|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* Copyright (c) 2018, Intel Corporation. */ | 
|  |  | 
|  | #include "ice.h" | 
|  | #include "ice_vf_lib_private.h" | 
|  | #include "ice_base.h" | 
|  | #include "ice_lib.h" | 
|  | #include "ice_fltr.h" | 
|  | #include "ice_dcb_lib.h" | 
|  | #include "ice_flow.h" | 
|  | #include "ice_eswitch.h" | 
|  | #include "ice_virtchnl_allowlist.h" | 
|  | #include "ice_flex_pipe.h" | 
|  | #include "ice_vf_vsi_vlan_ops.h" | 
|  | #include "ice_vlan.h" | 
|  |  | 
|  | /** | 
|  | * ice_free_vf_entries - Free all VF entries from the hash table | 
|  | * @pf: pointer to the PF structure | 
|  | * | 
|  | * Iterate over the VF hash table, removing and releasing all VF entries. | 
|  | * Called during VF teardown or as cleanup during failed VF initialization. | 
|  | */ | 
|  | static void ice_free_vf_entries(struct ice_pf *pf) | 
|  | { | 
|  | struct ice_vfs *vfs = &pf->vfs; | 
|  | struct hlist_node *tmp; | 
|  | struct ice_vf *vf; | 
|  | unsigned int bkt; | 
|  |  | 
|  | /* Remove all VFs from the hash table and release their main | 
|  | * reference. Once all references to the VF are dropped, ice_put_vf() | 
|  | * will call ice_release_vf which will remove the VF memory. | 
|  | */ | 
|  | lockdep_assert_held(&vfs->table_lock); | 
|  |  | 
|  | hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { | 
|  | hash_del_rcu(&vf->entry); | 
|  | ice_put_vf(vf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_vf_vsi_release - invalidate the VF's VSI after freeing it | 
|  | * @vf: invalidate this VF's VSI after freeing it | 
|  | */ | 
|  | static void ice_vf_vsi_release(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_vsi *vsi = ice_get_vf_vsi(vf); | 
|  |  | 
|  | if (WARN_ON(!vsi)) | 
|  | return; | 
|  |  | 
|  | ice_vsi_release(vsi); | 
|  | ice_vf_invalidate_vsi(vf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_free_vf_res - Free a VF's resources | 
|  | * @vf: pointer to the VF info | 
|  | */ | 
|  | static void ice_free_vf_res(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  | int i, last_vector_idx; | 
|  |  | 
|  | /* First, disable VF's configuration API to prevent OS from | 
|  | * accessing the VF's VSI after it's freed or invalidated. | 
|  | */ | 
|  | clear_bit(ICE_VF_STATE_INIT, vf->vf_states); | 
|  | ice_vf_fdir_exit(vf); | 
|  | /* free VF control VSI */ | 
|  | if (vf->ctrl_vsi_idx != ICE_NO_VSI) | 
|  | ice_vf_ctrl_vsi_release(vf); | 
|  |  | 
|  | /* free VSI and disconnect it from the parent uplink */ | 
|  | if (vf->lan_vsi_idx != ICE_NO_VSI) { | 
|  | ice_vf_vsi_release(vf); | 
|  | vf->num_mac = 0; | 
|  | } | 
|  |  | 
|  | last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1; | 
|  |  | 
|  | /* clear VF MDD event information */ | 
|  | memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); | 
|  | memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); | 
|  |  | 
|  | /* Disable interrupts so that VF starts in a known state */ | 
|  | for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { | 
|  | wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); | 
|  | ice_flush(&pf->hw); | 
|  | } | 
|  | /* reset some of the state variables keeping track of the resources */ | 
|  | clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); | 
|  | clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_dis_vf_mappings | 
|  | * @vf: pointer to the VF structure | 
|  | */ | 
|  | static void ice_dis_vf_mappings(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  | struct ice_vsi *vsi; | 
|  | struct device *dev; | 
|  | int first, last, v; | 
|  | struct ice_hw *hw; | 
|  |  | 
|  | hw = &pf->hw; | 
|  | vsi = ice_get_vf_vsi(vf); | 
|  | if (WARN_ON(!vsi)) | 
|  | return; | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  | wr32(hw, VPINT_ALLOC(vf->vf_id), 0); | 
|  | wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); | 
|  |  | 
|  | first = vf->first_vector_idx; | 
|  | last = first + pf->vfs.num_msix_per - 1; | 
|  | for (v = first; v <= last; v++) { | 
|  | u32 reg; | 
|  |  | 
|  | reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & | 
|  | GLINT_VECT2FUNC_IS_PF_M) | | 
|  | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & | 
|  | GLINT_VECT2FUNC_PF_NUM_M)); | 
|  | wr32(hw, GLINT_VECT2FUNC(v), reg); | 
|  | } | 
|  |  | 
|  | if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) | 
|  | wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); | 
|  | else | 
|  | dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); | 
|  |  | 
|  | if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) | 
|  | wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); | 
|  | else | 
|  | dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_free_msix_res - Reset/free any used MSIX resources | 
|  | * @pf: pointer to the PF structure | 
|  | * | 
|  | * Since no MSIX entries are taken from the pf->irq_tracker then just clear | 
|  | * the pf->sriov_base_vector. | 
|  | * | 
|  | * Returns 0 on success, and -EINVAL on error. | 
|  | */ | 
|  | static int ice_sriov_free_msix_res(struct ice_pf *pf) | 
|  | { | 
|  | struct ice_res_tracker *res; | 
|  |  | 
|  | if (!pf) | 
|  | return -EINVAL; | 
|  |  | 
|  | res = pf->irq_tracker; | 
|  | if (!res) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* give back irq_tracker resources used */ | 
|  | WARN_ON(pf->sriov_base_vector < res->num_entries); | 
|  |  | 
|  | pf->sriov_base_vector = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_free_vfs - Free all VFs | 
|  | * @pf: pointer to the PF structure | 
|  | */ | 
|  | void ice_free_vfs(struct ice_pf *pf) | 
|  | { | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | struct ice_vfs *vfs = &pf->vfs; | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | struct ice_vf *vf; | 
|  | unsigned int bkt; | 
|  |  | 
|  | if (!ice_has_vfs(pf)) | 
|  | return; | 
|  |  | 
|  | while (test_and_set_bit(ICE_VF_DIS, pf->state)) | 
|  | usleep_range(1000, 2000); | 
|  |  | 
|  | /* Disable IOV before freeing resources. This lets any VF drivers | 
|  | * running in the host get themselves cleaned up before we yank | 
|  | * the carpet out from underneath their feet. | 
|  | */ | 
|  | if (!pci_vfs_assigned(pf->pdev)) | 
|  | pci_disable_sriov(pf->pdev); | 
|  | else | 
|  | dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); | 
|  |  | 
|  | mutex_lock(&vfs->table_lock); | 
|  |  | 
|  | ice_eswitch_release(pf); | 
|  |  | 
|  | ice_for_each_vf(pf, bkt, vf) { | 
|  | mutex_lock(&vf->cfg_lock); | 
|  |  | 
|  | ice_dis_vf_qs(vf); | 
|  |  | 
|  | if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { | 
|  | /* disable VF qp mappings and set VF disable state */ | 
|  | ice_dis_vf_mappings(vf); | 
|  | set_bit(ICE_VF_STATE_DIS, vf->vf_states); | 
|  | ice_free_vf_res(vf); | 
|  | } | 
|  |  | 
|  | if (!pci_vfs_assigned(pf->pdev)) { | 
|  | u32 reg_idx, bit_idx; | 
|  |  | 
|  | reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; | 
|  | bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; | 
|  | wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); | 
