); | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | node = btrfs_get_delayed_node(btrfs_inode); | 
|  | if (node) | 
|  | return node; | 
|  |  | 
|  | node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); | 
|  | if (!node) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | btrfs_init_delayed_node(node, root, ino); | 
|  |  | 
|  | /* cached in the btrfs inode and can be accessed */ | 
|  | refcount_set(&node->refs, 2); | 
|  |  | 
|  | ret = radix_tree_preload(GFP_NOFS); | 
|  | if (ret) { | 
|  | kmem_cache_free(delayed_node_cache, node); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); | 
|  | if (ret == -EEXIST) { | 
|  | spin_unlock(&root->inode_lock); | 
|  | kmem_cache_free(delayed_node_cache, node); | 
|  | radix_tree_preload_end(); | 
|  | goto again; | 
|  | } | 
|  | btrfs_inode->delayed_node = node; | 
|  | spin_unlock(&root->inode_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call it when holding delayed_node->mutex | 
|  | * | 
|  | * If mod = 1, add this node into the prepared list. | 
|  | */ | 
|  | static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, | 
|  | struct btrfs_delayed_node *node, | 
|  | int mod) | 
|  | { | 
|  | spin_lock(&root->lock); | 
|  | if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { | 
|  | if (!list_empty(&node->p_list)) | 
|  | list_move_tail(&node->p_list, &root->prepare_list); | 
|  | else if (mod) | 
|  | list_add_tail(&node->p_list, &root->prepare_list); | 
|  | } else { | 
|  | list_add_tail(&node->n_list, &root->node_list); | 
|  | list_add_tail(&node->p_list, &root->prepare_list); | 
|  | refcount_inc(&node->refs);	/* inserted into list */ | 
|  | root->nodes++; | 
|  | set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); | 
|  | } | 
|  | spin_unlock(&root->lock); | 
|  | } | 
|  |  | 
|  | /* Call it when holding delayed_node->mutex */ | 
|  | static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | spin_lock(&root->lock); | 
|  | if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { | 
|  | root->nodes--; | 
|  | refcount_dec(&node->refs);	/* not in the list */ | 
|  | list_del_init(&node->n_list); | 
|  | if (!list_empty(&node->p_list)) | 
|  | list_del_init(&node->p_list); | 
|  | clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); | 
|  | } | 
|  | spin_unlock(&root->lock); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_first_delayed_node( | 
|  | struct btrfs_delayed_root *delayed_root) | 
|  | { | 
|  | struct list_head *p; | 
|  | struct btrfs_delayed_node *node = NULL; | 
|  |  | 
|  | spin_lock(&delayed_root->lock); | 
|  | if (list_empty(&delayed_root->node_list)) | 
|  | goto out; | 
|  |  | 
|  | p = delayed_root->node_list.next; | 
|  | node = list_entry(p, struct btrfs_delayed_node, n_list); | 
|  | refcount_inc(&node->refs); | 
|  | out: | 
|  | spin_unlock(&delayed_root->lock); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_next_delayed_node( | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct list_head *p; | 
|  | struct btrfs_delayed_node *next = NULL; | 
|  |  | 
|  | delayed_root = node->root->fs_info->delayed_root; | 
|  | spin_lock(&delayed_root->lock); | 
|  | if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { | 
|  | /* not in the list */ | 
|  | if (list_empty(&delayed_root->node_list)) | 
|  | goto out; | 
|  | p = delayed_root->node_list.next; | 
|  | } else if (list_is_last(&node->n_list, &delayed_root->node_list)) | 
|  | goto out; | 
|  | else | 
|  | p = node->n_list.next; | 
|  |  | 
|  | next = list_entry(p, struct btrfs_delayed_node, n_list); | 
|  | refcount_inc(&next->refs); | 
|  | out: | 
|  | spin_unlock(&delayed_root->lock); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static void __btrfs_release_delayed_node( | 
|  | struct btrfs_delayed_node *delayed_node, | 
|  | int mod) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | delayed_root = delayed_node->root->fs_info->delayed_root; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (delayed_node->count) | 
|  | btrfs_queue_delayed_node(delayed_root, delayed_node, mod); | 
|  | else | 
|  | btrfs_dequeue_delayed_node(delayed_root, delayed_node); | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | if (refcount_dec_and_test(&delayed_node->refs)) { | 
|  | struct btrfs_root *root = delayed_node->root; | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | /* | 
|  | * Once our refcount goes to zero, nobody is allowed to bump it | 
|  | * back up.  We can delete it now. | 
|  | */ | 
|  | ASSERT(refcount_read(&delayed_node->refs) == 0); | 
|  | radix_tree_delete(&root->delayed_nodes_tree, | 
|  | delayed_node->inode_id); | 
|  | spin_unlock(&root->inode_lock); | 
|  | kmem_cache_free(delayed_node_cache, delayed_node); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) | 
|  | { | 
|  | __btrfs_release_delayed_node(node, 0); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( | 
|  | struct btrfs_delayed_root *delayed_root) | 
|  | { | 
|  | struct list_head *p; | 
|  | struct btrfs_delayed_node *node = NULL; | 
|  |  | 
|  | spin_lock(&delayed_root->lock); | 
|  | if (list_empty(&delayed_root->prepare_list)) | 
|  | goto out; | 
|  |  | 
|  | p = delayed_root->prepare_list.next; | 
|  | list_del_init(p); | 
|  | node = list_entry(p, struct btrfs_delayed_node, p_list); | 
|  | refcount_inc(&node->refs); | 
|  | out: | 
|  | spin_unlock(&delayed_root->lock); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_prepared_delayed_node( | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | __btrfs_release_delayed_node(node, 1); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, | 
|  | struct btrfs_delayed_node *node, | 
|  | enum btrfs_delayed_item_type type) | 
|  | { | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); | 
|  | if (item) { | 
|  | item->data_len = data_len; | 
|  | item->type = type; | 
|  | item->bytes_reserved = 0; | 
|  | item->delayed_node = node; | 
|  | RB_CLEAR_NODE(&item->rb_node); | 
|  | INIT_LIST_HEAD(&item->log_list); | 
|  | item->logged = false; | 
|  | refcount_set(&item->refs, 1); | 
|  | } | 
|  | return item; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __btrfs_lookup_delayed_item - look up the delayed item by key | 
|  | * @delayed_node: pointer to the delayed node | 
|  | * @index:	  the dir index value to lookup (offset of a dir index key) | 
|  | * | 
|  | * Note: if we don't find the right item, we will return the prev item and | 
|  | * the next item. | 
|  | */ | 
|  | static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( | 
|  | struct rb_root *root, | 
|  | u64 index) | 
|  | { | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct btrfs_delayed_item *delayed_item = NULL; | 
|  |  | 
|  | while (node) { | 
|  | delayed_item = rb_entry(node, struct btrfs_delayed_item, | 
|  | rb_node); | 
|  | if (delayed_item->index < index) | 
|  | node = node->rb_right; | 
|  | else if (delayed_item->index > index) | 
|  | node = node->rb_left; | 
|  | else | 
|  | return delayed_item; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, | 
|  | struct btrfs_delayed_item *ins) | 
|  | { | 
|  | struct rb_node **p, *node; | 
|  | struct rb_node *parent_node = NULL; | 
|  | struct rb_root_cached *root; | 
|  | struct btrfs_delayed_item *item; | 
|  | bool leftmost = true; | 
|  |  | 
|  | if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) | 
|  | root = &delayed_node->ins_root; | 
