| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | #ifndef _LINUX_MMZONE_H | 
 | #define _LINUX_MMZONE_H | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | #ifndef __GENERATING_BOUNDS_H | 
 |  | 
 | #include <linux/spinlock.h> | 
 | #include <linux/list.h> | 
 | #include <linux/list_nulls.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/numa.h> | 
 | #include <linux/init.h> | 
 | #include <linux/seqlock.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/pageblock-flags.h> | 
 | #include <linux/page-flags-layout.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/mm_types.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/local_lock.h> | 
 | #include <asm/page.h> | 
 |  | 
 | /* Free memory management - zoned buddy allocator.  */ | 
 | #ifndef CONFIG_ARCH_FORCE_MAX_ORDER | 
 | #define MAX_ORDER 10 | 
 | #else | 
 | #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER | 
 | #endif | 
 | #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER) | 
 |  | 
 | #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) | 
 |  | 
 | #define NR_PAGE_ORDERS (MAX_ORDER + 1) | 
 |  | 
 | /* | 
 |  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed | 
 |  * costly to service.  That is between allocation orders which should | 
 |  * coalesce naturally under reasonable reclaim pressure and those which | 
 |  * will not. | 
 |  */ | 
 | #define PAGE_ALLOC_COSTLY_ORDER 3 | 
 |  | 
 | enum migratetype { | 
 | 	MIGRATE_UNMOVABLE, | 
 | 	MIGRATE_MOVABLE, | 
 | 	MIGRATE_RECLAIMABLE, | 
 | 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */ | 
 | 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, | 
 | #ifdef CONFIG_CMA | 
 | 	/* | 
 | 	 * MIGRATE_CMA migration type is designed to mimic the way | 
 | 	 * ZONE_MOVABLE works.  Only movable pages can be allocated | 
 | 	 * from MIGRATE_CMA pageblocks and page allocator never | 
 | 	 * implicitly change migration type of MIGRATE_CMA pageblock. | 
 | 	 * | 
 | 	 * The way to use it is to change migratetype of a range of | 
 | 	 * pageblocks to MIGRATE_CMA which can be done by | 
 | 	 * __free_pageblock_cma() function. | 
 | 	 */ | 
 | 	MIGRATE_CMA, | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 	MIGRATE_ISOLATE,	/* can't allocate from here */ | 
 | #endif | 
 | 	MIGRATE_TYPES | 
 | }; | 
 |  | 
 | /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ | 
 | extern const char * const migratetype_names[MIGRATE_TYPES]; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) | 
 | #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) | 
 | #else | 
 | #  define is_migrate_cma(migratetype) false | 
 | #  define is_migrate_cma_page(_page) false | 
 | #endif | 
 |  | 
 | static inline bool is_migrate_movable(int mt) | 
 | { | 
 | 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether a migratetype can be merged with another migratetype. | 
 |  * | 
 |  * It is only mergeable when it can fall back to other migratetypes for | 
 |  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. | 
 |  */ | 
 | static inline bool migratetype_is_mergeable(int mt) | 
 | { | 
 | 	return mt < MIGRATE_PCPTYPES; | 
 | } | 
 |  | 
 | #define for_each_migratetype_order(order, type) \ | 
 | 	for (order = 0; order < NR_PAGE_ORDERS; order++) \ | 
 | 		for (type = 0; type < MIGRATE_TYPES; type++) | 
 |  | 
 | extern int page_group_by_mobility_disabled; | 
 |  | 
 | #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) | 
 |  | 
 | #define get_pageblock_migratetype(page)					\ | 
 | 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) | 
 |  | 
 | #define folio_migratetype(folio)				\ | 
 | 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\ | 
 | 			MIGRATETYPE_MASK) | 
 | struct free_area { | 
 | 	struct list_head	free_list[MIGRATE_TYPES]; | 
 | 	unsigned long		nr_free; | 
 | }; | 
 |  | 
 | struct pglist_data; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | enum numa_stat_item { | 
 | 	NUMA_HIT,		/* allocated in intended node */ | 
 | 	NUMA_MISS,		/* allocated in non intended node */ | 
 | 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */ | 
 | 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */ | 
 | 	NUMA_LOCAL,		/* allocation from local node */ | 
 | 	NUMA_OTHER,		/* allocation from other node */ | 
 | 	NR_VM_NUMA_EVENT_ITEMS | 
 | }; | 
 | #else | 
 | #define NR_VM_NUMA_EVENT_ITEMS 0 | 
 | #endif | 
 |  | 
 | enum zone_stat_item { | 
 | 	/* First 128 byte cacheline (assuming 64 bit words) */ | 
 | 	NR_FREE_PAGES, | 
 | 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ | 
 | 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, | 
 | 	NR_ZONE_ACTIVE_ANON, | 
 | 	NR_ZONE_INACTIVE_FILE, | 
 | 	NR_ZONE_ACTIVE_FILE, | 
 | 	NR_ZONE_UNEVICTABLE, | 
 | 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */ | 
 | 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */ | 
 | 	/* Second 128 byte cacheline */ | 
 | 	NR_BOUNCE, | 
 | #if IS_ENABLED(CONFIG_ZSMALLOC) | 
 | 	NR_ZSPAGES,		/* allocated in zsmalloc */ | 
 | #endif | 
 | 	NR_FREE_CMA_PAGES, | 
 | #ifdef CONFIG_UNACCEPTED_MEMORY | 
 | 	NR_UNACCEPTED, | 
 | #endif | 
 | 	NR_VM_ZONE_STAT_ITEMS }; | 
 |  | 
 | enum node_stat_item { | 
 | 	NR_LRU_BASE, | 
 | 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ | 
 | 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */ | 
 | 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */ | 
 | 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */ | 
 | 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */ | 
 | 	NR_SLAB_RECLAIMABLE_B, | 
 | 	NR_SLAB_UNRECLAIMABLE_B, | 
 | 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */ | 
 | 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */ | 
 | 	WORKINGSET_NODES, | 
 | 	WORKINGSET_REFAULT_BASE, | 
 | 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, | 
 | 	WORKINGSET_REFAULT_FILE, | 
 | 	WORKINGSET_ACTIVATE_BASE, | 
 | 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, | 
 | 	WORKINGSET_ACTIVATE_FILE, | 
 | 	WORKINGSET_RESTORE_BASE, | 
 | 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, | 
 | 	WORKINGSET_RESTORE_FILE, | 
 | 	WORKINGSET_NODERECLAIM, | 
 | 	NR_ANON_MAPPED,	/* Mapped anonymous pages */ | 
 | 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables. | 
 | 			   only modified from process context */ | 
 | 	NR_FILE_PAGES, | 
 | 	NR_FILE_DIRTY, | 
 | 	NR_WRITEBACK, | 
 | 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */ | 
 | 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */ | 
 | 	NR_SHMEM_THPS, | 
 | 	NR_SHMEM_PMDMAPPED, | 
 | 	NR_FILE_THPS, | 
 | 	NR_FILE_PMDMAPPED, | 
 | 	NR_ANON_THPS, | 
 | 	NR_VMSCAN_WRITE, | 
 | 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */ | 
 | 	NR_DIRTIED,		/* page dirtyings since bootup */ | 
 | 	NR_WRITTEN,		/* page writings since bootup */ | 
 | 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */ | 
 | 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */ | 
 | 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */ | 
 | 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */ | 
 | 	NR_KERNEL_STACK_KB,	/* measured in KiB */ | 
 | #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) | 
 | 	NR_KERNEL_SCS_KB,	/* measured in KiB */ | 
 | #endif | 
 | 	NR_PAGETABLE,		/* used for pagetables */ | 
 | 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ | 
 | #ifdef CONFIG_SWAP | 
 | 	NR_SWAPCACHE, | 
 | #endif | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	PGPROMOTE_SUCCESS,	/* promote successfully */ | 
 | 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */ | 
 | #endif | 
 | 	NR_VM_NODE_STAT_ITEMS | 
 | }; | 
 |  | 
 | /* | 
 |  * Returns true if the item should be printed in THPs (/proc/vmstat | 
 |  * currently prints number of anon, file and shmem THPs. But the item | 
 |  * is charged in pages). | 
 |  */ | 
 | static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
 | 		return false; | 
 |  | 
 | 	return item == NR_ANON_THPS || | 
 | 	       item == NR_FILE_THPS || | 
 | 	       item == NR_SHMEM_THPS || | 
 | 	       item == NR_SHMEM_PMDMAPPED || | 
 | 	       item == NR_FILE_PMDMAPPED; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the value is measured in bytes (most vmstat values are | 
 |  * measured in pages). This defines the API part, the internal representation | 
 |  * might be different. | 
 |  */ | 
 | static __always_inline bool vmstat_item_in_bytes(int idx) | 
 | { | 
 | 	/* | 
 | 	 * Global and per-node slab counters track slab pages. | 
 | 	 * It's expected that changes are multiples of PAGE_SIZE. | 
 | 	 * Internally values are stored in pages. | 
 | 	 * | 
 | 	 * Per-memcg and per-lruvec counters track memory, consumed | 
 | 	 * by individual slab objects. These counters are actually | 
 | 	 * byte-precise. | 
 | 	 */ | 
 | 	return (idx == NR_SLAB_RECLAIMABLE_B || | 
 | 		idx == NR_SLAB_UNRECLAIMABLE_B); | 
 | } | 
 |  | 
 | /* | 
 |  * We do arithmetic on the LRU lists in various places in the code, | 
 |  * so it is important to keep the active lists LRU_ACTIVE higher in | 
 |  * the array than the corresponding inactive lists, and to keep | 
 |  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. | 
 |  * | 
 |  * This has to be kept in sync with the statistics in zone_stat_item | 
 |  * above and the descriptions in vmstat_text in mm/vmstat.c | 
 |  */ | 
 | #define LRU_BASE 0 | 
