| // SPDX-License-Identifier: GPL-2.0 | 
 | #define pr_fmt(fmt)	"OF: " fmt | 
 |  | 
 | #include <linux/device.h> | 
 | #include <linux/fwnode.h> | 
 | #include <linux/io.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/logic_pio.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pci_regs.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string.h> | 
 | #include <linux/dma-direct.h> /* for bus_dma_region */ | 
 |  | 
 | #include "of_private.h" | 
 |  | 
 | /* Max address size we deal with */ | 
 | #define OF_MAX_ADDR_CELLS	4 | 
 | #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) | 
 | #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0) | 
 |  | 
 | static struct of_bus *of_match_bus(struct device_node *np); | 
 | static int __of_address_to_resource(struct device_node *dev, int index, | 
 | 		int bar_no, struct resource *r); | 
 | static bool of_mmio_is_nonposted(struct device_node *np); | 
 |  | 
 | /* Debug utility */ | 
 | #ifdef DEBUG | 
 | static void of_dump_addr(const char *s, const __be32 *addr, int na) | 
 | { | 
 | 	pr_debug("%s", s); | 
 | 	while (na--) | 
 | 		pr_cont(" %08x", be32_to_cpu(*(addr++))); | 
 | 	pr_cont("\n"); | 
 | } | 
 | #else | 
 | static void of_dump_addr(const char *s, const __be32 *addr, int na) { } | 
 | #endif | 
 |  | 
 | /* Callbacks for bus specific translators */ | 
 | struct of_bus { | 
 | 	const char	*name; | 
 | 	const char	*addresses; | 
 | 	int		(*match)(struct device_node *parent); | 
 | 	void		(*count_cells)(struct device_node *child, | 
 | 				       int *addrc, int *sizec); | 
 | 	u64		(*map)(__be32 *addr, const __be32 *range, | 
 | 				int na, int ns, int pna); | 
 | 	int		(*translate)(__be32 *addr, u64 offset, int na); | 
 | 	bool	has_flags; | 
 | 	unsigned int	(*get_flags)(const __be32 *addr); | 
 | }; | 
 |  | 
 | /* | 
 |  * Default translator (generic bus) | 
 |  */ | 
 |  | 
 | static void of_bus_default_count_cells(struct device_node *dev, | 
 | 				       int *addrc, int *sizec) | 
 | { | 
 | 	if (addrc) | 
 | 		*addrc = of_n_addr_cells(dev); | 
 | 	if (sizec) | 
 | 		*sizec = of_n_size_cells(dev); | 
 | } | 
 |  | 
 | static u64 of_bus_default_map(__be32 *addr, const __be32 *range, | 
 | 		int na, int ns, int pna) | 
 | { | 
 | 	u64 cp, s, da; | 
 |  | 
 | 	cp = of_read_number(range, na); | 
 | 	s  = of_read_number(range + na + pna, ns); | 
 | 	da = of_read_number(addr, na); | 
 |  | 
 | 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); | 
 |  | 
 | 	if (da < cp || da >= (cp + s)) | 
 | 		return OF_BAD_ADDR; | 
 | 	return da - cp; | 
 | } | 
 |  | 
 | static int of_bus_default_translate(__be32 *addr, u64 offset, int na) | 
 | { | 
 | 	u64 a = of_read_number(addr, na); | 
 | 	memset(addr, 0, na * 4); | 
 | 	a += offset; | 
 | 	if (na > 1) | 
 | 		addr[na - 2] = cpu_to_be32(a >> 32); | 
 | 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int of_bus_default_get_flags(const __be32 *addr) | 
 | { | 
 | 	return IORESOURCE_MEM; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | static unsigned int of_bus_pci_get_flags(const __be32 *addr) | 
 | { | 
 | 	unsigned int flags = 0; | 
 | 	u32 w = be32_to_cpup(addr); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_PCI)) | 
 | 		return 0; | 
 |  | 
 | 	switch((w >> 24) & 0x03) { | 
 | 	case 0x01: | 
 | 		flags |= IORESOURCE_IO; | 
 | 		break; | 
 | 	case 0x02: /* 32 bits */ | 
 | 		flags |= IORESOURCE_MEM; | 
 | 		break; | 
 |  | 
 | 	case 0x03: /* 64 bits */ | 
 | 		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; | 
 | 		break; | 
 | 	} | 
 | 	if (w & 0x40000000) | 
 | 		flags |= IORESOURCE_PREFETCH; | 
 | 	return flags; | 
 | } | 
 |  | 
 | /* | 
 |  * PCI bus specific translator | 
 |  */ | 
 |  | 
 | static bool of_node_is_pcie(struct device_node *np) | 
 | { | 
 | 	bool is_pcie = of_node_name_eq(np, "pcie"); | 
 |  | 
 | 	if (is_pcie) | 
 | 		pr_warn_once("%pOF: Missing device_type\n", np); | 
 |  | 
 | 	return is_pcie; | 
 | } | 
 |  | 
 | static int of_bus_pci_match(struct device_node *np) | 
 | { | 
 | 	/* | 
 |  	 * "pciex" is PCI Express | 
 | 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs | 
 | 	 * "ht" is hypertransport | 
 | 	 * | 
 | 	 * If none of the device_type match, and that the node name is | 
 | 	 * "pcie", accept the device as PCI (with a warning). | 