|  | } | 
|  |  | 
|  | /* clear malicious info since the VF is getting released */ | 
|  | if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs, | 
|  | ICE_MAX_SRIOV_VFS, vf->vf_id)) | 
|  | dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", | 
|  | vf->vf_id); | 
|  |  | 
|  | mutex_unlock(&vf->cfg_lock); | 
|  | } | 
|  |  | 
|  | if (ice_sriov_free_msix_res(pf)) | 
|  | dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); | 
|  |  | 
|  | vfs->num_qps_per = 0; | 
|  | ice_free_vf_entries(pf); | 
|  |  | 
|  | mutex_unlock(&vfs->table_lock); | 
|  |  | 
|  | clear_bit(ICE_VF_DIS, pf->state); | 
|  | clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_vf_vsi_setup - Set up a VF VSI | 
|  | * @vf: VF to setup VSI for | 
|  | * | 
|  | * Returns pointer to the successfully allocated VSI struct on success, | 
|  | * otherwise returns NULL on failure. | 
|  | */ | 
|  | static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_port_info *pi = ice_vf_get_port_info(vf); | 
|  | struct ice_pf *pf = vf->pf; | 
|  | struct ice_vsi *vsi; | 
|  |  | 
|  | vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf, NULL); | 
|  |  | 
|  | if (!vsi) { | 
|  | dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); | 
|  | ice_vf_invalidate_vsi(vf); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | vf->lan_vsi_idx = vsi->idx; | 
|  | vf->lan_vsi_num = vsi->vsi_num; | 
|  |  | 
|  | return vsi; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space | 
|  | * @pf: pointer to PF structure | 
|  | * @vf: pointer to VF that the first MSIX vector index is being calculated for | 
|  | * | 
|  | * This returns the first MSIX vector index in PF space that is used by this VF. | 
|  | * This index is used when accessing PF relative registers such as | 
|  | * GLINT_VECT2FUNC and GLINT_DYN_CTL. | 
|  | * This will always be the OICR index in the AVF driver so any functionality | 
|  | * using vf->first_vector_idx for queue configuration will have to increment by | 
|  | * 1 to avoid meddling with the OICR index. | 
|  | */ | 
|  | static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) | 
|  | { | 
|  | return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware | 
|  | * @vf: VF to enable MSIX mappings for | 
|  | * | 
|  | * Some of the registers need to be indexed/configured using hardware global | 
|  | * device values and other registers need 0-based values, which represent PF | 
|  | * based values. | 
|  | */ | 
|  | static void ice_ena_vf_msix_mappings(struct ice_vf *vf) | 
|  | { | 
|  | int device_based_first_msix, device_based_last_msix; | 
|  | int pf_based_first_msix, pf_based_last_msix, v; | 
|  | struct ice_pf *pf = vf->pf; | 
|  | int device_based_vf_id; | 
|  | struct ice_hw *hw; | 
|  | u32 reg; | 
|  |  | 
|  | hw = &pf->hw; | 
|  | pf_based_first_msix = vf->first_vector_idx; | 
|  | pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1; | 
|  |  | 
|  | device_based_first_msix = pf_based_first_msix + | 
|  | pf->hw.func_caps.common_cap.msix_vector_first_id; | 
|  | device_based_last_msix = | 
|  | (device_based_first_msix + pf->vfs.num_msix_per) - 1; | 
|  | device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; | 
|  |  | 
|  | reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & | 
|  | VPINT_ALLOC_FIRST_M) | | 
|  | ((device_based_last_msix << VPINT_ALLOC_LAST_S) & | 
|  | VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); | 
|  | wr32(hw, VPINT_ALLOC(vf->vf_id), reg); | 
|  |  | 
|  | reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) | 
|  | & VPINT_ALLOC_PCI_FIRST_M) | | 
|  | ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & | 
|  | VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); | 
|  | wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); | 
|  |  | 
|  | /* map the interrupts to its functions */ | 
|  | for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { | 
|  | reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & | 
|  | GLINT_VECT2FUNC_VF_NUM_M) | | 
|  | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & | 
|  | GLINT_VECT2FUNC_PF_NUM_M)); | 
|  | wr32(hw, GLINT_VECT2FUNC(v), reg); | 
|  | } | 
|  |  | 
|  | /* Map mailbox interrupt to VF MSI-X vector 0 */ | 
|  | wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF | 
|  | * @vf: VF to enable the mappings for | 
|  | * @max_txq: max Tx queues allowed on the VF's VSI | 
|  | * @max_rxq: max Rx queues allowed on the VF's VSI | 
|  | */ | 
|  | static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) | 
|  | { | 
|  | struct device *dev = ice_pf_to_dev(vf->pf); | 
|  | struct ice_vsi *vsi = ice_get_vf_vsi(vf); | 
|  | struct ice_hw *hw = &vf->pf->hw; | 
|  | u32 reg; | 
|  |  | 
|  | if (WARN_ON(!vsi)) | 
|  | return; | 
|  |  | 
|  | /* set regardless of mapping mode */ | 
|  | wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); | 
|  |  | 
|  | /* VF Tx queues allocation */ | 
|  | if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { | 
|  | /* set the VF PF Tx queue range | 
|  | * VFNUMQ value should be set to (number of queues - 1). A value | 
|  | * of 0 means 1 queue and a value of 255 means 256 queues | 
|  | */ | 
|  | reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & | 
|  | VPLAN_TX_QBASE_VFFIRSTQ_M) | | 
|  | (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & | 
|  | VPLAN_TX_QBASE_VFNUMQ_M)); | 
|  | wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); | 
|  | } else { | 
|  | dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); | 
|  | } | 
|  |  | 
|  | /* set regardless of mapping mode */ | 
|  | wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); | 
|  |  | 
|  | /* VF Rx queues allocation */ | 
|  | if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { | 
|  | /* set the VF PF Rx queue range | 
|  | * VFNUMQ value should be set to (number of queues - 1). A value | 
|  | * of 0 means 1 queue and a value of 255 means 256 queues | 
|  | */ | 
|  | reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & | 
|  | VPLAN_RX_QBASE_VFFIRSTQ_M) | | 
|  | (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & | 
|  | VPLAN_RX_QBASE_VFNUMQ_M)); | 
|  | wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); | 
|  | } else { | 
|  | dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_ena_vf_mappings - enable VF MSIX and queue mapping | 
|  | * @vf: pointer to the VF structure | 
|  | */ | 
|  | static void ice_ena_vf_mappings(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_vsi *vsi = ice_get_vf_vsi(vf); | 
|  |  | 
|  | if (WARN_ON(!vsi)) | 
|  | return; | 
|  |  | 
|  | ice_ena_vf_msix_mappings(vf); | 
|  | ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space | 
|  | * @vf: VF to calculate the register index for | 
|  | * @q_vector: a q_vector associated to the VF | 
|  | */ | 
|  | int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) | 
|  | { | 
|  | struct ice_pf *pf; | 
|  |  | 
|  | if (!vf || !q_vector) | 
|  | return -EINVAL; | 
|  |  | 
|  | pf = vf->pf; | 
|  |  | 
|  | /* always add one to account for the OICR being the first MSIX */ | 
