|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * AMD Memory Encryption Support | 
|  | * | 
|  | * Copyright (C) 2016 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Author: Tom Lendacky <thomas.lendacky@amd.com> | 
|  | */ | 
|  |  | 
|  | #define DISABLE_BRANCH_PROFILING | 
|  |  | 
|  | /* | 
|  | * Since we're dealing with identity mappings, physical and virtual | 
|  | * addresses are the same, so override these defines which are ultimately | 
|  | * used by the headers in misc.h. | 
|  | */ | 
|  | #define __pa(x)  ((unsigned long)(x)) | 
|  | #define __va(x)  ((void *)((unsigned long)(x))) | 
|  |  | 
|  | /* | 
|  | * Special hack: we have to be careful, because no indirections are | 
|  | * allowed here, and paravirt_ops is a kind of one. As it will only run in | 
|  | * baremetal anyway, we just keep it from happening. (This list needs to | 
|  | * be extended when new paravirt and debugging variants are added.) | 
|  | */ | 
|  | #undef CONFIG_PARAVIRT | 
|  | #undef CONFIG_PARAVIRT_XXL | 
|  | #undef CONFIG_PARAVIRT_SPINLOCKS | 
|  |  | 
|  | /* | 
|  | * This code runs before CPU feature bits are set. By default, the | 
|  | * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if | 
|  | * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 | 
|  | * is provided to handle this situation and, instead, use a variable that | 
|  | * has been set by the early boot code. | 
|  | */ | 
|  | #define USE_EARLY_PGTABLE_L5 | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mem_encrypt.h> | 
|  | #include <linux/cc_platform.h> | 
|  |  | 
|  | #include <asm/setup.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/cmdline.h> | 
|  | #include <asm/coco.h> | 
|  | #include <asm/sev.h> | 
|  |  | 
|  | #include "mm_internal.h" | 
|  |  | 
|  | #define PGD_FLAGS		_KERNPG_TABLE_NOENC | 
|  | #define P4D_FLAGS		_KERNPG_TABLE_NOENC | 
|  | #define PUD_FLAGS		_KERNPG_TABLE_NOENC | 
|  | #define PMD_FLAGS		_KERNPG_TABLE_NOENC | 
|  |  | 
|  | #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) | 
|  |  | 
|  | #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE | 
|  | #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ | 
|  | (_PAGE_PAT_LARGE | _PAGE_PWT)) | 
|  |  | 
|  | #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC) | 
|  |  | 
|  | #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) | 
|  |  | 
|  | #define PTE_FLAGS_DEC		PTE_FLAGS | 
|  | #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ | 
|  | (_PAGE_PAT | _PAGE_PWT)) | 
|  |  | 
|  | #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC) | 
|  |  | 
|  | struct sme_populate_pgd_data { | 
|  | void    *pgtable_area; | 
|  | pgd_t   *pgd; | 
|  |  | 
|  | pmdval_t pmd_flags; | 
|  | pteval_t pte_flags; | 
|  | unsigned long paddr; | 
|  |  | 
|  | unsigned long vaddr; | 
|  | unsigned long vaddr_end; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This work area lives in the .init.scratch section, which lives outside of | 
|  | * the kernel proper. It is sized to hold the intermediate copy buffer and | 
|  | * more than enough pagetable pages. | 
|  | * | 
|  | * By using this section, the kernel can be encrypted in place and it | 
|  | * avoids any possibility of boot parameters or initramfs images being | 
|  | * placed such that the in-place encryption logic overwrites them.  This | 
|  | * section is 2MB aligned to allow for simple pagetable setup using only | 
|  | * PMD entries (see vmlinux.lds.S). | 
|  | */ | 
|  | static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch"); | 
|  |  | 
|  | static char sme_cmdline_arg[] __initdata = "mem_encrypt"; | 