 | 	 */ | 
 | 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || | 
 | 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || | 
 | 		of_node_is_pcie(np); | 
 | } | 
 |  | 
 | static void of_bus_pci_count_cells(struct device_node *np, | 
 | 				   int *addrc, int *sizec) | 
 | { | 
 | 	if (addrc) | 
 | 		*addrc = 3; | 
 | 	if (sizec) | 
 | 		*sizec = 2; | 
 | } | 
 |  | 
 | static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, | 
 | 		int pna) | 
 | { | 
 | 	u64 cp, s, da; | 
 | 	unsigned int af, rf; | 
 |  | 
 | 	af = of_bus_pci_get_flags(addr); | 
 | 	rf = of_bus_pci_get_flags(range); | 
 |  | 
 | 	/* Check address type match */ | 
 | 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) | 
 | 		return OF_BAD_ADDR; | 
 |  | 
 | 	/* Read address values, skipping high cell */ | 
 | 	cp = of_read_number(range + 1, na - 1); | 
 | 	s  = of_read_number(range + na + pna, ns); | 
 | 	da = of_read_number(addr + 1, na - 1); | 
 |  | 
 | 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); | 
 |  | 
 | 	if (da < cp || da >= (cp + s)) | 
 | 		return OF_BAD_ADDR; | 
 | 	return da - cp; | 
 | } | 
 |  | 
 | static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) | 
 | { | 
 | 	return of_bus_default_translate(addr + 1, offset, na - 1); | 
 | } | 
 | #endif /* CONFIG_PCI */ | 
 |  | 
 | int of_pci_address_to_resource(struct device_node *dev, int bar, | 
 | 			       struct resource *r) | 
 | { | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_PCI)) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	return __of_address_to_resource(dev, -1, bar, r); | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_pci_address_to_resource); | 
 |  | 
 | /* | 
 |  * of_pci_range_to_resource - Create a resource from an of_pci_range | 
 |  * @range:	the PCI range that describes the resource | 
 |  * @np:		device node where the range belongs to | 
 |  * @res:	pointer to a valid resource that will be updated to | 
 |  *              reflect the values contained in the range. | 
 |  * | 
 |  * Returns EINVAL if the range cannot be converted to resource. | 
 |  * | 
 |  * Note that if the range is an IO range, the resource will be converted | 
 |  * using pci_address_to_pio() which can fail if it is called too early or | 
 |  * if the range cannot be matched to any host bridge IO space (our case here). | 
 |  * To guard against that we try to register the IO range first. | 
 |  * If that fails we know that pci_address_to_pio() will do too. | 
 |  */ | 
 | int of_pci_range_to_resource(struct of_pci_range *range, | 
 | 			     struct device_node *np, struct resource *res) | 
 | { | 
 | 	int err; | 
 | 	res->flags = range->flags; | 
 | 	res->parent = res->child = res->sibling = NULL; | 
 | 	res->name = np->full_name; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_PCI)) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	if (res->flags & IORESOURCE_IO) { | 
 | 		unsigned long port; | 
 | 		err = pci_register_io_range(&np->fwnode, range->cpu_addr, | 
 | 				range->size); | 
 | 		if (err) | 
 | 			goto invalid_range; | 
 | 		port = pci_address_to_pio(range->cpu_addr); | 
 | 		if (port == (unsigned long)-1) { | 
 | 			err = -EINVAL; | 
 | 			goto invalid_range; | 
 | 		} | 
 | 		res->start = port; | 
 | 	} else { | 
 | 		if ((sizeof(resource_size_t) < 8) && | 
 | 		    upper_32_bits(range->cpu_addr)) { | 
 | 			err = -EINVAL; | 
 | 			goto invalid_range; | 
 | 		} | 
 |  | 
 | 		res->start = range->cpu_addr; | 
 | 	} | 
 | 	res->end = res->start + range->size - 1; | 
 | 	return 0; | 
 |  | 
 | invalid_range: | 
 | 	res->start = (resource_size_t)OF_BAD_ADDR; | 
 | 	res->end = (resource_size_t)OF_BAD_ADDR; | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(of_pci_range_to_resource); | 
 |  | 
 | /* | 
 |  * ISA bus specific translator | 
 |  */ | 
 |  | 
 | static int of_bus_isa_match(struct device_node *np) | 
 | { | 
 | 	return of_node_name_eq(np, "isa"); | 
 | } | 
 |  | 
 | static void of_bus_isa_count_cells(struct device_node *child, | 
 | 				   int *addrc, int *sizec) | 
 | { | 
 | 	if (addrc) | 
 | 		*addrc = 2; | 
 | 	if (sizec) | 
 | 		*sizec = 1; | 
 | } | 
 |  | 
 | static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, | 
 | 		int pna) | 
 | { | 
 | 	u64 cp, s, da; | 
