| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * A power allocator to manage temperature | 
 |  * | 
 |  * Copyright (C) 2014 ARM Ltd. | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "Power allocator: " fmt | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/thermal.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include "thermal_trace_ipa.h" | 
 |  | 
 | #include "thermal_core.h" | 
 |  | 
 | #define INVALID_TRIP -1 | 
 |  | 
 | #define FRAC_BITS 10 | 
 | #define int_to_frac(x) ((x) << FRAC_BITS) | 
 | #define frac_to_int(x) ((x) >> FRAC_BITS) | 
 |  | 
 | /** | 
 |  * mul_frac() - multiply two fixed-point numbers | 
 |  * @x:	first multiplicand | 
 |  * @y:	second multiplicand | 
 |  * | 
 |  * Return: the result of multiplying two fixed-point numbers.  The | 
 |  * result is also a fixed-point number. | 
 |  */ | 
 | static inline s64 mul_frac(s64 x, s64 y) | 
 | { | 
 | 	return (x * y) >> FRAC_BITS; | 
 | } | 
 |  | 
 | /** | 
 |  * div_frac() - divide two fixed-point numbers | 
 |  * @x:	the dividend | 
 |  * @y:	the divisor | 
 |  * | 
 |  * Return: the result of dividing two fixed-point numbers.  The | 
 |  * result is also a fixed-point number. | 
 |  */ | 
 | static inline s64 div_frac(s64 x, s64 y) | 
 | { | 
 | 	return div_s64(x << FRAC_BITS, y); | 
 | } | 
 |  | 
 | /** | 
 |  * struct power_allocator_params - parameters for the power allocator governor | 
 |  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and | 
 |  *			it needs to be freed on unbind | 
 |  * @err_integral:	accumulated error in the PID controller. | 
 |  * @prev_err:	error in the previous iteration of the PID controller. | 
 |  *		Used to calculate the derivative term. | 
 |  * @trip_switch_on:	first passive trip point of the thermal zone.  The | 
 |  *			governor switches on when this trip point is crossed. | 
 |  *			If the thermal zone only has one passive trip point, | 
 |  *			@trip_switch_on should be INVALID_TRIP. | 
 |  * @trip_max_desired_temperature:	last passive trip point of the thermal | 
 |  *					zone.  The temperature we are | 
 |  *					controlling for. | 
 |  * @sustainable_power:	Sustainable power (heat) that this thermal zone can | 
 |  *			dissipate | 
 |  */ | 
 | struct power_allocator_params { | 
 | 	bool allocated_tzp; | 
 | 	s64 err_integral; | 
 | 	s32 prev_err; | 
 | 	int trip_switch_on; | 
 | 	int trip_max_desired_temperature; | 
 | 	u32 sustainable_power; | 
 | }; | 
 |  | 
 | /** | 
 |  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone | 
 |  * @tz: thermal zone we are operating in | 
 |  * | 
 |  * For thermal zones that don't provide a sustainable_power in their | 
 |  * thermal_zone_params, estimate one.  Calculate it using the minimum | 
 |  * power of all the cooling devices as that gives a valid value that | 
 |  * can give some degree of functionality.  For optimal performance of | 
 |  * this governor, provide a sustainable_power in the thermal zone's | 
 |  * thermal_zone_params. | 
 |  */ | 
 | static u32 estimate_sustainable_power(struct thermal_zone_device *tz) | 
 | { | 
 | 	u32 sustainable_power = 0; | 
 | 	struct thermal_instance *instance; | 
 | 	struct power_allocator_params *params = tz->governor_data; | 
 | 	const struct thermal_trip *trip_max_desired_temperature = | 
 | 			&tz->trips[params->trip_max_desired_temperature]; | 
 |  | 
 | 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
 | 		struct thermal_cooling_device *cdev = instance->cdev; | 
 | 		u32 min_power; | 
 |  | 
 | 		if (instance->trip != trip_max_desired_temperature) | 
 | 			continue; | 
 |  | 
 | 		if (!cdev_is_power_actor(cdev)) | 
 | 			continue; | 
 |  | 
 | 		if (cdev->ops->state2power(cdev, instance->upper, &min_power)) | 
