|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/kernel/fork.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  'fork.c' contains the help-routines for the 'fork' system call | 
|  | * (see also entry.S and others). | 
|  | * Fork is rather simple, once you get the hang of it, but the memory | 
|  | * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' | 
|  | */ | 
|  |  | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/autogroup.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/sched/user.h> | 
|  | #include <linux/sched/numa_balancing.h> | 
|  | #include <linux/sched/stat.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/sched/cputime.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/rtmutex.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/sem.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/iocontext.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/kmsan.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/seccomp.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/futex.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/taskstats_kern.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/fs_struct.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/user-return-notifier.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/signalfd.h> | 
|  | #include <linux/uprobes.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/kcov.h> | 
|  | #include <linux/livepatch.h> | 
|  | #include <linux/thread_info.h> | 
|  | #include <linux/stackleak.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <linux/scs.h> | 
|  | #include <linux/io_uring.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/stackprotector.h> | 
|  | #include <linux/user_events.h> | 
|  | #include <linux/iommu.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include <trace/events/sched.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/task.h> | 
|  |  | 
|  | /* | 
|  | * Minimum number of threads to boot the kernel | 
|  | */ | 
|  | #define MIN_THREADS 20 | 
|  |  | 
|  | /* | 
|  | * Maximum number of threads | 
|  | */ | 
|  | #define MAX_THREADS FUTEX_TID_MASK | 
|  |  | 
|  | /* | 
|  | * Protected counters by write_lock_irq(&tasklist_lock) | 
|  | */ | 
|  | unsigned long total_forks;	/* Handle normal Linux uptimes. */ | 
|  | int nr_threads;			/* The idle threads do not count.. */ | 
|  |  | 
|  | static int max_threads;		/* tunable limit on nr_threads */ | 
|  |  | 
|  | #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x) | 
|  |  | 
|  | static const char * const resident_page_types[] = { | 
|  | NAMED_ARRAY_INDEX(MM_FILEPAGES), | 
|  | NAMED_ARRAY_INDEX(MM_ANONPAGES), | 
|  | NAMED_ARRAY_INDEX(MM_SWAPENTS), | 
|  | NAMED_ARRAY_INDEX(MM_SHMEMPAGES), | 
|  | }; | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned long, process_counts) = 0; | 
|  |  | 
|  | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */ | 
|  |  | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  | int lockdep_tasklist_lock_is_held(void) | 
|  | { | 
|  | return lockdep_is_held(&tasklist_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); | 
|  | #endif /* #ifdef CONFIG_PROVE_RCU */ | 
|  |  | 
|  | int nr_processes(void) | 
|  | { | 
|  | int cpu; | 
|  | int total = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | total += per_cpu(process_counts, cpu); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | void __weak arch_release_task_struct(struct task_struct *tsk) | 
|  | { | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | static struct kmem_cache *task_struct_cachep; | 
|  |  | 
|  | static inline struct task_struct *alloc_task_struct_node(int node) | 
|  | { | 
|  | return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); | 
|  | } | 
|  |  | 
|  | static inline void free_task_struct(struct task_struct *tsk) | 
|  | { | 
|  | kmem_cache_free(task_struct_cachep, tsk); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR | 
|  |  | 
|  | /* | 
|  | * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a | 
|  | * kmemcache based allocator. | 
|  | */ | 
|  | # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) | 
|  |  | 
|  | #  ifdef CONFIG_VMAP_STACK | 
|  | /* | 
|  | * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB | 
|  | * flush.  Try to minimize the number of calls by caching stacks. | 
|  | */ | 
|  | #define NR_CACHED_STACKS 2 | 
|  | static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); | 
|  |  | 
|  | struct vm_stack { | 
|  | struct rcu_head rcu; | 
|  | struct vm_struct *stack_vm_area; | 
|  | }; | 
|  |  | 
|  | static bool try_release_thread_stack_to_cache(struct vm_struct *vm) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < NR_CACHED_STACKS; i++) { | 
|  | if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) | 
|  | continue; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void thread_stack_free_rcu(struct rcu_head *rh) | 
|  | { | 
|  | struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); | 
|  |  | 
|  | if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) | 
|  | return; | 
|  |  | 
|  | vfree(vm_stack); | 
|  | } | 
|  |  | 
|  | static void thread_stack_delayed_free(struct task_struct *tsk) | 
|  | { | 
|  | struct vm_stack *vm_stack = tsk->stack; | 
|  |  | 
|  | vm_stack->stack_vm_area = tsk->stack_vm_area; | 
|  | call_rcu(&vm_stack->rcu, thread_stack_free_rcu); | 
|  | } | 
|  |  | 
|  | static int free_vm_stack_cache(unsigned int cpu) | 
|  | { | 
|  | struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_CACHED_STACKS; i++) { | 
|  | struct vm_struct *vm_stack = cached_vm_stacks[i]; | 
|  |  | 
|  | if (!vm_stack) | 
|  | continue; | 
|  |  | 
|  | vfree(vm_stack->addr); | 
|  | cached_vm_stacks[i] = NULL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memcg_charge_kernel_stack(struct vm_struct *vm) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  | int nr_charged = 0; | 
|  |  | 
|  | BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { | 
|  | ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); | 
|  | if (ret) | 
|  | goto err; | 
|  | nr_charged++; | 
|  | } | 
|  | return 0; | 
|  | err: | 
|  | for (i = 0; i < nr_charged; i++) | 
|  | memcg_kmem_uncharge_page(vm->pages[i], 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_thread_stack_node(struct task_struct *tsk, int node) | 
|  | { | 
|  | struct vm_struct *vm; | 
|  | void *stack; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_CACHED_STACKS; i++) { | 
|  | struct vm_struct *s; | 
|  |  | 
|  | s = this_cpu_xchg(cached_stacks[i], NULL); | 
|  |  | 
|  | if (!s) | 
|  | continue; | 
|  |  | 
|  | /* Reset stack metadata. */ | 
|  | kasan_unpoison_range(s->addr, THREAD_SIZE); | 
|  |  | 
|  | stack = kasan_reset_tag(s->addr); | 
|  |  | 
|  | /* Clear stale pointers from reused stack. */ | 
|  | memset(stack, 0, THREAD_SIZE); | 
|  |  | 
|  | if (memcg_charge_kernel_stack(s)) { | 
|  | vfree(s->addr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | tsk->stack_vm_area = s; | 
|  | tsk->stack = stack; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocated stacks are cached and later reused by new threads, | 
|  | * so memcg accounting is performed manually on assigning/releasing | 
|  | * stacks to tasks. Drop __GFP_ACCOUNT. | 
|  | */ | 
|  | stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, | 
|  | VMALLOC_START, VMALLOC_END, | 
|  | THREADINFO_GFP & ~__GFP_ACCOUNT, | 
|  | PAGE_KERNEL, | 
|  | 0, node, __builtin_return_address(0)); | 
|  | if (!stack) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vm = find_vm_area(stack); | 
|  | if (memcg_charge_kernel_stack(vm)) { | 
|  | vfree(stack); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * We can't call find_vm_area() in interrupt context, and | 
|  | * free_thread_stack() can be called in interrupt context, | 
|  | * so cache the vm_struct. | 
|  | */ | 
|  | tsk->stack_vm_area = vm; | 
|  | stack = kasan_reset_tag(stack); | 
|  | tsk->stack = stack; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_thread_stack(struct task_struct *tsk) | 
|  | { | 
|  | if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) | 
|  | thread_stack_delayed_free(tsk); | 
|  |  | 
|  | tsk->stack = NULL; | 
|  | tsk->stack_vm_area = NULL; | 
|  | } | 
|  |  | 
|  | #  else /* !CONFIG_VMAP_STACK */ | 
|  |  | 
|  | static void thread_stack_free_rcu(struct rcu_head *rh) | 
|  | { | 
|  | __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); | 
|  | } | 
|  |  | 
|  | static void thread_stack_delayed_free(struct task_struct *tsk) | 
|  | { | 
|  | struct rcu_head *rh = tsk->stack; | 
|  |  | 
|  | call_rcu(rh, thread_stack_free_rcu); | 
|  | } | 
|  |  | 
|  | static int alloc_thread_stack_node(struct task_struct *tsk, int node) | 
|  | { | 
|  | struct page *page = alloc_pages_node(node, THREADINFO_GFP, | 
|  | THREAD_SIZE_ORDER); | 
|  |  | 
|  | if (likely(page)) { | 
|  | tsk->stack = kasan_reset_tag(page_address(page)); | 
|  | return 0; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void free_thread_stack(struct task_struct *tsk) | 
|  | { | 
|  | thread_stack_delayed_free(tsk); | 
|  | tsk->stack = NULL; | 
|  | } | 
|  |  | 
|  | #  endif /* CONFIG_VMAP_STACK */ | 
|  | # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ | 
|  |  | 
|  | static struct kmem_cache *thread_stack_cache; | 
|  |  | 
|  | static void thread_stack_free_rcu(struct rcu_head *rh) | 
|  | { | 
|  | kmem_cache_free(thread_stack_cache, rh); | 
|  | } | 
|  |  | 
|  | static void thread_stack_delayed_free(struct task_struct *tsk) | 
|  | { | 
|  | struct rcu_head *rh = tsk->stack; | 
|  |  | 
|  | call_rcu(rh, thread_stack_free_rcu); | 
|  | } | 
|  |  | 
|  | static int alloc_thread_stack_node(struct task_struct *tsk, int node) | 
|  | { | 
|  | unsigned long *stack; | 
|  | stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); | 
|  | stack = kasan_reset_tag(stack); | 
|  | tsk->stack = stack; | 
|  | return stack ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void free_thread_stack(struct task_struct *tsk) | 
|  | { | 
|  | thread_stack_delayed_free(tsk); | 
|  | tsk->stack = NULL; | 
|  | } | 
|  |  | 
|  | void thread_stack_cache_init(void) | 
|  | { | 
|  | thread_stack_cache = kmem_cache_create_usercopy("thread_stack", | 
|  | THREAD_SIZE, THREAD_SIZE, 0, 0, | 
|  | THREAD_SIZE, NULL); | 
|  | BUG_ON(thread_stack_cache == NULL); | 
|  | } | 
|  |  | 
|  | # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ | 
|  | #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ | 
|  |  | 
|  | static int alloc_thread_stack_node(struct task_struct *tsk, int node) | 
|  | { | 
|  | unsigned long *stack; | 
|  |  | 
|  | stack = arch_alloc_thread_stack_node(tsk, node); | 
|  | tsk->stack = stack; | 
|  | return stack ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void free_thread_stack(struct task_struct *tsk) | 
|  | { | 
|  | arch_free_thread_stack(tsk); | 
|  | tsk->stack = NULL; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ | 
|  |  | 
|  | /* SLAB cache for signal_struct structures (tsk->signal) */ | 
|  | static struct kmem_cache *signal_cachep; | 
|  |  | 
|  | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | 
|  | struct kmem_cache *sighand_cachep; | 
|  |  | 
|  | /* SLAB cache for files_struct structures (tsk->files) */ | 
|  | struct kmem_cache *files_cachep; | 
|  |  | 
|  | /* SLAB cache for fs_struct structures (tsk->fs) */ | 
|  | struct kmem_cache *fs_cachep; | 
|  |  | 
|  | /* SLAB cache for vm_area_struct structures */ | 
|  | static struct kmem_cache *vm_area_cachep; | 
|  |  | 
|  | /* SLAB cache for mm_struct structures (tsk->mm) */ | 
