|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * HugeTLB Vmemmap Optimization (HVO) | 
|  | * | 
|  | * Copyright (c) 2020, ByteDance. All rights reserved. | 
|  | * | 
|  | *     Author: Muchun Song <songmuchun@bytedance.com> | 
|  | * | 
|  | * See Documentation/mm/vmemmap_dedup.rst | 
|  | */ | 
|  | #define pr_fmt(fmt)	"HugeTLB: " fmt | 
|  |  | 
|  | #include <linux/pgtable.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/bootmem_info.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include "hugetlb_vmemmap.h" | 
|  |  | 
|  | /** | 
|  | * struct vmemmap_remap_walk - walk vmemmap page table | 
|  | * | 
|  | * @remap_pte:		called for each lowest-level entry (PTE). | 
|  | * @nr_walked:		the number of walked pte. | 
|  | * @reuse_page:		the page which is reused for the tail vmemmap pages. | 
|  | * @reuse_addr:		the virtual address of the @reuse_page page. | 
|  | * @vmemmap_pages:	the list head of the vmemmap pages that can be freed | 
|  | *			or is mapped from. | 
|  | */ | 
|  | struct vmemmap_remap_walk { | 
|  | void			(*remap_pte)(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk); | 
|  | unsigned long		nr_walked; | 
|  | struct page		*reuse_page; | 
|  | unsigned long		reuse_addr; | 
|  | struct list_head	*vmemmap_pages; | 
|  | }; | 
|  |  | 
|  | static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) | 
|  | { | 
|  | pmd_t __pmd; | 
|  | int i; | 
|  | unsigned long addr = start; | 
|  | struct page *page = pmd_page(*pmd); | 
|  | pte_t *pgtable = pte_alloc_one_kernel(&init_mm); | 
|  |  | 
|  | if (!pgtable) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pmd_populate_kernel(&init_mm, &__pmd, pgtable); | 
|  |  | 
|  | for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { | 
|  | pte_t entry, *pte; | 
|  | pgprot_t pgprot = PAGE_KERNEL; | 
|  |  | 
|  | entry = mk_pte(page + i, pgprot); | 
|  | pte = pte_offset_kernel(&__pmd, addr); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | if (likely(pmd_leaf(*pmd))) { | 
|  | /* | 
|  | * Higher order allocations from buddy allocator must be able to | 
|  | * be treated as indepdenent small pages (as they can be freed | 
|  | * individually). | 
|  | */ | 
|  | if (!PageReserved(page)) | 
|  | split_page(page, get_order(PMD_SIZE)); | 
|  |  | 
|  | /* Make pte visible before pmd. See comment in pmd_install(). */ | 
|  | smp_wmb(); | 
|  | pmd_populate_kernel(&init_mm, pmd, pgtable); | 
|  | flush_tlb_kernel_range(start, start + PMD_SIZE); | 
|  | } else { | 
|  | pte_free_kernel(&init_mm, pgtable); | 
|  | } | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) | 
|  | { | 
|  | int leaf; | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | leaf = pmd_leaf(*pmd); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  |  | 
|  | if (!leaf) | 
|  | return 0; | 
|  |  | 
|  | return __split_vmemmap_huge_pmd(pmd, start); | 
|  | } | 
|  |  | 
|  | static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pte_t *pte = pte_offset_kernel(pmd, addr); | 
|  |  | 
|  | /* | 
|  | * The reuse_page is found 'first' in table walk before we start | 
|  | * remapping (which is calling @walk->remap_pte). | 
|  | */ | 
|  | if (!walk->reuse_page) { | 
|  | walk->reuse_page = pte_page(*pte); | 
|  | /* | 
|  | * Because the reuse address is part of the range that we are | 
|  | * walking, skip the reuse address range. | 
|  | */ | 
|  | addr += PAGE_SIZE; | 
|  | pte++; | 
|  | walk->nr_walked++; | 
|  | } | 
|  |  | 
|  | for (; addr != end; addr += PAGE_SIZE, pte++) { | 
|  | walk->remap_pte(pte, addr, walk); | 
|  | walk->nr_walked++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | next = pmd_addr_end(addr, end); | 
|  | vmemmap_pte_range(pmd, addr, next, walk); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | next = pud_addr_end(addr, end); | 
|  | ret = vmemmap_pmd_range(pud, addr, next, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | next = p4d_addr_end(addr, end); | 
|  | ret = vmemmap_pud_range(p4d, addr, next, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_remap_range(unsigned long start, unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | unsigned long addr = start; | 
|  | unsigned long next; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | VM_BUG_ON(!PAGE_ALIGNED(start)); | 