 | 			continue; | 
 |  | 
 | 		sustainable_power += min_power; | 
 | 	} | 
 |  | 
 | 	return sustainable_power; | 
 | } | 
 |  | 
 | /** | 
 |  * estimate_pid_constants() - Estimate the constants for the PID controller | 
 |  * @tz:		thermal zone for which to estimate the constants | 
 |  * @sustainable_power:	sustainable power for the thermal zone | 
 |  * @trip_switch_on:	trip point number for the switch on temperature | 
 |  * @control_temp:	target temperature for the power allocator governor | 
 |  * | 
 |  * This function is used to update the estimation of the PID | 
 |  * controller constants in struct thermal_zone_parameters. | 
 |  */ | 
 | static void estimate_pid_constants(struct thermal_zone_device *tz, | 
 | 				   u32 sustainable_power, int trip_switch_on, | 
 | 				   int control_temp) | 
 | { | 
 | 	struct thermal_trip trip; | 
 | 	u32 temperature_threshold = control_temp; | 
 | 	int ret; | 
 | 	s32 k_i; | 
 |  | 
 | 	ret = __thermal_zone_get_trip(tz, trip_switch_on, &trip); | 
 | 	if (!ret) | 
 | 		temperature_threshold -= trip.temperature; | 
 |  | 
 | 	/* | 
 | 	 * estimate_pid_constants() tries to find appropriate default | 
 | 	 * values for thermal zones that don't provide them. If a | 
 | 	 * system integrator has configured a thermal zone with two | 
 | 	 * passive trip points at the same temperature, that person | 
 | 	 * hasn't put any effort to set up the thermal zone properly | 
 | 	 * so just give up. | 
 | 	 */ | 
 | 	if (!temperature_threshold) | 
 | 		return; | 
 |  | 
 | 	tz->tzp->k_po = int_to_frac(sustainable_power) / | 
 | 		temperature_threshold; | 
 |  | 
 | 	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / | 
 | 		temperature_threshold; | 
 |  | 
 | 	k_i = tz->tzp->k_pu / 10; | 
 | 	tz->tzp->k_i = k_i > 0 ? k_i : 1; | 
 |  | 
 | 	/* | 
 | 	 * The default for k_d and integral_cutoff is 0, so we can | 
 | 	 * leave them as they are. | 
 | 	 */ | 
 | } | 
 |  | 
 | /** | 
 |  * get_sustainable_power() - Get the right sustainable power | 
 |  * @tz:		thermal zone for which to estimate the constants | 
 |  * @params:	parameters for the power allocator governor | 
 |  * @control_temp:	target temperature for the power allocator governor | 
 |  * | 
 |  * This function is used for getting the proper sustainable power value based | 
 |  * on variables which might be updated by the user sysfs interface. If that | 
 |  * happen the new value is going to be estimated and updated. It is also used | 
 |  * after thermal zone binding, where the initial values where set to 0. | 
 |  */ | 
 | static u32 get_sustainable_power(struct thermal_zone_device *tz, | 
 | 				 struct power_allocator_params *params, | 
 | 				 int control_temp) | 
 | { | 
 | 	u32 sustainable_power; | 
 |  | 
 | 	if (!tz->tzp->sustainable_power) | 
 | 		sustainable_power = estimate_sustainable_power(tz); | 
 | 	else | 
 | 		sustainable_power = tz->tzp->sustainable_power; | 
 |  | 
 | 	/* Check if it's init value 0 or there was update via sysfs */ | 
 | 	if (sustainable_power != params->sustainable_power) { | 
 | 		estimate_pid_constants(tz, sustainable_power, | 
 | 				       params->trip_switch_on, control_temp); | 
 |  | 
 | 		/* Do the estimation only once and make available in sysfs */ | 
 | 		tz->tzp->sustainable_power = sustainable_power; | 
 | 		params->sustainable_power = sustainable_power; | 
 | 	} | 
 |  | 
 | 	return sustainable_power; | 
 | } | 
 |  | 
 | /** | 
 |  * pid_controller() - PID controller | 
 |  * @tz:	thermal zone we are operating in | 
 |  * @control_temp:	the target temperature in millicelsius | 
 |  * @max_allocatable_power:	maximum allocatable power for this thermal zone | 
 |  * | 