|  | else | 
|  | root = &delayed_node->del_root; | 
|  |  | 
|  | p = &root->rb_root.rb_node; | 
|  | node = &ins->rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent_node = *p; | 
|  | item = rb_entry(parent_node, struct btrfs_delayed_item, | 
|  | rb_node); | 
|  |  | 
|  | if (item->index < ins->index) { | 
|  | p = &(*p)->rb_right; | 
|  | leftmost = false; | 
|  | } else if (item->index > ins->index) { | 
|  | p = &(*p)->rb_left; | 
|  | } else { | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent_node, p); | 
|  | rb_insert_color_cached(node, root, leftmost); | 
|  |  | 
|  | if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && | 
|  | ins->index >= delayed_node->index_cnt) | 
|  | delayed_node->index_cnt = ins->index + 1; | 
|  |  | 
|  | delayed_node->count++; | 
|  | atomic_inc(&delayed_node->root->fs_info->delayed_root->items); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void finish_one_item(struct btrfs_delayed_root *delayed_root) | 
|  | { | 
|  | int seq = atomic_inc_return(&delayed_root->items_seq); | 
|  |  | 
|  | /* atomic_dec_return implies a barrier */ | 
|  | if ((atomic_dec_return(&delayed_root->items) < | 
|  | BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) | 
|  | cond_wake_up_nomb(&delayed_root->wait); | 
|  | } | 
|  |  | 
|  | static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) | 
|  | { | 
|  | struct rb_root_cached *root; | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | /* Not inserted, ignore it. */ | 
|  | if (RB_EMPTY_NODE(&delayed_item->rb_node)) | 
|  | return; | 
|  |  | 
|  | delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; | 
|  |  | 
|  | BUG_ON(!delayed_root); | 
|  |  | 
|  | if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) | 
|  | root = &delayed_item->delayed_node->ins_root; | 
|  | else | 
|  | root = &delayed_item->delayed_node->del_root; | 
|  |  | 
|  | rb_erase_cached(&delayed_item->rb_node, root); | 
|  | RB_CLEAR_NODE(&delayed_item->rb_node); | 
|  | delayed_item->delayed_node->count--; | 
|  |  | 
|  | finish_one_item(delayed_root); | 
|  | } | 
|  |  | 
|  | static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) | 
|  | { | 
|  | if (item) { | 
|  | __btrfs_remove_delayed_item(item); | 
|  | if (refcount_dec_and_test(&item->refs)) | 
|  | kfree(item); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( | 
|  | struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct btrfs_delayed_item *item = NULL; | 
|  |  | 
|  | p = rb_first_cached(&delayed_node->ins_root); | 
|  | if (p) | 
|  | item = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
|  |  | 
|  | return item; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( | 
|  | struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct btrfs_delayed_item *item = NULL; | 
|  |  | 
|  | p = rb_first_cached(&delayed_node->del_root); | 
|  | if (p) | 
|  | item = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
|  |  | 
|  | return item; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_next_delayed_item( | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct btrfs_delayed_item *next = NULL; | 
|  |  | 
|  | p = rb_next(&item->rb_node); | 
|  | if (p) | 
|  | next = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct btrfs_block_rsv *src_rsv; | 
|  | struct btrfs_block_rsv *dst_rsv; | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | if (!trans->bytes_reserved) | 
|  | return 0; | 
|  |  | 
|  | src_rsv = trans->block_rsv; | 
|  | dst_rsv = &fs_info->delayed_block_rsv; | 
|  |  | 
|  | num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); | 
|  |  | 
|  | /* | 
|  | * Here we migrate space rsv from transaction rsv, since have already | 
|  | * reserved space when starting a transaction.  So no need to reserve | 
|  | * qgroup space here. | 
|  | */ | 
|  | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); | 
|  | if (!ret) { | 
|  | trace_btrfs_space_reservation(fs_info, "delayed_item", | 
|  | item->delayed_node->inode_id, | 
|  | num_bytes, 1); | 
|  | /* | 
|  | * For insertions we track reserved metadata space by accounting | 
|  | * for the number of leaves that will be used, based on the delayed | 
|  | * node's index_items_size field. | 
|  | */ | 
|  | if (item->type == BTRFS_DELAYED_DELETION_ITEM) | 
|  | item->bytes_reserved = num_bytes; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct btrfs_block_rsv *rsv; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (!item->bytes_reserved) | 
|  | return; | 
|  |  | 
|  | rsv = &fs_info->delayed_block_rsv; | 
|  | /* | 
|  | * Check btrfs_delayed_item_reserve_metadata() to see why we don't need | 
|  | * to release/reserve qgroup space. | 
|  | */ | 
|  | trace_btrfs_space_reservation(fs_info, "delayed_item", | 
|  | item->delayed_node->inode_id, | 
|  | item->bytes_reserved, 0); | 
|  | btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); | 
|  | } | 
|  |  | 
|  | static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, | 
|  | unsigned int num_leaves) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = node->root->fs_info; | 
|  | const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); | 
|  |  | 
|  | /* There are no space reservations during log replay, bail out. */ | 
|  | if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
|  | return; | 
|  |  | 
|  | trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, | 
|  | bytes, 0); | 
|  | btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); | 
|  | } | 
|  |  | 
|  | static int btrfs_delayed_inode_reserve_metadata( | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *src_rsv; | 
|  | struct btrfs_block_rsv *dst_rsv; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | src_rsv = trans->block_rsv; | 
|  | dst_rsv = &fs_info->delayed_block_rsv; | 
|  |  | 
|  | num_bytes = btrfs_calc_metadata_size(fs_info, 1); | 
|  |  | 
|  | /* | 
|  | * btrfs_dirty_inode will update the inode under btrfs_join_transaction | 
|  | * which doesn't reserve space for speed.  This is a problem since we | 
|  | * still need to reserve space for this update, so try to reserve the | 
|  | * space. | 
|  | * | 
|  | * Now if src_rsv == delalloc_block_rsv we'll let it just steal since | 
|  | * we always reserve enough to update the inode item. | 
|  | */ | 
|  | if (!src_rsv || (!trans->bytes_reserved && | 
|  | src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { | 
|  | ret = btrfs_qgroup_reserve_meta(root, num_bytes, | 
|  | BTRFS_QGROUP_RSV_META_PREALLOC, true); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | /* NO_FLUSH could only fail with -ENOSPC */ | 
|  | ASSERT(ret == 0 || ret == -ENOSPC); | 
|  | if (ret) | 
|  | btrfs_qgroup_free_meta_prealloc(root, num_bytes); | 
|  | } else { | 
|  | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | trace_btrfs_space_reservation(fs_info, "delayed_inode", | 
|  | node->inode_id, num_bytes, 1); | 
|  | node->bytes_reserved = num_bytes; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_delayed_node *node, | 
|  | bool qgroup_free) | 
|  | { | 
|  | struct btrfs_block_rsv *rsv; | 
|  |  | 
|  | if (!node->bytes_reserved) | 
|  | return; | 
|  |  | 
|  | rsv = &fs_info->delayed_block_rsv; | 
|  | trace_btrfs_space_reservation(fs_info, "delayed_inode", | 
|  | node->inode_id, node->bytes_reserved, 0); | 
|  | btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); | 