|  | static struct kmem_cache *mm_cachep; | 
|  |  | 
|  | #ifdef CONFIG_PER_VMA_LOCK | 
|  |  | 
|  | /* SLAB cache for vm_area_struct.lock */ | 
|  | static struct kmem_cache *vma_lock_cachep; | 
|  |  | 
|  | static bool vma_lock_alloc(struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); | 
|  | if (!vma->vm_lock) | 
|  | return false; | 
|  |  | 
|  | init_rwsem(&vma->vm_lock->lock); | 
|  | vma->vm_lock_seq = -1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void vma_lock_free(struct vm_area_struct *vma) | 
|  | { | 
|  | kmem_cache_free(vma_lock_cachep, vma->vm_lock); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PER_VMA_LOCK */ | 
|  |  | 
|  | static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } | 
|  | static inline void vma_lock_free(struct vm_area_struct *vma) {} | 
|  |  | 
|  | #endif /* CONFIG_PER_VMA_LOCK */ | 
|  |  | 
|  | struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) | 
|  | return NULL; | 
|  |  | 
|  | vma_init(vma, mm); | 
|  | if (!vma_lock_alloc(vma)) { | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) | 
|  | { | 
|  | struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  |  | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); | 
|  | ASSERT_EXCLUSIVE_WRITER(orig->vm_file); | 
|  | /* | 
|  | * orig->shared.rb may be modified concurrently, but the clone | 
|  | * will be reinitialized. | 
|  | */ | 
|  | data_race(memcpy(new, orig, sizeof(*new))); | 
|  | if (!vma_lock_alloc(new)) { | 
|  | kmem_cache_free(vm_area_cachep, new); | 
|  | return NULL; | 
|  | } | 
|  | INIT_LIST_HEAD(&new->anon_vma_chain); | 
|  | vma_numab_state_init(new); | 
|  | dup_anon_vma_name(orig, new); | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  | void __vm_area_free(struct vm_area_struct *vma) | 
|  | { | 
|  | vma_numab_state_free(vma); | 
|  | free_anon_vma_name(vma); | 
|  | vma_lock_free(vma); | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PER_VMA_LOCK | 
|  | static void vm_area_free_rcu_cb(struct rcu_head *head) | 
|  | { | 
|  | struct vm_area_struct *vma = container_of(head, struct vm_area_struct, | 
|  | vm_rcu); | 
|  |  | 
|  | /* The vma should not be locked while being destroyed. */ | 
|  | VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); | 
|  | __vm_area_free(vma); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void vm_area_free(struct vm_area_struct *vma) | 
|  | { | 
|  | #ifdef CONFIG_PER_VMA_LOCK | 
|  | call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); | 
|  | #else | 
|  | __vm_area_free(vma); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void account_kernel_stack(struct task_struct *tsk, int account) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_VMAP_STACK)) { | 
|  | struct vm_struct *vm = task_stack_vm_area(tsk); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) | 
|  | mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, | 
|  | account * (PAGE_SIZE / 1024)); | 
|  | } else { | 
|  | void *stack = task_stack_page(tsk); | 
|  |  | 
|  | /* All stack pages are in the same node. */ | 
|  | mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, | 
|  | account * (THREAD_SIZE / 1024)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_task_stack_account(struct task_struct *tsk) | 
|  | { | 
|  | account_kernel_stack(tsk, -1); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_VMAP_STACK)) { | 
|  | struct vm_struct *vm; | 
|  | int i; | 
|  |  | 
|  | vm = task_stack_vm_area(tsk); | 
|  | for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) | 
|  | memcg_kmem_uncharge_page(vm->pages[i], 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void release_task_stack(struct task_struct *tsk) | 
|  | { | 
|  | if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) | 
|  | return;  /* Better to leak the stack than to free prematurely */ | 
|  |  | 
|  | free_thread_stack(tsk); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | void put_task_stack(struct task_struct *tsk) | 
|  | { | 
|  | if (refcount_dec_and_test(&tsk->stack_refcount)) | 
|  | release_task_stack(tsk); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void free_task(struct task_struct *tsk) | 
|  | { | 
|  | #ifdef CONFIG_SECCOMP | 
|  | WARN_ON_ONCE(tsk->seccomp.filter); | 
|  | #endif | 
|  | release_user_cpus_ptr(tsk); | 
|  | scs_release(tsk); | 
|  |  | 
|  | #ifndef CONFIG_THREAD_INFO_IN_TASK | 
|  | /* | 
|  | * The task is finally done with both the stack and thread_info, | 
|  | * so free both. | 
|  | */ | 
|  | release_task_stack(tsk); | 
|  | #else | 
|  | /* | 
|  | * If the task had a separate stack allocation, it should be gone | 
|  | * by now. | 
|  | */ | 
|  | WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); | 
|  | #endif | 
|  | rt_mutex_debug_task_free(tsk); | 
|  | ftrace_graph_exit_task(tsk); | 
|  | arch_release_task_struct(tsk); | 
|  | if (tsk->flags & PF_KTHREAD) | 
|  | free_kthread_struct(tsk); | 
|  | bpf_task_storage_free(tsk); | 
|  | free_task_struct(tsk); | 
|  | } | 
|  | EXPORT_SYMBOL(free_task); | 
|  |  | 
|  | static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) | 
|  | { | 
|  | struct file *exe_file; | 
|  |  | 
|  | exe_file = get_mm_exe_file(oldmm); | 
|  | RCU_INIT_POINTER(mm->exe_file, exe_file); | 
|  | /* | 
|  | * We depend on the oldmm having properly denied write access to the | 
|  | * exe_file already. | 
|  | */ | 
|  | if (exe_file && deny_write_access(exe_file)) | 
|  | pr_warn_once("deny_write_access() failed in %s\n", __func__); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static __latent_entropy int dup_mmap(struct mm_struct *mm, | 
|  | struct mm_struct *oldmm) | 
|  | { | 
|  | struct vm_area_struct *mpnt, *tmp; | 
|  | int retval; | 
|  | unsigned long charge = 0; | 
|  | LIST_HEAD(uf); | 
|  | VMA_ITERATOR(old_vmi, oldmm, 0); | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | uprobe_start_dup_mmap(); | 
|  | if (mmap_write_lock_killable(oldmm)) { | 
|  | retval = -EINTR; | 
|  | goto fail_uprobe_end; | 
|  | } | 
|  | flush_cache_dup_mm(oldmm); | 
|  | uprobe_dup_mmap(oldmm, mm); | 
|  | /* | 
|  | * Not linked in yet - no deadlock potential: | 
|  | */ | 
|  | mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | /* No ordering required: file already has been exposed. */ | 
|  | dup_mm_exe_file(mm, oldmm); | 
|  |  | 
|  | mm->total_vm = oldmm->total_vm; | 
|  | mm->data_vm = oldmm->data_vm; | 
|  | mm->exec_vm = oldmm->exec_vm; | 
|  | mm->stack_vm = oldmm->stack_vm; | 
|  |  | 
|  | retval = ksm_fork(mm, oldmm); | 
|  | if (retval) | 
|  | goto out; | 
|  | khugepaged_fork(mm, oldmm); | 
|  |  | 
|  | retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); | 
|  | if (retval) | 
|  | goto out; | 
|  |  | 
|  | mt_clear_in_rcu(vmi.mas.tree); | 
|  | for_each_vma(old_vmi, mpnt) { | 
|  | struct file *file; | 
|  |  | 
|  | vma_start_write(mpnt); | 
|  | if (mpnt->vm_flags & VM_DONTCOPY) { | 
|  | vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); | 
|  | continue; | 
|  | } | 
|  | charge = 0; | 
|  | /* | 
|  | * Don't duplicate many vmas if we've been oom-killed (for | 
|  | * example) | 
|  | */ | 
|  | if (fatal_signal_pending(current)) { | 
|  | retval = -EINTR; | 
|  | goto loop_out; | 
|  | } | 
|  | if (mpnt->vm_flags & VM_ACCOUNT) { | 
|  | unsigned long len = vma_pages(mpnt); | 
|  |  | 
|  | if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ | 
|  | goto fail_nomem; | 
|  | charge = len; | 
|  | } | 
|  | tmp = vm_area_dup(mpnt); | 
|  | if (!tmp) | 
|  | goto fail_nomem; | 
|  | retval = vma_dup_policy(mpnt, tmp); | 
|  | if (retval) | 
|  | goto fail_nomem_policy; | 
|  | tmp->vm_mm = mm; | 
|  | retval = dup_userfaultfd(tmp, &uf); | 
|  | if (retval) | 
|  | goto fail_nomem_anon_vma_fork; | 
|  | if (tmp->vm_flags & VM_WIPEONFORK) { | 
|  | /* | 
|  | * VM_WIPEONFORK gets a clean slate in the child. | 
|  | * Don't prepare anon_vma until fault since we don't | 
|  | * copy page for current vma. | 
|  | */ | 
|  | tmp->anon_vma = NULL; | 
|  | } else if (anon_vma_fork(tmp, mpnt)) | 
|  | goto fail_nomem_anon_vma_fork; | 
|  | vm_flags_clear(tmp, VM_LOCKED_MASK); | 
|  | file = tmp->vm_file; | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | get_file(file); | 
|  | i_mmap_lock_write(mapping); | 
|  | if (tmp->vm_flags & VM_SHARED) | 
|  | mapping_allow_writable(mapping); | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | /* insert tmp into the share list, just after mpnt */ | 
|  | vma_interval_tree_insert_after(tmp, mpnt, | 
|  | &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy/update hugetlb private vma information. | 
|  | */ | 
|  | if (is_vm_hugetlb_page(tmp)) | 
|  | hugetlb_dup_vma_private(tmp); | 
|  |  | 
|  | /* Link the vma into the MT */ | 
|  | if (vma_iter_bulk_store(&vmi, tmp)) | 
|  | goto fail_nomem_vmi_store; | 
|  |  | 
|  | mm->map_count++; | 
|  | if (!(tmp->vm_flags & VM_WIPEONFORK)) | 
|  | retval = copy_page_range(tmp, mpnt); | 
|  |  | 
|  | if (tmp->vm_ops && tmp->vm_ops->open) | 
|  | tmp->vm_ops->open(tmp); | 
|  |  | 
|  | if (retval) | 
|  | goto loop_out; | 
|  | } | 
|  | /* a new mm has just been created */ | 
|  | retval = arch_dup_mmap(oldmm, mm); | 
|  | loop_out: | 
|  | vma_iter_free(&vmi); | 
|  | if (!retval) | 
|  | mt_set_in_rcu(vmi.mas.tree); | 
|  | out: | 
|  | mmap_write_unlock(mm); | 
|  | flush_tlb_mm(oldmm); | 
|  | mmap_write_unlock(oldmm); | 
|  | dup_userfaultfd_complete(&uf); | 
|  | fail_uprobe_end: | 
|  | uprobe_end_dup_mmap(); | 
|  | return retval; | 
|  |  | 
|  | fail_nomem_vmi_store: | 
|  | unlink_anon_vmas(tmp); | 
|  | fail_nomem_anon_vma_fork: | 
|  | mpol_put(vma_policy(tmp)); | 
|  | fail_nomem_policy: | 
|  | vm_area_free(tmp); | 
|  | fail_nomem: | 
|  | retval = -ENOMEM; | 
|  | vm_unacct_memory(charge); | 
|  | goto loop_out; | 
|  | } | 
|  |  | 
|  | static inline int mm_alloc_pgd(struct mm_struct *mm) | 
|  | { | 
|  | mm->pgd = pgd_alloc(mm); | 
|  | if (unlikely(!mm->pgd)) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void mm_free_pgd(struct mm_struct *mm) | 
|  | { | 
|  | pgd_free(mm, mm->pgd); | 
|  | } | 
|  | #else | 
|  | static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | 
|  | { | 
|  | mmap_write_lock(oldmm); | 
|  | dup_mm_exe_file(mm, oldmm); | 
|  | mmap_write_unlock(oldmm); | 
|  | return 0; | 
|  | } | 
|  | #define mm_alloc_pgd(mm)	(0) | 
|  | #define mm_free_pgd(mm) | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | static void check_mm(struct mm_struct *mm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, | 
|  | "Please make sure 'struct resident_page_types[]' is updated as well"); | 
|  |  | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) { | 
|  | long x = percpu_counter_sum(&mm->rss_stat[i]); | 
|  |  | 
|  | if (unlikely(x)) | 
|  | pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", | 
|  | mm, resident_page_types[i], x); | 
|  | } | 
|  |  | 
|  | if (mm_pgtables_bytes(mm)) | 
|  | pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", | 
|  | mm_pgtables_bytes(mm)); | 
|  |  | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS | 
|  | VM_BUG_ON_MM(mm->pmd_huge_pte, mm); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL)) | 
|  | #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm))) | 
|  |  | 
|  | static void do_check_lazy_tlb(void *arg) | 
|  | { | 
|  | struct mm_struct *mm = arg; | 
|  |  | 
|  | WARN_ON_ONCE(current->active_mm == mm); | 
|  | } | 
|  |  | 
|  | static void do_shoot_lazy_tlb(void *arg) | 
|  | { | 
|  | struct mm_struct *mm = arg; | 
|  |  | 
|  | if (current->active_mm == mm) { | 
|  | WARN_ON_ONCE(current->mm); | 