 |  * This PID controller increases the available power budget so that the | 
 |  * temperature of the thermal zone gets as close as possible to | 
 |  * @control_temp and limits the power if it exceeds it.  k_po is the | 
 |  * proportional term when we are overshooting, k_pu is the | 
 |  * proportional term when we are undershooting.  integral_cutoff is a | 
 |  * threshold below which we stop accumulating the error.  The | 
 |  * accumulated error is only valid if the requested power will make | 
 |  * the system warmer.  If the system is mostly idle, there's no point | 
 |  * in accumulating positive error. | 
 |  * | 
 |  * Return: The power budget for the next period. | 
 |  */ | 
 | static u32 pid_controller(struct thermal_zone_device *tz, | 
 | 			  int control_temp, | 
 | 			  u32 max_allocatable_power) | 
 | { | 
 | 	s64 p, i, d, power_range; | 
 | 	s32 err, max_power_frac; | 
 | 	u32 sustainable_power; | 
 | 	struct power_allocator_params *params = tz->governor_data; | 
 |  | 
 | 	max_power_frac = int_to_frac(max_allocatable_power); | 
 |  | 
 | 	sustainable_power = get_sustainable_power(tz, params, control_temp); | 
 |  | 
 | 	err = control_temp - tz->temperature; | 
 | 	err = int_to_frac(err); | 
 |  | 
 | 	/* Calculate the proportional term */ | 
 | 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); | 
 |  | 
 | 	/* | 
 | 	 * Calculate the integral term | 
 | 	 * | 
 | 	 * if the error is less than cut off allow integration (but | 
 | 	 * the integral is limited to max power) | 
 | 	 */ | 
 | 	i = mul_frac(tz->tzp->k_i, params->err_integral); | 
 |  | 
 | 	if (err < int_to_frac(tz->tzp->integral_cutoff)) { | 
 | 		s64 i_next = i + mul_frac(tz->tzp->k_i, err); | 
 |  | 
 | 		if (abs(i_next) < max_power_frac) { | 
 | 			i = i_next; | 
 | 			params->err_integral += err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate the derivative term | 
 | 	 * | 
 | 	 * We do err - prev_err, so with a positive k_d, a decreasing | 
 | 	 * error (i.e. driving closer to the line) results in less | 
 | 	 * power being applied, slowing down the controller) | 
 | 	 */ | 
 | 	d = mul_frac(tz->tzp->k_d, err - params->prev_err); | 
 | 	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); | 
 | 	params->prev_err = err; | 
 |  | 
 | 	power_range = p + i + d; | 
 |  | 
 | 	/* feed-forward the known sustainable dissipatable power */ | 
 | 	power_range = sustainable_power + frac_to_int(power_range); | 
 |  | 
 | 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); | 
 |  | 
 | 	trace_thermal_power_allocator_pid(tz, frac_to_int(err), | 
 | 					  frac_to_int(params->err_integral), | 
 | 					  frac_to_int(p), frac_to_int(i), | 
 | 					  frac_to_int(d), power_range); | 
 |  | 
 | 	return power_range; | 
 | } | 
 |  | 
 | /** | 
 |  * power_actor_set_power() - limit the maximum power a cooling device consumes | 
 |  * @cdev:	pointer to &thermal_cooling_device | 
 |  * @instance:	thermal instance to update | 
 |  * @power:	the power in milliwatts | 
 |  * | 
 |  * Set the cooling device to consume at most @power milliwatts. The limit is | 
 |  * expected to be a cap at the maximum power consumption. | 
 |  * | 
 |  * Return: 0 on success, -EINVAL if the cooling device does not | 
 |  * implement the power actor API or -E* for other failures. | 
 |  */ | 
 | static int | 
 | power_actor_set_power(struct thermal_cooling_device *cdev, | 
 | 		      struct thermal_instance *instance, u32 power) | 
 | { | 
 | 	unsigned long state; | 
 | 	int ret; | 
 |  | 
 | 	ret = cdev->ops->power2state(cdev, power, &state); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	instance->target = clamp_val(state, instance->lower, instance->upper); | 
 | 	mutex_lock(&cdev->lock); | 