 | #define LRU_ACTIVE 1 | 
 | #define LRU_FILE 2 | 
 |  | 
 | enum lru_list { | 
 | 	LRU_INACTIVE_ANON = LRU_BASE, | 
 | 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, | 
 | 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, | 
 | 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, | 
 | 	LRU_UNEVICTABLE, | 
 | 	NR_LRU_LISTS | 
 | }; | 
 |  | 
 | enum vmscan_throttle_state { | 
 | 	VMSCAN_THROTTLE_WRITEBACK, | 
 | 	VMSCAN_THROTTLE_ISOLATED, | 
 | 	VMSCAN_THROTTLE_NOPROGRESS, | 
 | 	VMSCAN_THROTTLE_CONGESTED, | 
 | 	NR_VMSCAN_THROTTLE, | 
 | }; | 
 |  | 
 | #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) | 
 |  | 
 | #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) | 
 |  | 
 | static inline bool is_file_lru(enum lru_list lru) | 
 | { | 
 | 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); | 
 | } | 
 |  | 
 | static inline bool is_active_lru(enum lru_list lru) | 
 | { | 
 | 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); | 
 | } | 
 |  | 
 | #define WORKINGSET_ANON 0 | 
 | #define WORKINGSET_FILE 1 | 
 | #define ANON_AND_FILE 2 | 
 |  | 
 | enum lruvec_flags { | 
 | 	/* | 
 | 	 * An lruvec has many dirty pages backed by a congested BDI: | 
 | 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. | 
 | 	 *    It can be cleared by cgroup reclaim or kswapd. | 
 | 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. | 
 | 	 *    It can only be cleared by kswapd. | 
 | 	 * | 
 | 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup | 
 | 	 * reclaim, but not vice versa. This only applies to the root cgroup. | 
 | 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. | 
 | 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled | 
 | 	 * by kswapd). | 
 | 	 */ | 
 | 	LRUVEC_CGROUP_CONGESTED, | 
 | 	LRUVEC_NODE_CONGESTED, | 
 | }; | 
 |  | 
 | #endif /* !__GENERATING_BOUNDS_H */ | 
 |  | 
 | /* | 
 |  * Evictable pages are divided into multiple generations. The youngest and the | 
 |  * oldest generation numbers, max_seq and min_seq, are monotonically increasing. | 
 |  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An | 
 |  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the | 
 |  * corresponding generation. The gen counter in folio->flags stores gen+1 while | 
 |  * a page is on one of lrugen->folios[]. Otherwise it stores 0. | 
 |  * | 
 |  * A page is added to the youngest generation on faulting. The aging needs to | 
 |  * check the accessed bit at least twice before handing this page over to the | 
 |  * eviction. The first check takes care of the accessed bit set on the initial | 
 |  * fault; the second check makes sure this page hasn't been used since then. | 
 |  * This process, AKA second chance, requires a minimum of two generations, | 
 |  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive | 
 |  * LRU, e.g., /proc/vmstat, these two generations are considered active; the | 
 |  * rest of generations, if they exist, are considered inactive. See | 
 |  * lru_gen_is_active(). | 
 |  * | 
 |  * PG_active is always cleared while a page is on one of lrugen->folios[] so | 
 |  * that the aging needs not to worry about it. And it's set again when a page | 
 |  * considered active is isolated for non-reclaiming purposes, e.g., migration. | 
 |  * See lru_gen_add_folio() and lru_gen_del_folio(). | 
 |  * | 
 |  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the | 
 |  * number of categories of the active/inactive LRU when keeping track of | 
 |  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits | 
 |  * in folio->flags. | 
 |  */ | 
 | #define MIN_NR_GENS		2U | 
 | #define MAX_NR_GENS		4U | 
 |  | 
 | /* | 
 |  * Each generation is divided into multiple tiers. A page accessed N times | 
 |  * through file descriptors is in tier order_base_2(N). A page in the first tier | 
 |  * (N=0,1) is marked by PG_referenced unless it was faulted in through page | 
 |  * tables or read ahead. A page in any other tier (N>1) is marked by | 
 |  * PG_referenced and PG_workingset. This implies a minimum of two tiers is | 
 |  * supported without using additional bits in folio->flags. | 
 |  * | 
 |  * In contrast to moving across generations which requires the LRU lock, moving | 
 |  * across tiers only involves atomic operations on folio->flags and therefore | 
 |  * has a negligible cost in the buffered access path. In the eviction path, | 
 |  * comparisons of refaulted/(evicted+protected) from the first tier and the | 
 |  * rest infer whether pages accessed multiple times through file descriptors | 
 |  * are statistically hot and thus worth protecting. | 
 |  * | 
 |  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the | 
 |  * number of categories of the active/inactive LRU when keeping track of | 
 |  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in | 
 |  * folio->flags. | 
 |  */ | 
 | #define MAX_NR_TIERS		4U | 
 |  | 
 | #ifndef __GENERATING_BOUNDS_H | 
 |  | 
 | struct lruvec; | 
 | struct page_vma_mapped_walk; | 
 |  | 
 | #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) | 
 | #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) | 
 |  | 
 | #ifdef CONFIG_LRU_GEN | 
 |  | 
 | enum { | 
 | 	LRU_GEN_ANON, | 
 | 	LRU_GEN_FILE, | 
 | }; | 
 |  | 
 | enum { | 
 | 	LRU_GEN_CORE, | 
 | 	LRU_GEN_MM_WALK, | 
 | 	LRU_GEN_NONLEAF_YOUNG, | 
 | 	NR_LRU_GEN_CAPS | 
 | }; | 
 |  | 
 | #define MIN_LRU_BATCH		BITS_PER_LONG | 
 | #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64) | 
 |  | 
 | /* whether to keep historical stats from evicted generations */ | 
 | #ifdef CONFIG_LRU_GEN_STATS | 
 | #define NR_HIST_GENS		MAX_NR_GENS | 
 | #else | 
 | #define NR_HIST_GENS		1U | 
 | #endif | 
 |  | 
 | /* | 
 |  * The youngest generation number is stored in max_seq for both anon and file | 
 |  * types as they are aged on an equal footing. The oldest generation numbers are | 
 |  * stored in min_seq[] separately for anon and file types as clean file pages | 
 |  * can be evicted regardless of swap constraints. | 
 |  * | 
 |  * Normally anon and file min_seq are in sync. But if swapping is constrained, | 
 |  * e.g., out of swap space, file min_seq is allowed to advance and leave anon | 
 |  * min_seq behind. | 
 |  * | 
 |  * The number of pages in each generation is eventually consistent and therefore | 
 |  * can be transiently negative when reset_batch_size() is pending. | 
 |  */ | 
 | struct lru_gen_folio { | 
 | 	/* the aging increments the youngest generation number */ | 
 | 	unsigned long max_seq; | 
 | 	/* the eviction increments the oldest generation numbers */ | 
 | 	unsigned long min_seq[ANON_AND_FILE]; | 
 | 	/* the birth time of each generation in jiffies */ | 
 | 	unsigned long timestamps[MAX_NR_GENS]; | 
 | 	/* the multi-gen LRU lists, lazily sorted on eviction */ | 
 | 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; | 
 | 	/* the multi-gen LRU sizes, eventually consistent */ | 
 | 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; | 
 | 	/* the exponential moving average of refaulted */ | 
 | 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; | 
 | 	/* the exponential moving average of evicted+protected */ | 
 | 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; | 
 | 	/* the first tier doesn't need protection, hence the minus one */ | 
 | 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; | 
 | 	/* can be modified without holding the LRU lock */ | 
 | 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; | 
 | 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; | 
 | 	/* whether the multi-gen LRU is enabled */ | 
 | 	bool enabled; | 
 | #ifdef CONFIG_MEMCG | 
 | 	/* the memcg generation this lru_gen_folio belongs to */ | 
 | 	u8 gen; | 
 | 	/* the list segment this lru_gen_folio belongs to */ | 
 | 	u8 seg; | 
 | 	/* per-node lru_gen_folio list for global reclaim */ | 
 | 	struct hlist_nulls_node list; | 
 | #endif | 
 | }; | 
 |  | 
 | enum { | 
 | 	MM_LEAF_TOTAL,		/* total leaf entries */ | 
 | 	MM_LEAF_OLD,		/* old leaf entries */ | 
 | 	MM_LEAF_YOUNG,		/* young leaf entries */ | 
 | 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */ | 
 | 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */ | 
 | 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */ | 
 | 	NR_MM_STATS | 
 | }; | 
 |  | 
 | /* double-buffering Bloom filters */ | 
 | #define NR_BLOOM_FILTERS	2 | 
 |  | 
 | struct lru_gen_mm_state { | 
 | 	/* set to max_seq after each iteration */ | 
 | 	unsigned long seq; | 
 | 	/* where the current iteration continues after */ | 
 | 	struct list_head *head; | 
 | 	/* where the last iteration ended before */ | 
 | 	struct list_head *tail; | 
 | 	/* Bloom filters flip after each iteration */ | 
 | 	unsigned long *filters[NR_BLOOM_FILTERS]; | 
 | 	/* the mm stats for debugging */ | 
 | 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; | 
 | }; | 
 |  | 
 | struct lru_gen_mm_walk { | 
 | 	/* the lruvec under reclaim */ | 
 | 	struct lruvec *lruvec; | 
 | 	/* unstable max_seq from lru_gen_folio */ | 
 | 	unsigned long max_seq; | 
 | 	/* the next address within an mm to scan */ | 
 | 	unsigned long next_addr; | 
 | 	/* to batch promoted pages */ | 
 | 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; | 
 | 	/* to batch the mm stats */ | 
 | 	int mm_stats[NR_MM_STATS]; | 
 | 	/* total batched items */ | 