|  | static char sme_cmdline_on[]  __initdata = "on"; | 
|  | static char sme_cmdline_off[] __initdata = "off"; | 
|  |  | 
|  | static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | unsigned long pgd_start, pgd_end, pgd_size; | 
|  | pgd_t *pgd_p; | 
|  |  | 
|  | pgd_start = ppd->vaddr & PGDIR_MASK; | 
|  | pgd_end = ppd->vaddr_end & PGDIR_MASK; | 
|  |  | 
|  | pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); | 
|  |  | 
|  | pgd_p = ppd->pgd + pgd_index(ppd->vaddr); | 
|  |  | 
|  | memset(pgd_p, 0, pgd_size); | 
|  | } | 
|  |  | 
|  | static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd = ppd->pgd + pgd_index(ppd->vaddr); | 
|  | if (pgd_none(*pgd)) { | 
|  | p4d = ppd->pgtable_area; | 
|  | memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); | 
|  | ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; | 
|  | set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); | 
|  | } | 
|  |  | 
|  | p4d = p4d_offset(pgd, ppd->vaddr); | 
|  | if (p4d_none(*p4d)) { | 
|  | pud = ppd->pgtable_area; | 
|  | memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); | 
|  | ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; | 
|  | set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); | 
|  | } | 
|  |  | 
|  | pud = pud_offset(p4d, ppd->vaddr); | 
|  | if (pud_none(*pud)) { | 
|  | pmd = ppd->pgtable_area; | 
|  | memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); | 
|  | ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; | 
|  | set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); | 
|  | } | 
|  |  | 
|  | if (pud_large(*pud)) | 
|  | return NULL; | 
|  |  | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pud = sme_prepare_pgd(ppd); | 
|  | if (!pud) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, ppd->vaddr); | 
|  | if (pmd_large(*pmd)) | 
|  | return; | 
|  |  | 
|  | set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); | 
|  | } | 
|  |  | 
|  | static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | pud = sme_prepare_pgd(ppd); | 
|  | if (!pud) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, ppd->vaddr); | 
|  | if (pmd_none(*pmd)) { | 
|  | pte = ppd->pgtable_area; | 
|  | memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); | 
|  | ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; | 
|  | set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); | 
|  | } | 
|  |  | 
|  | if (pmd_large(*pmd)) | 
|  | return; | 
|  |  | 
|  | pte = pte_offset_map(pmd, ppd->vaddr); | 
|  | if (pte_none(*pte)) | 
|  | set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); | 
|  | } | 
|  |  | 
|  | static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | while (ppd->vaddr < ppd->vaddr_end) { | 
|  | sme_populate_pgd_large(ppd); | 
|  |  | 
|  | ppd->vaddr += PMD_PAGE_SIZE; | 
|  | ppd->paddr += PMD_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | while (ppd->vaddr < ppd->vaddr_end) { | 
|  | sme_populate_pgd(ppd); | 
|  |  | 
|  | ppd->vaddr += PAGE_SIZE; | 
|  | ppd->paddr += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, | 
|  | pmdval_t pmd_flags, pteval_t pte_flags) | 
|  | { | 
|  | unsigned long vaddr_end; | 
|  |  | 
|  | ppd->pmd_flags = pmd_flags; | 
|  | ppd->pte_flags = pte_flags; | 
|  |  | 
|  | /* Save original end value since we modify the struct value */ | 
|  | vaddr_end = ppd->vaddr_end; | 
|  |  | 
|  | /* If start is not 2MB aligned, create PTE entries */ | 
|  | ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); | 
|  | __sme_map_range_pte(ppd); | 
|  |  | 
|  | /* Create PMD entries */ | 
|  | ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; | 