 | 	__thermal_cdev_update(cdev); | 
 | 	mutex_unlock(&cdev->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * divvy_up_power() - divvy the allocated power between the actors | 
 |  * @req_power:	each actor's requested power | 
 |  * @max_power:	each actor's maximum available power | 
 |  * @num_actors:	size of the @req_power, @max_power and @granted_power's array | 
 |  * @total_req_power: sum of @req_power | 
 |  * @power_range:	total allocated power | 
 |  * @granted_power:	output array: each actor's granted power | 
 |  * @extra_actor_power:	an appropriately sized array to be used in the | 
 |  *			function as temporary storage of the extra power given | 
 |  *			to the actors | 
 |  * | 
 |  * This function divides the total allocated power (@power_range) | 
 |  * fairly between the actors.  It first tries to give each actor a | 
 |  * share of the @power_range according to how much power it requested | 
 |  * compared to the rest of the actors.  For example, if only one actor | 
 |  * requests power, then it receives all the @power_range.  If | 
 |  * three actors each requests 1mW, each receives a third of the | 
 |  * @power_range. | 
 |  * | 
 |  * If any actor received more than their maximum power, then that | 
 |  * surplus is re-divvied among the actors based on how far they are | 
 |  * from their respective maximums. | 
 |  * | 
 |  * Granted power for each actor is written to @granted_power, which | 
 |  * should've been allocated by the calling function. | 
 |  */ | 
 | static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, | 
 | 			   u32 total_req_power, u32 power_range, | 
 | 			   u32 *granted_power, u32 *extra_actor_power) | 
 | { | 
 | 	u32 extra_power, capped_extra_power; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Prevent division by 0 if none of the actors request power. | 
 | 	 */ | 
 | 	if (!total_req_power) | 
 | 		total_req_power = 1; | 
 |  | 
 | 	capped_extra_power = 0; | 
 | 	extra_power = 0; | 
 | 	for (i = 0; i < num_actors; i++) { | 
 | 		u64 req_range = (u64)req_power[i] * power_range; | 
 |  | 
 | 		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, | 
 | 							 total_req_power); | 
 |  | 
 | 		if (granted_power[i] > max_power[i]) { | 
 | 			extra_power += granted_power[i] - max_power[i]; | 
 | 			granted_power[i] = max_power[i]; | 
 | 		} | 
 |  | 
 | 		extra_actor_power[i] = max_power[i] - granted_power[i]; | 
 | 		capped_extra_power += extra_actor_power[i]; | 
 | 	} | 
 |  | 
 | 	if (!extra_power) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Re-divvy the reclaimed extra among actors based on | 
 | 	 * how far they are from the max | 
 | 	 */ | 
 | 	extra_power = min(extra_power, capped_extra_power); | 
 | 	if (capped_extra_power > 0) | 
 | 		for (i = 0; i < num_actors; i++) { | 
 | 			u64 extra_range = (u64)extra_actor_power[i] * extra_power; | 
 | 			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range, | 
 | 							 capped_extra_power); | 
 | 		} | 
 | } | 
 |  | 
 | static int allocate_power(struct thermal_zone_device *tz, | 
 | 			  int control_temp) | 
 | { | 
 | 	struct thermal_instance *instance; | 
 | 	struct power_allocator_params *params = tz->governor_data; | 
 | 	const struct thermal_trip *trip_max_desired_temperature = | 
 | 			&tz->trips[params->trip_max_desired_temperature]; | 
 | 	u32 *req_power, *max_power, *granted_power, *extra_actor_power; | 
 | 	u32 *weighted_req_power; | 
 | 	u32 total_req_power, max_allocatable_power, total_weighted_req_power; | 
 | 	u32 total_granted_power, power_range; | 
 | 	int i, num_actors, total_weight, ret = 0; | 
 |  | 
 | 	num_actors = 0; | 
 | 	total_weight = 0; | 
 | 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