|  | if (qgroup_free) | 
|  | btrfs_qgroup_free_meta_prealloc(node->root, | 
|  | node->bytes_reserved); | 
|  | else | 
|  | btrfs_qgroup_convert_reserved_meta(node->root, | 
|  | node->bytes_reserved); | 
|  | node->bytes_reserved = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert a single delayed item or a batch of delayed items, as many as possible | 
|  | * that fit in a leaf. The delayed items (dir index keys) are sorted by their key | 
|  | * in the rbtree, and if there's a gap between two consecutive dir index items, | 
|  | * then it means at some point we had delayed dir indexes to add but they got | 
|  | * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them | 
|  | * into the subvolume tree. Dir index keys also have their offsets coming from a | 
|  | * monotonically increasing counter, so we can't get new keys with an offset that | 
|  | * fits within a gap between delayed dir index items. | 
|  | */ | 
|  | static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_item *first_item) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_delayed_node *node = first_item->delayed_node; | 
|  | LIST_HEAD(item_list); | 
|  | struct btrfs_delayed_item *curr; | 
|  | struct btrfs_delayed_item *next; | 
|  | const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); | 
|  | struct btrfs_item_batch batch; | 
|  | struct btrfs_key first_key; | 
|  | const u32 first_data_size = first_item->data_len; | 
|  | int total_size; | 
|  | char *ins_data = NULL; | 
|  | int ret; | 
|  | bool continuous_keys_only = false; | 
|  |  | 
|  | lockdep_assert_held(&node->mutex); | 
|  |  | 
|  | /* | 
|  | * During normal operation the delayed index offset is continuously | 
|  | * increasing, so we can batch insert all items as there will not be any | 
|  | * overlapping keys in the tree. | 
|  | * | 
|  | * The exception to this is log replay, where we may have interleaved | 
|  | * offsets in the tree, so our batch needs to be continuous keys only in | 
|  | * order to ensure we do not end up with out of order items in our leaf. | 
|  | */ | 
|  | if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
|  | continuous_keys_only = true; | 
|  |  | 
|  | /* | 
|  | * For delayed items to insert, we track reserved metadata bytes based | 
|  | * on the number of leaves that we will use. | 
|  | * See btrfs_insert_delayed_dir_index() and | 
|  | * btrfs_delayed_item_reserve_metadata()). | 
|  | */ | 
|  | ASSERT(first_item->bytes_reserved == 0); | 
|  |  | 
|  | list_add_tail(&first_item->tree_list, &item_list); | 
|  | batch.total_data_size = first_data_size; | 
|  | batch.nr = 1; | 
|  | total_size = first_data_size + sizeof(struct btrfs_item); | 
|  | curr = first_item; | 
|  |  | 
|  | while (true) { | 
|  | int next_size; | 
|  |  | 
|  | next = __btrfs_next_delayed_item(curr); | 
|  | if (!next) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We cannot allow gaps in the key space if we're doing log | 
|  | * replay. | 
|  | */ | 
|  | if (continuous_keys_only && (next->index != curr->index + 1)) | 
|  | break; | 
|  |  | 
|  | ASSERT(next->bytes_reserved == 0); | 
|  |  | 
|  | next_size = next->data_len + sizeof(struct btrfs_item); | 
|  | if (total_size + next_size > max_size) | 
|  | break; | 
|  |  | 
|  | list_add_tail(&next->tree_list, &item_list); | 
|  | batch.nr++; | 
|  | total_size += next_size; | 
|  | batch.total_data_size += next->data_len; | 
|  | curr = next; | 
|  | } | 
|  |  | 
|  | if (batch.nr == 1) { | 
|  | first_key.objectid = node->inode_id; | 
|  | first_key.type = BTRFS_DIR_INDEX_KEY; | 
|  | first_key.offset = first_item->index; | 
|  | batch.keys = &first_key; | 
|  | batch.data_sizes = &first_data_size; | 
|  | } else { | 
|  | struct btrfs_key *ins_keys; | 
|  | u32 *ins_sizes; | 
|  | int i = 0; | 
|  |  | 
|  | ins_data = kmalloc(batch.nr * sizeof(u32) + | 
|  | batch.nr * sizeof(struct btrfs_key), GFP_NOFS); | 
|  | if (!ins_data) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ins_sizes = (u32 *)ins_data; | 
|  | ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); | 
|  | batch.keys = ins_keys; | 
|  | batch.data_sizes = ins_sizes; | 
|  | list_for_each_entry(curr, &item_list, tree_list) { | 
|  | ins_keys[i].objectid = node->inode_id; | 
|  | ins_keys[i].type = BTRFS_DIR_INDEX_KEY; | 
|  | ins_keys[i].offset = curr->index; | 
|  | ins_sizes[i] = curr->data_len; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_items(trans, root, path, &batch); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(curr, &item_list, tree_list) { | 
|  | char *data_ptr; | 
|  |  | 
|  | data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); | 
|  | write_extent_buffer(path->nodes[0], &curr->data, | 
|  | (unsigned long)data_ptr, curr->data_len); | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now release our path before releasing the delayed items and their | 
|  | * metadata reservations, so that we don't block other tasks for more | 
|  | * time than needed. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ASSERT(node->index_item_leaves > 0); | 
|  |  | 
|  | /* | 
|  | * For normal operations we will batch an entire leaf's worth of delayed | 
|  | * items, so if there are more items to process we can decrement | 
|  | * index_item_leaves by 1 as we inserted 1 leaf's worth of items. | 
|  | * | 
|  | * However for log replay we may not have inserted an entire leaf's | 
|  | * worth of items, we may have not had continuous items, so decrementing | 
|  | * here would mess up the index_item_leaves accounting.  For this case | 
|  | * only clean up the accounting when there are no items left. | 
|  | */ | 
|  | if (next && !continuous_keys_only) { | 
|  | /* | 
|  | * We inserted one batch of items into a leaf a there are more | 
|  | * items to flush in a future batch, now release one unit of | 
|  | * metadata space from the delayed block reserve, corresponding | 
|  | * the leaf we just flushed to. | 
|  | */ | 
|  | btrfs_delayed_item_release_leaves(node, 1); | 
|  | node->index_item_leaves--; | 
|  | } else if (!next) { | 
|  | /* | 
|  | * There are no more items to insert. We can have a number of | 
|  | * reserved leaves > 1 here - this happens when many dir index | 
|  | * items are added and then removed before they are flushed (file | 
|  | * names with a very short life, never span a transaction). So | 
|  | * release all remaining leaves. | 
|  | */ | 
|  | btrfs_delayed_item_release_leaves(node, node->index_item_leaves); | 
|  | node->index_item_leaves = 0; | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &item_list, tree_list) { | 
|  | list_del(&curr->tree_list); | 
|  | btrfs_release_delayed_item(curr); | 
|  | } | 
|  | out: | 
|  | kfree(ins_data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | while (ret == 0) { | 
|  | struct btrfs_delayed_item *curr; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | curr = __btrfs_first_delayed_insertion_item(node); | 
|  | if (!curr) { | 
|  | mutex_unlock(&node->mutex); | 
|  | break; | 
|  | } | 
|  | ret = btrfs_insert_delayed_item(trans, root, path, curr); | 
|  | mutex_unlock(&node->mutex); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | const u64 ino = item->delayed_node->inode_id; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | LIST_HEAD(batch_list); | 
|  | int nitems, slot, last_slot; | 
|  | int ret; | 
|  | u64 total_reserved_size = item->bytes_reserved; | 