 |  | 
 | 	/* Check address type match */ | 
 | 	if ((addr[0] ^ range[0]) & cpu_to_be32(1)) | 
 | 		return OF_BAD_ADDR; | 
 |  | 
 | 	/* Read address values, skipping high cell */ | 
 | 	cp = of_read_number(range + 1, na - 1); | 
 | 	s  = of_read_number(range + na + pna, ns); | 
 | 	da = of_read_number(addr + 1, na - 1); | 
 |  | 
 | 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); | 
 |  | 
 | 	if (da < cp || da >= (cp + s)) | 
 | 		return OF_BAD_ADDR; | 
 | 	return da - cp; | 
 | } | 
 |  | 
 | static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) | 
 | { | 
 | 	return of_bus_default_translate(addr + 1, offset, na - 1); | 
 | } | 
 |  | 
 | static unsigned int of_bus_isa_get_flags(const __be32 *addr) | 
 | { | 
 | 	unsigned int flags = 0; | 
 | 	u32 w = be32_to_cpup(addr); | 
 |  | 
 | 	if (w & 1) | 
 | 		flags |= IORESOURCE_IO; | 
 | 	else | 
 | 		flags |= IORESOURCE_MEM; | 
 | 	return flags; | 
 | } | 
 |  | 
 | /* | 
 |  * Array of bus specific translators | 
 |  */ | 
 |  | 
 | static struct of_bus of_busses[] = { | 
 | #ifdef CONFIG_PCI | 
 | 	/* PCI */ | 
 | 	{ | 
 | 		.name = "pci", | 
 | 		.addresses = "assigned-addresses", | 
 | 		.match = of_bus_pci_match, | 
 | 		.count_cells = of_bus_pci_count_cells, | 
 | 		.map = of_bus_pci_map, | 
 | 		.translate = of_bus_pci_translate, | 
 | 		.has_flags = true, | 
 | 		.get_flags = of_bus_pci_get_flags, | 
 | 	}, | 
 | #endif /* CONFIG_PCI */ | 
 | 	/* ISA */ | 
 | 	{ | 
 | 		.name = "isa", | 
 | 		.addresses = "reg", | 
 | 		.match = of_bus_isa_match, | 
 | 		.count_cells = of_bus_isa_count_cells, | 
 | 		.map = of_bus_isa_map, | 
 | 		.translate = of_bus_isa_translate, | 
 | 		.has_flags = true, | 
 | 		.get_flags = of_bus_isa_get_flags, | 
 | 	}, | 
 | 	/* Default */ | 
 | 	{ | 
 | 		.name = "default", | 
 | 		.addresses = "reg", | 
 | 		.match = NULL, | 
 | 		.count_cells = of_bus_default_count_cells, | 
 | 		.map = of_bus_default_map, | 
 | 		.translate = of_bus_default_translate, | 
 | 		.get_flags = of_bus_default_get_flags, | 
 | 	}, | 
 | }; | 
 |  | 
 | static struct of_bus *of_match_bus(struct device_node *np) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(of_busses); i++) | 
 | 		if (!of_busses[i].match || of_busses[i].match(np)) | 
 | 			return &of_busses[i]; | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int of_empty_ranges_quirk(struct device_node *np) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_PPC)) { | 
 | 		/* To save cycles, we cache the result for global "Mac" setting */ | 
 | 		static int quirk_state = -1; | 
 |  | 
 | 		/* PA-SEMI sdc DT bug */ | 
 | 		if (of_device_is_compatible(np, "1682m-sdc")) | 
 | 			return true; | 
 |  | 
 | 		/* Make quirk cached */ | 
 | 		if (quirk_state < 0) | 
 | 			quirk_state = | 
 | 				of_machine_is_compatible("Power Macintosh") || | 
 | 				of_machine_is_compatible("MacRISC"); | 
 | 		return quirk_state; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int of_translate_one(struct device_node *parent, struct of_bus *bus, | 
 | 			    struct of_bus *pbus, __be32 *addr, | 
 | 			    int na, int ns, int pna, const char *rprop) | 
 | { | 
 | 	const __be32 *ranges; | 
 | 	unsigned int rlen; | 
 | 	int rone; | 
 | 	u64 offset = OF_BAD_ADDR; | 
 |  | 
 | 	/* | 
 | 	 * Normally, an absence of a "ranges" property means we are | 
 | 	 * crossing a non-translatable boundary, and thus the addresses | 
 | 	 * below the current cannot be converted to CPU physical ones. | 
 | 	 * Unfortunately, while this is very clear in the spec, it's not | 
 | 	 * what Apple understood, and they do have things like /uni-n or | 
 | 	 * /ht nodes with no "ranges" property and a lot of perfectly | 
 | 	 * useable mapped devices below them. Thus we treat the absence of | 
 | 	 * "ranges" as equivalent to an empty "ranges" property which means | 
 | 	 * a 1:1 translation at that level. It's up to the caller not to try | 
 | 	 * to translate addresses that aren't supposed to be translated in | 
 | 	 * the first place. --BenH. | 
 | 	 * | 
 | 	 * As far as we know, this damage only exists on Apple machines, so | 
 | 	 * This code is only enabled on powerpc. --gcl | 
 | 	 * | 
 | 	 * This quirk also applies for 'dma-ranges' which frequently exist in | 
 | 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH | 