|  | current->active_mm = &init_mm; | 
|  | switch_mm(mm, &init_mm, current); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cleanup_lazy_tlbs(struct mm_struct *mm) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { | 
|  | /* | 
|  | * In this case, lazy tlb mms are refounted and would not reach | 
|  | * __mmdrop until all CPUs have switched away and mmdrop()ed. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it | 
|  | * requires lazy mm users to switch to another mm when the refcount | 
|  | * drops to zero, before the mm is freed. This requires IPIs here to | 
|  | * switch kernel threads to init_mm. | 
|  | * | 
|  | * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm | 
|  | * switch with the final userspace teardown TLB flush which leaves the | 
|  | * mm lazy on this CPU but no others, reducing the need for additional | 
|  | * IPIs here. There are cases where a final IPI is still required here, | 
|  | * such as the final mmdrop being performed on a different CPU than the | 
|  | * one exiting, or kernel threads using the mm when userspace exits. | 
|  | * | 
|  | * IPI overheads have not found to be expensive, but they could be | 
|  | * reduced in a number of possible ways, for example (roughly | 
|  | * increasing order of complexity): | 
|  | * - The last lazy reference created by exit_mm() could instead switch | 
|  | *   to init_mm, however it's probable this will run on the same CPU | 
|  | *   immediately afterwards, so this may not reduce IPIs much. | 
|  | * - A batch of mms requiring IPIs could be gathered and freed at once. | 
|  | * - CPUs store active_mm where it can be remotely checked without a | 
|  | *   lock, to filter out false-positives in the cpumask. | 
|  | * - After mm_users or mm_count reaches zero, switching away from the | 
|  | *   mm could clear mm_cpumask to reduce some IPIs, perhaps together | 
|  | *   with some batching or delaying of the final IPIs. | 
|  | * - A delayed freeing and RCU-like quiescing sequence based on mm | 
|  | *   switching to avoid IPIs completely. | 
|  | */ | 
|  | on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); | 
|  | if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) | 
|  | on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the last reference to the mm | 
|  | * is dropped: either by a lazy thread or by | 
|  | * mmput. Free the page directory and the mm. | 
|  | */ | 
|  | void __mmdrop(struct mm_struct *mm) | 
|  | { | 
|  | BUG_ON(mm == &init_mm); | 
|  | WARN_ON_ONCE(mm == current->mm); | 
|  |  | 
|  | /* Ensure no CPUs are using this as their lazy tlb mm */ | 
|  | cleanup_lazy_tlbs(mm); | 
|  |  | 
|  | WARN_ON_ONCE(mm == current->active_mm); | 
|  | mm_free_pgd(mm); | 
|  | destroy_context(mm); | 
|  | mmu_notifier_subscriptions_destroy(mm); | 
|  | check_mm(mm); | 
|  | put_user_ns(mm->user_ns); | 
|  | mm_pasid_drop(mm); | 
|  | mm_destroy_cid(mm); | 
|  | percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); | 
|  |  | 
|  | free_mm(mm); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__mmdrop); | 
|  |  | 
|  | static void mmdrop_async_fn(struct work_struct *work) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | mm = container_of(work, struct mm_struct, async_put_work); | 
|  | __mmdrop(mm); | 
|  | } | 
|  |  | 
|  | static void mmdrop_async(struct mm_struct *mm) | 
|  | { | 
|  | if (unlikely(atomic_dec_and_test(&mm->mm_count))) { | 
|  | INIT_WORK(&mm->async_put_work, mmdrop_async_fn); | 
|  | schedule_work(&mm->async_put_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void free_signal_struct(struct signal_struct *sig) | 
|  | { | 
|  | taskstats_tgid_free(sig); | 
|  | sched_autogroup_exit(sig); | 
|  | /* | 
|  | * __mmdrop is not safe to call from softirq context on x86 due to | 
|  | * pgd_dtor so postpone it to the async context | 
|  | */ | 
|  | if (sig->oom_mm) | 
|  | mmdrop_async(sig->oom_mm); | 
|  | kmem_cache_free(signal_cachep, sig); | 
|  | } | 
|  |  | 
|  | static inline void put_signal_struct(struct signal_struct *sig) | 
|  | { | 
|  | if (refcount_dec_and_test(&sig->sigcnt)) | 
|  | free_signal_struct(sig); | 
|  | } | 
|  |  | 
|  | void __put_task_struct(struct task_struct *tsk) | 
|  | { | 
|  | WARN_ON(!tsk->exit_state); | 
|  | WARN_ON(refcount_read(&tsk->usage)); | 
|  | WARN_ON(tsk == current); | 
|  |  | 
|  | io_uring_free(tsk); | 
|  | cgroup_free(tsk); | 
|  | task_numa_free(tsk, true); | 
|  | security_task_free(tsk); | 
|  | exit_creds(tsk); | 
|  | delayacct_tsk_free(tsk); | 
|  | put_signal_struct(tsk->signal); | 
|  | sched_core_free(tsk); | 
|  | free_task(tsk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__put_task_struct); | 
|  |  | 
|  | void __put_task_struct_rcu_cb(struct rcu_head *rhp) | 
|  | { | 
|  | struct task_struct *task = container_of(rhp, struct task_struct, rcu); | 
|  |  | 
|  | __put_task_struct(task); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); | 
|  |  | 
|  | void __init __weak arch_task_cache_init(void) { } | 
|  |  | 
|  | /* | 
|  | * set_max_threads | 
|  | */ | 
|  | static void set_max_threads(unsigned int max_threads_suggested) | 
|  | { | 
|  | u64 threads; | 
|  | unsigned long nr_pages = totalram_pages(); | 
|  |  | 
|  | /* | 
|  | * The number of threads shall be limited such that the thread | 
|  | * structures may only consume a small part of the available memory. | 
|  | */ | 
|  | if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) | 
|  | threads = MAX_THREADS; | 
|  | else | 
|  | threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, | 
|  | (u64) THREAD_SIZE * 8UL); | 
|  |  | 
|  | if (threads > max_threads_suggested) | 
|  | threads = max_threads_suggested; | 
|  |  | 
|  | max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT | 
|  | /* Initialized by the architecture: */ | 
|  | int arch_task_struct_size __read_mostly; | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | static void task_struct_whitelist(unsigned long *offset, unsigned long *size) | 
|  | { | 
|  | /* Fetch thread_struct whitelist for the architecture. */ | 
|  | arch_thread_struct_whitelist(offset, size); | 
|  |  | 
|  | /* | 
|  | * Handle zero-sized whitelist or empty thread_struct, otherwise | 
|  | * adjust offset to position of thread_struct in task_struct. | 
|  | */ | 
|  | if (unlikely(*size == 0)) | 
|  | *offset = 0; | 
|  | else | 
|  | *offset += offsetof(struct task_struct, thread); | 
|  | } | 
|  | #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ | 
|  |  | 
|  | void __init fork_init(void) | 
|  | { | 
|  | int i; | 
|  | #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | #ifndef ARCH_MIN_TASKALIGN | 
|  | #define ARCH_MIN_TASKALIGN	0 | 
|  | #endif | 
|  | int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); | 
|  | unsigned long useroffset, usersize; | 
|  |  | 
|  | /* create a slab on which task_structs can be allocated */ | 
|  | task_struct_whitelist(&useroffset, &usersize); | 
|  | task_struct_cachep = kmem_cache_create_usercopy("task_struct", | 
|  | arch_task_struct_size, align, | 
|  | SLAB_PANIC|SLAB_ACCOUNT, | 
|  | useroffset, usersize, NULL); | 
|  | #endif | 
|  |  | 
|  | /* do the arch specific task caches init */ | 
|  | arch_task_cache_init(); | 
|  |  | 
|  | set_max_threads(MAX_THREADS); | 
|  |  | 
|  | init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; | 
|  | init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; | 
|  | init_task.signal->rlim[RLIMIT_SIGPENDING] = | 
|  | init_task.signal->rlim[RLIMIT_NPROC]; | 
|  |  | 
|  | for (i = 0; i < UCOUNT_COUNTS; i++) | 
|  | init_user_ns.ucount_max[i] = max_threads/2; | 
|  |  | 
|  | set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY); | 
|  | set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY); | 
|  | set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); | 
|  | set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY); | 
|  |  | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", | 
|  | NULL, free_vm_stack_cache); | 
|  | #endif | 
|  |  | 
|  | scs_init(); | 
|  |  | 
|  | lockdep_init_task(&init_task); | 
|  | uprobes_init(); | 
|  | } | 
|  |  | 
|  | int __weak arch_dup_task_struct(struct task_struct *dst, | 
|  | struct task_struct *src) | 
|  | { | 
|  | *dst = *src; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void set_task_stack_end_magic(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long *stackend; | 
|  |  | 
|  | stackend = end_of_stack(tsk); | 
|  | *stackend = STACK_END_MAGIC;	/* for overflow detection */ | 
|  | } | 
|  |  | 
|  | static struct task_struct *dup_task_struct(struct task_struct *orig, int node) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | int err; | 
|  |  | 
|  | if (node == NUMA_NO_NODE) | 
|  | node = tsk_fork_get_node(orig); | 
|  | tsk = alloc_task_struct_node(node); | 
|  | if (!tsk) | 
|  | return NULL; | 
|  |  | 
|  | err = arch_dup_task_struct(tsk, orig); | 
|  | if (err) | 
|  | goto free_tsk; | 
|  |  | 
|  | err = alloc_thread_stack_node(tsk, node); | 
|  | if (err) | 
|  | goto free_tsk; | 
|  |  | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | refcount_set(&tsk->stack_refcount, 1); | 
|  | #endif | 
|  | account_kernel_stack(tsk, 1); | 
|  |  | 
|  | err = scs_prepare(tsk, node); | 
|  | if (err) | 
|  | goto free_stack; | 
|  |  | 
|  | #ifdef CONFIG_SECCOMP | 
|  | /* | 
|  | * We must handle setting up seccomp filters once we're under | 
|  | * the sighand lock in case orig has changed between now and | 
|  | * then. Until then, filter must be NULL to avoid messing up | 
|  | * the usage counts on the error path calling free_task. | 
|  | */ | 
|  | tsk->seccomp.filter = NULL; | 
|  | #endif | 
|  |  | 
|  | setup_thread_stack(tsk, orig); | 
|  | clear_user_return_notifier(tsk); | 
|  | clear_tsk_need_resched(tsk); | 
|  | set_task_stack_end_magic(tsk); | 
|  | clear_syscall_work_syscall_user_dispatch(tsk); | 
|  |  | 
|  | #ifdef CONFIG_STACKPROTECTOR | 
|  | tsk->stack_canary = get_random_canary(); | 
|  | #endif | 
|  | if (orig->cpus_ptr == &orig->cpus_mask) | 
|  | tsk->cpus_ptr = &tsk->cpus_mask; | 
|  | dup_user_cpus_ptr(tsk, orig, node); | 
|  |  | 
|  | /* | 
|  | * One for the user space visible state that goes away when reaped. | 
|  | * One for the scheduler. | 
|  | */ | 
|  | refcount_set(&tsk->rcu_users, 2); | 
|  | /* One for the rcu users */ | 
|  | refcount_set(&tsk->usage, 1); | 
|  | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
|  | tsk->btrace_seq = 0; | 
|  | #endif | 
|  | tsk->splice_pipe = NULL; | 
|  | tsk->task_frag.page = NULL; | 
|  | tsk->wake_q.next = NULL; | 
|  | tsk->worker_private = NULL; | 
|  |  | 
|  | kcov_task_init(tsk); | 
|  | kmsan_task_create(tsk); | 
|  | kmap_local_fork(tsk); | 
|  |  | 
|  | #ifdef CONFIG_FAULT_INJECTION | 
|  | tsk->fail_nth = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_CGROUP | 
|  | tsk->throttle_disk = NULL; | 
|  | tsk->use_memdelay = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_IOMMU_SVA | 
|  | tsk->pasid_activated = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | tsk->active_memcg = NULL; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CPU_SUP_INTEL | 
|  | tsk->reported_split_lock = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MM_CID | 
|  | tsk->mm_cid = -1; | 
|  | tsk->last_mm_cid = -1; | 
|  | tsk->mm_cid_active = 0; | 
|  | tsk->migrate_from_cpu = -1; | 
|  | #endif | 
|  | return tsk; | 
|  |  | 
|  | free_stack: | 
|  | exit_task_stack_account(tsk); | 
|  | free_thread_stack(tsk); | 
|  | free_tsk: | 
|  | free_task_struct(tsk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); | 