|  |  | 
|  | ASSERT(leaf != NULL); | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | last_slot = btrfs_header_nritems(leaf) - 1; | 
|  | /* | 
|  | * Our caller always gives us a path pointing to an existing item, so | 
|  | * this can not happen. | 
|  | */ | 
|  | ASSERT(slot <= last_slot); | 
|  | if (WARN_ON(slot > last_slot)) | 
|  | return -ENOENT; | 
|  |  | 
|  | nitems = 1; | 
|  | curr = item; | 
|  | list_add_tail(&curr->tree_list, &batch_list); | 
|  |  | 
|  | /* | 
|  | * Keep checking if the next delayed item matches the next item in the | 
|  | * leaf - if so, we can add it to the batch of items to delete from the | 
|  | * leaf. | 
|  | */ | 
|  | while (slot < last_slot) { | 
|  | struct btrfs_key key; | 
|  |  | 
|  | next = __btrfs_next_delayed_item(curr); | 
|  | if (!next) | 
|  | break; | 
|  |  | 
|  | slot++; | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != ino || | 
|  | key.type != BTRFS_DIR_INDEX_KEY || | 
|  | key.offset != next->index) | 
|  | break; | 
|  | nitems++; | 
|  | curr = next; | 
|  | list_add_tail(&curr->tree_list, &batch_list); | 
|  | total_reserved_size += curr->bytes_reserved; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ | 
|  | if (total_reserved_size > 0) { | 
|  | /* | 
|  | * Check btrfs_delayed_item_reserve_metadata() to see why we | 
|  | * don't need to release/reserve qgroup space. | 
|  | */ | 
|  | trace_btrfs_space_reservation(fs_info, "delayed_item", ino, | 
|  | total_reserved_size, 0); | 
|  | btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, | 
|  | total_reserved_size, NULL); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &batch_list, tree_list) { | 
|  | list_del(&curr->tree_list); | 
|  | btrfs_release_delayed_item(curr); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  |  | 
|  | key.objectid = node->inode_id; | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  |  | 
|  | while (ret == 0) { | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | item = __btrfs_first_delayed_deletion_item(node); | 
|  | if (!item) { | 
|  | mutex_unlock(&node->mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | key.offset = item->index; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) { | 
|  | /* | 
|  | * There's no matching item in the leaf. This means we | 
|  | * have already deleted this item in a past run of the | 
|  | * delayed items. We ignore errors when running delayed | 
|  | * items from an async context, through a work queue job | 
|  | * running btrfs_async_run_delayed_root(), and don't | 
|  | * release delayed items that failed to complete. This | 
|  | * is because we will retry later, and at transaction | 
|  | * commit time we always run delayed items and will | 
|  | * then deal with errors if they fail to run again. | 
|  | * | 
|  | * So just release delayed items for which we can't find | 
|  | * an item in the tree, and move to the next item. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_delayed_item(item); | 
|  | ret = 0; | 
|  | } else if (ret == 0) { | 
|  | ret = btrfs_batch_delete_items(trans, root, path, item); | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We unlock and relock on each iteration, this is to prevent | 
|  | * blocking other tasks for too long while we are being run from | 
|  | * the async context (work queue job). Those tasks are typically | 
|  | * running system calls like creat/mkdir/rename/unlink/etc which | 
|  | * need to add delayed items to this delayed node. | 
|  | */ | 
|  | mutex_unlock(&node->mutex); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | if (delayed_node && | 
|  | test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
|  | BUG_ON(!delayed_node->root); | 
|  | clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); | 
|  | delayed_node->count--; | 
|  |  | 
|  | delayed_root = delayed_node->root->fs_info->delayed_root; | 
|  | finish_one_item(delayed_root); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  |  | 
|  | if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | ASSERT(delayed_node->root); | 
|  | delayed_node->count--; | 
|  |  | 
|  | delayed_root = delayed_node->root->fs_info->delayed_root; | 
|  | finish_one_item(delayed_root); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct extent_buffer *leaf; | 
|  | int mod; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = node->inode_id; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) | 
|  | mod = -1; | 
|  | else | 
|  | mod = 1; | 
|  |  | 
|  | ret = btrfs_lookup_inode(trans, root, path, &key, mod); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, | 
|  | sizeof(struct btrfs_inode_item)); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) | 
|  | goto out; | 
|  |  | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) | 
|  | goto search; | 
|  | again: | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != node->inode_id) | 
|  | goto out; | 
|  |  | 
|  | if (key.type != BTRFS_INODE_REF_KEY && | 
|  | key.type != BTRFS_INODE_EXTREF_KEY) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Delayed iref deletion is for the inode who has only one link, | 
|  | * so there is only one iref. The case that several irefs are | 
|  | * in the same item doesn't exist. | 
|  | */ | 
|  | btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | btrfs_release_delayed_iref(node); | 
|  | btrfs_release_path(path); | 
|  | err_out: | 
|  | btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); | 
|  | btrfs_release_delayed_inode(node); | 
|  |  | 
|  | /* | 
|  | * If we fail to update the delayed inode we need to abort the | 
|  | * transaction, because we could leave the inode with the improper | 
|  | * counts behind. | 
|  | */ | 
|  | if (ret && ret != -ENOENT) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | search: | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | key.offset = -1; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto err_out; | 
|  | ASSERT(ret); | 
|  |  | 
|  | ret = 0; | 
|  | leaf = path->nodes[0]; | 
|  | path->slots[0]--; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { | 
|  | mutex_unlock(&node->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = __btrfs_update_delayed_inode(trans, root, path, node); | 
|  | mutex_unlock(&node->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_delayed_items(trans, path, node->root, node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_delete_delayed_items(trans, path, node->root, node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_update_delayed_inode(trans, node->root, path, node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when committing the transaction. | 
|  | * Returns 0 on success. | 
|  | * Returns < 0 on error and returns with an aborted transaction with any | 
|  | * outstanding delayed items cleaned up. | 
|  | */ | 
|  | static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct btrfs_delayed_node *curr_node, *prev_node; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int ret = 0; | 
|  | bool count = (nr > 0); | 
|  |  | 
|  | if (TRANS_ABORTED(trans)) | 
|  | return -EIO; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &fs_info->delayed_block_rsv; | 
|  |  | 
|  | delayed_root = fs_info->delayed_root; | 
|  |  | 
|  | curr_node = btrfs_first_delayed_node(delayed_root); | 
|  | while (curr_node && (!count || nr--)) { | 