 | 		if ((instance->trip == trip_max_desired_temperature) && | 
 | 		    cdev_is_power_actor(instance->cdev)) { | 
 | 			num_actors++; | 
 | 			total_weight += instance->weight; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!num_actors) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * We need to allocate five arrays of the same size: | 
 | 	 * req_power, max_power, granted_power, extra_actor_power and | 
 | 	 * weighted_req_power.  They are going to be needed until this | 
 | 	 * function returns.  Allocate them all in one go to simplify | 
 | 	 * the allocation and deallocation logic. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); | 
 | 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); | 
 | 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); | 
 | 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); | 
 | 	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); | 
 | 	if (!req_power) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	max_power = &req_power[num_actors]; | 
 | 	granted_power = &req_power[2 * num_actors]; | 
 | 	extra_actor_power = &req_power[3 * num_actors]; | 
 | 	weighted_req_power = &req_power[4 * num_actors]; | 
 |  | 
 | 	i = 0; | 
 | 	total_weighted_req_power = 0; | 
 | 	total_req_power = 0; | 
 | 	max_allocatable_power = 0; | 
 |  | 
 | 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
 | 		int weight; | 
 | 		struct thermal_cooling_device *cdev = instance->cdev; | 
 |  | 
 | 		if (instance->trip != trip_max_desired_temperature) | 
 | 			continue; | 
 |  | 
 | 		if (!cdev_is_power_actor(cdev)) | 
 | 			continue; | 
 |  | 
 | 		if (cdev->ops->get_requested_power(cdev, &req_power[i])) | 
 | 			continue; | 
 |  | 
 | 		if (!total_weight) | 
 | 			weight = 1 << FRAC_BITS; | 
 | 		else | 
 | 			weight = instance->weight; | 
 |  | 
 | 		weighted_req_power[i] = frac_to_int(weight * req_power[i]); | 
 |  | 
 | 		if (cdev->ops->state2power(cdev, instance->lower, | 
 | 					   &max_power[i])) | 
 | 			continue; | 
 |  | 
 | 		total_req_power += req_power[i]; | 
 | 		max_allocatable_power += max_power[i]; | 
 | 		total_weighted_req_power += weighted_req_power[i]; | 
 |  | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	power_range = pid_controller(tz, control_temp, max_allocatable_power); | 
 |  | 
 | 	divvy_up_power(weighted_req_power, max_power, num_actors, | 
 | 		       total_weighted_req_power, power_range, granted_power, | 
 | 		       extra_actor_power); | 
 |  | 
 | 	total_granted_power = 0; | 
 | 	i = 0; | 
 | 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
 | 		if (instance->trip != trip_max_desired_temperature) | 
 | 			continue; | 
 |  | 
 | 		if (!cdev_is_power_actor(instance->cdev)) | 
 | 			continue; | 
 |  | 
 | 		power_actor_set_power(instance->cdev, instance, | 
 | 				      granted_power[i]); | 
 | 		total_granted_power += granted_power[i]; | 
 |  | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	trace_thermal_power_allocator(tz, req_power, total_req_power, | 
 | 				      granted_power, total_granted_power, | 
 | 				      num_actors, power_range, | 
 | 				      max_allocatable_power, tz->temperature, | 
 | 				      control_temp - tz->temperature); | 
 |  | 
 | 	kfree(req_power); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * get_governor_trips() - get the number of the two trip points that are key for this governor | 
 |  * @tz:	thermal zone to operate on | 
 |  * @params:	pointer to private data for this governor | 
 |  * | 
 |  * The power allocator governor works optimally with two trips points: | 
 |  * a "switch on" trip point and a "maximum desired temperature".  These | 
 |  * are defined as the first and last passive trip points. | 
 |  * | 