|  | __sme_map_range_pmd(ppd); | 
|  |  | 
|  | /* If end is not 2MB aligned, create PTE entries */ | 
|  | ppd->vaddr_end = vaddr_end; | 
|  | __sme_map_range_pte(ppd); | 
|  | } | 
|  |  | 
|  | static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); | 
|  | } | 
|  |  | 
|  | static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); | 
|  | } | 
|  |  | 
|  | static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) | 
|  | { | 
|  | __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); | 
|  | } | 
|  |  | 
|  | static unsigned long __init sme_pgtable_calc(unsigned long len) | 
|  | { | 
|  | unsigned long entries = 0, tables = 0; | 
|  |  | 
|  | /* | 
|  | * Perform a relatively simplistic calculation of the pagetable | 
|  | * entries that are needed. Those mappings will be covered mostly | 
|  | * by 2MB PMD entries so we can conservatively calculate the required | 
|  | * number of P4D, PUD and PMD structures needed to perform the | 
|  | * mappings.  For mappings that are not 2MB aligned, PTE mappings | 
|  | * would be needed for the start and end portion of the address range | 
|  | * that fall outside of the 2MB alignment.  This results in, at most, | 
|  | * two extra pages to hold PTE entries for each range that is mapped. | 
|  | * Incrementing the count for each covers the case where the addresses | 
|  | * cross entries. | 
|  | */ | 
|  |  | 
|  | /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ | 
|  | if (PTRS_PER_P4D > 1) | 
|  | entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; | 
|  | entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; | 
|  | entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; | 
|  | entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; | 
|  |  | 
|  | /* | 
|  | * Now calculate the added pagetable structures needed to populate | 
|  | * the new pagetables. | 
|  | */ | 
|  |  | 
|  | if (PTRS_PER_P4D > 1) | 
|  | tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; | 
|  | tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; | 
|  | tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; | 
|  |  | 
|  | return entries + tables; | 
|  | } | 
|  |  | 
|  | void __init sme_encrypt_kernel(struct boot_params *bp) | 
|  | { | 
|  | unsigned long workarea_start, workarea_end, workarea_len; | 
|  | unsigned long execute_start, execute_end, execute_len; | 
|  | unsigned long kernel_start, kernel_end, kernel_len; | 
|  | unsigned long initrd_start, initrd_end, initrd_len; | 
|  | struct sme_populate_pgd_data ppd; | 
|  | unsigned long pgtable_area_len; | 
|  | unsigned long decrypted_base; | 
|  |  | 
|  | /* | 
|  | * This is early code, use an open coded check for SME instead of | 
|  | * using cc_platform_has(). This eliminates worries about removing | 
|  | * instrumentation or checking boot_cpu_data in the cc_platform_has() | 
|  | * function. | 
|  | */ | 
|  | if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Prepare for encrypting the kernel and initrd by building new | 
|  | * pagetables with the necessary attributes needed to encrypt the | 
|  | * kernel in place. | 
|  | * | 
|  | *   One range of virtual addresses will map the memory occupied | 
|  | *   by the kernel and initrd as encrypted. | 
|  | * | 
|  | *   Another range of virtual addresses will map the memory occupied | 
|  | *   by the kernel and initrd as decrypted and write-protected. | 
|  | * | 
|  | *     The use of write-protect attribute will prevent any of the | 
|  | *     memory from being cached. | 
|  | */ | 
|  |  | 
|  | /* Physical addresses gives us the identity mapped virtual addresses */ | 