|  | ret = __btrfs_commit_inode_delayed_items(trans, path, | 
|  | curr_node); | 
|  | if (ret) { | 
|  | btrfs_release_delayed_node(curr_node); | 
|  | curr_node = NULL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev_node = curr_node; | 
|  | curr_node = btrfs_next_delayed_node(curr_node); | 
|  | btrfs_release_delayed_node(prev_node); | 
|  | } | 
|  |  | 
|  | if (curr_node) | 
|  | btrfs_release_delayed_node(curr_node); | 
|  | btrfs_free_path(path); | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | return __btrfs_run_delayed_items(trans, -1); | 
|  | } | 
|  |  | 
|  | int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) | 
|  | { | 
|  | return __btrfs_run_delayed_items(trans, nr); | 
|  | } | 
|  |  | 
|  | int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int ret; | 
|  |  | 
|  | if (!delayed_node) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (!delayed_node->count) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); | 
|  |  | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | btrfs_free_path(path); | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int ret; | 
|  |  | 
|  | if (!delayed_node) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | trans = btrfs_join_transaction(delayed_node->root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto trans_out; | 
|  | } | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &fs_info->delayed_block_rsv; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) | 
|  | ret = __btrfs_update_delayed_inode(trans, delayed_node->root, | 
|  | path, delayed_node); | 
|  | else | 
|  | ret = 0; | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | trans->block_rsv = block_rsv; | 
|  | trans_out: | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | out: | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_remove_delayed_node(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  |  | 
|  | delayed_node = READ_ONCE(inode->delayed_node); | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | inode->delayed_node = NULL; | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | } | 
|  |  | 
|  | struct btrfs_async_delayed_work { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | int nr; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | static void btrfs_async_run_delayed_root(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_async_delayed_work *async_work; | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_delayed_node *delayed_node = NULL; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int total_done = 0; | 
|  |  | 
|  | async_work = container_of(work, struct btrfs_async_delayed_work, work); | 
|  | delayed_root = async_work->delayed_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | if (atomic_read(&delayed_root->items) < | 
|  | BTRFS_DELAYED_BACKGROUND / 2) | 
|  | break; | 
|  |  | 
|  | delayed_node = btrfs_first_prepared_delayed_node(delayed_root); | 
|  | if (!delayed_node) | 
|  | break; | 
|  |  | 
|  | root = delayed_node->root; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_prepared_delayed_node(delayed_node); | 
|  | total_done++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | __btrfs_commit_inode_delayed_items(trans, path, delayed_node); | 
|  |  | 
|  | trans->block_rsv = block_rsv; | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty_nodelay(root->fs_info); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_prepared_delayed_node(delayed_node); | 
|  | total_done++; | 
|  |  | 
|  | } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) | 
|  | || total_done < async_work->nr); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | out: | 
|  | wake_up(&delayed_root->wait); | 
|  | kfree(async_work); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, | 
|  | struct btrfs_fs_info *fs_info, int nr) | 
|  | { | 
|  | struct btrfs_async_delayed_work *async_work; | 
|  |  | 
|  | async_work = kmalloc(sizeof(*async_work), GFP_NOFS); | 
|  | if (!async_work) | 
|  | return -ENOMEM; | 
|  |  | 
|  | async_work->delayed_root = delayed_root; | 
|  | btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, | 
|  | NULL); | 
|  | async_work->nr = nr; | 
|  |  | 
|  | btrfs_queue_work(fs_info->delayed_workers, &async_work->work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); | 
|  | } | 
|  |  | 
|  | static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) | 
|  | { | 
|  | int val = atomic_read(&delayed_root->items_seq); | 
|  |  | 
|  | if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) | 
|  | return 1; | 
|  |  | 
|  | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; | 
|  |  | 
|  | if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || | 
|  | btrfs_workqueue_normal_congested(fs_info->delayed_workers)) | 
|  | return; | 
|  |  | 
|  | if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { | 
|  | int seq; | 
|  | int ret; | 
|  |  | 
|  | seq = atomic_read(&delayed_root->items_seq); | 
|  |  | 
|  | ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | wait_event_interruptible(delayed_root->wait, | 
|  | could_end_wait(delayed_root, seq)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); | 
|  | } | 
|  |  | 
|  | /* Will return 0 or -ENOMEM */ | 
|  | int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, | 
|  | const char *name, int name_len, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_disk_key *disk_key, u8 type, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | struct btrfs_delayed_item *delayed_item; | 
|  | struct btrfs_dir_item *dir_item; | 
|  | bool reserve_leaf_space; | 
|  | u32 data_len; | 
|  | int ret; | 
|  |  | 
|  | delayed_node = btrfs_get_or_create_delayed_node(dir); | 
|  | if (IS_ERR(delayed_node)) | 
|  | return PTR_ERR(delayed_node); | 
|  |  | 
|  | delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, | 
|  | delayed_node, | 
|  | BTRFS_DELAYED_INSERTION_ITEM); | 
|  | if (!delayed_item) { | 
|  | ret = -ENOMEM; | 
|  | goto release_node; | 
|  | } | 
|  |  | 
|  | delayed_item->index = index; | 
|  |  | 
|  | dir_item = (struct btrfs_dir_item *)delayed_item->data; | 
|  | dir_item->location = *disk_key; | 
|  | btrfs_set_stack_dir_transid(dir_item, trans->transid); | 
|  | btrfs_set_stack_dir_data_len(dir_item, 0); | 
|  | btrfs_set_stack_dir_name_len(dir_item, name_len); | 
|  | btrfs_set_stack_dir_type(dir_item, type); | 
|  | memcpy((char *)(dir_item + 1), name, name_len); | 
|  |  | 
|  | data_len = delayed_item->data_len + sizeof(struct btrfs_item); | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  |  | 
|  | if (delayed_node->index_item_leaves == 0 || | 
|  | delayed_node->curr_index_batch_size + data_len > leaf_data_size) { | 
|  | delayed_node->curr_index_batch_size = data_len; | 
|  | reserve_leaf_space = true; | 
|  | } else { | 
|  | delayed_node->curr_index_batch_size += data_len; | 
|  | reserve_leaf_space = false; | 
|  | } | 
|  |  | 
|  | if (reserve_leaf_space) { | 
|  | ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); | 
|  | /* | 
|  | * Space was reserved for a dir index item insertion when we | 
|  | * started the transaction, so getting a failure here should be | 
|  | * impossible. | 
|  | */ | 
|  | if (WARN_ON(ret)) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_item(delayed_item); | 
|  | goto release_node; | 
|  | } | 
|  |  | 
|  | delayed_node->index_item_leaves++; | 
|  | } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { | 