 |  * If there is only one trip point, then that's considered to be the | 
 |  * "maximum desired temperature" trip point and the governor is always | 
 |  * on.  If there are no passive or active trip points, then the | 
 |  * governor won't do anything.  In fact, its throttle function | 
 |  * won't be called at all. | 
 |  */ | 
 | static void get_governor_trips(struct thermal_zone_device *tz, | 
 | 			       struct power_allocator_params *params) | 
 | { | 
 | 	int i, last_active, last_passive; | 
 | 	bool found_first_passive; | 
 |  | 
 | 	found_first_passive = false; | 
 | 	last_active = INVALID_TRIP; | 
 | 	last_passive = INVALID_TRIP; | 
 |  | 
 | 	for (i = 0; i < tz->num_trips; i++) { | 
 | 		struct thermal_trip trip; | 
 | 		int ret; | 
 |  | 
 | 		ret = __thermal_zone_get_trip(tz, i, &trip); | 
 | 		if (ret) { | 
 | 			dev_warn(&tz->device, | 
 | 				 "Failed to get trip point %d type: %d\n", i, | 
 | 				 ret); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (trip.type == THERMAL_TRIP_PASSIVE) { | 
 | 			if (!found_first_passive) { | 
 | 				params->trip_switch_on = i; | 
 | 				found_first_passive = true; | 
 | 			} else  { | 
 | 				last_passive = i; | 
 | 			} | 
 | 		} else if (trip.type == THERMAL_TRIP_ACTIVE) { | 
 | 			last_active = i; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (last_passive != INVALID_TRIP) { | 
 | 		params->trip_max_desired_temperature = last_passive; | 
 | 	} else if (found_first_passive) { | 
 | 		params->trip_max_desired_temperature = params->trip_switch_on; | 
 | 		params->trip_switch_on = INVALID_TRIP; | 
 | 	} else { | 
 | 		params->trip_switch_on = INVALID_TRIP; | 
 | 		params->trip_max_desired_temperature = last_active; | 
 | 	} | 
 | } | 
 |  | 
 | static void reset_pid_controller(struct power_allocator_params *params) | 
 | { | 
 | 	params->err_integral = 0; | 
 | 	params->prev_err = 0; | 
 | } | 
 |  | 
 | static void allow_maximum_power(struct thermal_zone_device *tz, bool update) | 
 | { | 
 | 	struct thermal_instance *instance; | 
 | 	struct power_allocator_params *params = tz->governor_data; | 
 | 	const struct thermal_trip *trip_max_desired_temperature = | 
 | 			&tz->trips[params->trip_max_desired_temperature]; | 
 | 	u32 req_power; | 
 |  | 
 | 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
 | 		struct thermal_cooling_device *cdev = instance->cdev; | 
 |  | 
 | 		if ((instance->trip != trip_max_desired_temperature) || | 
 | 		    (!cdev_is_power_actor(instance->cdev))) | 
 | 			continue; | 
 |  | 
 | 		instance->target = 0; | 
 | 		mutex_lock(&instance->cdev->lock); | 
 | 		/* | 
 | 		 * Call for updating the cooling devices local stats and avoid | 
 | 		 * periods of dozen of seconds when those have not been | 
 | 		 * maintained. | 
 | 		 */ | 
 | 		cdev->ops->get_requested_power(cdev, &req_power); | 
 |  | 
 | 		if (update) | 
 | 			__thermal_cdev_update(instance->cdev); | 
 |  | 
 | 		mutex_unlock(&instance->cdev->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * check_power_actors() - Check all cooling devices and warn when they are | 
 |  *			not power actors | 
 |  * @tz:		thermal zone to operate on | 
 |  * | 
 |  * Check all cooling devices in the @tz and warn every time they are missing | 
 |  * power actor API. The warning should help to investigate the issue, which | 
 |  * could be e.g. lack of Energy Model for a given device. | 
 |  * | 
 |  * Return: 0 on success, -EINVAL if any cooling device does not implement | 
 |  * the power actor API. | 
 |  */ | 
 | static int check_power_actors(struct thermal_zone_device *tz) | 
 | { | 
 | 	struct thermal_instance *instance; | 
 | 	int ret = 0; | 
 |  | 
 | 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