 | 	int batched; | 
 | 	bool can_swap; | 
 | 	bool force_scan; | 
 | }; | 
 |  | 
 | void lru_gen_init_lruvec(struct lruvec *lruvec); | 
 | void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 |  | 
 | /* | 
 |  * For each node, memcgs are divided into two generations: the old and the | 
 |  * young. For each generation, memcgs are randomly sharded into multiple bins | 
 |  * to improve scalability. For each bin, the hlist_nulls is virtually divided | 
 |  * into three segments: the head, the tail and the default. | 
 |  * | 
 |  * An onlining memcg is added to the tail of a random bin in the old generation. | 
 |  * The eviction starts at the head of a random bin in the old generation. The | 
 |  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes | 
 |  * the old generation, is incremented when all its bins become empty. | 
 |  * | 
 |  * There are four operations: | 
 |  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its | 
 |  *    current generation (old or young) and updates its "seg" to "head"; | 
 |  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its | 
 |  *    current generation (old or young) and updates its "seg" to "tail"; | 
 |  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old | 
 |  *    generation, updates its "gen" to "old" and resets its "seg" to "default"; | 
 |  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the | 
 |  *    young generation, updates its "gen" to "young" and resets its "seg" to | 
 |  *    "default". | 
 |  * | 
 |  * The events that trigger the above operations are: | 
 |  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; | 
 |  * 2. The first attempt to reclaim a memcg below low, which triggers | 
 |  *    MEMCG_LRU_TAIL; | 
 |  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size | 
 |  *    threshold, which triggers MEMCG_LRU_TAIL; | 
 |  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size | 
 |  *    threshold, which triggers MEMCG_LRU_YOUNG; | 
 |  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; | 
 |  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; | 
 |  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. | 
 |  * | 
 |  * Notes: | 
 |  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing | 
 |  *    of their max_seq counters ensures the eventual fairness to all eligible | 
 |  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). | 
 |  * 2. There are only two valid generations: old (seq) and young (seq+1). | 
 |  *    MEMCG_NR_GENS is set to three so that when reading the generation counter | 
 |  *    locklessly, a stale value (seq-1) does not wraparound to young. | 
 |  */ | 
 | #define MEMCG_NR_GENS	3 | 
 | #define MEMCG_NR_BINS	8 | 
 |  | 
 | struct lru_gen_memcg { | 
 | 	/* the per-node memcg generation counter */ | 
 | 	unsigned long seq; | 
 | 	/* each memcg has one lru_gen_folio per node */ | 
 | 	unsigned long nr_memcgs[MEMCG_NR_GENS]; | 
 | 	/* per-node lru_gen_folio list for global reclaim */ | 
 | 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; | 
 | 	/* protects the above */ | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | void lru_gen_init_pgdat(struct pglist_data *pgdat); | 
 |  | 
 | void lru_gen_init_memcg(struct mem_cgroup *memcg); | 
 | void lru_gen_exit_memcg(struct mem_cgroup *memcg); | 
 | void lru_gen_online_memcg(struct mem_cgroup *memcg); | 
 | void lru_gen_offline_memcg(struct mem_cgroup *memcg); | 
 | void lru_gen_release_memcg(struct mem_cgroup *memcg); | 
 | void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); | 
 |  | 
 | #else /* !CONFIG_MEMCG */ | 
 |  | 
 | #define MEMCG_NR_GENS	1 | 
 |  | 
 | struct lru_gen_memcg { | 
 | }; | 
 |  | 
 | static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMCG */ | 
 |  | 
 | #else /* !CONFIG_LRU_GEN */ | 
 |  | 
 | static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_init_lruvec(struct lruvec *lruvec) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) | 
 | { | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 |  | 
 | static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMCG */ | 
 |  | 
 | #endif /* CONFIG_LRU_GEN */ | 
 |  | 
 | struct lruvec { | 
 | 	struct list_head		lists[NR_LRU_LISTS]; | 
 | 	/* per lruvec lru_lock for memcg */ | 
 | 	spinlock_t			lru_lock; | 
 | 	/* | 
 | 	 * These track the cost of reclaiming one LRU - file or anon - | 
 | 	 * over the other. As the observed cost of reclaiming one LRU | 
 | 	 * increases, the reclaim scan balance tips toward the other. | 
 | 	 */ | 
 | 	unsigned long			anon_cost; | 
 | 	unsigned long			file_cost; | 
 | 	/* Non-resident age, driven by LRU movement */ | 
 | 	atomic_long_t			nonresident_age; | 
 | 	/* Refaults at the time of last reclaim cycle */ | 
 | 	unsigned long			refaults[ANON_AND_FILE]; | 
 | 	/* Various lruvec state flags (enum lruvec_flags) */ | 
 | 	unsigned long			flags; | 
 | #ifdef CONFIG_LRU_GEN | 
 | 	/* evictable pages divided into generations */ | 
 | 	struct lru_gen_folio		lrugen; | 
 | 	/* to concurrently iterate lru_gen_mm_list */ | 
 | 	struct lru_gen_mm_state		mm_state; | 
 | #endif | 
 | #ifdef CONFIG_MEMCG | 
 | 	struct pglist_data *pgdat; | 
 | #endif | 
 | }; | 
 |  | 
 | /* Isolate unmapped pages */ | 
 | #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2) | 
 | /* Isolate for asynchronous migration */ | 
 | #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4) | 
 | /* Isolate unevictable pages */ | 
 | #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8) | 
 |  | 
 | /* LRU Isolation modes. */ | 
 | typedef unsigned __bitwise isolate_mode_t; | 
 |  | 
 | enum zone_watermarks { | 
 | 	WMARK_MIN, | 
 | 	WMARK_LOW, | 
 | 	WMARK_HIGH, | 
 | 	WMARK_PROMO, | 
 | 	NR_WMARK | 
 | }; | 
 |  | 
 | /* | 
 |  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists | 
 |  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list | 
 |  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. | 
 |  */ | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | #define NR_PCP_THP 2 | 
 | #else | 
 | #define NR_PCP_THP 0 | 
 | #endif | 
 | #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) | 
 | #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) | 
 |  | 
 | #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) | 
 | #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) | 
 | #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) | 
 | #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) | 
 |  | 
 | struct per_cpu_pages { | 
 | 	spinlock_t lock;	/* Protects lists field */ | 
 | 	int count;		/* number of pages in the list */ | 
 | 	int high;		/* high watermark, emptying needed */ | 
 | 	int batch;		/* chunk size for buddy add/remove */ | 
 | 	short free_factor;	/* batch scaling factor during free */ | 
 | #ifdef CONFIG_NUMA | 
 | 	short expire;		/* When 0, remote pagesets are drained */ | 
 | #endif | 
 |  | 
 | 	/* Lists of pages, one per migrate type stored on the pcp-lists */ | 
 | 	struct list_head lists[NR_PCP_LISTS]; | 
 | } ____cacheline_aligned_in_smp; | 
 |  | 
 | struct per_cpu_zonestat { | 
 | #ifdef CONFIG_SMP | 
 | 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; | 
 | 	s8 stat_threshold; | 
 | #endif | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * Low priority inaccurate counters that are only folded | 
 | 	 * on demand. Use a large type to avoid the overhead of | 
 | 	 * folding during refresh_cpu_vm_stats. | 
 | 	 */ | 
 | 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; | 
 | #endif | 
 | }; | 
 |  | 
 | struct per_cpu_nodestat { | 
 | 	s8 stat_threshold; | 
 | 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; | 
 | }; | 
 |  | 
 | #endif /* !__GENERATING_BOUNDS.H */ | 
 |  | 
 | enum zone_type { | 
 | 	/* | 
 | 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able | 
 | 	 * to DMA to all of the addressable memory (ZONE_NORMAL). | 
 | 	 * On architectures where this area covers the whole 32 bit address | 
 | 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller | 
 | 	 * DMA addressing constraints. This distinction is important as a 32bit | 
 | 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit | 
 | 	 * platforms may need both zones as they support peripherals with | 
 | 	 * different DMA addressing limitations. | 
 | 	 */ | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	ZONE_DMA, | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	ZONE_DMA32, | 
 | #endif | 
 | 	/* | 
 | 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | 
 | 	 * performed on pages in ZONE_NORMAL if the DMA devices support | 
 | 	 * transfers to all addressable memory. | 
 | 	 */ | 
 | 	ZONE_NORMAL, | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	/* | 
 | 	 * A memory area that is only addressable by the kernel through | 
 | 	 * mapping portions into its own address space. This is for example | 
 | 	 * used by i386 to allow the kernel to address the memory beyond | 
 | 	 * 900MB. The kernel will set up special mappings (page | 
 | 	 * table entries on i386) for each page that the kernel needs to | 
 | 	 * access. | 
 | 	 */ | 
 | 	ZONE_HIGHMEM, | 
 | #endif | 
 | 	/* | 
 | 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains | 
 | 	 * movable pages with few exceptional cases described below. Main use | 
 | 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more | 