|  | return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id + | 
|  | q_vector->v_idx + 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_get_max_valid_res_idx - Get the max valid resource index | 
|  | * @res: pointer to the resource to find the max valid index for | 
|  | * | 
|  | * Start from the end of the ice_res_tracker and return right when we find the | 
|  | * first res->list entry with the ICE_RES_VALID_BIT set. This function is only | 
|  | * valid for SR-IOV because it is the only consumer that manipulates the | 
|  | * res->end and this is always called when res->end is set to res->num_entries. | 
|  | */ | 
|  | static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!res) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = res->num_entries - 1; i >= 0; i--) | 
|  | if (res->list[i] & ICE_RES_VALID_BIT) | 
|  | return i; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_set_msix_res - Set any used MSIX resources | 
|  | * @pf: pointer to PF structure | 
|  | * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs | 
|  | * | 
|  | * This function allows SR-IOV resources to be taken from the end of the PF's | 
|  | * allowed HW MSIX vectors so that the irq_tracker will not be affected. We | 
|  | * just set the pf->sriov_base_vector and return success. | 
|  | * | 
|  | * If there are not enough resources available, return an error. This should | 
|  | * always be caught by ice_set_per_vf_res(). | 
|  | * | 
|  | * Return 0 on success, and -EINVAL when there are not enough MSIX vectors | 
|  | * in the PF's space available for SR-IOV. | 
|  | */ | 
|  | static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) | 
|  | { | 
|  | u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; | 
|  | int vectors_used = pf->irq_tracker->num_entries; | 
|  | int sriov_base_vector; | 
|  |  | 
|  | sriov_base_vector = total_vectors - num_msix_needed; | 
|  |  | 
|  | /* make sure we only grab irq_tracker entries from the list end and | 
|  | * that we have enough available MSIX vectors | 
|  | */ | 
|  | if (sriov_base_vector < vectors_used) | 
|  | return -EINVAL; | 
|  |  | 
|  | pf->sriov_base_vector = sriov_base_vector; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_per_vf_res - check if vectors and queues are available | 
|  | * @pf: pointer to the PF structure | 
|  | * @num_vfs: the number of SR-IOV VFs being configured | 
|  | * | 
|  | * First, determine HW interrupts from common pool. If we allocate fewer VFs, we | 
|  | * get more vectors and can enable more queues per VF. Note that this does not | 
|  | * grab any vectors from the SW pool already allocated. Also note, that all | 
|  | * vector counts include one for each VF's miscellaneous interrupt vector | 
|  | * (i.e. OICR). | 
|  | * | 
|  | * Minimum VFs - 2 vectors, 1 queue pair | 
|  | * Small VFs - 5 vectors, 4 queue pairs | 
|  | * Medium VFs - 17 vectors, 16 queue pairs | 
|  | * | 
|  | * Second, determine number of queue pairs per VF by starting with a pre-defined | 
|  | * maximum each VF supports. If this is not possible, then we adjust based on | 
|  | * queue pairs available on the device. | 
|  | * | 
|  | * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used | 
|  | * by each VF during VF initialization and reset. | 
|  | */ | 
|  | static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) | 
|  | { | 
|  | int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); | 
|  | u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; | 
|  | int msix_avail_per_vf, msix_avail_for_sriov; | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | int err; | 
|  |  | 
|  | lockdep_assert_held(&pf->vfs.table_lock); | 
|  |  | 
|  | if (!num_vfs) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (max_valid_res_idx < 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* determine MSI-X resources per VF */ | 
|  | msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - | 
|  | pf->irq_tracker->num_entries; | 
|  | msix_avail_per_vf = msix_avail_for_sriov / num_vfs; | 
|  | if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { | 
|  | num_msix_per_vf = ICE_NUM_VF_MSIX_MED; | 
|  | } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { | 
|  | num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; | 
|  | } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { | 
|  | num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; | 
|  | } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { | 
|  | num_msix_per_vf = ICE_MIN_INTR_PER_VF; | 
|  | } else { | 
|  | dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", | 
|  | msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, | 
|  | num_vfs); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, | 
|  | ICE_MAX_RSS_QS_PER_VF); | 
|  | avail_qs = ice_get_avail_txq_count(pf) / num_vfs; | 
|  | if (!avail_qs) | 
|  | num_txq = 0; | 
|  | else if (num_txq > avail_qs) | 
|  | num_txq = rounddown_pow_of_two(avail_qs); | 
|  |  | 
|  | num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, | 
|  | ICE_MAX_RSS_QS_PER_VF); | 
|  | avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; | 
|  | if (!avail_qs) | 
|  | num_rxq = 0; | 
|  | else if (num_rxq > avail_qs) | 
|  | num_rxq = rounddown_pow_of_two(avail_qs); | 
|  |  | 
|  | if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { | 
|  | dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", | 
|  | ICE_MIN_QS_PER_VF, num_vfs); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); | 
|  | if (err) { | 
|  | dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", | 
|  | num_vfs, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ | 
|  | pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); | 
|  | pf->vfs.num_msix_per = num_msix_per_vf; | 
|  | dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", | 
|  | num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_init_vf_vsi_res - initialize/setup VF VSI resources | 
|  | * @vf: VF to initialize/setup the VSI for | 
|  | * | 
|  | * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the | 
|  | * VF VSI's broadcast filter and is only used during initial VF creation. | 
|  | */ | 
|  | static int ice_init_vf_vsi_res(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_vsi_vlan_ops *vlan_ops; | 
|  | struct ice_pf *pf = vf->pf; | 
|  | u8 broadcast[ETH_ALEN]; | 
|  | struct ice_vsi *vsi; | 
|  | struct device *dev; | 
|  | int err; | 
|  |  | 
|  | vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  | vsi = ice_vf_vsi_setup(vf); | 
|  | if (!vsi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ice_vsi_add_vlan_zero(vsi); | 
|  | if (err) { | 
|  | dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n", | 
|  | vf->vf_id); | 
|  | goto release_vsi; | 
|  | } | 
|  |  | 
|  | vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); | 
|  | err = vlan_ops->ena_rx_filtering(vsi); | 
|  | if (err) { | 
|  | dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n", | 
|  | vf->vf_id); | 
|  | goto release_vsi; | 
|  | } | 
|  |  | 
|  | eth_broadcast_addr(broadcast); | 
|  | err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); | 