|  | kernel_start = __pa_symbol(_text); | 
|  | kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); | 
|  | kernel_len = kernel_end - kernel_start; | 
|  |  | 
|  | initrd_start = 0; | 
|  | initrd_end = 0; | 
|  | initrd_len = 0; | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | initrd_len = (unsigned long)bp->hdr.ramdisk_size | | 
|  | ((unsigned long)bp->ext_ramdisk_size << 32); | 
|  | if (initrd_len) { | 
|  | initrd_start = (unsigned long)bp->hdr.ramdisk_image | | 
|  | ((unsigned long)bp->ext_ramdisk_image << 32); | 
|  | initrd_end = PAGE_ALIGN(initrd_start + initrd_len); | 
|  | initrd_len = initrd_end - initrd_start; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We're running identity mapped, so we must obtain the address to the | 
|  | * SME encryption workarea using rip-relative addressing. | 
|  | */ | 
|  | asm ("lea sme_workarea(%%rip), %0" | 
|  | : "=r" (workarea_start) | 
|  | : "p" (sme_workarea)); | 
|  |  | 
|  | /* | 
|  | * Calculate required number of workarea bytes needed: | 
|  | *   executable encryption area size: | 
|  | *     stack page (PAGE_SIZE) | 
|  | *     encryption routine page (PAGE_SIZE) | 
|  | *     intermediate copy buffer (PMD_PAGE_SIZE) | 
|  | *   pagetable structures for the encryption of the kernel | 
|  | *   pagetable structures for workarea (in case not currently mapped) | 
|  | */ | 
|  | execute_start = workarea_start; | 
|  | execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; | 
|  | execute_len = execute_end - execute_start; | 
|  |  | 
|  | /* | 
|  | * One PGD for both encrypted and decrypted mappings and a set of | 
|  | * PUDs and PMDs for each of the encrypted and decrypted mappings. | 
|  | */ | 
|  | pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; | 
|  | pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; | 
|  | if (initrd_len) | 
|  | pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; | 
|  |  | 
|  | /* PUDs and PMDs needed in the current pagetables for the workarea */ | 
|  | pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); | 
|  |  | 
|  | /* | 
|  | * The total workarea includes the executable encryption area and | 
|  | * the pagetable area. The start of the workarea is already 2MB | 
|  | * aligned, align the end of the workarea on a 2MB boundary so that | 
|  | * we don't try to create/allocate PTE entries from the workarea | 
|  | * before it is mapped. | 
|  | */ | 
|  | workarea_len = execute_len + pgtable_area_len; | 
|  | workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Set the address to the start of where newly created pagetable | 
|  | * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable | 
|  | * structures are created when the workarea is added to the current | 
|  | * pagetables and when the new encrypted and decrypted kernel | 
|  | * mappings are populated. | 
|  | */ | 
|  | ppd.pgtable_area = (void *)execute_end; | 
|  |  | 
|  | /* | 
|  | * Make sure the current pagetable structure has entries for | 
|  | * addressing the workarea. | 
|  | */ | 
|  | ppd.pgd = (pgd_t *)native_read_cr3_pa(); | 
|  | ppd.paddr = workarea_start; | 
|  | ppd.vaddr = workarea_start; | 
|  | ppd.vaddr_end = workarea_end; | 
|  | sme_map_range_decrypted(&ppd); | 
|  |  | 
|  | /* Flush the TLB - no globals so cr3 is enough */ | 
|  | native_write_cr3(__native_read_cr3()); | 
|  |  | 
|  | /* | 
|  | * A new pagetable structure is being built to allow for the kernel | 
|  | * and initrd to be encrypted. It starts with an empty PGD that will | 
|  | * then be populated with new PUDs and PMDs as the encrypted and | 
|  | * decrypted kernel mappings are created. | 