|  |  | 
|  | static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; | 
|  |  | 
|  | static int __init coredump_filter_setup(char *s) | 
|  | { | 
|  | default_dump_filter = | 
|  | (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & | 
|  | MMF_DUMP_FILTER_MASK; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("coredump_filter=", coredump_filter_setup); | 
|  |  | 
|  | #include <linux/init_task.h> | 
|  |  | 
|  | static void mm_init_aio(struct mm_struct *mm) | 
|  | { | 
|  | #ifdef CONFIG_AIO | 
|  | spin_lock_init(&mm->ioctx_lock); | 
|  | mm->ioctx_table = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static __always_inline void mm_clear_owner(struct mm_struct *mm, | 
|  | struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (mm->owner == p) | 
|  | WRITE_ONCE(mm->owner, NULL); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_MEMCG | 
|  | mm->owner = p; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void mm_init_uprobes_state(struct mm_struct *mm) | 
|  | { | 
|  | #ifdef CONFIG_UPROBES | 
|  | mm->uprobes_state.xol_area = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, | 
|  | struct user_namespace *user_ns) | 
|  | { | 
|  | mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); | 
|  | mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); | 
|  | atomic_set(&mm->mm_users, 1); | 
|  | atomic_set(&mm->mm_count, 1); | 
|  | seqcount_init(&mm->write_protect_seq); | 
|  | mmap_init_lock(mm); | 
|  | INIT_LIST_HEAD(&mm->mmlist); | 
|  | #ifdef CONFIG_PER_VMA_LOCK | 
|  | mm->mm_lock_seq = 0; | 
|  | #endif | 
|  | mm_pgtables_bytes_init(mm); | 
|  | mm->map_count = 0; | 
|  | mm->locked_vm = 0; | 
|  | atomic64_set(&mm->pinned_vm, 0); | 
|  | memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); | 
|  | spin_lock_init(&mm->page_table_lock); | 
|  | spin_lock_init(&mm->arg_lock); | 
|  | mm_init_cpumask(mm); | 
|  | mm_init_aio(mm); | 
|  | mm_init_owner(mm, p); | 
|  | mm_pasid_init(mm); | 
|  | RCU_INIT_POINTER(mm->exe_file, NULL); | 
|  | mmu_notifier_subscriptions_init(mm); | 
|  | init_tlb_flush_pending(mm); | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS | 
|  | mm->pmd_huge_pte = NULL; | 
|  | #endif | 
|  | mm_init_uprobes_state(mm); | 
|  | hugetlb_count_init(mm); | 
|  |  | 
|  | if (current->mm) { | 
|  | mm->flags = mmf_init_flags(current->mm->flags); | 
|  | mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; | 
|  | } else { | 
|  | mm->flags = default_dump_filter; | 
|  | mm->def_flags = 0; | 
|  | } | 
|  |  | 
|  | if (mm_alloc_pgd(mm)) | 
|  | goto fail_nopgd; | 
|  |  | 
|  | if (init_new_context(p, mm)) | 
|  | goto fail_nocontext; | 
|  |  | 
|  | if (mm_alloc_cid(mm)) | 
|  | goto fail_cid; | 
|  |  | 
|  | if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, | 
|  | NR_MM_COUNTERS)) | 
|  | goto fail_pcpu; | 
|  |  | 
|  | mm->user_ns = get_user_ns(user_ns); | 
|  | lru_gen_init_mm(mm); | 
|  | return mm; | 
|  |  | 
|  | fail_pcpu: | 
|  | mm_destroy_cid(mm); | 
|  | fail_cid: | 
|  | destroy_context(mm); | 
|  | fail_nocontext: | 
|  | mm_free_pgd(mm); | 
|  | fail_nopgd: | 
|  | free_mm(mm); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an mm_struct. | 
|  | */ | 
|  | struct mm_struct *mm_alloc(void) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | mm = allocate_mm(); | 
|  | if (!mm) | 
|  | return NULL; | 
|  |  | 
|  | memset(mm, 0, sizeof(*mm)); | 
|  | return mm_init(mm, current, current_user_ns()); | 
|  | } | 
|  |  | 
|  | static inline void __mmput(struct mm_struct *mm) | 
|  | { | 
|  | VM_BUG_ON(atomic_read(&mm->mm_users)); | 
|  |  | 
|  | uprobe_clear_state(mm); | 
|  | exit_aio(mm); | 
|  | ksm_exit(mm); | 
|  | khugepaged_exit(mm); /* must run before exit_mmap */ | 
|  | exit_mmap(mm); | 
|  | mm_put_huge_zero_page(mm); | 
|  | set_mm_exe_file(mm, NULL); | 
|  | if (!list_empty(&mm->mmlist)) { | 
|  | spin_lock(&mmlist_lock); | 
|  | list_del(&mm->mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | if (mm->binfmt) | 
|  | module_put(mm->binfmt->module); | 
|  | lru_gen_del_mm(mm); | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement the use count and release all resources for an mm. | 
|  | */ | 
|  | void mmput(struct mm_struct *mm) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | if (atomic_dec_and_test(&mm->mm_users)) | 
|  | __mmput(mm); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mmput); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static void mmput_async_fn(struct work_struct *work) | 
|  | { | 
|  | struct mm_struct *mm = container_of(work, struct mm_struct, | 
|  | async_put_work); | 
|  |  | 
|  | __mmput(mm); | 
|  | } | 
|  |  | 
|  | void mmput_async(struct mm_struct *mm) | 
|  | { | 
|  | if (atomic_dec_and_test(&mm->mm_users)) { | 
|  | INIT_WORK(&mm->async_put_work, mmput_async_fn); | 
|  | schedule_work(&mm->async_put_work); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mmput_async); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * set_mm_exe_file - change a reference to the mm's executable file | 
|  | * | 
|  | * This changes mm's executable file (shown as symlink /proc/[pid]/exe). | 
|  | * | 
|  | * Main users are mmput() and sys_execve(). Callers prevent concurrent | 
|  | * invocations: in mmput() nobody alive left, in execve it happens before | 
|  | * the new mm is made visible to anyone. | 
|  | * | 
|  | * Can only fail if new_exe_file != NULL. | 
|  | */ | 
|  | int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) | 
|  | { | 
|  | struct file *old_exe_file; | 
|  |  | 
|  | /* | 
|  | * It is safe to dereference the exe_file without RCU as | 
|  | * this function is only called if nobody else can access | 
|  | * this mm -- see comment above for justification. | 
|  | */ | 
|  | old_exe_file = rcu_dereference_raw(mm->exe_file); | 
|  |  | 
|  | if (new_exe_file) { | 
|  | /* | 
|  | * We expect the caller (i.e., sys_execve) to already denied | 
|  | * write access, so this is unlikely to fail. | 
|  | */ | 
|  | if (unlikely(deny_write_access(new_exe_file))) | 
|  | return -EACCES; | 
|  | get_file(new_exe_file); | 
|  | } | 
|  | rcu_assign_pointer(mm->exe_file, new_exe_file); | 
|  | if (old_exe_file) { | 
|  | allow_write_access(old_exe_file); | 
|  | fput(old_exe_file); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * replace_mm_exe_file - replace a reference to the mm's executable file | 
|  | * | 
|  | * This changes mm's executable file (shown as symlink /proc/[pid]/exe). | 
|  | * | 
|  | * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). | 
|  | */ | 
|  | int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct file *old_exe_file; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Forbid mm->exe_file change if old file still mapped. */ | 
|  | old_exe_file = get_mm_exe_file(mm); | 
|  | if (old_exe_file) { | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  | mmap_read_lock(mm); | 
|  | for_each_vma(vmi, vma) { | 
|  | if (!vma->vm_file) | 
|  | continue; | 
|  | if (path_equal(&vma->vm_file->f_path, | 
|  | &old_exe_file->f_path)) { | 
|  | ret = -EBUSY; | 
|  | break; | 
|  | } | 
|  | } | 
|  | mmap_read_unlock(mm); | 
|  | fput(old_exe_file); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = deny_write_access(new_exe_file); | 
|  | if (ret) | 
|  | return -EACCES; | 
|  | get_file(new_exe_file); | 
|  |  | 
|  | /* set the new file */ | 
|  | mmap_write_lock(mm); | 
|  | old_exe_file = rcu_dereference_raw(mm->exe_file); | 
|  | rcu_assign_pointer(mm->exe_file, new_exe_file); | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | if (old_exe_file) { | 
|  | allow_write_access(old_exe_file); | 
|  | fput(old_exe_file); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_mm_exe_file - acquire a reference to the mm's executable file | 
|  | * | 
|  | * Returns %NULL if mm has no associated executable file. | 
|  | * User must release file via fput(). | 
|  | */ | 
|  | struct file *get_mm_exe_file(struct mm_struct *mm) | 
|  | { | 
|  | struct file *exe_file; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | exe_file = rcu_dereference(mm->exe_file); | 
|  | if (exe_file && !get_file_rcu(exe_file)) | 
|  | exe_file = NULL; | 
|  | rcu_read_unlock(); | 
|  | return exe_file; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_task_exe_file - acquire a reference to the task's executable file | 
|  | * | 
|  | * Returns %NULL if task's mm (if any) has no associated executable file or | 
|  | * this is a kernel thread with borrowed mm (see the comment above get_task_mm). | 
|  | * User must release file via fput(). | 
|  | */ | 
|  | struct file *get_task_exe_file(struct task_struct *task) | 
|  | { | 
|  | struct file *exe_file = NULL; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | task_lock(task); | 
|  | mm = task->mm; | 
|  | if (mm) { | 
|  | if (!(task->flags & PF_KTHREAD)) | 
|  | exe_file = get_mm_exe_file(mm); | 
|  | } | 
|  | task_unlock(task); | 
|  | return exe_file; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_task_mm - acquire a reference to the task's mm | 
|  | * | 
|  | * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning | 
|  | * this kernel workthread has transiently adopted a user mm with use_mm, | 
|  | * to do its AIO) is not set and if so returns a reference to it, after | 
|  | * bumping up the use count.  User must release the mm via mmput() | 
|  | * after use.  Typically used by /proc and ptrace. | 
|  | */ | 
|  | struct mm_struct *get_task_mm(struct task_struct *task) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | task_lock(task); | 
|  | mm = task->mm; | 
|  | if (mm) { | 
|  | if (task->flags & PF_KTHREAD) | 
|  | mm = NULL; | 
|  | else | 
|  | mmget(mm); | 
|  | } | 
|  | task_unlock(task); | 
|  | return mm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_task_mm); | 
|  |  | 
|  | struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | int err; | 
|  |  | 
|  | err =  down_read_killable(&task->signal->exec_update_lock); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | mm = get_task_mm(task); | 
|  | if (mm && mm != current->mm && | 
|  | !ptrace_may_access(task, mode)) { | 
|  | mmput(mm); | 
|  | mm = ERR_PTR(-EACCES); | 
|  | } | 
|  | up_read(&task->signal->exec_update_lock); | 
|  |  | 
|  | return mm; | 
|  | } | 
|  |  | 
|  | static void complete_vfork_done(struct task_struct *tsk) | 
|  | { | 
|  | struct completion *vfork; | 
|  |  | 
|  | task_lock(tsk); | 
|  | vfork = tsk->vfork_done; | 
|  | if (likely(vfork)) { | 
|  | tsk->vfork_done = NULL; | 
|  | complete(vfork); | 
|  | } | 
|  | task_unlock(tsk); | 
|  | } | 
|  |  | 
|  | static int wait_for_vfork_done(struct task_struct *child, | 
|  | struct completion *vfork) | 
|  | { | 
|  | unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; | 
|  | int killed; | 
|  |  | 
|  | cgroup_enter_frozen(); | 
|  | killed = wait_for_completion_state(vfork, state); | 
|  | cgroup_leave_frozen(false); | 
|  |  | 
|  | if (killed) { | 
|  | task_lock(child); | 
|  | child->vfork_done = NULL; | 
|  | task_unlock(child); | 
|  | } | 
|  |  | 
|  | put_task_struct(child); | 
|  | return killed; | 
|  | } | 
|  |  | 
|  | /* Please note the differences between mmput and mm_release. | 
|  | * mmput is called whenever we stop holding onto a mm_struct, | 
|  | * error success whatever. | 
|  | * | 
|  | * mm_release is called after a mm_struct has been removed | 
|  | * from the current process. | 
|  | * | 
|  | * This difference is important for error handling, when we | 
|  | * only half set up a mm_struct for a new process and need to restore | 