 | 	 * likely to succeed, and to locally limit unmovable allocations - e.g., | 
 | 	 * to increase the number of THP/huge pages. Notable special cases are: | 
 | 	 * | 
 | 	 * 1. Pinned pages: (long-term) pinning of movable pages might | 
 | 	 *    essentially turn such pages unmovable. Therefore, we do not allow | 
 | 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and | 
 | 	 *    faulted, they come from the right zone right away. However, it is | 
 | 	 *    still possible that address space already has pages in | 
 | 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has | 
 | 	 *    touches that memory before pinning). In such case we migrate them | 
 | 	 *    to a different zone. When migration fails - pinning fails. | 
 | 	 * 2. memblock allocations: kernelcore/movablecore setups might create | 
 | 	 *    situations where ZONE_MOVABLE contains unmovable allocations | 
 | 	 *    after boot. Memory offlining and allocations fail early. | 
 | 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare | 
 | 	 *    situations where ZONE_MOVABLE contains memory holes after boot, | 
 | 	 *    for example, if we have sections that are only partially | 
 | 	 *    populated. Memory offlining and allocations fail early. | 
 | 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during | 
 | 	 *    memory offlining, such pages cannot be allocated. | 
 | 	 * 5. Unmovable PG_offline pages: in paravirtualized environments, | 
 | 	 *    hotplugged memory blocks might only partially be managed by the | 
 | 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The | 
 | 	 *    parts not manged by the buddy are unmovable PG_offline pages. In | 
 | 	 *    some cases (virtio-mem), such pages can be skipped during | 
 | 	 *    memory offlining, however, cannot be moved/allocated. These | 
 | 	 *    techniques might use alloc_contig_range() to hide previously | 
 | 	 *    exposed pages from the buddy again (e.g., to implement some sort | 
 | 	 *    of memory unplug in virtio-mem). | 
 | 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create | 
 | 	 *    situations where ZERO_PAGE(0) which is allocated differently | 
 | 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0) | 
 | 	 *    cannot be migrated. | 
 | 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the | 
 | 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in | 
 | 	 *    such zone. Such pages cannot be really moved around as they are | 
 | 	 *    self-stored in the range, but they are treated as movable when | 
 | 	 *    the range they describe is about to be offlined. | 
 | 	 * | 
 | 	 * In general, no unmovable allocations that degrade memory offlining | 
 | 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) | 
 | 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even | 
 | 	 * if has_unmovable_pages() states that there are no unmovable pages, | 
 | 	 * there can be false negatives). | 
 | 	 */ | 
 | 	ZONE_MOVABLE, | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | 	ZONE_DEVICE, | 
 | #endif | 
 | 	__MAX_NR_ZONES | 
 |  | 
 | }; | 
 |  | 
 | #ifndef __GENERATING_BOUNDS_H | 
 |  | 
 | #define ASYNC_AND_SYNC 2 | 
 |  | 
 | struct zone { | 
 | 	/* Read-mostly fields */ | 
 |  | 
 | 	/* zone watermarks, access with *_wmark_pages(zone) macros */ | 
 | 	unsigned long _watermark[NR_WMARK]; | 
 | 	unsigned long watermark_boost; | 
 |  | 
 | 	unsigned long nr_reserved_highatomic; | 
 |  | 
 | 	/* | 
 | 	 * We don't know if the memory that we're going to allocate will be | 
 | 	 * freeable or/and it will be released eventually, so to avoid totally | 
 | 	 * wasting several GB of ram we must reserve some of the lower zone | 
 | 	 * memory (otherwise we risk to run OOM on the lower zones despite | 
 | 	 * there being tons of freeable ram on the higher zones).  This array is | 
 | 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl | 
 | 	 * changes. | 
 | 	 */ | 
 | 	long lowmem_reserve[MAX_NR_ZONES]; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	int node; | 
 | #endif | 
 | 	struct pglist_data	*zone_pgdat; | 
 | 	struct per_cpu_pages	__percpu *per_cpu_pageset; | 
 | 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats; | 
 | 	/* | 
 | 	 * the high and batch values are copied to individual pagesets for | 
 | 	 * faster access | 
 | 	 */ | 
 | 	int pageset_high; | 
 | 	int pageset_batch; | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM | 
 | 	/* | 
 | 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. | 
 | 	 * In SPARSEMEM, this map is stored in struct mem_section | 
 | 	 */ | 
 | 	unsigned long		*pageblock_flags; | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 |  | 
 | 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ | 
 | 	unsigned long		zone_start_pfn; | 
 |  | 
 | 	/* | 
 | 	 * spanned_pages is the total pages spanned by the zone, including | 
 | 	 * holes, which is calculated as: | 
 | 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn; | 
 | 	 * | 
 | 	 * present_pages is physical pages existing within the zone, which | 
 | 	 * is calculated as: | 
 | 	 *	present_pages = spanned_pages - absent_pages(pages in holes); | 
 | 	 * | 
 | 	 * present_early_pages is present pages existing within the zone | 
 | 	 * located on memory available since early boot, excluding hotplugged | 
 | 	 * memory. | 
 | 	 * | 
 | 	 * managed_pages is present pages managed by the buddy system, which | 
 | 	 * is calculated as (reserved_pages includes pages allocated by the | 
 | 	 * bootmem allocator): | 
 | 	 *	managed_pages = present_pages - reserved_pages; | 
 | 	 * | 
 | 	 * cma pages is present pages that are assigned for CMA use | 
 | 	 * (MIGRATE_CMA). | 
 | 	 * | 
 | 	 * So present_pages may be used by memory hotplug or memory power | 
 | 	 * management logic to figure out unmanaged pages by checking | 
 | 	 * (present_pages - managed_pages). And managed_pages should be used | 
 | 	 * by page allocator and vm scanner to calculate all kinds of watermarks | 
 | 	 * and thresholds. | 
 | 	 * | 
 | 	 * Locking rules: | 
 | 	 * | 
 | 	 * zone_start_pfn and spanned_pages are protected by span_seqlock. | 
 | 	 * It is a seqlock because it has to be read outside of zone->lock, | 
 | 	 * and it is done in the main allocator path.  But, it is written | 
 | 	 * quite infrequently. | 
 | 	 * | 
 | 	 * The span_seq lock is declared along with zone->lock because it is | 
 | 	 * frequently read in proximity to zone->lock.  It's good to | 
 | 	 * give them a chance of being in the same cacheline. | 
 | 	 * | 
 | 	 * Write access to present_pages at runtime should be protected by | 
 | 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of | 
 | 	 * present_pages should use get_online_mems() to get a stable value. | 
 | 	 */ | 
 | 	atomic_long_t		managed_pages; | 
 | 	unsigned long		spanned_pages; | 
 | 	unsigned long		present_pages; | 
 | #if defined(CONFIG_MEMORY_HOTPLUG) | 
 | 	unsigned long		present_early_pages; | 
 | #endif | 
 | #ifdef CONFIG_CMA | 
 | 	unsigned long		cma_pages; | 
 | #endif | 
 |  | 
 | 	const char		*name; | 
 |  | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 	/* | 
 | 	 * Number of isolated pageblock. It is used to solve incorrect | 
 | 	 * freepage counting problem due to racy retrieving migratetype | 
 | 	 * of pageblock. Protected by zone->lock. | 
 | 	 */ | 
 | 	unsigned long		nr_isolate_pageblock; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | 	/* see spanned/present_pages for more description */ | 
 | 	seqlock_t		span_seqlock; | 
 | #endif | 
 |  | 
 | 	int initialized; | 
 |  | 
 | 	/* Write-intensive fields used from the page allocator */ | 
 | 	CACHELINE_PADDING(_pad1_); | 
 |  | 
 | 	/* free areas of different sizes */ | 
 | 	struct free_area	free_area[NR_PAGE_ORDERS]; | 
 |  | 
 | #ifdef CONFIG_UNACCEPTED_MEMORY | 
 | 	/* Pages to be accepted. All pages on the list are MAX_ORDER */ | 
 | 	struct list_head	unaccepted_pages; | 
 | #endif | 
 |  | 
 | 	/* zone flags, see below */ | 
 | 	unsigned long		flags; | 
 |  | 
 | 	/* Primarily protects free_area */ | 
 | 	spinlock_t		lock; | 
 |  | 
 | 	/* Write-intensive fields used by compaction and vmstats. */ | 
 | 	CACHELINE_PADDING(_pad2_); | 
 |  | 
 | 	/* | 
 | 	 * When free pages are below this point, additional steps are taken | 
 | 	 * when reading the number of free pages to avoid per-cpu counter | 
 | 	 * drift allowing watermarks to be breached | 
 | 	 */ | 
 | 	unsigned long percpu_drift_mark; | 
 |  | 
 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
 | 	/* pfn where compaction free scanner should start */ | 
 | 	unsigned long		compact_cached_free_pfn; | 
 | 	/* pfn where compaction migration scanner should start */ | 
 | 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC]; | 
 | 	unsigned long		compact_init_migrate_pfn; | 
 | 	unsigned long		compact_init_free_pfn; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | 	/* | 
 | 	 * On compaction failure, 1<<compact_defer_shift compactions | 
 | 	 * are skipped before trying again. The number attempted since | 
 | 	 * last failure is tracked with compact_considered. | 
 | 	 * compact_order_failed is the minimum compaction failed order. | 
 | 	 */ | 
 | 	unsigned int		compact_considered; | 
 | 	unsigned int		compact_defer_shift; | 
 | 	int			compact_order_failed; | 
 | #endif | 
 |  | 