 | 	 */ | 
 | 	ranges = of_get_property(parent, rprop, &rlen); | 
 | 	if (ranges == NULL && !of_empty_ranges_quirk(parent) && | 
 | 	    strcmp(rprop, "dma-ranges")) { | 
 | 		pr_debug("no ranges; cannot translate\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	if (ranges == NULL || rlen == 0) { | 
 | 		offset = of_read_number(addr, na); | 
 | 		memset(addr, 0, pna * 4); | 
 | 		pr_debug("empty ranges; 1:1 translation\n"); | 
 | 		goto finish; | 
 | 	} | 
 |  | 
 | 	pr_debug("walking ranges...\n"); | 
 |  | 
 | 	/* Now walk through the ranges */ | 
 | 	rlen /= 4; | 
 | 	rone = na + pna + ns; | 
 | 	for (; rlen >= rone; rlen -= rone, ranges += rone) { | 
 | 		offset = bus->map(addr, ranges, na, ns, pna); | 
 | 		if (offset != OF_BAD_ADDR) | 
 | 			break; | 
 | 	} | 
 | 	if (offset == OF_BAD_ADDR) { | 
 | 		pr_debug("not found !\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	memcpy(addr, ranges + na, 4 * pna); | 
 |  | 
 |  finish: | 
 | 	of_dump_addr("parent translation for:", addr, pna); | 
 | 	pr_debug("with offset: %llx\n", offset); | 
 |  | 
 | 	/* Translate it into parent bus space */ | 
 | 	return pbus->translate(addr, offset, pna); | 
 | } | 
 |  | 
 | /* | 
 |  * Translate an address from the device-tree into a CPU physical address, | 
 |  * this walks up the tree and applies the various bus mappings on the | 
 |  * way. | 
 |  * | 
 |  * Note: We consider that crossing any level with #size-cells == 0 to mean | 
 |  * that translation is impossible (that is we are not dealing with a value | 
 |  * that can be mapped to a cpu physical address). This is not really specified | 
 |  * that way, but this is traditionally the way IBM at least do things | 
 |  * | 
 |  * Whenever the translation fails, the *host pointer will be set to the | 
 |  * device that had registered logical PIO mapping, and the return code is | 
 |  * relative to that node. | 
 |  */ | 
 | static u64 __of_translate_address(struct device_node *dev, | 
 | 				  struct device_node *(*get_parent)(const struct device_node *), | 
 | 				  const __be32 *in_addr, const char *rprop, | 
 | 				  struct device_node **host) | 
 | { | 
 | 	struct device_node *parent = NULL; | 
 | 	struct of_bus *bus, *pbus; | 
 | 	__be32 addr[OF_MAX_ADDR_CELLS]; | 
 | 	int na, ns, pna, pns; | 
 | 	u64 result = OF_BAD_ADDR; | 
 |  | 
 | 	pr_debug("** translation for device %pOF **\n", dev); | 
 |  | 
 | 	/* Increase refcount at current level */ | 
 | 	of_node_get(dev); | 
 |  | 
 | 	*host = NULL; | 
 | 	/* Get parent & match bus type */ | 
 | 	parent = get_parent(dev); | 
 | 	if (parent == NULL) | 
 | 		goto bail; | 
 | 	bus = of_match_bus(parent); | 
 |  | 
 | 	/* Count address cells & copy address locally */ | 
 | 	bus->count_cells(dev, &na, &ns); | 
 | 	if (!OF_CHECK_COUNTS(na, ns)) { | 
 | 		pr_debug("Bad cell count for %pOF\n", dev); | 
 | 		goto bail; | 
 | 	} | 
 | 	memcpy(addr, in_addr, na * 4); | 
 |  | 
 | 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", | 
 | 	    bus->name, na, ns, parent); | 
 | 	of_dump_addr("translating address:", addr, na); | 
 |  | 
 | 	/* Translate */ | 
 | 	for (;;) { | 
 | 		struct logic_pio_hwaddr *iorange; | 
 |  | 
 | 		/* Switch to parent bus */ | 
 | 		of_node_put(dev); | 
 | 		dev = parent; | 
 | 		parent = get_parent(dev); | 
 |  | 
 | 		/* If root, we have finished */ | 
 | 		if (parent == NULL) { | 
 | 			pr_debug("reached root node\n"); | 
 | 			result = of_read_number(addr, na); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * For indirectIO device which has no ranges property, get | 
 | 		 * the address from reg directly. | 
 | 		 */ | 
 | 		iorange = find_io_range_by_fwnode(&dev->fwnode); | 
 | 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { | 
 | 			result = of_read_number(addr + 1, na - 1); | 
 | 			pr_debug("indirectIO matched(%pOF) 0x%llx\n", | 
 | 				 dev, result); | 
 | 			*host = of_node_get(dev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Get new parent bus and counts */ | 
 | 		pbus = of_match_bus(parent); | 
 | 		pbus->count_cells(dev, &pna, &pns); | 
 | 		if (!OF_CHECK_COUNTS(pna, pns)) { | 
 | 			pr_err("Bad cell count for %pOF\n", dev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", | 
 | 		    pbus->name, pna, pns, parent); | 