|  | */ | 
|  | ppd.pgd = ppd.pgtable_area; | 
|  | memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); | 
|  | ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; | 
|  |  | 
|  | /* | 
|  | * A different PGD index/entry must be used to get different | 
|  | * pagetable entries for the decrypted mapping. Choose the next | 
|  | * PGD index and convert it to a virtual address to be used as | 
|  | * the base of the mapping. | 
|  | */ | 
|  | decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); | 
|  | if (initrd_len) { | 
|  | unsigned long check_base; | 
|  |  | 
|  | check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); | 
|  | decrypted_base = max(decrypted_base, check_base); | 
|  | } | 
|  | decrypted_base <<= PGDIR_SHIFT; | 
|  |  | 
|  | /* Add encrypted kernel (identity) mappings */ | 
|  | ppd.paddr = kernel_start; | 
|  | ppd.vaddr = kernel_start; | 
|  | ppd.vaddr_end = kernel_end; | 
|  | sme_map_range_encrypted(&ppd); | 
|  |  | 
|  | /* Add decrypted, write-protected kernel (non-identity) mappings */ | 
|  | ppd.paddr = kernel_start; | 
|  | ppd.vaddr = kernel_start + decrypted_base; | 
|  | ppd.vaddr_end = kernel_end + decrypted_base; | 
|  | sme_map_range_decrypted_wp(&ppd); | 
|  |  | 
|  | if (initrd_len) { | 
|  | /* Add encrypted initrd (identity) mappings */ | 
|  | ppd.paddr = initrd_start; | 
|  | ppd.vaddr = initrd_start; | 
|  | ppd.vaddr_end = initrd_end; | 
|  | sme_map_range_encrypted(&ppd); | 
|  | /* | 
|  | * Add decrypted, write-protected initrd (non-identity) mappings | 
|  | */ | 
|  | ppd.paddr = initrd_start; | 
|  | ppd.vaddr = initrd_start + decrypted_base; | 
|  | ppd.vaddr_end = initrd_end + decrypted_base; | 
|  | sme_map_range_decrypted_wp(&ppd); | 
|  | } | 
|  |  | 
|  | /* Add decrypted workarea mappings to both kernel mappings */ | 
|  | ppd.paddr = workarea_start; | 
|  | ppd.vaddr = workarea_start; | 
|  | ppd.vaddr_end = workarea_end; | 
|  | sme_map_range_decrypted(&ppd); | 
|  |  | 
|  | ppd.paddr = workarea_start; | 
|  | ppd.vaddr = workarea_start + decrypted_base; | 
|  | ppd.vaddr_end = workarea_end + decrypted_base; | 
|  | sme_map_range_decrypted(&ppd); | 
|  |  | 
|  | /* Perform the encryption */ | 
|  | sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, | 
|  | kernel_len, workarea_start, (unsigned long)ppd.pgd); | 
|  |  | 
|  | if (initrd_len) | 
|  | sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, | 
|  | initrd_len, workarea_start, | 
|  | (unsigned long)ppd.pgd); | 
|  |  | 
|  | /* | 
|  | * At this point we are running encrypted.  Remove the mappings for | 
|  | * the decrypted areas - all that is needed for this is to remove | 
|  | * the PGD entry/entries. | 
|  | */ | 
|  | ppd.vaddr = kernel_start + decrypted_base; | 
|  | ppd.vaddr_end = kernel_end + decrypted_base; | 
|  | sme_clear_pgd(&ppd); | 
|  |  | 
|  | if (initrd_len) { | 
|  | ppd.vaddr = initrd_start + decrypted_base; | 
|  | ppd.vaddr_end = initrd_end + decrypted_base; | 
|  | sme_clear_pgd(&ppd); | 
|  | } | 
|  |  | 
|  | ppd.vaddr = workarea_start + decrypted_base; | 
|  | ppd.vaddr_end = workarea_end + decrypted_base; | 
|  | sme_clear_pgd(&ppd); | 
|  |  | 
|  | /* Flush the TLB - no globals so cr3 is enough */ | 
|  | native_write_cr3(__native_read_cr3()); | 
|  | } | 
|  |  | 
|  | void __init sme_enable(struct boot_params *bp) | 
|  | { | 
|  | const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; | 
|  | unsigned int eax, ebx, ecx, edx; | 
|  | unsigned long feature_mask; | 
|  | bool active_by_default; | 
|  | unsigned long me_mask; | 
|  | char buffer[16]; | 
|  | bool snp; | 