|  | * the old one.  Because we mmput the new mm_struct before | 
|  | * restoring the old one. . . | 
|  | * Eric Biederman 10 January 1998 | 
|  | */ | 
|  | static void mm_release(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | uprobe_free_utask(tsk); | 
|  |  | 
|  | /* Get rid of any cached register state */ | 
|  | deactivate_mm(tsk, mm); | 
|  |  | 
|  | /* | 
|  | * Signal userspace if we're not exiting with a core dump | 
|  | * because we want to leave the value intact for debugging | 
|  | * purposes. | 
|  | */ | 
|  | if (tsk->clear_child_tid) { | 
|  | if (atomic_read(&mm->mm_users) > 1) { | 
|  | /* | 
|  | * We don't check the error code - if userspace has | 
|  | * not set up a proper pointer then tough luck. | 
|  | */ | 
|  | put_user(0, tsk->clear_child_tid); | 
|  | do_futex(tsk->clear_child_tid, FUTEX_WAKE, | 
|  | 1, NULL, NULL, 0, 0); | 
|  | } | 
|  | tsk->clear_child_tid = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All done, finally we can wake up parent and return this mm to him. | 
|  | * Also kthread_stop() uses this completion for synchronization. | 
|  | */ | 
|  | if (tsk->vfork_done) | 
|  | complete_vfork_done(tsk); | 
|  | } | 
|  |  | 
|  | void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | futex_exit_release(tsk); | 
|  | mm_release(tsk, mm); | 
|  | } | 
|  |  | 
|  | void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | futex_exec_release(tsk); | 
|  | mm_release(tsk, mm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dup_mm() - duplicates an existing mm structure | 
|  | * @tsk: the task_struct with which the new mm will be associated. | 
|  | * @oldmm: the mm to duplicate. | 
|  | * | 
|  | * Allocates a new mm structure and duplicates the provided @oldmm structure | 
|  | * content into it. | 
|  | * | 
|  | * Return: the duplicated mm or NULL on failure. | 
|  | */ | 
|  | static struct mm_struct *dup_mm(struct task_struct *tsk, | 
|  | struct mm_struct *oldmm) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | int err; | 
|  |  | 
|  | mm = allocate_mm(); | 
|  | if (!mm) | 
|  | goto fail_nomem; | 
|  |  | 
|  | memcpy(mm, oldmm, sizeof(*mm)); | 
|  |  | 
|  | if (!mm_init(mm, tsk, mm->user_ns)) | 
|  | goto fail_nomem; | 
|  |  | 
|  | err = dup_mmap(mm, oldmm); | 
|  | if (err) | 
|  | goto free_pt; | 
|  |  | 
|  | mm->hiwater_rss = get_mm_rss(mm); | 
|  | mm->hiwater_vm = mm->total_vm; | 
|  |  | 
|  | if (mm->binfmt && !try_module_get(mm->binfmt->module)) | 
|  | goto free_pt; | 
|  |  | 
|  | return mm; | 
|  |  | 
|  | free_pt: | 
|  | /* don't put binfmt in mmput, we haven't got module yet */ | 
|  | mm->binfmt = NULL; | 
|  | mm_init_owner(mm, NULL); | 
|  | mmput(mm); | 
|  |  | 
|  | fail_nomem: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct mm_struct *mm, *oldmm; | 
|  |  | 
|  | tsk->min_flt = tsk->maj_flt = 0; | 
|  | tsk->nvcsw = tsk->nivcsw = 0; | 
|  | #ifdef CONFIG_DETECT_HUNG_TASK | 
|  | tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; | 
|  | tsk->last_switch_time = 0; | 
|  | #endif | 
|  |  | 
|  | tsk->mm = NULL; | 
|  | tsk->active_mm = NULL; | 
|  |  | 
|  | /* | 
|  | * Are we cloning a kernel thread? | 
|  | * | 
|  | * We need to steal a active VM for that.. | 
|  | */ | 
|  | oldmm = current->mm; | 
|  | if (!oldmm) | 
|  | return 0; | 
|  |  | 
|  | if (clone_flags & CLONE_VM) { | 
|  | mmget(oldmm); | 
|  | mm = oldmm; | 
|  | } else { | 
|  | mm = dup_mm(tsk, current->mm); | 
|  | if (!mm) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | tsk->mm = mm; | 
|  | tsk->active_mm = mm; | 
|  | sched_mm_cid_fork(tsk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct fs_struct *fs = current->fs; | 
|  | if (clone_flags & CLONE_FS) { | 
|  | /* tsk->fs is already what we want */ | 
|  | spin_lock(&fs->lock); | 
|  | if (fs->in_exec) { | 
|  | spin_unlock(&fs->lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | fs->users++; | 
|  | spin_unlock(&fs->lock); | 
|  | return 0; | 
|  | } | 
|  | tsk->fs = copy_fs_struct(fs); | 
|  | if (!tsk->fs) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_files(unsigned long clone_flags, struct task_struct *tsk, | 
|  | int no_files) | 
|  | { | 
|  | struct files_struct *oldf, *newf; | 
|  |  | 
|  | /* | 
|  | * A background process may not have any files ... | 
|  | */ | 
|  | oldf = current->files; | 
|  | if (!oldf) | 
|  | return 0; | 
|  |  | 
|  | if (no_files) { | 
|  | tsk->files = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (clone_flags & CLONE_FILES) { | 
|  | atomic_inc(&oldf->count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | newf = dup_fd(oldf, NULL); | 
|  | if (IS_ERR(newf)) | 
|  | return PTR_ERR(newf); | 
|  |  | 
|  | tsk->files = newf; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct sighand_struct *sig; | 
|  |  | 
|  | if (clone_flags & CLONE_SIGHAND) { | 
|  | refcount_inc(¤t->sighand->count); | 
|  | return 0; | 
|  | } | 
|  | sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
|  | RCU_INIT_POINTER(tsk->sighand, sig); | 
|  | if (!sig) | 
|  | return -ENOMEM; | 
|  |  | 
|  | refcount_set(&sig->count, 1); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ | 
|  | if (clone_flags & CLONE_CLEAR_SIGHAND) | 
|  | flush_signal_handlers(tsk, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cleanup_sighand(struct sighand_struct *sighand) | 
|  | { | 
|  | if (refcount_dec_and_test(&sighand->count)) { | 
|  | signalfd_cleanup(sighand); | 
|  | /* | 
|  | * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it | 
|  | * without an RCU grace period, see __lock_task_sighand(). | 
|  | */ | 
|  | kmem_cache_free(sighand_cachep, sighand); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize POSIX timer handling for a thread group. | 
|  | */ | 
|  | static void posix_cpu_timers_init_group(struct signal_struct *sig) | 
|  | { | 
|  | struct posix_cputimers *pct = &sig->posix_cputimers; | 
|  | unsigned long cpu_limit; | 
|  |  | 
|  | cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); | 
|  | posix_cputimers_group_init(pct, cpu_limit); | 
|  | } | 
|  |  | 
|  | static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig; | 
|  |  | 
|  | if (clone_flags & CLONE_THREAD) | 
|  | return 0; | 
|  |  | 
|  | sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); | 
|  | tsk->signal = sig; | 
|  | if (!sig) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sig->nr_threads = 1; | 
|  | sig->quick_threads = 1; | 
|  | atomic_set(&sig->live, 1); | 
|  | refcount_set(&sig->sigcnt, 1); | 
|  |  | 
|  | /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ | 
|  | sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); | 
|  | tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); | 
|  |  | 
|  | init_waitqueue_head(&sig->wait_chldexit); | 
|  | sig->curr_target = tsk; | 
|  | init_sigpending(&sig->shared_pending); | 
|  | INIT_HLIST_HEAD(&sig->multiprocess); | 
|  | seqlock_init(&sig->stats_lock); | 
|  | prev_cputime_init(&sig->prev_cputime); | 
|  |  | 
|  | #ifdef CONFIG_POSIX_TIMERS | 
|  | INIT_LIST_HEAD(&sig->posix_timers); | 
|  | hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | sig->real_timer.function = it_real_fn; | 
|  | #endif | 
|  |  | 
|  | task_lock(current->group_leader); | 
|  | memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); | 
|  | task_unlock(current->group_leader); | 
|  |  | 
|  | posix_cpu_timers_init_group(sig); | 
|  |  | 
|  | tty_audit_fork(sig); | 
|  | sched_autogroup_fork(sig); | 
|  |  | 
|  | sig->oom_score_adj = current->signal->oom_score_adj; | 
|  | sig->oom_score_adj_min = current->signal->oom_score_adj_min; | 
|  |  | 
|  | mutex_init(&sig->cred_guard_mutex); | 
|  | init_rwsem(&sig->exec_update_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void copy_seccomp(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_SECCOMP | 
|  | /* | 
|  | * Must be called with sighand->lock held, which is common to | 
|  | * all threads in the group. Holding cred_guard_mutex is not | 
|  | * needed because this new task is not yet running and cannot | 
|  | * be racing exec. | 
|  | */ | 
|  | assert_spin_locked(¤t->sighand->siglock); | 
|  |  | 
|  | /* Ref-count the new filter user, and assign it. */ | 
|  | get_seccomp_filter(current); | 
|  | p->seccomp = current->seccomp; | 
|  |  | 
|  | /* | 
|  | * Explicitly enable no_new_privs here in case it got set | 
|  | * between the task_struct being duplicated and holding the | 
|  | * sighand lock. The seccomp state and nnp must be in sync. | 
|  | */ | 
|  | if (task_no_new_privs(current)) | 
|  | task_set_no_new_privs(p); | 
|  |  | 
|  | /* | 
|  | * If the parent gained a seccomp mode after copying thread | 
|  | * flags and between before we held the sighand lock, we have | 
|  | * to manually enable the seccomp thread flag here. | 
|  | */ | 
|  | if (p->seccomp.mode != SECCOMP_MODE_DISABLED) | 
|  | set_task_syscall_work(p, SECCOMP); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) | 
|  | { | 
|  | current->clear_child_tid = tidptr; | 
|  |  | 
|  | return task_pid_vnr(current); | 
|  | } | 
|  |  | 
|  | static void rt_mutex_init_task(struct task_struct *p) | 
|  | { | 
|  | raw_spin_lock_init(&p->pi_lock); | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | p->pi_waiters = RB_ROOT_CACHED; | 
|  | p->pi_top_task = NULL; | 
|  | p->pi_blocked_on = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void init_task_pid_links(struct task_struct *task) | 
|  | { | 
|  | enum pid_type type; | 
|  |  | 
|  | for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) | 
|  | INIT_HLIST_NODE(&task->pid_links[type]); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) | 
|  | { | 
|  | if (type == PIDTYPE_PID) | 
|  | task->thread_pid = pid; | 
|  | else | 
|  | task->signal->pids[type] = pid; | 
|  | } | 
|  |  | 
|  | static inline void rcu_copy_process(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  | p->rcu_read_lock_nesting = 0; | 
|  | p->rcu_read_unlock_special.s = 0; | 
|  | p->rcu_blocked_node = NULL; | 
|  | INIT_LIST_HEAD(&p->rcu_node_entry); | 
|  | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  | #ifdef CONFIG_TASKS_RCU | 
|  | p->rcu_tasks_holdout = false; | 
|  | INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); | 
|  | p->rcu_tasks_idle_cpu = -1; | 
|  | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
|  | #ifdef CONFIG_TASKS_TRACE_RCU | 
|  | p->trc_reader_nesting = 0; | 
|  | p->trc_reader_special.s = 0; | 
|  | INIT_LIST_HEAD(&p->trc_holdout_list); | 
|  | INIT_LIST_HEAD(&p->trc_blkd_node); | 
|  | #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ | 
|  | } | 
|  |  | 
|  | struct pid *pidfd_pid(const struct file *file) | 
|  | { | 
|  | if (file->f_op == &pidfd_fops) | 
|  | return file->private_data; | 
|  |  | 
|  | return ERR_PTR(-EBADF); | 
|  | } | 
|  |  | 
|  | static int pidfd_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct pid *pid = file->private_data; | 
|  |  | 
|  | file->private_data = NULL; | 
|  | put_pid(pid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /** | 
|  | * pidfd_show_fdinfo - print information about a pidfd | 
|  | * @m: proc fdinfo file | 
|  | * @f: file referencing a pidfd | 
|  | * | 
|  | * Pid: | 
|  | * This function will print the pid that a given pidfd refers to in the | 
|  | * pid namespace of the procfs instance. | 
|  | * If the pid namespace of the process is not a descendant of the pid | 
|  | * namespace of the procfs instance 0 will be shown as its pid. This is | 
|  | * similar to calling getppid() on a process whose parent is outside of | 
|  | * its pid namespace. | 
|  | * | 