 |  | 
 | 		/* Apply bus translation */ | 
 | 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) | 
 | 			break; | 
 |  | 
 | 		/* Complete the move up one level */ | 
 | 		na = pna; | 
 | 		ns = pns; | 
 | 		bus = pbus; | 
 |  | 
 | 		of_dump_addr("one level translation:", addr, na); | 
 | 	} | 
 |  bail: | 
 | 	of_node_put(parent); | 
 | 	of_node_put(dev); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) | 
 | { | 
 | 	struct device_node *host; | 
 | 	u64 ret; | 
 |  | 
 | 	ret = __of_translate_address(dev, of_get_parent, | 
 | 				     in_addr, "ranges", &host); | 
 | 	if (host) { | 
 | 		of_node_put(host); | 
 | 		return OF_BAD_ADDR; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(of_translate_address); | 
 |  | 
 | #ifdef CONFIG_HAS_DMA | 
 | struct device_node *__of_get_dma_parent(const struct device_node *np) | 
 | { | 
 | 	struct of_phandle_args args; | 
 | 	int ret, index; | 
 |  | 
 | 	index = of_property_match_string(np, "interconnect-names", "dma-mem"); | 
 | 	if (index < 0) | 
 | 		return of_get_parent(np); | 
 |  | 
 | 	ret = of_parse_phandle_with_args(np, "interconnects", | 
 | 					 "#interconnect-cells", | 
 | 					 index, &args); | 
 | 	if (ret < 0) | 
 | 		return of_get_parent(np); | 
 |  | 
 | 	return of_node_get(args.np); | 
 | } | 
 | #endif | 
 |  | 
 | static struct device_node *of_get_next_dma_parent(struct device_node *np) | 
 | { | 
 | 	struct device_node *parent; | 
 |  | 
 | 	parent = __of_get_dma_parent(np); | 
 | 	of_node_put(np); | 
 |  | 
 | 	return parent; | 
 | } | 
 |  | 
 | u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) | 
 | { | 
 | 	struct device_node *host; | 
 | 	u64 ret; | 
 |  | 
 | 	ret = __of_translate_address(dev, __of_get_dma_parent, | 
 | 				     in_addr, "dma-ranges", &host); | 
 |  | 
 | 	if (host) { | 
 | 		of_node_put(host); | 
 | 		return OF_BAD_ADDR; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(of_translate_dma_address); | 
 |  | 
 | const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, | 
 | 			       u64 *size, unsigned int *flags) | 
 | { | 
 | 	const __be32 *prop; | 
 | 	unsigned int psize; | 
 | 	struct device_node *parent; | 
 | 	struct of_bus *bus; | 
 | 	int onesize, i, na, ns; | 
 |  | 
 | 	/* Get parent & match bus type */ | 
 | 	parent = of_get_parent(dev); | 
 | 	if (parent == NULL) | 
 | 		return NULL; | 
 | 	bus = of_match_bus(parent); | 
 | 	if (strcmp(bus->name, "pci") && (bar_no >= 0)) { | 
 | 		of_node_put(parent); | 
 | 		return NULL; | 
 | 	} | 
 | 	bus->count_cells(dev, &na, &ns); | 
 | 	of_node_put(parent); | 
 | 	if (!OF_CHECK_ADDR_COUNT(na)) | 
 | 		return NULL; | 
 |  | 
 | 	/* Get "reg" or "assigned-addresses" property */ | 
 | 	prop = of_get_property(dev, bus->addresses, &psize); | 
 | 	if (prop == NULL) | 
 | 		return NULL; | 
 | 	psize /= 4; | 
 |  | 
 | 	onesize = na + ns; | 
 | 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { | 
 | 		u32 val = be32_to_cpu(prop[0]); | 
 | 		/* PCI bus matches on BAR number instead of index */ | 
 | 		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || | 
 | 		    ((index >= 0) && (i == index))) { | 
 | 			if (size) | 
 | 				*size = of_read_number(prop + na, ns); | 
 | 			if (flags) | 
 | 				*flags = bus->get_flags(prop); | 
 | 			return prop; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(__of_get_address); | 
 |  | 
 | static int parser_init(struct of_pci_range_parser *parser, | 
 | 			struct device_node *node, const char *name) | 
 | { | 
 | 	int rlen; | 
 |  | 
 | 	parser->node = node; | 
 | 	parser->pna = of_n_addr_cells(node); | 
 | 	parser->na = of_bus_n_addr_cells(node); | 
 | 	parser->ns = of_bus_n_size_cells(node); | 
 | 	parser->dma = !strcmp(name, "dma-ranges"); | 
 | 	parser->bus = of_match_bus(node); | 
 |  | 
 | 	parser->range = of_get_property(node, name, &rlen); | 
 | 	if (parser->range == NULL) | 
 | 		return -ENOENT; | 
 |  | 
 | 	parser->end = parser->range + rlen / sizeof(__be32); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int of_pci_range_parser_init(struct of_pci_range_parser *parser, | 
 | 				struct device_node *node) | 
 | { | 
 | 	return parser_init(parser, node, "ranges"); | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_pci_range_parser_init); | 
 |  | 