|  | u64 msr; | 
|  |  | 
|  | snp = snp_init(bp); | 
|  |  | 
|  | /* Check for the SME/SEV support leaf */ | 
|  | eax = 0x80000000; | 
|  | ecx = 0; | 
|  | native_cpuid(&eax, &ebx, &ecx, &edx); | 
|  | if (eax < 0x8000001f) | 
|  | return; | 
|  |  | 
|  | #define AMD_SME_BIT	BIT(0) | 
|  | #define AMD_SEV_BIT	BIT(1) | 
|  |  | 
|  | /* | 
|  | * Check for the SME/SEV feature: | 
|  | *   CPUID Fn8000_001F[EAX] | 
|  | *   - Bit 0 - Secure Memory Encryption support | 
|  | *   - Bit 1 - Secure Encrypted Virtualization support | 
|  | *   CPUID Fn8000_001F[EBX] | 
|  | *   - Bits 5:0 - Pagetable bit position used to indicate encryption | 
|  | */ | 
|  | eax = 0x8000001f; | 
|  | ecx = 0; | 
|  | native_cpuid(&eax, &ebx, &ecx, &edx); | 
|  | /* Check whether SEV or SME is supported */ | 
|  | if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) | 
|  | return; | 
|  |  | 
|  | me_mask = 1UL << (ebx & 0x3f); | 
|  |  | 
|  | /* Check the SEV MSR whether SEV or SME is enabled */ | 
|  | sev_status   = __rdmsr(MSR_AMD64_SEV); | 
|  | feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; | 
|  |  | 
|  | /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */ | 
|  | if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) | 
|  | snp_abort(); | 
|  |  | 
|  | /* Check if memory encryption is enabled */ | 
|  | if (feature_mask == AMD_SME_BIT) { | 
|  | /* | 
|  | * No SME if Hypervisor bit is set. This check is here to | 
|  | * prevent a guest from trying to enable SME. For running as a | 
|  | * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there | 
|  | * might be other hypervisors which emulate that MSR as non-zero | 
|  | * or even pass it through to the guest. | 
|  | * A malicious hypervisor can still trick a guest into this | 
|  | * path, but there is no way to protect against that. | 
|  | */ | 
|  | eax = 1; | 
|  | ecx = 0; | 
|  | native_cpuid(&eax, &ebx, &ecx, &edx); | 
|  | if (ecx & BIT(31)) | 
|  | return; | 
|  |  | 
|  | /* For SME, check the SYSCFG MSR */ | 
|  | msr = __rdmsr(MSR_AMD64_SYSCFG); | 
|  | if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) | 
|  | return; | 
|  | } else { | 
|  | /* SEV state cannot be controlled by a command line option */ | 
|  | sme_me_mask = me_mask; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fixups have not been applied to phys_base yet and we're running | 
|  | * identity mapped, so we must obtain the address to the SME command | 
|  | * line argument data using rip-relative addressing. | 
|  | */ | 
|  | asm ("lea sme_cmdline_arg(%%rip), %0" | 
|  | : "=r" (cmdline_arg) | 
|  | : "p" (sme_cmdline_arg)); | 
|  | asm ("lea sme_cmdline_on(%%rip), %0" | 
|  | : "=r" (cmdline_on) | 
|  | : "p" (sme_cmdline_on)); | 
|  | asm ("lea sme_cmdline_off(%%rip), %0" | 
|  | : "=r" (cmdline_off) | 
|  | : "p" (sme_cmdline_off)); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) | 
|  | active_by_default = true; | 
|  | else | 
|  | active_by_default = false; | 
|  |  | 
|  | cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | | 
|  | ((u64)bp->ext_cmd_line_ptr << 32)); | 
|  |  | 
|  | if (cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)) < 0) | 
|  | return; | 
|  |  | 
|  | if (!strncmp(buffer, cmdline_on, sizeof(buffer))) | 
|  | sme_me_mask = me_mask; | 
|  | else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) | 
|  | sme_me_mask = 0; | 
|  | else | 
|  | sme_me_mask = active_by_default ? me_mask : 0; | 
|  | out: | 
|  | if (sme_me_mask) { | 
|  | physical_mask &= ~sme_me_mask; | 
|  | cc_set_vendor(CC_VENDOR_AMD); | 
|  | cc_set_mask(sme_me_mask); | 
|  | } | 
|  | } |