|  | * NSpid: | 
|  | * If pid namespaces are supported then this function will also print | 
|  | * the pid of a given pidfd refers to for all descendant pid namespaces | 
|  | * starting from the current pid namespace of the instance, i.e. the | 
|  | * Pid field and the first entry in the NSpid field will be identical. | 
|  | * If the pid namespace of the process is not a descendant of the pid | 
|  | * namespace of the procfs instance 0 will be shown as its first NSpid | 
|  | * entry and no others will be shown. | 
|  | * Note that this differs from the Pid and NSpid fields in | 
|  | * /proc/<pid>/status where Pid and NSpid are always shown relative to | 
|  | * the  pid namespace of the procfs instance. The difference becomes | 
|  | * obvious when sending around a pidfd between pid namespaces from a | 
|  | * different branch of the tree, i.e. where no ancestral relation is | 
|  | * present between the pid namespaces: | 
|  | * - create two new pid namespaces ns1 and ns2 in the initial pid | 
|  | *   namespace (also take care to create new mount namespaces in the | 
|  | *   new pid namespace and mount procfs) | 
|  | * - create a process with a pidfd in ns1 | 
|  | * - send pidfd from ns1 to ns2 | 
|  | * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid | 
|  | *   have exactly one entry, which is 0 | 
|  | */ | 
|  | static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) | 
|  | { | 
|  | struct pid *pid = f->private_data; | 
|  | struct pid_namespace *ns; | 
|  | pid_t nr = -1; | 
|  |  | 
|  | if (likely(pid_has_task(pid, PIDTYPE_PID))) { | 
|  | ns = proc_pid_ns(file_inode(m->file)->i_sb); | 
|  | nr = pid_nr_ns(pid, ns); | 
|  | } | 
|  |  | 
|  | seq_put_decimal_ll(m, "Pid:\t", nr); | 
|  |  | 
|  | #ifdef CONFIG_PID_NS | 
|  | seq_put_decimal_ll(m, "\nNSpid:\t", nr); | 
|  | if (nr > 0) { | 
|  | int i; | 
|  |  | 
|  | /* If nr is non-zero it means that 'pid' is valid and that | 
|  | * ns, i.e. the pid namespace associated with the procfs | 
|  | * instance, is in the pid namespace hierarchy of pid. | 
|  | * Start at one below the already printed level. | 
|  | */ | 
|  | for (i = ns->level + 1; i <= pid->level; i++) | 
|  | seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); | 
|  | } | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Poll support for process exit notification. | 
|  | */ | 
|  | static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) | 
|  | { | 
|  | struct pid *pid = file->private_data; | 
|  | __poll_t poll_flags = 0; | 
|  |  | 
|  | poll_wait(file, &pid->wait_pidfd, pts); | 
|  |  | 
|  | /* | 
|  | * Inform pollers only when the whole thread group exits. | 
|  | * If the thread group leader exits before all other threads in the | 
|  | * group, then poll(2) should block, similar to the wait(2) family. | 
|  | */ | 
|  | if (thread_group_exited(pid)) | 
|  | poll_flags = EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | return poll_flags; | 
|  | } | 
|  |  | 
|  | const struct file_operations pidfd_fops = { | 
|  | .release = pidfd_release, | 
|  | .poll = pidfd_poll, | 
|  | #ifdef CONFIG_PROC_FS | 
|  | .show_fdinfo = pidfd_show_fdinfo, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd | 
|  | * @pid:   the struct pid for which to create a pidfd | 
|  | * @flags: flags of the new @pidfd | 
|  | * @pidfd: the pidfd to return | 
|  | * | 
|  | * Allocate a new file that stashes @pid and reserve a new pidfd number in the | 
|  | * caller's file descriptor table. The pidfd is reserved but not installed yet. | 
|  |  | 
|  | * The helper doesn't perform checks on @pid which makes it useful for pidfds | 
|  | * created via CLONE_PIDFD where @pid has no task attached when the pidfd and | 
|  | * pidfd file are prepared. | 
|  | * | 
|  | * If this function returns successfully the caller is responsible to either | 
|  | * call fd_install() passing the returned pidfd and pidfd file as arguments in | 
|  | * order to install the pidfd into its file descriptor table or they must use | 
|  | * put_unused_fd() and fput() on the returned pidfd and pidfd file | 
|  | * respectively. | 
|  | * | 
|  | * This function is useful when a pidfd must already be reserved but there | 
|  | * might still be points of failure afterwards and the caller wants to ensure | 
|  | * that no pidfd is leaked into its file descriptor table. | 
|  | * | 
|  | * Return: On success, a reserved pidfd is returned from the function and a new | 
|  | *         pidfd file is returned in the last argument to the function. On | 
|  | *         error, a negative error code is returned from the function and the | 
|  | *         last argument remains unchanged. | 
|  | */ | 
|  | static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) | 
|  | { | 
|  | int pidfd; | 
|  | struct file *pidfd_file; | 
|  |  | 
|  | if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) | 
|  | return -EINVAL; | 
|  |  | 
|  | pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); | 
|  | if (pidfd < 0) | 
|  | return pidfd; | 
|  |  | 
|  | pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, | 
|  | flags | O_RDWR | O_CLOEXEC); | 
|  | if (IS_ERR(pidfd_file)) { | 
|  | put_unused_fd(pidfd); | 
|  | return PTR_ERR(pidfd_file); | 
|  | } | 
|  | get_pid(pid); /* held by pidfd_file now */ | 
|  | *ret = pidfd_file; | 
|  | return pidfd; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd | 
|  | * @pid:   the struct pid for which to create a pidfd | 
|  | * @flags: flags of the new @pidfd | 
|  | * @pidfd: the pidfd to return | 
|  | * | 
|  | * Allocate a new file that stashes @pid and reserve a new pidfd number in the | 
|  | * caller's file descriptor table. The pidfd is reserved but not installed yet. | 
|  | * | 
|  | * The helper verifies that @pid is used as a thread group leader. | 
|  | * | 
|  | * If this function returns successfully the caller is responsible to either | 
|  | * call fd_install() passing the returned pidfd and pidfd file as arguments in | 
|  | * order to install the pidfd into its file descriptor table or they must use | 
|  | * put_unused_fd() and fput() on the returned pidfd and pidfd file | 
|  | * respectively. | 
|  | * | 
|  | * This function is useful when a pidfd must already be reserved but there | 
|  | * might still be points of failure afterwards and the caller wants to ensure | 
|  | * that no pidfd is leaked into its file descriptor table. | 
|  | * | 
|  | * Return: On success, a reserved pidfd is returned from the function and a new | 
|  | *         pidfd file is returned in the last argument to the function. On | 
|  | *         error, a negative error code is returned from the function and the | 
|  | *         last argument remains unchanged. | 
|  | */ | 
|  | int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) | 
|  | { | 
|  | if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __pidfd_prepare(pid, flags, ret); | 
|  | } | 
|  |  | 
|  | static void __delayed_free_task(struct rcu_head *rhp) | 
|  | { | 
|  | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 
|  |  | 
|  | free_task(tsk); | 
|  | } | 
|  |  | 
|  | static __always_inline void delayed_free_task(struct task_struct *tsk) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_MEMCG)) | 
|  | call_rcu(&tsk->rcu, __delayed_free_task); | 
|  | else | 
|  | free_task(tsk); | 
|  | } | 
|  |  | 
|  | static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | /* Skip if kernel thread */ | 
|  | if (!tsk->mm) | 
|  | return; | 
|  |  | 
|  | /* Skip if spawning a thread or using vfork */ | 
|  | if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) | 
|  | return; | 
|  |  | 
|  | /* We need to synchronize with __set_oom_adj */ | 
|  | mutex_lock(&oom_adj_mutex); | 
|  | set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); | 
|  | /* Update the values in case they were changed after copy_signal */ | 
|  | tsk->signal->oom_score_adj = current->signal->oom_score_adj; | 
|  | tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; | 
|  | mutex_unlock(&oom_adj_mutex); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RV | 
|  | static void rv_task_fork(struct task_struct *p) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < RV_PER_TASK_MONITORS; i++) | 
|  | p->rv[i].da_mon.monitoring = false; | 
|  | } | 
|  | #else | 
|  | #define rv_task_fork(p) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This creates a new process as a copy of the old one, | 
|  | * but does not actually start it yet. | 
|  | * | 
|  | * It copies the registers, and all the appropriate | 
|  | * parts of the process environment (as per the clone | 
|  | * flags). The actual kick-off is left to the caller. | 
|  | */ | 
|  | __latent_entropy struct task_struct *copy_process( | 
|  | struct pid *pid, | 
|  | int trace, | 
|  | int node, | 
|  | struct kernel_clone_args *args) | 
|  | { | 
|  | int pidfd = -1, retval; | 
|  | struct task_struct *p; | 
|  | struct multiprocess_signals delayed; | 
|  | struct file *pidfile = NULL; | 
|  | const u64 clone_flags = args->flags; | 
|  | struct nsproxy *nsp = current->nsproxy; | 
|  |  | 
|  | /* | 
|  | * Don't allow sharing the root directory with processes in a different | 
|  | * namespace | 
|  | */ | 
|  | if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * Thread groups must share signals as well, and detached threads | 
|  | * can only be started up within the thread group. | 
|  | */ | 
|  | if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * Shared signal handlers imply shared VM. By way of the above, | 
|  | * thread groups also imply shared VM. Blocking this case allows | 
|  | * for various simplifications in other code. | 
|  | */ | 
|  | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * Siblings of global init remain as zombies on exit since they are | 
|  | * not reaped by their parent (swapper). To solve this and to avoid | 
|  | * multi-rooted process trees, prevent global and container-inits | 
|  | * from creating siblings. | 
|  | */ | 
|  | if ((clone_flags & CLONE_PARENT) && | 
|  | current->signal->flags & SIGNAL_UNKILLABLE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * If the new process will be in a different pid or user namespace | 
|  | * do not allow it to share a thread group with the forking task. | 
|  | */ | 
|  | if (clone_flags & CLONE_THREAD) { | 
|  | if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || | 
|  | (task_active_pid_ns(current) != nsp->pid_ns_for_children)) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (clone_flags & CLONE_PIDFD) { | 
|  | /* | 
|  | * - CLONE_DETACHED is blocked so that we can potentially | 
|  | *   reuse it later for CLONE_PIDFD. | 
|  | * - CLONE_THREAD is blocked until someone really needs it. | 
|  | */ | 
|  | if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force any signals received before this point to be delivered | 
|  | * before the fork happens.  Collect up signals sent to multiple | 
|  | * processes that happen during the fork and delay them so that | 
|  | * they appear to happen after the fork. | 
|  | */ | 
|  | sigemptyset(&delayed.signal); | 
|  | INIT_HLIST_NODE(&delayed.node); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (!(clone_flags & CLONE_THREAD)) | 
|  | hlist_add_head(&delayed.node, ¤t->signal->multiprocess); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | retval = -ERESTARTNOINTR; | 
|  | if (task_sigpending(current)) | 
|  | goto fork_out; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | p = dup_task_struct(current, node); | 
|  | if (!p) | 
|  | goto fork_out; | 
|  | p->flags &= ~PF_KTHREAD; | 