 | int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, | 
 | 				struct device_node *node) | 
 | { | 
 | 	return parser_init(parser, node, "dma-ranges"); | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); | 
 | #define of_dma_range_parser_init of_pci_dma_range_parser_init | 
 |  | 
 | struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, | 
 | 						struct of_pci_range *range) | 
 | { | 
 | 	int na = parser->na; | 
 | 	int ns = parser->ns; | 
 | 	int np = parser->pna + na + ns; | 
 | 	int busflag_na = 0; | 
 |  | 
 | 	if (!range) | 
 | 		return NULL; | 
 |  | 
 | 	if (!parser->range || parser->range + np > parser->end) | 
 | 		return NULL; | 
 |  | 
 | 	range->flags = parser->bus->get_flags(parser->range); | 
 |  | 
 | 	/* A extra cell for resource flags */ | 
 | 	if (parser->bus->has_flags) | 
 | 		busflag_na = 1; | 
 |  | 
 | 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); | 
 |  | 
 | 	if (parser->dma) | 
 | 		range->cpu_addr = of_translate_dma_address(parser->node, | 
 | 				parser->range + na); | 
 | 	else | 
 | 		range->cpu_addr = of_translate_address(parser->node, | 
 | 				parser->range + na); | 
 | 	range->size = of_read_number(parser->range + parser->pna + na, ns); | 
 |  | 
 | 	parser->range += np; | 
 |  | 
 | 	/* Now consume following elements while they are contiguous */ | 
 | 	while (parser->range + np <= parser->end) { | 
 | 		u32 flags = 0; | 
 | 		u64 bus_addr, cpu_addr, size; | 
 |  | 
 | 		flags = parser->bus->get_flags(parser->range); | 
 | 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); | 
 | 		if (parser->dma) | 
 | 			cpu_addr = of_translate_dma_address(parser->node, | 
 | 					parser->range + na); | 
 | 		else | 
 | 			cpu_addr = of_translate_address(parser->node, | 
 | 					parser->range + na); | 
 | 		size = of_read_number(parser->range + parser->pna + na, ns); | 
 |  | 
 | 		if (flags != range->flags) | 
 | 			break; | 
 | 		if (bus_addr != range->bus_addr + range->size || | 
 | 		    cpu_addr != range->cpu_addr + range->size) | 
 | 			break; | 
 |  | 
 | 		range->size += size; | 
 | 		parser->range += np; | 
 | 	} | 
 |  | 
 | 	return range; | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_pci_range_parser_one); | 
 |  | 
 | static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, | 
 | 			u64 size) | 
 | { | 
 | 	u64 taddr; | 
 | 	unsigned long port; | 
 | 	struct device_node *host; | 
 |  | 
 | 	taddr = __of_translate_address(dev, of_get_parent, | 
 | 				       in_addr, "ranges", &host); | 
 | 	if (host) { | 
 | 		/* host-specific port access */ | 
 | 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); | 
 | 		of_node_put(host); | 
 | 	} else { | 
 | 		/* memory-mapped I/O range */ | 
 | 		port = pci_address_to_pio(taddr); | 
 | 	} | 
 |  | 
 | 	if (port == (unsigned long)-1) | 
 | 		return OF_BAD_ADDR; | 
 |  | 
 | 	return port; | 
 | } | 
 |  | 
 | static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, | 
 | 		struct resource *r) | 
 | { | 
 | 	u64 taddr; | 
 | 	const __be32	*addrp; | 
 | 	u64		size; | 
 | 	unsigned int	flags; | 
 | 	const char	*name = NULL; | 
 |  | 
 | 	addrp = __of_get_address(dev, index, bar_no, &size, &flags); | 
 | 	if (addrp == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Get optional "reg-names" property to add a name to a resource */ | 
 | 	if (index >= 0) | 
 | 		of_property_read_string_index(dev, "reg-names",	index, &name); | 
 |  | 
 | 	if (flags & IORESOURCE_MEM) | 
 | 		taddr = of_translate_address(dev, addrp); | 
 | 	else if (flags & IORESOURCE_IO) | 
 | 		taddr = of_translate_ioport(dev, addrp, size); | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (taddr == OF_BAD_ADDR) | 
 | 		return -EINVAL; | 
 | 	memset(r, 0, sizeof(struct resource)); | 
 |  | 
 | 	if (of_mmio_is_nonposted(dev)) | 
 | 		flags |= IORESOURCE_MEM_NONPOSTED; | 
 |  | 
 | 	r->start = taddr; | 
 | 	r->end = taddr + size - 1; | 
 | 	r->flags = flags; | 
 | 	r->name = name ? name : dev->full_name; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * of_address_to_resource - Translate device tree address and return as resource | 
 |  * @dev:	Caller's Device Node | 
 |  * @index:	Index into the array | 
 |  * @r:		Pointer to resource array | 
 |  * | 
 |  * Note that if your address is a PIO address, the conversion will fail if | 