|  | VM_BUG_ON(!PAGE_ALIGNED(end)); | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | next = pgd_addr_end(addr, end); | 
|  | ret = vmemmap_p4d_range(pgd, addr, next, walk); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | /* | 
|  | * We only change the mapping of the vmemmap virtual address range | 
|  | * [@start + PAGE_SIZE, end), so we only need to flush the TLB which | 
|  | * belongs to the range. | 
|  | */ | 
|  | flush_tlb_kernel_range(start + PAGE_SIZE, end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a vmemmap page. A vmemmap page can be allocated from the memblock | 
|  | * allocator or buddy allocator. If the PG_reserved flag is set, it means | 
|  | * that it allocated from the memblock allocator, just free it via the | 
|  | * free_bootmem_page(). Otherwise, use __free_page(). | 
|  | */ | 
|  | static inline void free_vmemmap_page(struct page *page) | 
|  | { | 
|  | if (PageReserved(page)) | 
|  | free_bootmem_page(page); | 
|  | else | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | /* Free a list of the vmemmap pages */ | 
|  | static void free_vmemmap_page_list(struct list_head *list) | 
|  | { | 
|  | struct page *page, *next; | 
|  |  | 
|  | list_for_each_entry_safe(page, next, list, lru) { | 
|  | list_del(&page->lru); | 
|  | free_vmemmap_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | /* | 
|  | * Remap the tail pages as read-only to catch illegal write operation | 
|  | * to the tail pages. | 
|  | */ | 
|  | pgprot_t pgprot = PAGE_KERNEL_RO; | 
|  | pte_t entry = mk_pte(walk->reuse_page, pgprot); | 
|  | struct page *page = pte_page(*pte); | 
|  |  | 
|  | list_add_tail(&page->lru, walk->vmemmap_pages); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many struct page structs need to be reset. When we reuse the head | 
|  | * struct page, the special metadata (e.g. page->flags or page->mapping) | 
|  | * cannot copy to the tail struct page structs. The invalid value will be | 
|  | * checked in the free_tail_pages_check(). In order to avoid the message | 
|  | * of "corrupted mapping in tail page". We need to reset at least 3 (one | 
|  | * head struct page struct and two tail struct page structs) struct page | 
|  | * structs. | 
|  | */ | 
|  | #define NR_RESET_STRUCT_PAGE		3 | 
|  |  | 
|  | static inline void reset_struct_pages(struct page *start) | 
|  | { | 
|  | struct page *from = start + NR_RESET_STRUCT_PAGE; | 
|  |  | 
|  | BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); | 
|  | memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); | 
|  | } | 
|  |  | 
|  | static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pgprot_t pgprot = PAGE_KERNEL; | 
|  | struct page *page; | 
|  | void *to; | 
|  |  | 
|  | BUG_ON(pte_page(*pte) != walk->reuse_page); | 
|  |  | 
|  | page = list_first_entry(walk->vmemmap_pages, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | to = page_to_virt(page); | 
|  | copy_page(to, (void *)walk->reuse_addr); | 
|  | reset_struct_pages(to); | 
|  |  | 
|  | /* | 
|  | * Makes sure that preceding stores to the page contents become visible | 
|  | * before the set_pte_at() write. | 
|  | */ | 
|  | smp_wmb(); | 
|  | set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) | 
|  | *			to the page which @reuse is mapped to, then free vmemmap | 
|  | *			which the range are mapped to. | 
|  | * @start:	start address of the vmemmap virtual address range that we want | 
|  | *		to remap. | 
|  | * @end:	end address of the vmemmap virtual address range that we want to | 
|  | *		remap. | 
|  | * @reuse:	reuse address. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int vmemmap_remap_free(unsigned long start, unsigned long end, | 
|  | unsigned long reuse) | 
|  | { | 
|  | int ret; | 
|  | LIST_HEAD(vmemmap_pages); | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= vmemmap_remap_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In order to make remapping routine most efficient for the huge pages, | 
|  | * the routine of vmemmap page table walking has the following rules | 
|  | * (see more details from the vmemmap_pte_range()): | 
|  | * | 
|  | * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) | 
|  | *   should be continuous. | 
|  | * - The @reuse address is part of the range [@reuse, @end) that we are | 