 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
 | 	/* Set to true when the PG_migrate_skip bits should be cleared */ | 
 | 	bool			compact_blockskip_flush; | 
 | #endif | 
 |  | 
 | 	bool			contiguous; | 
 |  | 
 | 	CACHELINE_PADDING(_pad3_); | 
 | 	/* Zone statistics */ | 
 | 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS]; | 
 | 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; | 
 | } ____cacheline_internodealigned_in_smp; | 
 |  | 
 | enum pgdat_flags { | 
 | 	PGDAT_DIRTY,			/* reclaim scanning has recently found | 
 | 					 * many dirty file pages at the tail | 
 | 					 * of the LRU. | 
 | 					 */ | 
 | 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found | 
 | 					 * many pages under writeback | 
 | 					 */ | 
 | 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */ | 
 | }; | 
 |  | 
 | enum zone_flags { | 
 | 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks. | 
 | 					 * Cleared when kswapd is woken. | 
 | 					 */ | 
 | 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */ | 
 | }; | 
 |  | 
 | static inline unsigned long zone_managed_pages(struct zone *zone) | 
 | { | 
 | 	return (unsigned long)atomic_long_read(&zone->managed_pages); | 
 | } | 
 |  | 
 | static inline unsigned long zone_cma_pages(struct zone *zone) | 
 | { | 
 | #ifdef CONFIG_CMA | 
 | 	return zone->cma_pages; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static inline unsigned long zone_end_pfn(const struct zone *zone) | 
 | { | 
 | 	return zone->zone_start_pfn + zone->spanned_pages; | 
 | } | 
 |  | 
 | static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) | 
 | { | 
 | 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); | 
 | } | 
 |  | 
 | static inline bool zone_is_initialized(struct zone *zone) | 
 | { | 
 | 	return zone->initialized; | 
 | } | 
 |  | 
 | static inline bool zone_is_empty(struct zone *zone) | 
 | { | 
 | 	return zone->spanned_pages == 0; | 
 | } | 
 |  | 
 | #ifndef BUILD_VDSO32_64 | 
 | /* | 
 |  * The zone field is never updated after free_area_init_core() | 
 |  * sets it, so none of the operations on it need to be atomic. | 
 |  */ | 
 |  | 
 | /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ | 
 | #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 
 | #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH) | 
 | #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH) | 
 | #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH) | 
 | #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) | 
 | #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH) | 
 | #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH) | 
 |  | 
 | /* | 
 |  * Define the bit shifts to access each section.  For non-existent | 
 |  * sections we define the shift as 0; that plus a 0 mask ensures | 
 |  * the compiler will optimise away reference to them. | 
 |  */ | 
 | #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 
 | #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0)) | 
 | #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0)) | 
 | #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) | 
 | #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) | 
 |  | 
 | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ | 
 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
 | #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT) | 
 | #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \ | 
 | 						SECTIONS_PGOFF : ZONES_PGOFF) | 
 | #else | 
 | #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT) | 
 | #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \ | 
 | 						NODES_PGOFF : ZONES_PGOFF) | 
 | #endif | 
 |  | 
 | #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0)) | 
 |  | 
 | #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1) | 
 | #define NODES_MASK		((1UL << NODES_WIDTH) - 1) | 
 | #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1) | 
 | #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1) | 
 | #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1) | 
 | #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1) | 
 |  | 
 | static inline enum zone_type page_zonenum(const struct page *page) | 
 | { | 
 | 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); | 
 | 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; | 
 | } | 
 |  | 
 | static inline enum zone_type folio_zonenum(const struct folio *folio) | 
 | { | 
 | 	return page_zonenum(&folio->page); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | static inline bool is_zone_device_page(const struct page *page) | 
 | { | 
 | 	return page_zonenum(page) == ZONE_DEVICE; | 
 | } | 
 |  | 
 | /* | 
 |  * Consecutive zone device pages should not be merged into the same sgl | 
 |  * or bvec segment with other types of pages or if they belong to different | 
 |  * pgmaps. Otherwise getting the pgmap of a given segment is not possible | 
 |  * without scanning the entire segment. This helper returns true either if | 
 |  * both pages are not zone device pages or both pages are zone device pages | 
 |  * with the same pgmap. | 
 |  */ | 
 | static inline bool zone_device_pages_have_same_pgmap(const struct page *a, | 
 | 						     const struct page *b) | 
 | { | 
 | 	if (is_zone_device_page(a) != is_zone_device_page(b)) | 
 | 		return false; | 
 | 	if (!is_zone_device_page(a)) | 
 | 		return true; | 
 | 	return a->pgmap == b->pgmap; | 
 | } | 
 |  | 
 | extern void memmap_init_zone_device(struct zone *, unsigned long, | 
 | 				    unsigned long, struct dev_pagemap *); | 
 | #else | 
 | static inline bool is_zone_device_page(const struct page *page) | 
 | { | 
 | 	return false; | 
 | } | 
 | static inline bool zone_device_pages_have_same_pgmap(const struct page *a, | 
 | 						     const struct page *b) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | static inline bool folio_is_zone_device(const struct folio *folio) | 
 | { | 
 | 	return is_zone_device_page(&folio->page); | 
 | } | 
 |  | 
 | static inline bool is_zone_movable_page(const struct page *page) | 
 | { | 
 | 	return page_zonenum(page) == ZONE_MOVABLE; | 
 | } | 
 |  | 
 | static inline bool folio_is_zone_movable(const struct folio *folio) | 
 | { | 
 | 	return folio_zonenum(folio) == ZONE_MOVABLE; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty | 
 |  * intersection with the given zone | 
 |  */ | 
 | static inline bool zone_intersects(struct zone *zone, | 
 | 		unsigned long start_pfn, unsigned long nr_pages) | 
 | { | 
 | 	if (zone_is_empty(zone)) | 
 | 		return false; | 
 | 	if (start_pfn >= zone_end_pfn(zone) || | 
 | 	    start_pfn + nr_pages <= zone->zone_start_pfn) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * The "priority" of VM scanning is how much of the queues we will scan in one | 
 |  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | 
 |  * queues ("queue_length >> 12") during an aging round. | 
 |  */ | 
 | #define DEF_PRIORITY 12 | 
 |  | 
 | /* Maximum number of zones on a zonelist */ | 
 | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | 
 |  | 
 | enum { | 
 | 	ZONELIST_FALLBACK,	/* zonelist with fallback */ | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * The NUMA zonelists are doubled because we need zonelists that | 
 | 	 * restrict the allocations to a single node for __GFP_THISNODE. | 
 | 	 */ | 
 | 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */ | 
 | #endif | 
 | 	MAX_ZONELISTS | 
 | }; | 
 |  | 
 | /* | 
 |  * This struct contains information about a zone in a zonelist. It is stored | 
 |  * here to avoid dereferences into large structures and lookups of tables | 
 |  */ | 
 | struct zoneref { | 
 | 	struct zone *zone;	/* Pointer to actual zone */ | 
 | 	int zone_idx;		/* zone_idx(zoneref->zone) */ | 
 | }; | 
 |  | 
 | /* | 
 |  * One allocation request operates on a zonelist. A zonelist | 
 |  * is a list of zones, the first one is the 'goal' of the | 
 |  * allocation, the other zones are fallback zones, in decreasing | 
 |  * priority. | 
 |  * | 
 |  * To speed the reading of the zonelist, the zonerefs contain the zone index | 
 |  * of the entry being read. Helper functions to access information given | 
 |  * a struct zoneref are | 
 |  * | 
 |  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs | 
 |  * zonelist_zone_idx()	- Return the index of the zone for an entry | 
 |  * zonelist_node_idx()	- Return the index of the node for an entry | 
 |  */ | 
 | struct zonelist { | 
 | 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; | 
 | }; | 
 |  | 
 | /* | 
 |  * The array of struct pages for flatmem. | 
 |  * It must be declared for SPARSEMEM as well because there are configurations | 
 |  * that rely on that. | 
 |  */ | 
 | extern struct page *mem_map; | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | struct deferred_split { | 
 | 	spinlock_t split_queue_lock; | 
 | 	struct list_head split_queue; | 
 | 	unsigned long split_queue_len; | 
 | }; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | /* | 
 |  * Per NUMA node memory failure handling statistics. | 
 |  */ | 
 | struct memory_failure_stats { | 
 | 	/* | 
 | 	 * Number of raw pages poisoned. | 
 | 	 * Cases not accounted: memory outside kernel control, offline page, | 
 | 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered | 