|  | const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); | 
|  |  | 
|  | /* | 
|  | * Adding the new dir index item does not require touching another | 
|  | * leaf, so we can release 1 unit of metadata that was previously | 
|  | * reserved when starting the transaction. This applies only to | 
|  | * the case where we had a transaction start and excludes the | 
|  | * transaction join case (when replaying log trees). | 
|  | */ | 
|  | trace_btrfs_space_reservation(fs_info, "transaction", | 
|  | trans->transid, bytes, 0); | 
|  | btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); | 
|  | ASSERT(trans->bytes_reserved >= bytes); | 
|  | trans->bytes_reserved -= bytes; | 
|  | } | 
|  |  | 
|  | ret = __btrfs_add_delayed_item(delayed_node, delayed_item); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", | 
|  | name_len, name, delayed_node->root->root_key.objectid, | 
|  | delayed_node->inode_id, ret); | 
|  | BUG(); | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | release_node: | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_delayed_node *node, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); | 
|  | if (!item) { | 
|  | mutex_unlock(&node->mutex); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For delayed items to insert, we track reserved metadata bytes based | 
|  | * on the number of leaves that we will use. | 
|  | * See btrfs_insert_delayed_dir_index() and | 
|  | * btrfs_delayed_item_reserve_metadata()). | 
|  | */ | 
|  | ASSERT(item->bytes_reserved == 0); | 
|  | ASSERT(node->index_item_leaves > 0); | 
|  |  | 
|  | /* | 
|  | * If there's only one leaf reserved, we can decrement this item from the | 
|  | * current batch, otherwise we can not because we don't know which leaf | 
|  | * it belongs to. With the current limit on delayed items, we rarely | 
|  | * accumulate enough dir index items to fill more than one leaf (even | 
|  | * when using a leaf size of 4K). | 
|  | */ | 
|  | if (node->index_item_leaves == 1) { | 
|  | const u32 data_len = item->data_len + sizeof(struct btrfs_item); | 
|  |  | 
|  | ASSERT(node->curr_index_batch_size >= data_len); | 
|  | node->curr_index_batch_size -= data_len; | 
|  | } | 
|  |  | 
|  | btrfs_release_delayed_item(item); | 
|  |  | 
|  | /* If we now have no more dir index items, we can release all leaves. */ | 
|  | if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { | 
|  | btrfs_delayed_item_release_leaves(node, node->index_item_leaves); | 
|  | node->index_item_leaves = 0; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&node->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, u64 index) | 
|  | { | 
|  | struct btrfs_delayed_node *node; | 
|  | struct btrfs_delayed_item *item; | 
|  | int ret; | 
|  |  | 
|  | node = btrfs_get_or_create_delayed_node(dir); | 
|  | if (IS_ERR(node)) | 
|  | return PTR_ERR(node); | 
|  |  | 
|  | ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); | 
|  | if (!ret) | 
|  | goto end; | 
|  |  | 
|  | item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); | 
|  | if (!item) { | 
|  | ret = -ENOMEM; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | item->index = index; | 
|  |  | 
|  | ret = btrfs_delayed_item_reserve_metadata(trans, item); | 
|  | /* | 
|  | * we have reserved enough space when we start a new transaction, | 
|  | * so reserving metadata failure is impossible. | 
|  | */ | 
|  | if (ret < 0) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "metadata reservation failed for delayed dir item deltiona, should have been reserved"); | 
|  | btrfs_release_delayed_item(item); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | ret = __btrfs_add_delayed_item(node, item); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", | 
|  | index, node->root->root_key.objectid, | 
|  | node->inode_id, ret); | 
|  | btrfs_delayed_item_release_metadata(dir->root, item); | 
|  | btrfs_release_delayed_item(item); | 
|  | } | 
|  | mutex_unlock(&node->mutex); | 
|  | end: | 
|  | btrfs_release_delayed_node(node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
|  |  | 
|  | if (!delayed_node) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Since we have held i_mutex of this directory, it is impossible that | 
|  | * a new directory index is added into the delayed node and index_cnt | 
|  | * is updated now. So we needn't lock the delayed node. | 
|  | */ | 
|  | if (!delayed_node->index_cnt) { | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | inode->index_cnt = delayed_node->index_cnt; | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool btrfs_readdir_get_delayed_items(struct inode *inode, | 
|  | struct list_head *ins_list, | 
|  | struct list_head *del_list) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); | 
|  | if (!delayed_node) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We can only do one readdir with delayed items at a time because of | 
|  | * item->readdir_list. | 
|  | */ | 
|  | btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); | 
|  | btrfs_inode_lock(inode, 0); | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | item = __btrfs_first_delayed_insertion_item(delayed_node); | 
|  | while (item) { | 
|  | refcount_inc(&item->refs); | 
|  | list_add_tail(&item->readdir_list, ins_list); | 
|  | item = __btrfs_next_delayed_item(item); | 
|  | } | 
|  |  | 
|  | item = __btrfs_first_delayed_deletion_item(delayed_node); | 
|  | while (item) { | 
|  | refcount_inc(&item->refs); | 
|  | list_add_tail(&item->readdir_list, del_list); | 
|  | item = __btrfs_next_delayed_item(item); | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | /* | 
|  | * This delayed node is still cached in the btrfs inode, so refs | 
|  | * must be > 1 now, and we needn't check it is going to be freed | 
|  | * or not. | 
|  | * | 
|  | * Besides that, this function is used to read dir, we do not | 
|  | * insert/delete delayed items in this period. So we also needn't | 
|  | * requeue or dequeue this delayed node. | 
|  | */ | 
|  | refcount_dec(&delayed_node->refs); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void btrfs_readdir_put_delayed_items(struct inode *inode, | 
|  | struct list_head *ins_list, | 
|  | struct list_head *del_list) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, ins_list, readdir_list) { | 
|  | list_del(&curr->readdir_list); | 
|  | if (refcount_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, del_list, readdir_list) { | 
|  | list_del(&curr->readdir_list); | 
|  | if (refcount_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The VFS is going to do up_read(), so we need to downgrade back to a | 
|  | * read lock. | 
|  | */ | 
|  | downgrade_write(&inode->i_rwsem); | 
|  | } | 
|  |  | 
|  | int btrfs_should_delete_dir_index(struct list_head *del_list, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_delayed_item *curr; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry(curr, del_list, readdir_list) { | 
|  | if (curr->index > index) | 
|  | break; | 
|  | if (curr->index == index) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree | 
|  | * | 
|  | */ | 
|  | int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, | 
|  | struct list_head *ins_list) | 
|  | { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  | struct btrfs_key location; | 
|  | char *name; | 
|  | int name_len; | 
|  | int over = 0; | 