|  | if (err) { | 
|  | dev_err(dev, "Failed to add broadcast MAC filter for VF %d, error %d\n", | 
|  | vf->vf_id, err); | 
|  | goto release_vsi; | 
|  | } | 
|  |  | 
|  | err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk); | 
|  | if (err) { | 
|  | dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n", | 
|  | vf->vf_id); | 
|  | goto release_vsi; | 
|  | } | 
|  |  | 
|  | vf->num_mac = 1; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | release_vsi: | 
|  | ice_vf_vsi_release(vf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_start_vfs - start VFs so they are ready to be used by SR-IOV | 
|  | * @pf: PF the VFs are associated with | 
|  | */ | 
|  | static int ice_start_vfs(struct ice_pf *pf) | 
|  | { | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | unsigned int bkt, it_cnt; | 
|  | struct ice_vf *vf; | 
|  | int retval; | 
|  |  | 
|  | lockdep_assert_held(&pf->vfs.table_lock); | 
|  |  | 
|  | it_cnt = 0; | 
|  | ice_for_each_vf(pf, bkt, vf) { | 
|  | vf->vf_ops->clear_reset_trigger(vf); | 
|  |  | 
|  | retval = ice_init_vf_vsi_res(vf); | 
|  | if (retval) { | 
|  | dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", | 
|  | vf->vf_id, retval); | 
|  | goto teardown; | 
|  | } | 
|  |  | 
|  | set_bit(ICE_VF_STATE_INIT, vf->vf_states); | 
|  | ice_ena_vf_mappings(vf); | 
|  | wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); | 
|  | it_cnt++; | 
|  | } | 
|  |  | 
|  | ice_flush(hw); | 
|  | return 0; | 
|  |  | 
|  | teardown: | 
|  | ice_for_each_vf(pf, bkt, vf) { | 
|  | if (it_cnt == 0) | 
|  | break; | 
|  |  | 
|  | ice_dis_vf_mappings(vf); | 
|  | ice_vf_vsi_release(vf); | 
|  | it_cnt--; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_free_vf - Free VF memory after all references are dropped | 
|  | * @vf: pointer to VF to free | 
|  | * | 
|  | * Called by ice_put_vf through ice_release_vf once the last reference to a VF | 
|  | * structure has been dropped. | 
|  | */ | 
|  | static void ice_sriov_free_vf(struct ice_vf *vf) | 
|  | { | 
|  | mutex_destroy(&vf->cfg_lock); | 
|  |  | 
|  | kfree_rcu(vf, rcu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_clear_reset_state - clears VF Reset status register | 
|  | * @vf: the vf to configure | 
|  | */ | 
|  | static void ice_sriov_clear_reset_state(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_hw *hw = &vf->pf->hw; | 
|  |  | 
|  | /* Clear the reset status register so that VF immediately sees that | 
|  | * the device is resetting, even if hardware hasn't yet gotten around | 
|  | * to clearing VFGEN_RSTAT for us. | 
|  | */ | 
|  | wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers | 
|  | * @vf: the vf to configure | 
|  | */ | 
|  | static void ice_sriov_clear_mbx_register(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  |  | 
|  | wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); | 
|  | wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF | 
|  | * @vf: pointer to VF structure | 
|  | * @is_vflr: true if reset occurred due to VFLR | 
|  | * | 
|  | * Trigger and cleanup after a VF reset for a SR-IOV VF. | 
|  | */ | 
|  | static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  | u32 reg, reg_idx, bit_idx; | 
|  | unsigned int vf_abs_id, i; | 
|  | struct device *dev; | 
|  | struct ice_hw *hw; | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  | hw = &pf->hw; | 
|  | vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; | 
|  |  | 
|  | /* In the case of a VFLR, HW has already reset the VF and we just need | 
|  | * to clean up. Otherwise we must first trigger the reset using the | 
|  | * VFRTRIG register. | 
|  | */ | 
|  | if (!is_vflr) { | 
|  | reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); | 
|  | reg |= VPGEN_VFRTRIG_VFSWR_M; | 
|  | wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); | 
|  | } | 
|  |  | 
|  | /* clear the VFLR bit in GLGEN_VFLRSTAT */ | 
|  | reg_idx = (vf_abs_id) / 32; | 
|  | bit_idx = (vf_abs_id) % 32; | 
|  | wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); | 
|  | ice_flush(hw); | 
|  |  | 
|  | wr32(hw, PF_PCI_CIAA, | 
|  | VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); | 
|  | for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { | 
|  | reg = rd32(hw, PF_PCI_CIAD); | 
|  | /* no transactions pending so stop polling */ | 
|  | if ((reg & VF_TRANS_PENDING_M) == 0) | 
|  | break; | 
|  |  | 
|  | dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); | 
|  | udelay(ICE_PCI_CIAD_WAIT_DELAY_US); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_poll_reset_status - poll SRIOV VF reset status | 
|  | * @vf: pointer to VF structure | 
|  | * | 
|  | * Returns true when reset is successful, else returns false | 
|  | */ | 
|  | static bool ice_sriov_poll_reset_status(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | /* VF reset requires driver to first reset the VF and then | 
|  | * poll the status register to make sure that the reset | 
|  | * completed successfully. | 
|  | */ | 
|  | reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); | 
|  | if (reg & VPGEN_VFRSTAT_VFRD_M) | 
|  | return true; | 
|  |  | 
|  | /* only sleep if the reset is not done */ | 
|  | usleep_range(10, 20); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_clear_reset_trigger - enable VF to access hardware | 
|  | * @vf: VF to enabled hardware access for | 
|  | */ | 
|  | static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_hw *hw = &vf->pf->hw; | 
|  | u32 reg; | 
|  |  | 
|  | reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); | 
|  | reg &= ~VPGEN_VFRTRIG_VFSWR_M; | 
|  | wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); | 
|  | ice_flush(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_vsi_rebuild - release and rebuild VF's VSI | 
|  | * @vf: VF to release and setup the VSI for | 
|  | * | 
|  | * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF | 
|  | * configuration change, etc.). | 
|  | */ | 
|  | static int ice_sriov_vsi_rebuild(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  |  | 
|  | ice_vf_vsi_release(vf); | 
|  | if (!ice_vf_vsi_setup(vf)) { | 
|  | dev_err(ice_pf_to_dev(pf), | 
|  | "Failed to release and setup the VF%u's VSI\n", | 
|  | vf->vf_id); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt | 
|  | * @vf: VF to perform tasks on | 
|  | */ | 
|  | static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) | 
|  | { | 
|  | ice_vf_rebuild_host_cfg(vf); | 
|  | ice_vf_set_initialized(vf); | 
|  | ice_ena_vf_mappings(vf); | 
|  | wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); | 
|  | } | 
|  |  | 
|  | static const struct ice_vf_ops ice_sriov_vf_ops = { | 
|  | .reset_type = ICE_VF_RESET, | 
|  | .free = ice_sriov_free_vf, | 
|  | .clear_reset_state = ice_sriov_clear_reset_state, | 
|  | .clear_mbx_register = ice_sriov_clear_mbx_register, | 
|  | .trigger_reset_register = ice_sriov_trigger_reset_register, | 
|  | .poll_reset_status = ice_sriov_poll_reset_status, | 
|  | .clear_reset_trigger = ice_sriov_clear_reset_trigger, | 
|  | .vsi_rebuild = ice_sriov_vsi_rebuild, | 