|  | if (args->kthread) | 
|  | p->flags |= PF_KTHREAD; | 
|  | if (args->user_worker) { | 
|  | /* | 
|  | * Mark us a user worker, and block any signal that isn't | 
|  | * fatal or STOP | 
|  | */ | 
|  | p->flags |= PF_USER_WORKER; | 
|  | siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  | } | 
|  | if (args->io_thread) | 
|  | p->flags |= PF_IO_WORKER; | 
|  |  | 
|  | if (args->name) | 
|  | strscpy_pad(p->comm, args->name, sizeof(p->comm)); | 
|  |  | 
|  | p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; | 
|  | /* | 
|  | * Clear TID on mm_release()? | 
|  | */ | 
|  | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; | 
|  |  | 
|  | ftrace_graph_init_task(p); | 
|  |  | 
|  | rt_mutex_init_task(p); | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); | 
|  | #endif | 
|  | retval = copy_creds(p, clone_flags); | 
|  | if (retval < 0) | 
|  | goto bad_fork_free; | 
|  |  | 
|  | retval = -EAGAIN; | 
|  | if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { | 
|  | if (p->real_cred->user != INIT_USER && | 
|  | !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) | 
|  | goto bad_fork_cleanup_count; | 
|  | } | 
|  | current->flags &= ~PF_NPROC_EXCEEDED; | 
|  |  | 
|  | /* | 
|  | * If multiple threads are within copy_process(), then this check | 
|  | * triggers too late. This doesn't hurt, the check is only there | 
|  | * to stop root fork bombs. | 
|  | */ | 
|  | retval = -EAGAIN; | 
|  | if (data_race(nr_threads >= max_threads)) | 
|  | goto bad_fork_cleanup_count; | 
|  |  | 
|  | delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */ | 
|  | p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); | 
|  | p->flags |= PF_FORKNOEXEC; | 
|  | INIT_LIST_HEAD(&p->children); | 
|  | INIT_LIST_HEAD(&p->sibling); | 
|  | rcu_copy_process(p); | 
|  | p->vfork_done = NULL; | 
|  | spin_lock_init(&p->alloc_lock); | 
|  |  | 
|  | init_sigpending(&p->pending); | 
|  |  | 
|  | p->utime = p->stime = p->gtime = 0; | 
|  | #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME | 
|  | p->utimescaled = p->stimescaled = 0; | 
|  | #endif | 
|  | prev_cputime_init(&p->prev_cputime); | 
|  |  | 
|  | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN | 
|  | seqcount_init(&p->vtime.seqcount); | 
|  | p->vtime.starttime = 0; | 
|  | p->vtime.state = VTIME_INACTIVE; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_IO_URING | 
|  | p->io_uring = NULL; | 
|  | #endif | 
|  |  | 
|  | #if defined(SPLIT_RSS_COUNTING) | 
|  | memset(&p->rss_stat, 0, sizeof(p->rss_stat)); | 
|  | #endif | 
|  |  | 
|  | p->default_timer_slack_ns = current->timer_slack_ns; | 
|  |  | 
|  | #ifdef CONFIG_PSI | 
|  | p->psi_flags = 0; | 
|  | #endif | 
|  |  | 
|  | task_io_accounting_init(&p->ioac); | 
|  | acct_clear_integrals(p); | 
|  |  | 
|  | posix_cputimers_init(&p->posix_cputimers); | 
|  |  | 
|  | p->io_context = NULL; | 
|  | audit_set_context(p, NULL); | 
|  | cgroup_fork(p); | 
|  | if (args->kthread) { | 
|  | if (!set_kthread_struct(p)) | 
|  | goto bad_fork_cleanup_delayacct; | 
|  | } | 
|  | #ifdef CONFIG_NUMA | 
|  | p->mempolicy = mpol_dup(p->mempolicy); | 
|  | if (IS_ERR(p->mempolicy)) { | 
|  | retval = PTR_ERR(p->mempolicy); | 
|  | p->mempolicy = NULL; | 
|  | goto bad_fork_cleanup_delayacct; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_CPUSETS | 
|  | p->cpuset_mem_spread_rotor = NUMA_NO_NODE; | 
|  | p->cpuset_slab_spread_rotor = NUMA_NO_NODE; | 
|  | seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); | 
|  | #endif | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  | memset(&p->irqtrace, 0, sizeof(p->irqtrace)); | 
|  | p->irqtrace.hardirq_disable_ip	= _THIS_IP_; | 
|  | p->irqtrace.softirq_enable_ip	= _THIS_IP_; | 
|  | p->softirqs_enabled		= 1; | 
|  | p->softirq_context		= 0; | 
|  | #endif | 
|  |  | 
|  | p->pagefault_disabled = 0; | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | lockdep_init_task(p); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MUTEXES | 
|  | p->blocked_on = NULL; /* not blocked yet */ | 
|  | #endif | 
|  | #ifdef CONFIG_BCACHE | 
|  | p->sequential_io	= 0; | 
|  | p->sequential_io_avg	= 0; | 
|  | #endif | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | RCU_INIT_POINTER(p->bpf_storage, NULL); | 
|  | p->bpf_ctx = NULL; | 
|  | #endif | 
|  |  | 
|  | /* Perform scheduler related setup. Assign this task to a CPU. */ | 
|  | retval = sched_fork(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_policy; | 
|  |  | 
|  | retval = perf_event_init_task(p, clone_flags); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_policy; | 
|  | retval = audit_alloc(p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_perf; | 
|  | /* copy all the process information */ | 
|  | shm_init_task(p); | 
|  | retval = security_task_alloc(p, clone_flags); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_audit; | 
|  | retval = copy_semundo(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_security; | 
|  | retval = copy_files(clone_flags, p, args->no_files); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_semundo; | 
|  | retval = copy_fs(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_files; | 
|  | retval = copy_sighand(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_fs; | 
|  | retval = copy_signal(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_sighand; | 
|  | retval = copy_mm(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_signal; | 
|  | retval = copy_namespaces(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_mm; | 
|  | retval = copy_io(clone_flags, p); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_namespaces; | 
|  | retval = copy_thread(p, args); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_io; | 
|  |  | 
|  | stackleak_task_init(p); | 
|  |  | 
|  | if (pid != &init_struct_pid) { | 
|  | pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, | 
|  | args->set_tid_size); | 
|  | if (IS_ERR(pid)) { | 
|  | retval = PTR_ERR(pid); | 
|  | goto bad_fork_cleanup_thread; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This has to happen after we've potentially unshared the file | 
|  | * descriptor table (so that the pidfd doesn't leak into the child | 
|  | * if the fd table isn't shared). | 
|  | */ | 
|  | if (clone_flags & CLONE_PIDFD) { | 
|  | /* Note that no task has been attached to @pid yet. */ | 
|  | retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); | 
|  | if (retval < 0) | 
|  | goto bad_fork_free_pid; | 
|  | pidfd = retval; | 
|  |  | 
|  | retval = put_user(pidfd, args->pidfd); | 
|  | if (retval) | 
|  | goto bad_fork_put_pidfd; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | p->plug = NULL; | 
|  | #endif | 
|  | futex_init_task(p); | 
|  |  | 
|  | /* | 
|  | * sigaltstack should be cleared when sharing the same VM | 
|  | */ | 
|  | if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) | 
|  | sas_ss_reset(p); | 
|  |  | 
|  | /* | 
|  | * Syscall tracing and stepping should be turned off in the | 
|  | * child regardless of CLONE_PTRACE. | 
|  | */ | 
|  | user_disable_single_step(p); | 
|  | clear_task_syscall_work(p, SYSCALL_TRACE); | 
|  | #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) | 
|  | clear_task_syscall_work(p, SYSCALL_EMU); | 
|  | #endif | 
|  | clear_tsk_latency_tracing(p); | 
|  |  | 
|  | /* ok, now we should be set up.. */ | 
|  | p->pid = pid_nr(pid); | 
|  | if (clone_flags & CLONE_THREAD) { | 
|  | p->group_leader = current->group_leader; | 
|  | p->tgid = current->tgid; | 
|  | } else { | 
|  | p->group_leader = p; | 
|  | p->tgid = p->pid; | 
|  | } | 
|  |  | 
|  | p->nr_dirtied = 0; | 
|  | p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); | 
|  | p->dirty_paused_when = 0; | 
|  |  | 
|  | p->pdeath_signal = 0; | 
|  | INIT_LIST_HEAD(&p->thread_group); | 
|  | p->task_works = NULL; | 
|  | clear_posix_cputimers_work(p); | 
|  |  | 
|  | #ifdef CONFIG_KRETPROBES | 
|  | p->kretprobe_instances.first = NULL; | 
|  | #endif | 
|  | #ifdef CONFIG_RETHOOK | 
|  | p->rethooks.first = NULL; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Ensure that the cgroup subsystem policies allow the new process to be | 
|  | * forked. It should be noted that the new process's css_set can be changed | 
|  | * between here and cgroup_post_fork() if an organisation operation is in | 
|  | * progress. | 
|  | */ | 
|  | retval = cgroup_can_fork(p, args); | 
|  | if (retval) | 
|  | goto bad_fork_put_pidfd; | 
|  |  | 
|  | /* | 
|  | * Now that the cgroups are pinned, re-clone the parent cgroup and put | 
|  | * the new task on the correct runqueue. All this *before* the task | 
|  | * becomes visible. | 
|  | * | 
|  | * This isn't part of ->can_fork() because while the re-cloning is | 
|  | * cgroup specific, it unconditionally needs to place the task on a | 
|  | * runqueue. | 
|  | */ | 
|  | sched_cgroup_fork(p, args); | 
|  |  | 
|  | /* | 
|  | * From this point on we must avoid any synchronous user-space | 
|  | * communication until we take the tasklist-lock. In particular, we do | 
|  | * not want user-space to be able to predict the process start-time by | 
|  | * stalling fork(2) after we recorded the start_time but before it is | 
|  | * visible to the system. | 
|  | */ | 
|  |  | 
|  | p->start_time = ktime_get_ns(); | 
|  | p->start_boottime = ktime_get_boottime_ns(); | 
|  |  | 
|  | /* | 
|  | * Make it visible to the rest of the system, but dont wake it up yet. | 
|  | * Need tasklist lock for parent etc handling! | 
|  | */ | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | /* CLONE_PARENT re-uses the old parent */ | 
|  | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { | 
|  | p->real_parent = current->real_parent; | 
|  | p->parent_exec_id = current->parent_exec_id; | 
|  | if (clone_flags & CLONE_THREAD) | 
|  | p->exit_signal = -1; | 
|  | else | 
|  | p->exit_signal = current->group_leader->exit_signal; | 
|  | } else { | 
|  | p->real_parent = current; | 
|  | p->parent_exec_id = current->self_exec_id; | 
|  | p->exit_signal = args->exit_signal; | 
|  | } | 
|  |  | 
|  | klp_copy_process(p); | 
|  |  | 
|  | sched_core_fork(p); | 
|  |  | 
|  | spin_lock(¤t->sighand->siglock); | 
|  |  | 
|  | rv_task_fork(p); | 
|  |  | 
|  | rseq_fork(p, clone_flags); | 
|  |  | 
|  | /* Don't start children in a dying pid namespace */ | 
|  | if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { | 
|  | retval = -ENOMEM; | 
|  | goto bad_fork_cancel_cgroup; | 
|  | } | 
|  |  | 
|  | /* Let kill terminate clone/fork in the middle */ | 
|  | if (fatal_signal_pending(current)) { | 
|  | retval = -EINTR; | 
|  | goto bad_fork_cancel_cgroup; | 
|  | } | 
|  |  | 
|  | /* No more failure paths after this point. */ | 
|  |  | 
|  | /* | 
|  | * Copy seccomp details explicitly here, in case they were changed | 
|  | * before holding sighand lock. | 
|  | */ | 
|  | copy_seccomp(p); | 
|  |  | 
|  | init_task_pid_links(p); | 
|  | if (likely(p->pid)) { | 
|  | ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); | 
|  |  | 
|  | init_task_pid(p, PIDTYPE_PID, pid); | 
|  | if (thread_group_leader(p)) { | 
|  | init_task_pid(p, PIDTYPE_TGID, pid); | 
|  | init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); | 
|  | init_task_pid(p, PIDTYPE_SID, task_session(current)); | 
|  |  | 
|  | if (is_child_reaper(pid)) { | 
|  | ns_of_pid(pid)->child_reaper = p; | 
|  | p->signal->flags |= SIGNAL_UNKILLABLE; | 
|  | } | 
|  | p->signal->shared_pending.signal = delayed.signal; | 
|  | p->signal->tty = tty_kref_get(current->signal->tty); | 
|  | /* | 
|  | * Inherit has_child_subreaper flag under the same | 