 |  * the physical address can't be internally converted to an IO token with | 
 |  * pci_address_to_pio(), that is because it's either called too early or it | 
 |  * can't be matched to any host bridge IO space | 
 |  */ | 
 | int of_address_to_resource(struct device_node *dev, int index, | 
 | 			   struct resource *r) | 
 | { | 
 | 	return __of_address_to_resource(dev, index, -1, r); | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_address_to_resource); | 
 |  | 
 | /** | 
 |  * of_iomap - Maps the memory mapped IO for a given device_node | 
 |  * @np:		the device whose io range will be mapped | 
 |  * @index:	index of the io range | 
 |  * | 
 |  * Returns a pointer to the mapped memory | 
 |  */ | 
 | void __iomem *of_iomap(struct device_node *np, int index) | 
 | { | 
 | 	struct resource res; | 
 |  | 
 | 	if (of_address_to_resource(np, index, &res)) | 
 | 		return NULL; | 
 |  | 
 | 	if (res.flags & IORESOURCE_MEM_NONPOSTED) | 
 | 		return ioremap_np(res.start, resource_size(&res)); | 
 | 	else | 
 | 		return ioremap(res.start, resource_size(&res)); | 
 | } | 
 | EXPORT_SYMBOL(of_iomap); | 
 |  | 
 | /* | 
 |  * of_io_request_and_map - Requests a resource and maps the memory mapped IO | 
 |  *			   for a given device_node | 
 |  * @device:	the device whose io range will be mapped | 
 |  * @index:	index of the io range | 
 |  * @name:	name "override" for the memory region request or NULL | 
 |  * | 
 |  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded | 
 |  * error code on failure. Usage example: | 
 |  * | 
 |  *	base = of_io_request_and_map(node, 0, "foo"); | 
 |  *	if (IS_ERR(base)) | 
 |  *		return PTR_ERR(base); | 
 |  */ | 
 | void __iomem *of_io_request_and_map(struct device_node *np, int index, | 
 | 				    const char *name) | 
 | { | 
 | 	struct resource res; | 
 | 	void __iomem *mem; | 
 |  | 
 | 	if (of_address_to_resource(np, index, &res)) | 
 | 		return IOMEM_ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (!name) | 
 | 		name = res.name; | 
 | 	if (!request_mem_region(res.start, resource_size(&res), name)) | 
 | 		return IOMEM_ERR_PTR(-EBUSY); | 
 |  | 
 | 	if (res.flags & IORESOURCE_MEM_NONPOSTED) | 
 | 		mem = ioremap_np(res.start, resource_size(&res)); | 
 | 	else | 
 | 		mem = ioremap(res.start, resource_size(&res)); | 
 |  | 
 | 	if (!mem) { | 
 | 		release_mem_region(res.start, resource_size(&res)); | 
 | 		return IOMEM_ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	return mem; | 
 | } | 
 | EXPORT_SYMBOL(of_io_request_and_map); | 
 |  | 
 | #ifdef CONFIG_HAS_DMA | 
 | /** | 
 |  * of_dma_get_range - Get DMA range info and put it into a map array | 
 |  * @np:		device node to get DMA range info | 
 |  * @map:	dma range structure to return | 
 |  * | 
 |  * Look in bottom up direction for the first "dma-ranges" property | 
 |  * and parse it.  Put the information into a DMA offset map array. | 
 |  * | 
 |  * dma-ranges format: | 
 |  *	DMA addr (dma_addr)	: naddr cells | 
 |  *	CPU addr (phys_addr_t)	: pna cells | 
 |  *	size			: nsize cells | 
 |  * | 
 |  * It returns -ENODEV if "dma-ranges" property was not found for this | 
 |  * device in the DT. | 
 |  */ | 
 | int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) | 
 | { | 
 | 	struct device_node *node = of_node_get(np); | 
 | 	const __be32 *ranges = NULL; | 
 | 	bool found_dma_ranges = false; | 
 | 	struct of_range_parser parser; | 
 | 	struct of_range range; | 
 | 	struct bus_dma_region *r; | 
 | 	int len, num_ranges = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (node) { | 
 | 		ranges = of_get_property(node, "dma-ranges", &len); | 
 |  | 
 | 		/* Ignore empty ranges, they imply no translation required */ | 
 | 		if (ranges && len > 0) | 
 | 			break; | 
 |  | 
 | 		/* Once we find 'dma-ranges', then a missing one is an error */ | 
 | 		if (found_dma_ranges && !ranges) { | 
 | 			ret = -ENODEV; | 
 | 			goto out; | 
 | 		} | 
 | 		found_dma_ranges = true; | 
 |  | 
 | 		node = of_get_next_dma_parent(node); | 
 | 	} | 
 |  | 
 | 	if (!node || !ranges) { | 
 | 		pr_debug("no dma-ranges found for node(%pOF)\n", np); | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	of_dma_range_parser_init(&parser, node); | 
 | 	for_each_of_range(&parser, &range) { | 
 | 		if (range.cpu_addr == OF_BAD_ADDR) { | 