|  | .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ice_create_vf_entries - Allocate and insert VF entries | 
|  | * @pf: pointer to the PF structure | 
|  | * @num_vfs: the number of VFs to allocate | 
|  | * | 
|  | * Allocate new VF entries and insert them into the hash table. Set some | 
|  | * basic default fields for initializing the new VFs. | 
|  | * | 
|  | * After this function exits, the hash table will have num_vfs entries | 
|  | * inserted. | 
|  | * | 
|  | * Returns 0 on success or an integer error code on failure. | 
|  | */ | 
|  | static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) | 
|  | { | 
|  | struct ice_vfs *vfs = &pf->vfs; | 
|  | struct ice_vf *vf; | 
|  | u16 vf_id; | 
|  | int err; | 
|  |  | 
|  | lockdep_assert_held(&vfs->table_lock); | 
|  |  | 
|  | for (vf_id = 0; vf_id < num_vfs; vf_id++) { | 
|  | vf = kzalloc(sizeof(*vf), GFP_KERNEL); | 
|  | if (!vf) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_entries; | 
|  | } | 
|  | kref_init(&vf->refcnt); | 
|  |  | 
|  | vf->pf = pf; | 
|  | vf->vf_id = vf_id; | 
|  |  | 
|  | /* set sriov vf ops for VFs created during SRIOV flow */ | 
|  | vf->vf_ops = &ice_sriov_vf_ops; | 
|  |  | 
|  | vf->vf_sw_id = pf->first_sw; | 
|  | /* assign default capabilities */ | 
|  | vf->spoofchk = true; | 
|  | vf->num_vf_qs = pf->vfs.num_qps_per; | 
|  | ice_vc_set_default_allowlist(vf); | 
|  |  | 
|  | /* ctrl_vsi_idx will be set to a valid value only when VF | 
|  | * creates its first fdir rule. | 
|  | */ | 
|  | ice_vf_ctrl_invalidate_vsi(vf); | 
|  | ice_vf_fdir_init(vf); | 
|  |  | 
|  | ice_virtchnl_set_dflt_ops(vf); | 
|  |  | 
|  | mutex_init(&vf->cfg_lock); | 
|  |  | 
|  | hash_add_rcu(vfs->table, &vf->entry, vf_id); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_entries: | 
|  | ice_free_vf_entries(pf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_ena_vfs - enable VFs so they are ready to be used | 
|  | * @pf: pointer to the PF structure | 
|  | * @num_vfs: number of VFs to enable | 
|  | */ | 
|  | static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) | 
|  | { | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | int ret; | 
|  |  | 
|  | /* Disable global interrupt 0 so we don't try to handle the VFLR. */ | 
|  | wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), | 
|  | ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); | 
|  | set_bit(ICE_OICR_INTR_DIS, pf->state); | 
|  | ice_flush(hw); | 
|  |  | 
|  | ret = pci_enable_sriov(pf->pdev, num_vfs); | 
|  | if (ret) | 
|  | goto err_unroll_intr; | 
|  |  | 
|  | mutex_lock(&pf->vfs.table_lock); | 
|  |  | 
|  | ret = ice_set_per_vf_res(pf, num_vfs); | 
|  | if (ret) { | 
|  | dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", | 
|  | num_vfs, ret); | 
|  | goto err_unroll_sriov; | 
|  | } | 
|  |  | 
|  | ret = ice_create_vf_entries(pf, num_vfs); | 
|  | if (ret) { | 
|  | dev_err(dev, "Failed to allocate VF entries for %d VFs\n", | 
|  | num_vfs); | 
|  | goto err_unroll_sriov; | 
|  | } | 
|  |  | 
|  | ret = ice_start_vfs(pf); | 
|  | if (ret) { | 
|  | dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); | 
|  | ret = -EAGAIN; | 
|  | goto err_unroll_vf_entries; | 
|  | } | 
|  |  | 
|  | clear_bit(ICE_VF_DIS, pf->state); | 
|  |  | 
|  | ret = ice_eswitch_configure(pf); | 
|  | if (ret) { | 
|  | dev_err(dev, "Failed to configure eswitch, err %d\n", ret); | 
|  | goto err_unroll_sriov; | 
|  | } | 
|  |  | 
|  | /* rearm global interrupts */ | 
|  | if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) | 
|  | ice_irq_dynamic_ena(hw, NULL, NULL); | 
|  |  | 
|  | mutex_unlock(&pf->vfs.table_lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unroll_vf_entries: | 
|  | ice_free_vf_entries(pf); | 
|  | err_unroll_sriov: | 
|  | mutex_unlock(&pf->vfs.table_lock); | 
|  | pci_disable_sriov(pf->pdev); | 
|  | err_unroll_intr: | 
|  | /* rearm interrupts here */ | 
|  | ice_irq_dynamic_ena(hw, NULL, NULL); | 
|  | clear_bit(ICE_OICR_INTR_DIS, pf->state); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_pci_sriov_ena - Enable or change number of VFs | 
|  | * @pf: pointer to the PF structure | 
|  | * @num_vfs: number of VFs to allocate | 
|  | * | 
|  | * Returns 0 on success and negative on failure | 
|  | */ | 
|  | static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) | 
|  | { | 
|  | int pre_existing_vfs = pci_num_vf(pf->pdev); | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | int err; | 
|  |  | 
|  | if (pre_existing_vfs && pre_existing_vfs != num_vfs) | 
|  | ice_free_vfs(pf); | 
|  | else if (pre_existing_vfs && pre_existing_vfs == num_vfs) | 
|  | return 0; | 
|  |  | 
|  | if (num_vfs > pf->vfs.num_supported) { | 
|  | dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", | 
|  | num_vfs, pf->vfs.num_supported); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | dev_info(dev, "Enabling %d VFs\n", num_vfs); | 
|  | err = ice_ena_vfs(pf, num_vfs); | 
|  | if (err) { | 
|  | dev_err(dev, "Failed to enable SR-IOV: %d\n", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks | 
|  | * @pf: PF to enabled SR-IOV on | 
|  | */ | 
|  | static int ice_check_sriov_allowed(struct ice_pf *pf) | 
|  | { | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  |  | 
|  | if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { | 
|  | dev_err(dev, "This device is not capable of SR-IOV\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (ice_is_safe_mode(pf)) { | 
|  | dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!ice_pf_state_is_nominal(pf)) { | 
|  | dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_sriov_configure - Enable or change number of VFs via sysfs | 
|  | * @pdev: pointer to a pci_dev structure | 
|  | * @num_vfs: number of VFs to allocate or 0 to free VFs | 
|  | * | 
|  | * This function is called when the user updates the number of VFs in sysfs. On | 
|  | * success return whatever num_vfs was set to by the caller. Return negative on | 
|  | * failure. | 
|  | */ | 
|  | int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) | 
|  | { | 
|  | struct ice_pf *pf = pci_get_drvdata(pdev); | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | int err; | 
|  |  | 
|  | err = ice_check_sriov_allowed(pf); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!num_vfs) { | 
|  | if (!pci_vfs_assigned(pdev)) { | 
|  | ice_free_vfs(pf); | 
|  | ice_mbx_deinit_snapshot(&pf->hw); | 
|  | if (pf->lag) | 
|  | ice_enable_lag(pf->lag); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | err = ice_mbx_init_snapshot(&pf->hw, num_vfs); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ice_pci_sriov_ena(pf, num_vfs); | 
|  | if (err) { | 
|  | ice_mbx_deinit_snapshot(&pf->hw); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (pf->lag) | 
|  | ice_disable_lag(pf->lag); | 
|  | return num_vfs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_process_vflr_event - Free VF resources via IRQ calls | 
|  | * @pf: pointer to the PF structure | 
|  | * | 
|  | * called from the VFLR IRQ handler to | 
|  | * free up VF resources and state variables | 
|  | */ | 