 | 	 * error events, and unpoison actions from hwpoison_unpoison. | 
 | 	 */ | 
 | 	unsigned long total; | 
 | 	/* | 
 | 	 * Recovery results of poisoned raw pages handled by memory_failure, | 
 | 	 * in sync with mf_result. | 
 | 	 * total = ignored + failed + delayed + recovered. | 
 | 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. | 
 | 	 */ | 
 | 	unsigned long ignored; | 
 | 	unsigned long failed; | 
 | 	unsigned long delayed; | 
 | 	unsigned long recovered; | 
 | }; | 
 | #endif | 
 |  | 
 | /* | 
 |  * On NUMA machines, each NUMA node would have a pg_data_t to describe | 
 |  * it's memory layout. On UMA machines there is a single pglist_data which | 
 |  * describes the whole memory. | 
 |  * | 
 |  * Memory statistics and page replacement data structures are maintained on a | 
 |  * per-zone basis. | 
 |  */ | 
 | typedef struct pglist_data { | 
 | 	/* | 
 | 	 * node_zones contains just the zones for THIS node. Not all of the | 
 | 	 * zones may be populated, but it is the full list. It is referenced by | 
 | 	 * this node's node_zonelists as well as other node's node_zonelists. | 
 | 	 */ | 
 | 	struct zone node_zones[MAX_NR_ZONES]; | 
 |  | 
 | 	/* | 
 | 	 * node_zonelists contains references to all zones in all nodes. | 
 | 	 * Generally the first zones will be references to this node's | 
 | 	 * node_zones. | 
 | 	 */ | 
 | 	struct zonelist node_zonelists[MAX_ZONELISTS]; | 
 |  | 
 | 	int nr_zones; /* number of populated zones in this node */ | 
 | #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */ | 
 | 	struct page *node_mem_map; | 
 | #ifdef CONFIG_PAGE_EXTENSION | 
 | 	struct page_ext *node_page_ext; | 
 | #endif | 
 | #endif | 
 | #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) | 
 | 	/* | 
 | 	 * Must be held any time you expect node_start_pfn, | 
 | 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant. | 
 | 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page | 
 | 	 * init. | 
 | 	 * | 
 | 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to | 
 | 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG | 
 | 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. | 
 | 	 * | 
 | 	 * Nests above zone->lock and zone->span_seqlock | 
 | 	 */ | 
 | 	spinlock_t node_size_lock; | 
 | #endif | 
 | 	unsigned long node_start_pfn; | 
 | 	unsigned long node_present_pages; /* total number of physical pages */ | 
 | 	unsigned long node_spanned_pages; /* total size of physical page | 
 | 					     range, including holes */ | 
 | 	int node_id; | 
 | 	wait_queue_head_t kswapd_wait; | 
 | 	wait_queue_head_t pfmemalloc_wait; | 
 |  | 
 | 	/* workqueues for throttling reclaim for different reasons. */ | 
 | 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; | 
 |  | 
 | 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ | 
 | 	unsigned long nr_reclaim_start;	/* nr pages written while throttled | 
 | 					 * when throttling started. */ | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | 	struct mutex kswapd_lock; | 
 | #endif | 
 | 	struct task_struct *kswapd;	/* Protected by kswapd_lock */ | 
 | 	int kswapd_order; | 
 | 	enum zone_type kswapd_highest_zoneidx; | 
 |  | 
 | 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */ | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | 	int kcompactd_max_order; | 
 | 	enum zone_type kcompactd_highest_zoneidx; | 
 | 	wait_queue_head_t kcompactd_wait; | 
 | 	struct task_struct *kcompactd; | 
 | 	bool proactive_compact_trigger; | 
 | #endif | 
 | 	/* | 
 | 	 * This is a per-node reserve of pages that are not available | 
 | 	 * to userspace allocations. | 
 | 	 */ | 
 | 	unsigned long		totalreserve_pages; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * node reclaim becomes active if more unmapped pages exist. | 
 | 	 */ | 
 | 	unsigned long		min_unmapped_pages; | 
 | 	unsigned long		min_slab_pages; | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | 	/* Write-intensive fields used by page reclaim */ | 
 | 	CACHELINE_PADDING(_pad1_); | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | 	/* | 
 | 	 * If memory initialisation on large machines is deferred then this | 
 | 	 * is the first PFN that needs to be initialised. | 
 | 	 */ | 
 | 	unsigned long first_deferred_pfn; | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	struct deferred_split deferred_split_queue; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	/* start time in ms of current promote rate limit period */ | 
 | 	unsigned int nbp_rl_start; | 
 | 	/* number of promote candidate pages at start time of current rate limit period */ | 
 | 	unsigned long nbp_rl_nr_cand; | 
 | 	/* promote threshold in ms */ | 
 | 	unsigned int nbp_threshold; | 
 | 	/* start time in ms of current promote threshold adjustment period */ | 
 | 	unsigned int nbp_th_start; | 
 | 	/* | 
 | 	 * number of promote candidate pages at start time of current promote | 
 | 	 * threshold adjustment period | 
 | 	 */ | 
 | 	unsigned long nbp_th_nr_cand; | 
 | #endif | 
 | 	/* Fields commonly accessed by the page reclaim scanner */ | 
 |  | 
 | 	/* | 
 | 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. | 
 | 	 * | 
 | 	 * Use mem_cgroup_lruvec() to look up lruvecs. | 
 | 	 */ | 
 | 	struct lruvec		__lruvec; | 
 |  | 
 | 	unsigned long		flags; | 
 |  | 
 | #ifdef CONFIG_LRU_GEN | 
 | 	/* kswap mm walk data */ | 
 | 	struct lru_gen_mm_walk mm_walk; | 
 | 	/* lru_gen_folio list */ | 
 | 	struct lru_gen_memcg memcg_lru; | 
 | #endif | 
 |  | 
 | 	CACHELINE_PADDING(_pad2_); | 
 |  | 
 | 	/* Per-node vmstats */ | 
 | 	struct per_cpu_nodestat __percpu *per_cpu_nodestats; | 
 | 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS]; | 
 | #ifdef CONFIG_NUMA | 
 | 	struct memory_tier __rcu *memtier; | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | 	struct memory_failure_stats mf_stats; | 
 | #endif | 
 | } pg_data_t; | 
 |  | 
 | #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages) | 
 | #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages) | 
 |  | 
 | #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn) | 
 | #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) | 
 |  | 
 | static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) | 
 | { | 
 | 	return pgdat->node_start_pfn + pgdat->node_spanned_pages; | 
 | } | 
 |  | 
 | #include <linux/memory_hotplug.h> | 
 |  | 
 | void build_all_zonelists(pg_data_t *pgdat); | 
 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, | 
 | 		   enum zone_type highest_zoneidx); | 
 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
 | 			 int highest_zoneidx, unsigned int alloc_flags, | 
 | 			 long free_pages); | 
 | bool zone_watermark_ok(struct zone *z, unsigned int order, | 
 | 		unsigned long mark, int highest_zoneidx, | 
 | 		unsigned int alloc_flags); | 
 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, | 
 | 		unsigned long mark, int highest_zoneidx); | 
 | /* | 
 |  * Memory initialization context, use to differentiate memory added by | 
 |  * the platform statically or via memory hotplug interface. | 
 |  */ | 
 | enum meminit_context { | 
 | 	MEMINIT_EARLY, | 
 | 	MEMINIT_HOTPLUG, | 
 | }; | 
 |  | 
 | extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, | 
 | 				     unsigned long size); | 
 |  | 
 | extern void lruvec_init(struct lruvec *lruvec); | 
 |  | 
 | static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) | 
 | { | 
 | #ifdef CONFIG_MEMCG | 
 | 	return lruvec->pgdat; | 
 | #else | 
 | 	return container_of(lruvec, struct pglist_data, __lruvec); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | int local_memory_node(int node_id); | 
 | #else | 
 | static inline int local_memory_node(int node_id) { return node_id; }; | 
 | #endif | 
 |  | 
 | /* | 
 |  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | 
 |  */ | 
 | #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones) | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | static inline bool zone_is_zone_device(struct zone *zone) | 
 | { | 
 | 	return zone_idx(zone) == ZONE_DEVICE; | 
 | } | 
 | #else | 
 | static inline bool zone_is_zone_device(struct zone *zone) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Returns true if a zone has pages managed by the buddy allocator. | 
 |  * All the reclaim decisions have to use this function rather than | 
 |  * populated_zone(). If the whole zone is reserved then we can easily | 
 |  * end up with populated_zone() && !managed_zone(). | 
 |  */ | 
 | static inline bool managed_zone(struct zone *zone) | 
 | { | 
 | 	return zone_managed_pages(zone); | 
 | } | 
 |  | 
 | /* Returns true if a zone has memory */ | 
 | static inline bool populated_zone(struct zone *zone) | 
 | { | 
 | 	return zone->present_pages; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static inline int zone_to_nid(struct zone *zone) | 
 | { | 
 | 	return zone->node; | 
 | } | 
 |  | 
 | static inline void zone_set_nid(struct zone *zone, int nid) | 
 | { | 
 | 	zone->node = nid; | 
 | } | 
 | #else | 
 | static inline int zone_to_nid(struct zone *zone) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void zone_set_nid(struct zone *zone, int nid) {} | 
 | #endif | 
 |  | 
 | extern int movable_zone; | 
 |  | 
 | static inline int is_highmem_idx(enum zone_type idx) | 
 | { | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	return (idx == ZONE_HIGHMEM || | 