|  | unsigned char d_type; | 
|  |  | 
|  | if (list_empty(ins_list)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Changing the data of the delayed item is impossible. So | 
|  | * we needn't lock them. And we have held i_mutex of the | 
|  | * directory, nobody can delete any directory indexes now. | 
|  | */ | 
|  | list_for_each_entry_safe(curr, next, ins_list, readdir_list) { | 
|  | list_del(&curr->readdir_list); | 
|  |  | 
|  | if (curr->index < ctx->pos) { | 
|  | if (refcount_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ctx->pos = curr->index; | 
|  |  | 
|  | di = (struct btrfs_dir_item *)curr->data; | 
|  | name = (char *)(di + 1); | 
|  | name_len = btrfs_stack_dir_name_len(di); | 
|  |  | 
|  | d_type = fs_ftype_to_dtype(di->type); | 
|  | btrfs_disk_key_to_cpu(&location, &di->location); | 
|  |  | 
|  | over = !dir_emit(ctx, name, name_len, | 
|  | location.objectid, d_type); | 
|  |  | 
|  | if (refcount_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  |  | 
|  | if (over) | 
|  | return 1; | 
|  | ctx->pos++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fill_stack_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode_item *inode_item, | 
|  | struct inode *inode) | 
|  | { | 
|  | u64 flags; | 
|  |  | 
|  | btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); | 
|  | btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); | 
|  | btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); | 
|  | btrfs_set_stack_inode_mode(inode_item, inode->i_mode); | 
|  | btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); | 
|  | btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); | 
|  | btrfs_set_stack_inode_generation(inode_item, | 
|  | BTRFS_I(inode)->generation); | 
|  | btrfs_set_stack_inode_sequence(inode_item, | 
|  | inode_peek_iversion(inode)); | 
|  | btrfs_set_stack_inode_transid(inode_item, trans->transid); | 
|  | btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); | 
|  | flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, | 
|  | BTRFS_I(inode)->ro_flags); | 
|  | btrfs_set_stack_inode_flags(inode_item, flags); | 
|  | btrfs_set_stack_inode_block_group(inode_item, 0); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(&inode_item->atime, | 
|  | inode->i_atime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(&inode_item->atime, | 
|  | inode->i_atime.tv_nsec); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(&inode_item->mtime, | 
|  | inode->i_mtime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(&inode_item->mtime, | 
|  | inode->i_mtime.tv_nsec); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(&inode_item->ctime, | 
|  | inode->i_ctime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(&inode_item->ctime, | 
|  | inode->i_ctime.tv_nsec); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(&inode_item->otime, | 
|  | BTRFS_I(inode)->i_otime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(&inode_item->otime, | 
|  | BTRFS_I(inode)->i_otime.tv_nsec); | 
|  | } | 
|  |  | 
|  | int btrfs_fill_inode(struct inode *inode, u32 *rdev) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | struct btrfs_inode_item *inode_item; | 
|  |  | 
|  | delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); | 
|  | if (!delayed_node) | 
|  | return -ENOENT; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | inode_item = &delayed_node->inode_item; | 
|  |  | 
|  | i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); | 
|  | i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); | 
|  | btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); | 
|  | btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, | 
|  | round_up(i_size_read(inode), fs_info->sectorsize)); | 
|  | inode->i_mode = btrfs_stack_inode_mode(inode_item); | 
|  | set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); | 
|  | inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); | 
|  | BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); | 
|  | BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); | 
|  |  | 
|  | inode_set_iversion_queried(inode, | 
|  | btrfs_stack_inode_sequence(inode_item)); | 
|  | inode->i_rdev = 0; | 
|  | *rdev = btrfs_stack_inode_rdev(inode_item); | 
|  | btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), | 
|  | &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); | 
|  |  | 
|  | inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); | 
|  | inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); | 
|  |  | 
|  | inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); | 
|  | inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); | 
|  |  | 
|  | inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); | 
|  | inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); | 
|  |  | 
|  | BTRFS_I(inode)->i_otime.tv_sec = | 
|  | btrfs_stack_timespec_sec(&inode_item->otime); | 
|  | BTRFS_I(inode)->i_otime.tv_nsec = | 
|  | btrfs_stack_timespec_nsec(&inode_item->otime); | 
|  |  | 
|  | inode->i_generation = BTRFS_I(inode)->generation; | 
|  | BTRFS_I(inode)->index_cnt = (u64)-1; | 
|  |  | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_node = btrfs_get_or_create_delayed_node(inode); | 
|  | if (IS_ERR(delayed_node)) | 
|  | return PTR_ERR(delayed_node); | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
|  | fill_stack_inode_item(trans, &delayed_node->inode_item, | 
|  | &inode->vfs_inode); | 
|  | goto release_node; | 
|  | } | 
|  |  | 
|  | ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); | 
|  | if (ret) | 
|  | goto release_node; | 
|  |  | 
|  | fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); | 
|  | set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); | 
|  | delayed_node->count++; | 
|  | atomic_inc(&root->fs_info->delayed_root->items); | 
|  | release_node: | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  |  | 
|  | /* | 
|  | * we don't do delayed inode updates during log recovery because it | 
|  | * leads to enospc problems.  This means we also can't do | 
|  | * delayed inode refs | 
|  | */ | 
|  | if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | delayed_node = btrfs_get_or_create_delayed_node(inode); | 
|  | if (IS_ERR(delayed_node)) | 
|  | return PTR_ERR(delayed_node); | 
|  |  | 
|  | /* | 
|  | * We don't reserve space for inode ref deletion is because: | 
|  | * - We ONLY do async inode ref deletion for the inode who has only | 
|  | *   one link(i_nlink == 1), it means there is only one inode ref. | 
|  | *   And in most case, the inode ref and the inode item are in the | 
|  | *   same leaf, and we will deal with them at the same time. | 
|  | *   Since we are sure we will reserve the space for the inode item, | 
|  | *   it is unnecessary to reserve space for inode ref deletion. | 
|  | * - If the inode ref and the inode item are not in the same leaf, | 
|  | *   We also needn't worry about enospc problem, because we reserve | 
|  | *   much more space for the inode update than it needs. | 
|  | * - At the worst, we can steal some space from the global reservation. | 
|  | *   It is very rare. | 
|  | */ | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) | 
|  | goto release_node; | 
|  |  | 
|  | set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); | 
|  | delayed_node->count++; | 
|  | atomic_inc(&fs_info->delayed_root->items); | 