|  | void ice_process_vflr_event(struct ice_pf *pf) | 
|  | { | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | struct ice_vf *vf; | 
|  | unsigned int bkt; | 
|  | u32 reg; | 
|  |  | 
|  | if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || | 
|  | !ice_has_vfs(pf)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&pf->vfs.table_lock); | 
|  | ice_for_each_vf(pf, bkt, vf) { | 
|  | u32 reg_idx, bit_idx; | 
|  |  | 
|  | reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; | 
|  | bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; | 
|  | /* read GLGEN_VFLRSTAT register to find out the flr VFs */ | 
|  | reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); | 
|  | if (reg & BIT(bit_idx)) | 
|  | /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ | 
|  | ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); | 
|  | } | 
|  | mutex_unlock(&pf->vfs.table_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in | 
|  | * @pf: PF used to index all VFs | 
|  | * @pfq: queue index relative to the PF's function space | 
|  | * | 
|  | * If no VF is found who owns the pfq then return NULL, otherwise return a | 
|  | * pointer to the VF who owns the pfq | 
|  | * | 
|  | * If this function returns non-NULL, it acquires a reference count of the VF | 
|  | * structure. The caller is responsible for calling ice_put_vf() to drop this | 
|  | * reference. | 
|  | */ | 
|  | static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) | 
|  | { | 
|  | struct ice_vf *vf; | 
|  | unsigned int bkt; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ice_for_each_vf_rcu(pf, bkt, vf) { | 
|  | struct ice_vsi *vsi; | 
|  | u16 rxq_idx; | 
|  |  | 
|  | vsi = ice_get_vf_vsi(vf); | 
|  | if (!vsi) | 
|  | continue; | 
|  |  | 
|  | ice_for_each_rxq(vsi, rxq_idx) | 
|  | if (vsi->rxq_map[rxq_idx] == pfq) { | 
|  | struct ice_vf *found; | 
|  |  | 
|  | if (kref_get_unless_zero(&vf->refcnt)) | 
|  | found = vf; | 
|  | else | 
|  | found = NULL; | 
|  | rcu_read_unlock(); | 
|  | return found; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_globalq_to_pfq - convert from global queue index to PF space queue index | 
|  | * @pf: PF used for conversion | 
|  | * @globalq: global queue index used to convert to PF space queue index | 
|  | */ | 
|  | static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) | 
|  | { | 
|  | return globalq - pf->hw.func_caps.common_cap.rxq_first_id; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_vf_lan_overflow_event - handle LAN overflow event for a VF | 
|  | * @pf: PF that the LAN overflow event happened on | 
|  | * @event: structure holding the event information for the LAN overflow event | 
|  | * | 
|  | * Determine if the LAN overflow event was caused by a VF queue. If it was not | 
|  | * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a | 
|  | * reset on the offending VF. | 
|  | */ | 
|  | void | 
|  | ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) | 
|  | { | 
|  | u32 gldcb_rtctq, queue; | 
|  | struct ice_vf *vf; | 
|  |  | 
|  | gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); | 
|  | dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); | 
|  |  | 
|  | /* event returns device global Rx queue number */ | 
|  | queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> | 
|  | GLDCB_RTCTQ_RXQNUM_S; | 
|  |  | 
|  | vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); | 
|  | if (!vf) | 
|  | return; | 
|  |  | 
|  | ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); | 
|  | ice_put_vf(vf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_vf_spoofchk | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @ena: flag to enable or disable feature | 
|  | * | 
|  | * Enable or disable VF spoof checking | 
|  | */ | 
|  | int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) | 
|  | { | 
|  | struct ice_netdev_priv *np = netdev_priv(netdev); | 
|  | struct ice_pf *pf = np->vsi->back; | 
|  | struct ice_vsi *vf_vsi; | 
|  | struct device *dev; | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | vf_vsi = ice_get_vf_vsi(vf); | 
|  | if (!vf_vsi) { | 
|  | netdev_err(netdev, "VSI %d for VF %d is null\n", | 
|  | vf->lan_vsi_idx, vf->vf_id); | 
|  | ret = -EINVAL; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | if (vf_vsi->type != ICE_VSI_VF) { | 
|  | netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", | 
|  | vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); | 
|  | ret = -ENODEV; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | if (ena == vf->spoofchk) { | 
|  | dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); | 
|  | ret = 0; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | ret = ice_vsi_apply_spoofchk(vf_vsi, ena); | 
|  | if (ret) | 
|  | dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", | 
|  | ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); | 
|  | else | 
|  | vf->spoofchk = ena; | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_get_vf_cfg | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @ivi: VF configuration structure | 
|  | * | 
|  | * return VF configuration | 
|  | */ | 
|  | int | 
|  | ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | ivi->vf = vf_id; | 
|  | ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr); | 
|  |  | 
|  | /* VF configuration for VLAN and applicable QoS */ | 
|  | ivi->vlan = ice_vf_get_port_vlan_id(vf); | 
|  | ivi->qos = ice_vf_get_port_vlan_prio(vf); | 
|  | if (ice_vf_is_port_vlan_ena(vf)) | 
|  | ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); | 
|  |  | 
|  | ivi->trusted = vf->trusted; | 
|  | ivi->spoofchk = vf->spoofchk; | 
|  | if (!vf->link_forced) | 
|  | ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; | 
|  | else if (vf->link_up) | 
|  | ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; | 
|  | else | 
|  | ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; | 
|  | ivi->max_tx_rate = vf->max_tx_rate; | 
|  | ivi->min_tx_rate = vf->min_tx_rate; | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_vf_mac | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @mac: MAC address | 
|  | * | 
|  | * program VF MAC address | 
|  | */ | 
|  | int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | if (is_multicast_ether_addr(mac)) { | 
|  | netdev_err(netdev, "%pM not a valid unicast address\n", mac); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* nothing left to do, unicast MAC already set */ | 
|  | if (ether_addr_equal(vf->dev_lan_addr.addr, mac) && | 
|  | ether_addr_equal(vf->hw_lan_addr.addr, mac)) { | 
|  | ret = 0; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | mutex_lock(&vf->cfg_lock); | 
|  |  | 
|  | /* VF is notified of its new MAC via the PF's response to the | 
|  | * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset | 
|  | */ | 
|  | ether_addr_copy(vf->dev_lan_addr.addr, mac); | 
|  | ether_addr_copy(vf->hw_lan_addr.addr, mac); | 
|  | if (is_zero_ether_addr(mac)) { | 
|  | /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ | 
|  | vf->pf_set_mac = false; | 
|  | netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", | 