|  | *   walking which is passed to vmemmap_remap_range(). | 
|  | * - The @reuse address is the first in the complete range. | 
|  | * | 
|  | * So we need to make sure that @start and @reuse meet the above rules. | 
|  | */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | mmap_read_lock(&init_mm); | 
|  | ret = vmemmap_remap_range(reuse, end, &walk); | 
|  | if (ret && walk.nr_walked) { | 
|  | end = reuse + walk.nr_walked * PAGE_SIZE; | 
|  | /* | 
|  | * vmemmap_pages contains pages from the previous | 
|  | * vmemmap_remap_range call which failed.  These | 
|  | * are pages which were removed from the vmemmap. | 
|  | * They will be restored in the following call. | 
|  | */ | 
|  | walk = (struct vmemmap_remap_walk) { | 
|  | .remap_pte	= vmemmap_restore_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | }; | 
|  |  | 
|  | vmemmap_remap_range(reuse, end, &walk); | 
|  | } | 
|  | mmap_read_unlock(&init_mm); | 
|  |  | 
|  | free_vmemmap_page_list(&vmemmap_pages); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, | 
|  | gfp_t gfp_mask, struct list_head *list) | 
|  | { | 
|  | unsigned long nr_pages = (end - start) >> PAGE_SHIFT; | 
|  | int nid = page_to_nid((struct page *)start); | 
|  | struct page *page, *next; | 
|  |  | 
|  | while (nr_pages--) { | 
|  | page = alloc_pages_node(nid, gfp_mask, 0); | 
|  | if (!page) | 
|  | goto out; | 
|  | list_add_tail(&page->lru, list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | list_for_each_entry_safe(page, next, list, lru) | 
|  | __free_pages(page, 0); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) | 
|  | *			 to the page which is from the @vmemmap_pages | 
|  | *			 respectively. | 
|  | * @start:	start address of the vmemmap virtual address range that we want | 
|  | *		to remap. | 
|  | * @end:	end address of the vmemmap virtual address range that we want to | 
|  | *		remap. | 
|  | * @reuse:	reuse address. | 
|  | * @gfp_mask:	GFP flag for allocating vmemmap pages. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int vmemmap_remap_alloc(unsigned long start, unsigned long end, | 
|  | unsigned long reuse, gfp_t gfp_mask) | 
|  | { | 
|  | LIST_HEAD(vmemmap_pages); | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= vmemmap_restore_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | }; | 
|  |  | 
|  | /* See the comment in the vmemmap_remap_free(). */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mmap_read_lock(&init_mm); | 
|  | vmemmap_remap_range(reuse, end, &walk); | 
|  | mmap_read_unlock(&init_mm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); | 
|  | EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); | 
|  |  | 
|  | static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); | 
|  | core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); | 
|  |  | 
|  | /** | 
|  | * hugetlb_vmemmap_restore - restore previously optimized (by | 
|  | *			     hugetlb_vmemmap_optimize()) vmemmap pages which | 
|  | *			     will be reallocated and remapped. | 
|  | * @h:		struct hstate. | 
|  | * @head:	the head page whose vmemmap pages will be restored. | 
|  | * | 
|  | * Return: %0 if @head's vmemmap pages have been reallocated and remapped, | 
|  | * negative error code otherwise. | 
|  | */ | 
|  | int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head) | 
|  | { | 
|  | int ret; | 
|  | unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; | 
|  | unsigned long vmemmap_reuse; | 
|  |  | 
|  | if (!HPageVmemmapOptimized(head)) | 
|  | return 0; | 
|  |  | 
|  | vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h); | 
|  | vmemmap_reuse	= vmemmap_start; | 
|  | vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE; | 
|  |  | 
|  | /* | 
|  | * The pages which the vmemmap virtual address range [@vmemmap_start, | 
|  | * @vmemmap_end) are mapped to are freed to the buddy allocator, and | 
|  | * the range is mapped to the page which @vmemmap_reuse is mapped to. | 
|  | * When a HugeTLB page is freed to the buddy allocator, previously | 
|  | * discarded vmemmap pages must be allocated and remapping. | 
|  | */ | 
|  | ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, | 
|  | GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); | 
|  | if (!ret) { | 