 | 		if (!cdev_is_power_actor(instance->cdev)) { | 
 | 			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", | 
 | 				 instance->cdev->type); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * power_allocator_bind() - bind the power_allocator governor to a thermal zone | 
 |  * @tz:	thermal zone to bind it to | 
 |  * | 
 |  * Initialize the PID controller parameters and bind it to the thermal | 
 |  * zone. | 
 |  * | 
 |  * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL | 
 |  * when there are unsupported cooling devices in the @tz. | 
 |  */ | 
 | static int power_allocator_bind(struct thermal_zone_device *tz) | 
 | { | 
 | 	int ret; | 
 | 	struct power_allocator_params *params; | 
 | 	struct thermal_trip trip; | 
 |  | 
 | 	ret = check_power_actors(tz); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	params = kzalloc(sizeof(*params), GFP_KERNEL); | 
 | 	if (!params) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!tz->tzp) { | 
 | 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); | 
 | 		if (!tz->tzp) { | 
 | 			ret = -ENOMEM; | 
 | 			goto free_params; | 
 | 		} | 
 |  | 
 | 		params->allocated_tzp = true; | 
 | 	} | 
 |  | 
 | 	if (!tz->tzp->sustainable_power) | 
 | 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); | 
 |  | 
 | 	get_governor_trips(tz, params); | 
 |  | 
 | 	if (tz->num_trips > 0) { | 
 | 		ret = __thermal_zone_get_trip(tz, params->trip_max_desired_temperature, | 
 | 					      &trip); | 
 | 		if (!ret) | 
 | 			estimate_pid_constants(tz, tz->tzp->sustainable_power, | 
 | 					       params->trip_switch_on, | 
 | 					       trip.temperature); | 
 | 	} | 
 |  | 
 | 	reset_pid_controller(params); | 
 |  | 
 | 	tz->governor_data = params; | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_params: | 
 | 	kfree(params); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void power_allocator_unbind(struct thermal_zone_device *tz) | 
 | { | 
 | 	struct power_allocator_params *params = tz->governor_data; | 
 |  | 
 | 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); | 
 |  | 
 | 	if (params->allocated_tzp) { | 
 | 		kfree(tz->tzp); | 
 | 		tz->tzp = NULL; | 
 | 	} | 
 |  | 
 | 	kfree(tz->governor_data); | 
 | 	tz->governor_data = NULL; | 
 | } | 
 |  | 
 | static int power_allocator_throttle(struct thermal_zone_device *tz, int trip_id) | 
 | { | 
 | 	struct power_allocator_params *params = tz->governor_data; | 
 | 	struct thermal_trip trip; | 
 | 	int ret; | 
 | 	bool update; | 
 |  | 
 | 	lockdep_assert_held(&tz->lock); | 
 |  | 
 | 	/* | 
 | 	 * We get called for every trip point but we only need to do | 
 | 	 * our calculations once | 
 | 	 */ | 
 | 	if (trip_id != params->trip_max_desired_temperature) | 
 | 		return 0; | 
 |  | 
 | 	ret = __thermal_zone_get_trip(tz, params->trip_switch_on, &trip); | 
 | 	if (!ret && (tz->temperature < trip.temperature)) { | 
 | 		update = tz->passive; | 
 | 		tz->passive = 0; | 
 | 		reset_pid_controller(params); | 
 | 		allow_maximum_power(tz, update); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	tz->passive = 1; | 
 |  | 
 | 	ret = __thermal_zone_get_trip(tz, params->trip_max_desired_temperature, &trip); | 
 | 	if (ret) { | 
 | 		dev_warn(&tz->device, "Failed to get the maximum desired temperature: %d\n", | 
 | 			 ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return allocate_power(tz, trip.temperature); | 
 | } | 
 |  | 
 | static struct thermal_governor thermal_gov_power_allocator = { | 
 | 	.name		= "power_allocator", | 
 | 	.bind_to_tz	= power_allocator_bind, | 
 | 	.unbind_from_tz	= power_allocator_unbind, | 
 | 	.throttle	= power_allocator_throttle, | 
 | }; | 
 | THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); |