|  | vf->vf_id); | 
|  | } else { | 
|  | /* PF will add MAC rule for the VF */ | 
|  | vf->pf_set_mac = true; | 
|  | netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", | 
|  | mac, vf_id); | 
|  | } | 
|  |  | 
|  | ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); | 
|  | mutex_unlock(&vf->cfg_lock); | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_vf_trust | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @trusted: Boolean value to enable/disable trusted VF | 
|  | * | 
|  | * Enable or disable a given VF as trusted | 
|  | */ | 
|  | int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ice_is_eswitch_mode_switchdev(pf)) { | 
|  | dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | /* Check if already trusted */ | 
|  | if (trusted == vf->trusted) { | 
|  | ret = 0; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | mutex_lock(&vf->cfg_lock); | 
|  |  | 
|  | vf->trusted = trusted; | 
|  | ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); | 
|  | dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", | 
|  | vf_id, trusted ? "" : "un"); | 
|  |  | 
|  | mutex_unlock(&vf->cfg_lock); | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_vf_link_state | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @link_state: required link state | 
|  | * | 
|  | * Set VF's link state, irrespective of physical link state status | 
|  | */ | 
|  | int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | switch (link_state) { | 
|  | case IFLA_VF_LINK_STATE_AUTO: | 
|  | vf->link_forced = false; | 
|  | break; | 
|  | case IFLA_VF_LINK_STATE_ENABLE: | 
|  | vf->link_forced = true; | 
|  | vf->link_up = true; | 
|  | break; | 
|  | case IFLA_VF_LINK_STATE_DISABLE: | 
|  | vf->link_forced = true; | 
|  | vf->link_up = false; | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | ice_vc_notify_vf_link_state(vf); | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs | 
|  | * @pf: PF associated with VFs | 
|  | */ | 
|  | static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) | 
|  | { | 
|  | struct ice_vf *vf; | 
|  | unsigned int bkt; | 
|  | int rate = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ice_for_each_vf_rcu(pf, bkt, vf) | 
|  | rate += vf->min_tx_rate; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return rate; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription | 
|  | * @vf: VF trying to configure min_tx_rate | 
|  | * @min_tx_rate: min Tx rate in Mbps | 
|  | * | 
|  | * Check if the min_tx_rate being passed in will cause oversubscription of total | 
|  | * min_tx_rate based on the current link speed and all other VFs configured | 
|  | * min_tx_rate | 
|  | * | 
|  | * Return true if the passed min_tx_rate would cause oversubscription, else | 
|  | * return false | 
|  | */ | 
|  | static bool | 
|  | ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) | 
|  | { | 
|  | struct ice_vsi *vsi = ice_get_vf_vsi(vf); | 
|  | int all_vfs_min_tx_rate; | 
|  | int link_speed_mbps; | 
|  |  | 
|  | if (WARN_ON(!vsi)) | 
|  | return false; | 
|  |  | 
|  | link_speed_mbps = ice_get_link_speed_mbps(vsi); | 
|  | all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); | 
|  |  | 
|  | /* this VF's previous rate is being overwritten */ | 
|  | all_vfs_min_tx_rate -= vf->min_tx_rate; | 
|  |  | 
|  | if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { | 
|  | dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", | 
|  | min_tx_rate, vf->vf_id, | 
|  | all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, | 
|  | link_speed_mbps); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_vf_bw - set min/max VF bandwidth | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @min_tx_rate: Minimum Tx rate in Mbps | 
|  | * @max_tx_rate: Maximum Tx rate in Mbps | 
|  | */ | 
|  | int | 
|  | ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, | 
|  | int max_tx_rate) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | struct ice_vsi *vsi; | 
|  | struct device *dev; | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | vsi = ice_get_vf_vsi(vf); | 
|  | if (!vsi) { | 
|  | ret = -EINVAL; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | if (min_tx_rate && ice_is_dcb_active(pf)) { | 
|  | dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { | 
|  | ret = -EINVAL; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | if (vf->min_tx_rate != (unsigned int)min_tx_rate) { | 
|  | ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); | 
|  | if (ret) { | 
|  | dev_err(dev, "Unable to set min-tx-rate for VF %d\n", | 
|  | vf->vf_id); | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | vf->min_tx_rate = min_tx_rate; | 
|  | } | 
|  |  | 
|  | if (vf->max_tx_rate != (unsigned int)max_tx_rate) { | 
|  | ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); | 
|  | if (ret) { | 
|  | dev_err(dev, "Unable to set max-tx-rate for VF %d\n", | 
|  | vf->vf_id); | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | vf->max_tx_rate = max_tx_rate; | 
|  | } | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_get_vf_stats - populate some stats for the VF | 
|  | * @netdev: the netdev of the PF | 
|  | * @vf_id: the host OS identifier (0-255) | 
|  | * @vf_stats: pointer to the OS memory to be initialized | 
|  | */ | 
|  | int ice_get_vf_stats(struct net_device *netdev, int vf_id, | 
|  | struct ifla_vf_stats *vf_stats) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | struct ice_eth_stats *stats; | 
|  | struct ice_vsi *vsi; | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | vsi = ice_get_vf_vsi(vf); | 
|  | if (!vsi) { | 
|  | ret = -EINVAL; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | ice_update_eth_stats(vsi); | 
|  | stats = &vsi->eth_stats; | 
|  |  | 
|  | memset(vf_stats, 0, sizeof(*vf_stats)); | 
|  |  | 
|  | vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + | 
|  | stats->rx_multicast; | 
|  | vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + | 
|  | stats->tx_multicast; | 
|  | vf_stats->rx_bytes   = stats->rx_bytes; | 
|  | vf_stats->tx_bytes   = stats->tx_bytes; | 
|  | vf_stats->broadcast  = stats->rx_broadcast; | 
|  | vf_stats->multicast  = stats->rx_multicast; | 
|  | vf_stats->rx_dropped = stats->rx_discards; | 
|  | vf_stats->tx_dropped = stats->tx_discards; | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported | 
|  | * @hw: hardware structure used to check the VLAN mode | 
|  | * @vlan_proto: VLAN TPID being checked | 
|  | * | 
|  | * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q | 
|  | * and ETH_P_8021AD are supported. If the device is configured in Single VLAN | 
|  | * Mode (SVM), then only ETH_P_8021Q is supported. | 
|  | */ | 
|  | static bool | 
|  | ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) | 
|  | { | 
|  | bool is_supported = false; | 
|  |  | 
|  | switch (vlan_proto) { | 
|  | case ETH_P_8021Q: | 
|  | is_supported = true; | 
|  | break; | 
|  | case ETH_P_8021AD: | 
|  | if (ice_is_dvm_ena(hw)) | 
|  | is_supported = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return is_supported; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_set_vf_port_vlan | 