|  | ClearHPageVmemmapOptimized(head); | 
|  | static_branch_dec(&hugetlb_optimize_vmemmap_key); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ | 
|  | static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) | 
|  | { | 
|  | if (!READ_ONCE(vmemmap_optimize_enabled)) | 
|  | return false; | 
|  |  | 
|  | if (!hugetlb_vmemmap_optimizable(h)) | 
|  | return false; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { | 
|  | pmd_t *pmdp, pmd; | 
|  | struct page *vmemmap_page; | 
|  | unsigned long vaddr = (unsigned long)head; | 
|  |  | 
|  | /* | 
|  | * Only the vmemmap page's vmemmap page can be self-hosted. | 
|  | * Walking the page tables to find the backing page of the | 
|  | * vmemmap page. | 
|  | */ | 
|  | pmdp = pmd_off_k(vaddr); | 
|  | /* | 
|  | * The READ_ONCE() is used to stabilize *pmdp in a register or | 
|  | * on the stack so that it will stop changing under the code. | 
|  | * The only concurrent operation where it can be changed is | 
|  | * split_vmemmap_huge_pmd() (*pmdp will be stable after this | 
|  | * operation). | 
|  | */ | 
|  | pmd = READ_ONCE(*pmdp); | 
|  | if (pmd_leaf(pmd)) | 
|  | vmemmap_page = pmd_page(pmd) + pte_index(vaddr); | 
|  | else | 
|  | vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); | 
|  | /* | 
|  | * Due to HugeTLB alignment requirements and the vmemmap pages | 
|  | * being at the start of the hotplugged memory region in | 
|  | * memory_hotplug.memmap_on_memory case. Checking any vmemmap | 
|  | * page's vmemmap page if it is marked as VmemmapSelfHosted is | 
|  | * sufficient. | 
|  | * | 
|  | * [                  hotplugged memory                  ] | 
|  | * [        section        ][...][        section        ] | 
|  | * [ vmemmap ][              usable memory               ] | 
|  | *   ^   |     |                                        | | 
|  | *   +---+     |                                        | | 
|  | *     ^       |                                        | | 
|  | *     +-------+                                        | | 
|  | *          ^                                           | | 
|  | *          +-------------------------------------------+ | 
|  | */ | 
|  | if (PageVmemmapSelfHosted(vmemmap_page)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages. | 
|  | * @h:		struct hstate. | 
|  | * @head:	the head page whose vmemmap pages will be optimized. | 
|  | * | 
|  | * This function only tries to optimize @head's vmemmap pages and does not | 
|  | * guarantee that the optimization will succeed after it returns. The caller | 
|  | * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages | 
|  | * have been optimized. | 
|  | */ | 
|  | void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head) | 
|  | { | 
|  | unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; | 
|  | unsigned long vmemmap_reuse; | 
|  |  | 
|  | if (!vmemmap_should_optimize(h, head)) | 
|  | return; | 
|  |  | 
|  | static_branch_inc(&hugetlb_optimize_vmemmap_key); | 
|  |  | 
|  | vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h); | 
|  | vmemmap_reuse	= vmemmap_start; | 
|  | vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) | 
|  | * to the page which @vmemmap_reuse is mapped to, then free the pages | 
|  | * which the range [@vmemmap_start, @vmemmap_end] is mapped to. | 
|  | */ | 
|  | if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse)) | 
|  | static_branch_dec(&hugetlb_optimize_vmemmap_key); | 
|  | else | 
|  | SetHPageVmemmapOptimized(head); | 
|  | } | 
|  |  | 
|  | static struct ctl_table hugetlb_vmemmap_sysctls[] = { | 
|  | { | 
|  | .procname	= "hugetlb_optimize_vmemmap", | 
|  | .data		= &vmemmap_optimize_enabled, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dobool, | 
|  | }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | static int __init hugetlb_vmemmap_init(void) | 
|  | { | 
|  | /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ | 
|  | BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PROC_SYSCTL)) { | 
|  | const struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | if (hugetlb_vmemmap_optimizable(h)) { | 
|  | register_sysctl_init("vm", hugetlb_vmemmap_sysctls); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | late_initcall(hugetlb_vmemmap_init); |