 | 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * is_highmem - helper function to quickly check if a struct zone is a | 
 |  *              highmem zone or not.  This is an attempt to keep references | 
 |  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | 
 |  * @zone: pointer to struct zone variable | 
 |  * Return: 1 for a highmem zone, 0 otherwise | 
 |  */ | 
 | static inline int is_highmem(struct zone *zone) | 
 | { | 
 | 	return is_highmem_idx(zone_idx(zone)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | bool has_managed_dma(void); | 
 | #else | 
 | static inline bool has_managed_dma(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | #ifndef CONFIG_NUMA | 
 |  | 
 | extern struct pglist_data contig_page_data; | 
 | static inline struct pglist_data *NODE_DATA(int nid) | 
 | { | 
 | 	return &contig_page_data; | 
 | } | 
 |  | 
 | #else /* CONFIG_NUMA */ | 
 |  | 
 | #include <asm/mmzone.h> | 
 |  | 
 | #endif /* !CONFIG_NUMA */ | 
 |  | 
 | extern struct pglist_data *first_online_pgdat(void); | 
 | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | 
 | extern struct zone *next_zone(struct zone *zone); | 
 |  | 
 | /** | 
 |  * for_each_online_pgdat - helper macro to iterate over all online nodes | 
 |  * @pgdat: pointer to a pg_data_t variable | 
 |  */ | 
 | #define for_each_online_pgdat(pgdat)			\ | 
 | 	for (pgdat = first_online_pgdat();		\ | 
 | 	     pgdat;					\ | 
 | 	     pgdat = next_online_pgdat(pgdat)) | 
 | /** | 
 |  * for_each_zone - helper macro to iterate over all memory zones | 
 |  * @zone: pointer to struct zone variable | 
 |  * | 
 |  * The user only needs to declare the zone variable, for_each_zone | 
 |  * fills it in. | 
 |  */ | 
 | #define for_each_zone(zone)			        \ | 
 | 	for (zone = (first_online_pgdat())->node_zones; \ | 
 | 	     zone;					\ | 
 | 	     zone = next_zone(zone)) | 
 |  | 
 | #define for_each_populated_zone(zone)		        \ | 
 | 	for (zone = (first_online_pgdat())->node_zones; \ | 
 | 	     zone;					\ | 
 | 	     zone = next_zone(zone))			\ | 
 | 		if (!populated_zone(zone))		\ | 
 | 			; /* do nothing */		\ | 
 | 		else | 
 |  | 
 | static inline struct zone *zonelist_zone(struct zoneref *zoneref) | 
 | { | 
 | 	return zoneref->zone; | 
 | } | 
 |  | 
 | static inline int zonelist_zone_idx(struct zoneref *zoneref) | 
 | { | 
 | 	return zoneref->zone_idx; | 
 | } | 
 |  | 
 | static inline int zonelist_node_idx(struct zoneref *zoneref) | 
 | { | 
 | 	return zone_to_nid(zoneref->zone); | 
 | } | 
 |  | 
 | struct zoneref *__next_zones_zonelist(struct zoneref *z, | 
 | 					enum zone_type highest_zoneidx, | 
 | 					nodemask_t *nodes); | 
 |  | 
 | /** | 
 |  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point | 
 |  * @z: The cursor used as a starting point for the search | 
 |  * @highest_zoneidx: The zone index of the highest zone to return | 
 |  * @nodes: An optional nodemask to filter the zonelist with | 
 |  * | 
 |  * This function returns the next zone at or below a given zone index that is | 
 |  * within the allowed nodemask using a cursor as the starting point for the | 
 |  * search. The zoneref returned is a cursor that represents the current zone | 
 |  * being examined. It should be advanced by one before calling | 
 |  * next_zones_zonelist again. | 
 |  * | 
 |  * Return: the next zone at or below highest_zoneidx within the allowed | 
 |  * nodemask using a cursor within a zonelist as a starting point | 
 |  */ | 
 | static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, | 
 | 					enum zone_type highest_zoneidx, | 
 | 					nodemask_t *nodes) | 
 | { | 
 | 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) | 
 | 		return z; | 
 | 	return __next_zones_zonelist(z, highest_zoneidx, nodes); | 
 | } | 
 |  | 
 | /** | 
 |  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist | 
 |  * @zonelist: The zonelist to search for a suitable zone | 
 |  * @highest_zoneidx: The zone index of the highest zone to return | 
 |  * @nodes: An optional nodemask to filter the zonelist with | 
 |  * | 
 |  * This function returns the first zone at or below a given zone index that is | 
 |  * within the allowed nodemask. The zoneref returned is a cursor that can be | 
 |  * used to iterate the zonelist with next_zones_zonelist by advancing it by | 
 |  * one before calling. | 
 |  * | 
 |  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is | 
 |  * never NULL). This may happen either genuinely, or due to concurrent nodemask | 
 |  * update due to cpuset modification. | 
 |  * | 
 |  * Return: Zoneref pointer for the first suitable zone found | 
 |  */ | 
 | static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, | 
 | 					enum zone_type highest_zoneidx, | 
 | 					nodemask_t *nodes) | 
 | { | 
 | 	return next_zones_zonelist(zonelist->_zonerefs, | 
 | 							highest_zoneidx, nodes); | 
 | } | 
 |  | 
 | /** | 
 |  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask | 
 |  * @zone: The current zone in the iterator | 
 |  * @z: The current pointer within zonelist->_zonerefs being iterated | 
 |  * @zlist: The zonelist being iterated | 
 |  * @highidx: The zone index of the highest zone to return | 
 |  * @nodemask: Nodemask allowed by the allocator | 
 |  * | 
 |  * This iterator iterates though all zones at or below a given zone index and | 
 |  * within a given nodemask | 
 |  */ | 
 | #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ | 
 | 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\ | 
 | 		zone;							\ | 
 | 		z = next_zones_zonelist(++z, highidx, nodemask),	\ | 
 | 			zone = zonelist_zone(z)) | 
 |  | 
 | #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ | 
 | 	for (zone = z->zone;	\ | 
 | 		zone;							\ | 
 | 		z = next_zones_zonelist(++z, highidx, nodemask),	\ | 
 | 			zone = zonelist_zone(z)) | 
 |  | 
 |  | 
 | /** | 
 |  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index | 
 |  * @zone: The current zone in the iterator | 
 |  * @z: The current pointer within zonelist->zones being iterated | 
 |  * @zlist: The zonelist being iterated | 
 |  * @highidx: The zone index of the highest zone to return | 
 |  * | 
 |  * This iterator iterates though all zones at or below a given zone index. | 
 |  */ | 
 | #define for_each_zone_zonelist(zone, z, zlist, highidx) \ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) | 
 |  | 
 | /* Whether the 'nodes' are all movable nodes */ | 
 | static inline bool movable_only_nodes(nodemask_t *nodes) | 
 | { | 
 | 	struct zonelist *zonelist; | 
 | 	struct zoneref *z; | 
 | 	int nid; | 
 |  | 
 | 	if (nodes_empty(*nodes)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * We can chose arbitrary node from the nodemask to get a | 
 | 	 * zonelist as they are interlinked. We just need to find | 
 | 	 * at least one zone that can satisfy kernel allocations. | 
 | 	 */ | 
 | 	nid = first_node(*nodes); | 
 | 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; | 
 | 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes); | 
 | 	return (!z->zone) ? true : false; | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM | 
 | #include <asm/sparsemem.h> | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FLATMEM | 
 | #define pfn_to_nid(pfn)		(0) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM | 
 |  | 
 | /* | 
 |  * PA_SECTION_SHIFT		physical address to/from section number | 
 |  * PFN_SECTION_SHIFT		pfn to/from section number | 
 |  */ | 
 | #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS) | 
 | #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT) | 
 |  | 
 | #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT) | 
 |  | 
 | #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT) | 
 | #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1)) | 
 |  | 
 | #define SECTION_BLOCKFLAGS_BITS \ | 
 | 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) | 
 |  | 
 | #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS | 
 | #error Allocator MAX_ORDER exceeds SECTION_SIZE | 
 | #endif | 
 |  | 
 | static inline unsigned long pfn_to_section_nr(unsigned long pfn) | 
 | { | 
 | 	return pfn >> PFN_SECTION_SHIFT; | 
 | } | 
 | static inline unsigned long section_nr_to_pfn(unsigned long sec) | 
 | { | 
 | 	return sec << PFN_SECTION_SHIFT; | 
 | } | 
 |  | 
 | #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) | 
 | #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK) | 
 |  | 
 | #define SUBSECTION_SHIFT 21 | 
 | #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) | 
 |  | 
 | #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) | 
 | #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) | 
 | #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) | 
 |  | 
 | #if SUBSECTION_SHIFT > SECTION_SIZE_BITS | 
 | #error Subsection size exceeds section size | 
 | #else | 
 | #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) | 
 | #endif | 
 |  | 
 | #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) | 
 | #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) | 
 |  | 
 | struct mem_section_usage { | 
 | 	struct rcu_head rcu; | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); | 
 | #endif | 
 | 	/* See declaration of similar field in struct zone */ | 
 | 	unsigned long pageblock_flags[0]; | 
 | }; | 