|  | * @netdev: network interface device structure | 
|  | * @vf_id: VF identifier | 
|  | * @vlan_id: VLAN ID being set | 
|  | * @qos: priority setting | 
|  | * @vlan_proto: VLAN protocol | 
|  | * | 
|  | * program VF Port VLAN ID and/or QoS | 
|  | */ | 
|  | int | 
|  | ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, | 
|  | __be16 vlan_proto) | 
|  | { | 
|  | struct ice_pf *pf = ice_netdev_to_pf(netdev); | 
|  | u16 local_vlan_proto = ntohs(vlan_proto); | 
|  | struct device *dev; | 
|  | struct ice_vf *vf; | 
|  | int ret; | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  |  | 
|  | if (vlan_id >= VLAN_N_VID || qos > 7) { | 
|  | dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", | 
|  | vf_id, vlan_id, qos); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { | 
|  | dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", | 
|  | local_vlan_proto); | 
|  | return -EPROTONOSUPPORT; | 
|  | } | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = ice_check_vf_ready_for_cfg(vf); | 
|  | if (ret) | 
|  | goto out_put_vf; | 
|  |  | 
|  | if (ice_vf_get_port_vlan_prio(vf) == qos && | 
|  | ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && | 
|  | ice_vf_get_port_vlan_id(vf) == vlan_id) { | 
|  | /* duplicate request, so just return success */ | 
|  | dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", | 
|  | vlan_id, qos, local_vlan_proto); | 
|  | ret = 0; | 
|  | goto out_put_vf; | 
|  | } | 
|  |  | 
|  | mutex_lock(&vf->cfg_lock); | 
|  |  | 
|  | vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); | 
|  | if (ice_vf_is_port_vlan_ena(vf)) | 
|  | dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", | 
|  | vlan_id, qos, local_vlan_proto, vf_id); | 
|  | else | 
|  | dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); | 
|  |  | 
|  | ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); | 
|  | mutex_unlock(&vf->cfg_lock); | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event | 
|  | * @vf: pointer to the VF structure | 
|  | */ | 
|  | void ice_print_vf_rx_mdd_event(struct ice_vf *vf) | 
|  | { | 
|  | struct ice_pf *pf = vf->pf; | 
|  | struct device *dev; | 
|  |  | 
|  | dev = ice_pf_to_dev(pf); | 
|  |  | 
|  | dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", | 
|  | vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, | 
|  | vf->dev_lan_addr.addr, | 
|  | test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) | 
|  | ? "on" : "off"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_print_vfs_mdd_events - print VFs malicious driver detect event | 
|  | * @pf: pointer to the PF structure | 
|  | * | 
|  | * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. | 
|  | */ | 
|  | void ice_print_vfs_mdd_events(struct ice_pf *pf) | 
|  | { | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | struct ice_hw *hw = &pf->hw; | 
|  | struct ice_vf *vf; | 
|  | unsigned int bkt; | 
|  |  | 
|  | /* check that there are pending MDD events to print */ | 
|  | if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) | 
|  | return; | 
|  |  | 
|  | /* VF MDD event logs are rate limited to one second intervals */ | 
|  | if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) | 
|  | return; | 
|  |  | 
|  | pf->vfs.last_printed_mdd_jiffies = jiffies; | 
|  |  | 
|  | mutex_lock(&pf->vfs.table_lock); | 
|  | ice_for_each_vf(pf, bkt, vf) { | 
|  | /* only print Rx MDD event message if there are new events */ | 
|  | if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { | 
|  | vf->mdd_rx_events.last_printed = | 
|  | vf->mdd_rx_events.count; | 
|  | ice_print_vf_rx_mdd_event(vf); | 
|  | } | 
|  |  | 
|  | /* only print Tx MDD event message if there are new events */ | 
|  | if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { | 
|  | vf->mdd_tx_events.last_printed = | 
|  | vf->mdd_tx_events.count; | 
|  |  | 
|  | dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", | 
|  | vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, | 
|  | vf->dev_lan_addr.addr); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&pf->vfs.table_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR | 
|  | * @pdev: pointer to a pci_dev structure | 
|  | * | 
|  | * Called when recovering from a PF FLR to restore interrupt capability to | 
|  | * the VFs. | 
|  | */ | 
|  | void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) | 
|  | { | 
|  | u16 vf_id; | 
|  | int pos; | 
|  |  | 
|  | if (!pci_num_vf(pdev)) | 
|  | return; | 
|  |  | 
|  | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); | 
|  | if (pos) { | 
|  | struct pci_dev *vfdev; | 
|  |  | 
|  | pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, | 
|  | &vf_id); | 
|  | vfdev = pci_get_device(pdev->vendor, vf_id, NULL); | 
|  | while (vfdev) { | 
|  | if (vfdev->is_virtfn && vfdev->physfn == pdev) | 
|  | pci_restore_msi_state(vfdev); | 
|  | vfdev = pci_get_device(pdev->vendor, vf_id, | 
|  | vfdev); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ice_is_malicious_vf - helper function to detect a malicious VF | 
|  | * @pf: ptr to struct ice_pf | 
|  | * @event: pointer to the AQ event | 
|  | * @num_msg_proc: the number of messages processed so far | 
|  | * @num_msg_pending: the number of messages peinding in admin queue | 
|  | */ | 
|  | bool | 
|  | ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event, | 
|  | u16 num_msg_proc, u16 num_msg_pending) | 
|  | { | 
|  | s16 vf_id = le16_to_cpu(event->desc.retval); | 
|  | struct device *dev = ice_pf_to_dev(pf); | 
|  | struct ice_mbx_data mbxdata; | 
|  | bool malvf = false; | 
|  | struct ice_vf *vf; | 
|  | int status; | 
|  |  | 
|  | vf = ice_get_vf_by_id(pf, vf_id); | 
|  | if (!vf) | 
|  | return false; | 
|  |  | 
|  | if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) | 
|  | goto out_put_vf; | 
|  |  | 
|  | mbxdata.num_msg_proc = num_msg_proc; | 
|  | mbxdata.num_pending_arq = num_msg_pending; | 
|  | mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries; | 
|  | #define ICE_MBX_OVERFLOW_WATERMARK 64 | 
|  | mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; | 
|  |  | 
|  | /* check to see if we have a malicious VF */ | 
|  | status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf); | 
|  | if (status) | 
|  | goto out_put_vf; | 
|  |  | 
|  | if (malvf) { | 
|  | bool report_vf = false; | 
|  |  | 
|  | /* if the VF is malicious and we haven't let the user | 
|  | * know about it, then let them know now | 
|  | */ | 
|  | status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs, | 
|  | ICE_MAX_SRIOV_VFS, vf_id, | 
|  | &report_vf); | 
|  | if (status) | 
|  | dev_dbg(dev, "Error reporting malicious VF\n"); | 
|  |  | 
|  | if (report_vf) { | 
|  | struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); | 
|  |  | 
|  | if (pf_vsi) | 
|  | dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", | 
|  | &vf->dev_lan_addr.addr[0], | 
|  | pf_vsi->netdev->dev_addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | out_put_vf: | 
|  | ice_put_vf(vf); | 
|  | return malvf; | 
|  | } |