 | 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", | 
 | 			       range.bus_addr, node); | 
 | 			continue; | 
 | 		} | 
 | 		num_ranges++; | 
 | 	} | 
 |  | 
 | 	if (!num_ranges) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); | 
 | 	if (!r) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Record all info in the generic DMA ranges array for struct device, | 
 | 	 * returning an error if we don't find any parsable ranges. | 
 | 	 */ | 
 | 	*map = r; | 
 | 	of_dma_range_parser_init(&parser, node); | 
 | 	for_each_of_range(&parser, &range) { | 
 | 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", | 
 | 			 range.bus_addr, range.cpu_addr, range.size); | 
 | 		if (range.cpu_addr == OF_BAD_ADDR) | 
 | 			continue; | 
 | 		r->cpu_start = range.cpu_addr; | 
 | 		r->dma_start = range.bus_addr; | 
 | 		r->size = range.size; | 
 | 		r->offset = range.cpu_addr - range.bus_addr; | 
 | 		r++; | 
 | 	} | 
 | out: | 
 | 	of_node_put(node); | 
 | 	return ret; | 
 | } | 
 | #endif /* CONFIG_HAS_DMA */ | 
 |  | 
 | /** | 
 |  * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA | 
 |  * @np: The node to start searching from or NULL to start from the root | 
 |  * | 
 |  * Gets the highest CPU physical address that is addressable by all DMA masters | 
 |  * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no | 
 |  * DMA constrained device is found, it returns PHYS_ADDR_MAX. | 
 |  */ | 
 | phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) | 
 | { | 
 | 	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; | 
 | 	struct of_range_parser parser; | 
 | 	phys_addr_t subtree_max_addr; | 
 | 	struct device_node *child; | 
 | 	struct of_range range; | 
 | 	const __be32 *ranges; | 
 | 	u64 cpu_end = 0; | 
 | 	int len; | 
 |  | 
 | 	if (!np) | 
 | 		np = of_root; | 
 |  | 
 | 	ranges = of_get_property(np, "dma-ranges", &len); | 
 | 	if (ranges && len) { | 
 | 		of_dma_range_parser_init(&parser, np); | 
 | 		for_each_of_range(&parser, &range) | 
 | 			if (range.cpu_addr + range.size > cpu_end) | 
 | 				cpu_end = range.cpu_addr + range.size - 1; | 
 |  | 
 | 		if (max_cpu_addr > cpu_end) | 
 | 			max_cpu_addr = cpu_end; | 
 | 	} | 
 |  | 
 | 	for_each_available_child_of_node(np, child) { | 
 | 		subtree_max_addr = of_dma_get_max_cpu_address(child); | 
 | 		if (max_cpu_addr > subtree_max_addr) | 
 | 			max_cpu_addr = subtree_max_addr; | 
 | 	} | 
 |  | 
 | 	return max_cpu_addr; | 
 | } | 
 |  | 
 | /** | 
 |  * of_dma_is_coherent - Check if device is coherent | 
 |  * @np:	device node | 
 |  * | 
 |  * It returns true if "dma-coherent" property was found | 
 |  * for this device in the DT, or if DMA is coherent by | 
 |  * default for OF devices on the current platform and no | 
 |  * "dma-noncoherent" property was found for this device. | 
 |  */ | 
 | bool of_dma_is_coherent(struct device_node *np) | 
 | { | 
 | 	struct device_node *node; | 
 | 	bool is_coherent = IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT); | 
 |  | 
 | 	node = of_node_get(np); | 
 |  | 
 | 	while (node) { | 
 | 		if (of_property_read_bool(node, "dma-coherent")) { | 
 | 			is_coherent = true; | 
 | 			break; | 
 | 		} | 
 | 		if (of_property_read_bool(node, "dma-noncoherent")) { | 
 | 			is_coherent = false; | 
 | 			break; | 
 | 		} | 
 | 		node = of_get_next_dma_parent(node); | 
 | 	} | 
 | 	of_node_put(node); | 
 | 	return is_coherent; | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_dma_is_coherent); | 
 |  | 
 | /** | 
 |  * of_mmio_is_nonposted - Check if device uses non-posted MMIO | 
 |  * @np:	device node | 
 |  * | 
 |  * Returns true if the "nonposted-mmio" property was found for | 
 |  * the device's bus. | 
 |  * | 
 |  * This is currently only enabled on builds that support Apple ARM devices, as | 
 |  * an optimization. | 
 |  */ | 
 | static bool of_mmio_is_nonposted(struct device_node *np) | 
 | { | 
 | 	struct device_node *parent; | 
 | 	bool nonposted; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_ARCH_APPLE)) | 
 | 		return false; | 
 |  | 
 | 	parent = of_get_parent(np); | 
 | 	if (!parent) | 
 | 		return false; | 
 |  | 
 | 	nonposted = of_property_read_bool(parent, "nonposted-mmio"); | 
 |  | 
 | 	of_node_put(parent); | 
 | 	return nonposted; | 
 | } |