 |  | 
 | void subsection_map_init(unsigned long pfn, unsigned long nr_pages); | 
 |  | 
 | struct page; | 
 | struct page_ext; | 
 | struct mem_section { | 
 | 	/* | 
 | 	 * This is, logically, a pointer to an array of struct | 
 | 	 * pages.  However, it is stored with some other magic. | 
 | 	 * (see sparse.c::sparse_init_one_section()) | 
 | 	 * | 
 | 	 * Additionally during early boot we encode node id of | 
 | 	 * the location of the section here to guide allocation. | 
 | 	 * (see sparse.c::memory_present()) | 
 | 	 * | 
 | 	 * Making it a UL at least makes someone do a cast | 
 | 	 * before using it wrong. | 
 | 	 */ | 
 | 	unsigned long section_mem_map; | 
 |  | 
 | 	struct mem_section_usage *usage; | 
 | #ifdef CONFIG_PAGE_EXTENSION | 
 | 	/* | 
 | 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use | 
 | 	 * section. (see page_ext.h about this.) | 
 | 	 */ | 
 | 	struct page_ext *page_ext; | 
 | 	unsigned long pad; | 
 | #endif | 
 | 	/* | 
 | 	 * WARNING: mem_section must be a power-of-2 in size for the | 
 | 	 * calculation and use of SECTION_ROOT_MASK to make sense. | 
 | 	 */ | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
 | #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section)) | 
 | #else | 
 | #define SECTIONS_PER_ROOT	1 | 
 | #endif | 
 |  | 
 | #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT) | 
 | #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) | 
 | #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1) | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
 | extern struct mem_section **mem_section; | 
 | #else | 
 | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; | 
 | #endif | 
 |  | 
 | static inline unsigned long *section_to_usemap(struct mem_section *ms) | 
 | { | 
 | 	return ms->usage->pageblock_flags; | 
 | } | 
 |  | 
 | static inline struct mem_section *__nr_to_section(unsigned long nr) | 
 | { | 
 | 	unsigned long root = SECTION_NR_TO_ROOT(nr); | 
 |  | 
 | 	if (unlikely(root >= NR_SECTION_ROOTS)) | 
 | 		return NULL; | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
 | 	if (!mem_section || !mem_section[root]) | 
 | 		return NULL; | 
 | #endif | 
 | 	return &mem_section[root][nr & SECTION_ROOT_MASK]; | 
 | } | 
 | extern size_t mem_section_usage_size(void); | 
 |  | 
 | /* | 
 |  * We use the lower bits of the mem_map pointer to store | 
 |  * a little bit of information.  The pointer is calculated | 
 |  * as mem_map - section_nr_to_pfn(pnum).  The result is | 
 |  * aligned to the minimum alignment of the two values: | 
 |  *   1. All mem_map arrays are page-aligned. | 
 |  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT | 
 |  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific | 
 |  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the | 
 |  *      worst combination is powerpc with 256k pages, | 
 |  *      which results in PFN_SECTION_SHIFT equal 6. | 
 |  * To sum it up, at least 6 bits are available on all architectures. | 
 |  * However, we can exceed 6 bits on some other architectures except | 
 |  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available | 
 |  * with the worst case of 64K pages on arm64) if we make sure the | 
 |  * exceeded bit is not applicable to powerpc. | 
 |  */ | 
 | enum { | 
 | 	SECTION_MARKED_PRESENT_BIT, | 
 | 	SECTION_HAS_MEM_MAP_BIT, | 
 | 	SECTION_IS_ONLINE_BIT, | 
 | 	SECTION_IS_EARLY_BIT, | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | 	SECTION_TAINT_ZONE_DEVICE_BIT, | 
 | #endif | 
 | 	SECTION_MAP_LAST_BIT, | 
 | }; | 
 |  | 
 | #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT) | 
 | #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT) | 
 | #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT) | 
 | #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT) | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT) | 
 | #endif | 
 | #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1)) | 
 | #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT | 
 |  | 
 | static inline struct page *__section_mem_map_addr(struct mem_section *section) | 
 | { | 
 | 	unsigned long map = section->section_mem_map; | 
 | 	map &= SECTION_MAP_MASK; | 
 | 	return (struct page *)map; | 
 | } | 
 |  | 
 | static inline int present_section(struct mem_section *section) | 
 | { | 
 | 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); | 
 | } | 
 |  | 
 | static inline int present_section_nr(unsigned long nr) | 
 | { | 
 | 	return present_section(__nr_to_section(nr)); | 
 | } | 
 |  | 
 | static inline int valid_section(struct mem_section *section) | 
 | { | 
 | 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); | 
 | } | 
 |  | 
 | static inline int early_section(struct mem_section *section) | 
 | { | 
 | 	return (section && (section->section_mem_map & SECTION_IS_EARLY)); | 
 | } | 
 |  | 
 | static inline int valid_section_nr(unsigned long nr) | 
 | { | 
 | 	return valid_section(__nr_to_section(nr)); | 
 | } | 
 |  | 
 | static inline int online_section(struct mem_section *section) | 
 | { | 
 | 	return (section && (section->section_mem_map & SECTION_IS_ONLINE)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | static inline int online_device_section(struct mem_section *section) | 
 | { | 
 | 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; | 
 |  | 
 | 	return section && ((section->section_mem_map & flags) == flags); | 
 | } | 
 | #else | 
 | static inline int online_device_section(struct mem_section *section) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static inline int online_section_nr(unsigned long nr) | 
 | { | 
 | 	return online_section(__nr_to_section(nr)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); | 
 | void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); | 
 | #endif | 
 |  | 
 | static inline struct mem_section *__pfn_to_section(unsigned long pfn) | 
 | { | 
 | 	return __nr_to_section(pfn_to_section_nr(pfn)); | 
 | } | 
 |  | 
 | extern unsigned long __highest_present_section_nr; | 
 |  | 
 | static inline int subsection_map_index(unsigned long pfn) | 
 | { | 
 | 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) | 
 | { | 
 | 	int idx = subsection_map_index(pfn); | 
 | 	struct mem_section_usage *usage = READ_ONCE(ms->usage); | 
 |  | 
 | 	return usage ? test_bit(idx, usage->subsection_map) : 0; | 
 | } | 
 | #else | 
 | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) | 
 | { | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_HAVE_ARCH_PFN_VALID | 
 | /** | 
 |  * pfn_valid - check if there is a valid memory map entry for a PFN | 
 |  * @pfn: the page frame number to check | 
 |  * | 
 |  * Check if there is a valid memory map entry aka struct page for the @pfn. | 
 |  * Note, that availability of the memory map entry does not imply that | 
 |  * there is actual usable memory at that @pfn. The struct page may | 
 |  * represent a hole or an unusable page frame. | 
 |  * | 
 |  * Return: 1 for PFNs that have memory map entries and 0 otherwise | 
 |  */ | 
 | static inline int pfn_valid(unsigned long pfn) | 
 | { | 
 | 	struct mem_section *ms; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Ensure the upper PAGE_SHIFT bits are clear in the | 
 | 	 * pfn. Else it might lead to false positives when | 
 | 	 * some of the upper bits are set, but the lower bits | 
 | 	 * match a valid pfn. | 
 | 	 */ | 
 | 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) | 
 | 		return 0; | 
 |  | 
 | 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
 | 		return 0; | 
 | 	ms = __pfn_to_section(pfn); | 
 | 	rcu_read_lock_sched(); | 
 | 	if (!valid_section(ms)) { | 
 | 		rcu_read_unlock_sched(); | 
 | 		return 0; | 
 | 	} | 
 | 	/* | 
 | 	 * Traditionally early sections always returned pfn_valid() for | 
 | 	 * the entire section-sized span. | 
 | 	 */ | 
 | 	ret = early_section(ms) || pfn_section_valid(ms, pfn); | 
 | 	rcu_read_unlock_sched(); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | static inline int pfn_in_present_section(unsigned long pfn) | 
 | { | 
 | 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | 
 | 		return 0; | 
 | 	return present_section(__pfn_to_section(pfn)); | 
 | } | 
 |  | 
 | static inline unsigned long next_present_section_nr(unsigned long section_nr) | 
 | { | 
 | 	while (++section_nr <= __highest_present_section_nr) { | 
 | 		if (present_section_nr(section_nr)) | 
 | 			return section_nr; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * These are _only_ used during initialisation, therefore they | 
 |  * can use __initdata ...  They could have names to indicate | 
 |  * this restriction. | 
 |  */ | 
 | #ifdef CONFIG_NUMA | 
 | #define pfn_to_nid(pfn)							\ | 
 | ({									\ | 
 | 	unsigned long __pfn_to_nid_pfn = (pfn);				\ | 
 | 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\ | 
 | }) | 
 | #else | 
 | #define pfn_to_nid(pfn)		(0) | 
 | #endif | 
 |  | 
 | void sparse_init(void); | 
 | #else | 
 | #define sparse_init()	do {} while (0) | 
 | #define sparse_index_init(_sec, _nid)  do {} while (0) | 
 | #define pfn_in_present_section pfn_valid | 
 | #define subsection_map_init(_pfn, _nr_pages) do {} while (0) | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 |  | 
 | #endif /* !__GENERATING_BOUNDS.H */ | 
 | #endif /* !__ASSEMBLY__ */ | 
 | #endif /* _LINUX_MMZONE_H */ |