|  | release_node: | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct btrfs_root *root = delayed_node->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_delayed_item *curr_item, *prev_item; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | curr_item = __btrfs_first_delayed_insertion_item(delayed_node); | 
|  | while (curr_item) { | 
|  | prev_item = curr_item; | 
|  | curr_item = __btrfs_next_delayed_item(prev_item); | 
|  | btrfs_release_delayed_item(prev_item); | 
|  | } | 
|  |  | 
|  | if (delayed_node->index_item_leaves > 0) { | 
|  | btrfs_delayed_item_release_leaves(delayed_node, | 
|  | delayed_node->index_item_leaves); | 
|  | delayed_node->index_item_leaves = 0; | 
|  | } | 
|  |  | 
|  | curr_item = __btrfs_first_delayed_deletion_item(delayed_node); | 
|  | while (curr_item) { | 
|  | btrfs_delayed_item_release_metadata(root, curr_item); | 
|  | prev_item = curr_item; | 
|  | curr_item = __btrfs_next_delayed_item(prev_item); | 
|  | btrfs_release_delayed_item(prev_item); | 
|  | } | 
|  |  | 
|  | btrfs_release_delayed_iref(delayed_node); | 
|  |  | 
|  | if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
|  | btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); | 
|  | btrfs_release_delayed_inode(delayed_node); | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | } | 
|  |  | 
|  | void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  |  | 
|  | delayed_node = btrfs_get_delayed_node(inode); | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | __btrfs_kill_delayed_node(delayed_node); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | } | 
|  |  | 
|  | void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) | 
|  | { | 
|  | u64 inode_id = 0; | 
|  | struct btrfs_delayed_node *delayed_nodes[8]; | 
|  | int i, n; | 
|  |  | 
|  | while (1) { | 
|  | spin_lock(&root->inode_lock); | 
|  | n = radix_tree_gang_lookup(&root->delayed_nodes_tree, | 
|  | (void **)delayed_nodes, inode_id, | 
|  | ARRAY_SIZE(delayed_nodes)); | 
|  | if (!n) { | 
|  | spin_unlock(&root->inode_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | inode_id = delayed_nodes[n - 1]->inode_id + 1; | 
|  | for (i = 0; i < n; i++) { | 
|  | /* | 
|  | * Don't increase refs in case the node is dead and | 
|  | * about to be removed from the tree in the loop below | 
|  | */ | 
|  | if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) | 
|  | delayed_nodes[i] = NULL; | 
|  | } | 
|  | spin_unlock(&root->inode_lock); | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (!delayed_nodes[i]) | 
|  | continue; | 
|  | __btrfs_kill_delayed_node(delayed_nodes[i]); | 
|  | btrfs_release_delayed_node(delayed_nodes[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_delayed_node *curr_node, *prev_node; | 
|  |  | 
|  | curr_node = btrfs_first_delayed_node(fs_info->delayed_root); | 
|  | while (curr_node) { | 
|  | __btrfs_kill_delayed_node(curr_node); | 
|  |  | 
|  | prev_node = curr_node; | 
|  | curr_node = btrfs_next_delayed_node(curr_node); | 
|  | btrfs_release_delayed_node(prev_node); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_log_get_delayed_items(struct btrfs_inode *inode, | 
|  | struct list_head *ins_list, | 
|  | struct list_head *del_list) | 
|  | { | 
|  | struct btrfs_delayed_node *node; | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | node = btrfs_get_delayed_node(inode); | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | item = __btrfs_first_delayed_insertion_item(node); | 
|  | while (item) { | 
|  | /* | 
|  | * It's possible that the item is already in a log list. This | 
|  | * can happen in case two tasks are trying to log the same | 
|  | * directory. For example if we have tasks A and task B: | 
|  | * | 
|  | * Task A collected the delayed items into a log list while | 
|  | * under the inode's log_mutex (at btrfs_log_inode()), but it | 
|  | * only releases the items after logging the inodes they point | 
|  | * to (if they are new inodes), which happens after unlocking | 
|  | * the log mutex; | 
|  | * | 
|  | * Task B enters btrfs_log_inode() and acquires the log_mutex | 
|  | * of the same directory inode, before task B releases the | 
|  | * delayed items. This can happen for example when logging some | 
|  | * inode we need to trigger logging of its parent directory, so | 
|  | * logging two files that have the same parent directory can | 
|  | * lead to this. | 
|  | * | 
|  | * If this happens, just ignore delayed items already in a log | 
|  | * list. All the tasks logging the directory are under a log | 
|  | * transaction and whichever finishes first can not sync the log | 
|  | * before the other completes and leaves the log transaction. | 
|  | */ | 
|  | if (!item->logged && list_empty(&item->log_list)) { | 
|  | refcount_inc(&item->refs); | 
|  | list_add_tail(&item->log_list, ins_list); | 
|  | } | 
|  | item = __btrfs_next_delayed_item(item); | 
|  | } | 
|  |  | 
|  | item = __btrfs_first_delayed_deletion_item(node); | 
|  | while (item) { | 
|  | /* It may be non-empty, for the same reason mentioned above. */ | 
|  | if (!item->logged && list_empty(&item->log_list)) { | 
|  | refcount_inc(&item->refs); | 
|  | list_add_tail(&item->log_list, del_list); | 
|  | } | 
|  | item = __btrfs_next_delayed_item(item); | 
|  | } | 
|  | mutex_unlock(&node->mutex); | 
|  |  | 
|  | /* | 
|  | * We are called during inode logging, which means the inode is in use | 
|  | * and can not be evicted before we finish logging the inode. So we never | 
|  | * have the last reference on the delayed inode. | 
|  | * Also, we don't use btrfs_release_delayed_node() because that would | 
|  | * requeue the delayed inode (change its order in the list of prepared | 
|  | * nodes) and we don't want to do such change because we don't create or | 
|  | * delete delayed items. | 
|  | */ | 
|  | ASSERT(refcount_read(&node->refs) > 1); | 
|  | refcount_dec(&node->refs); | 
|  | } | 
|  |  | 
|  | void btrfs_log_put_delayed_items(struct btrfs_inode *inode, | 
|  | struct list_head *ins_list, | 
|  | struct list_head *del_list) | 
|  | { | 
|  | struct btrfs_delayed_node *node; | 
|  | struct btrfs_delayed_item *item; | 
|  | struct btrfs_delayed_item *next; | 
|  |  | 
|  | node = btrfs_get_delayed_node(inode); | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  |  | 
|  | list_for_each_entry_safe(item, next, ins_list, log_list) { | 
|  | item->logged = true; | 
|  | list_del_init(&item->log_list); | 
|  | if (refcount_dec_and_test(&item->refs)) | 
|  | kfree(item); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(item, next, del_list, log_list) { | 
|  | item->logged = true; | 
|  | list_del_init(&item->log_list); | 
|  | if (refcount_dec_and_test(&item->refs)) | 
|  | kfree(item); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&node->mutex); | 
|  |  | 
|  | /* | 
|  | * We are called during inode logging, which means the inode is in use | 
|  | * and can not be evicted before we finish logging the inode. So we never | 
|  | * have the last reference on the delayed inode. | 
|  | * Also, we don't use btrfs_release_delayed_node() because that would | 
|  | * requeue the delayed inode (change its order in the list of prepared | 
|  | * nodes) and we don't want to do such change because we don't create or | 
|  | * delete delayed items. | 
|  | */ | 
|  | ASSERT(refcount_read(&node->refs) > 1); | 
|  | refcount_dec(&node->refs); | 
|  | } |