|  | * tasklist_lock with adding child to the process tree | 
|  | * for propagate_has_child_subreaper optimization. | 
|  | */ | 
|  | p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || | 
|  | p->real_parent->signal->is_child_subreaper; | 
|  | list_add_tail(&p->sibling, &p->real_parent->children); | 
|  | list_add_tail_rcu(&p->tasks, &init_task.tasks); | 
|  | attach_pid(p, PIDTYPE_TGID); | 
|  | attach_pid(p, PIDTYPE_PGID); | 
|  | attach_pid(p, PIDTYPE_SID); | 
|  | __this_cpu_inc(process_counts); | 
|  | } else { | 
|  | current->signal->nr_threads++; | 
|  | current->signal->quick_threads++; | 
|  | atomic_inc(¤t->signal->live); | 
|  | refcount_inc(¤t->signal->sigcnt); | 
|  | task_join_group_stop(p); | 
|  | list_add_tail_rcu(&p->thread_group, | 
|  | &p->group_leader->thread_group); | 
|  | list_add_tail_rcu(&p->thread_node, | 
|  | &p->signal->thread_head); | 
|  | } | 
|  | attach_pid(p, PIDTYPE_PID); | 
|  | nr_threads++; | 
|  | } | 
|  | total_forks++; | 
|  | hlist_del_init(&delayed.node); | 
|  | spin_unlock(¤t->sighand->siglock); | 
|  | syscall_tracepoint_update(p); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | if (pidfile) | 
|  | fd_install(pidfd, pidfile); | 
|  |  | 
|  | proc_fork_connector(p); | 
|  | sched_post_fork(p); | 
|  | cgroup_post_fork(p, args); | 
|  | perf_event_fork(p); | 
|  |  | 
|  | trace_task_newtask(p, clone_flags); | 
|  | uprobe_copy_process(p, clone_flags); | 
|  | user_events_fork(p, clone_flags); | 
|  |  | 
|  | copy_oom_score_adj(clone_flags, p); | 
|  |  | 
|  | return p; | 
|  |  | 
|  | bad_fork_cancel_cgroup: | 
|  | sched_core_free(p); | 
|  | spin_unlock(¤t->sighand->siglock); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | cgroup_cancel_fork(p, args); | 
|  | bad_fork_put_pidfd: | 
|  | if (clone_flags & CLONE_PIDFD) { | 
|  | fput(pidfile); | 
|  | put_unused_fd(pidfd); | 
|  | } | 
|  | bad_fork_free_pid: | 
|  | if (pid != &init_struct_pid) | 
|  | free_pid(pid); | 
|  | bad_fork_cleanup_thread: | 
|  | exit_thread(p); | 
|  | bad_fork_cleanup_io: | 
|  | if (p->io_context) | 
|  | exit_io_context(p); | 
|  | bad_fork_cleanup_namespaces: | 
|  | exit_task_namespaces(p); | 
|  | bad_fork_cleanup_mm: | 
|  | if (p->mm) { | 
|  | mm_clear_owner(p->mm, p); | 
|  | mmput(p->mm); | 
|  | } | 
|  | bad_fork_cleanup_signal: | 
|  | if (!(clone_flags & CLONE_THREAD)) | 
|  | free_signal_struct(p->signal); | 
|  | bad_fork_cleanup_sighand: | 
|  | __cleanup_sighand(p->sighand); | 
|  | bad_fork_cleanup_fs: | 
|  | exit_fs(p); /* blocking */ | 
|  | bad_fork_cleanup_files: | 
|  | exit_files(p); /* blocking */ | 
|  | bad_fork_cleanup_semundo: | 
|  | exit_sem(p); | 
|  | bad_fork_cleanup_security: | 
|  | security_task_free(p); | 
|  | bad_fork_cleanup_audit: | 
|  | audit_free(p); | 
|  | bad_fork_cleanup_perf: | 
|  | perf_event_free_task(p); | 
|  | bad_fork_cleanup_policy: | 
|  | lockdep_free_task(p); | 
|  | #ifdef CONFIG_NUMA | 
|  | mpol_put(p->mempolicy); | 
|  | #endif | 
|  | bad_fork_cleanup_delayacct: | 
|  | delayacct_tsk_free(p); | 
|  | bad_fork_cleanup_count: | 
|  | dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); | 
|  | exit_creds(p); | 
|  | bad_fork_free: | 
|  | WRITE_ONCE(p->__state, TASK_DEAD); | 
|  | exit_task_stack_account(p); | 
|  | put_task_stack(p); | 
|  | delayed_free_task(p); | 
|  | fork_out: | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | hlist_del_init(&delayed.node); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return ERR_PTR(retval); | 
|  | } | 
|  |  | 
|  | static inline void init_idle_pids(struct task_struct *idle) | 
|  | { | 
|  | enum pid_type type; | 
|  |  | 
|  | for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { | 
|  | INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ | 
|  | init_task_pid(idle, type, &init_struct_pid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int idle_dummy(void *dummy) | 
|  | { | 
|  | /* This function is never called */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct task_struct * __init fork_idle(int cpu) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct kernel_clone_args args = { | 
|  | .flags		= CLONE_VM, | 
|  | .fn		= &idle_dummy, | 
|  | .fn_arg		= NULL, | 
|  | .kthread	= 1, | 
|  | .idle		= 1, | 
|  | }; | 
|  |  | 
|  | task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); | 
|  | if (!IS_ERR(task)) { | 
|  | init_idle_pids(task); | 
|  | init_idle(task, cpu); | 
|  | } | 
|  |  | 
|  | return task; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is like kernel_clone(), but shaved down and tailored to just | 
|  | * creating io_uring workers. It returns a created task, or an error pointer. | 
|  | * The returned task is inactive, and the caller must fire it up through | 
|  | * wake_up_new_task(p). All signals are blocked in the created task. | 
|  | */ | 
|  | struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) | 
|  | { | 
|  | unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| | 
|  | CLONE_IO; | 
|  | struct kernel_clone_args args = { | 
|  | .flags		= ((lower_32_bits(flags) | CLONE_VM | | 
|  | CLONE_UNTRACED) & ~CSIGNAL), | 
|  | .exit_signal	= (lower_32_bits(flags) & CSIGNAL), | 
|  | .fn		= fn, | 
|  | .fn_arg		= arg, | 
|  | .io_thread	= 1, | 
|  | .user_worker	= 1, | 
|  | }; | 
|  |  | 
|  | return copy_process(NULL, 0, node, &args); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Ok, this is the main fork-routine. | 
|  | * | 
|  | * It copies the process, and if successful kick-starts | 
|  | * it and waits for it to finish using the VM if required. | 
|  | * | 
|  | * args->exit_signal is expected to be checked for sanity by the caller. | 
|  | */ | 
|  | pid_t kernel_clone(struct kernel_clone_args *args) | 
|  | { | 
|  | u64 clone_flags = args->flags; | 
|  | struct completion vfork; | 
|  | struct pid *pid; | 
|  | struct task_struct *p; | 
|  | int trace = 0; | 
|  | pid_t nr; | 
|  |  | 
|  | /* | 
|  | * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument | 
|  | * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are | 
|  | * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate | 
|  | * field in struct clone_args and it still doesn't make sense to have | 
|  | * them both point at the same memory location. Performing this check | 
|  | * here has the advantage that we don't need to have a separate helper | 
|  | * to check for legacy clone(). | 
|  | */ | 
|  | if ((args->flags & CLONE_PIDFD) && | 
|  | (args->flags & CLONE_PARENT_SETTID) && | 
|  | (args->pidfd == args->parent_tid)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Determine whether and which event to report to ptracer.  When | 
|  | * called from kernel_thread or CLONE_UNTRACED is explicitly | 
|  | * requested, no event is reported; otherwise, report if the event | 
|  | * for the type of forking is enabled. | 
|  | */ | 
|  | if (!(clone_flags & CLONE_UNTRACED)) { | 
|  | if (clone_flags & CLONE_VFORK) | 
|  | trace = PTRACE_EVENT_VFORK; | 
|  | else if (args->exit_signal != SIGCHLD) | 
|  | trace = PTRACE_EVENT_CLONE; | 
|  | else | 
|  | trace = PTRACE_EVENT_FORK; | 
|  |  | 
|  | if (likely(!ptrace_event_enabled(current, trace))) | 
|  | trace = 0; | 
|  | } | 
|  |  | 
|  | p = copy_process(NULL, trace, NUMA_NO_NODE, args); | 
|  | add_latent_entropy(); | 
|  |  | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | /* | 
|  | * Do this prior waking up the new thread - the thread pointer | 
|  | * might get invalid after that point, if the thread exits quickly. | 
|  | */ | 
|  | trace_sched_process_fork(current, p); | 
|  |  | 
|  | pid = get_task_pid(p, PIDTYPE_PID); | 
|  | nr = pid_vnr(pid); | 
|  |  | 
|  | if (clone_flags & CLONE_PARENT_SETTID) | 
|  | put_user(nr, args->parent_tid); | 
|  |  | 
|  | if (clone_flags & CLONE_VFORK) { | 
|  | p->vfork_done = &vfork; | 
|  | init_completion(&vfork); | 
|  | get_task_struct(p); | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { | 
|  | /* lock the task to synchronize with memcg migration */ | 
|  | task_lock(p); | 
|  | lru_gen_add_mm(p->mm); | 
|  | task_unlock(p); | 
|  | } | 
|  |  | 
|  | wake_up_new_task(p); | 
|  |  | 
|  | /* forking complete and child started to run, tell ptracer */ | 
|  | if (unlikely(trace)) | 
|  | ptrace_event_pid(trace, pid); | 
|  |  | 
|  | if (clone_flags & CLONE_VFORK) { | 
|  | if (!wait_for_vfork_done(p, &vfork)) | 
|  | ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); | 
|  | } | 
|  |  | 
|  | put_pid(pid); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a kernel thread. | 
|  | */ | 
|  | pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct kernel_clone_args args = { | 
|  | .flags		= ((lower_32_bits(flags) | CLONE_VM | | 
|  | CLONE_UNTRACED) & ~CSIGNAL), | 
|  | .exit_signal	= (lower_32_bits(flags) & CSIGNAL), | 
|  | .fn		= fn, | 
|  | .fn_arg		= arg, | 
|  | .name		= name, | 
|  | .kthread	= 1, | 
|  | }; | 
|  |  | 
|  | return kernel_clone(&args); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a user mode thread. | 
|  | */ | 
|  | pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) | 
|  | { | 
|  | struct kernel_clone_args args = { | 
|  | .flags		= ((lower_32_bits(flags) | CLONE_VM | | 
|  | CLONE_UNTRACED) & ~CSIGNAL), | 
|  | .exit_signal	= (lower_32_bits(flags) & CSIGNAL), | 
|  | .fn		= fn, | 
|  | .fn_arg		= arg, | 
|  | }; | 
|  |  | 
|  | return kernel_clone(&args); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_FORK | 
|  | SYSCALL_DEFINE0(fork) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | struct kernel_clone_args args = { | 
|  | .exit_signal = SIGCHLD, | 
|  | }; | 
|  |  | 
|  | return kernel_clone(&args); | 
|  | #else | 
|  | /* can not support in nommu mode */ | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_VFORK | 
|  | SYSCALL_DEFINE0(vfork) | 
|  | { | 
|  | struct kernel_clone_args args = { | 
|  | .flags		= CLONE_VFORK | CLONE_VM, | 
|  | .exit_signal	= SIGCHLD, | 
|  | }; | 
|  |  | 
|  | return kernel_clone(&args); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_CLONE | 
|  | #ifdef CONFIG_CLONE_BACKWARDS | 
|  | SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, | 
|  | int __user *, parent_tidptr, | 
|  | unsigned long, tls, | 
|  | int __user *, child_tidptr) | 
|  | #elif defined(CONFIG_CLONE_BACKWARDS2) | 
|  | SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, | 
|  | int __user *, parent_tidptr, | 
|  | int __user *, child_tidptr, | 
|  | unsigned long, tls) | 
|  | #elif defined(CONFIG_CLONE_BACKWARDS3) | 
|  | SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, | 
|  | int, stack_size, | 
|  | int __user *, parent_tidptr, | 
|  | int __user *, child_tidptr, | 
|  | unsigned long, tls) | 
|  | #else | 
|  | SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, | 
|  | int __user *, parent_tidptr, | 
|  | int __user *, child_tidptr, | 
|  | unsigned long, tls) | 
|  | #endif | 
|  | { | 
|  | struct kernel_clone_args args = { | 
|  | .flags		= (lower_32_bits(clone_flags) & ~CSIGNAL), | 
|  | .pidfd		= parent_tidptr, | 
|  | .child_tid	= child_tidptr, | 
|  | .parent_tid	= parent_tidptr, | 
|  | .exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL), | 
|  | .stack		= newsp, | 
|  | .tls		= tls, | 
|  | }; | 
|  |  | 
|  | return kernel_clone(&args); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_CLONE3 | 
|  |  | 
|  | noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, | 
|  | struct clone_args __user *uargs, | 
|  | size_t usize) | 
|  | { | 
|  | int err; | 
|  | struct clone_args args; | 
|  | pid_t *kset_tid = kargs->set_tid; | 
|  |  | 
|  | BUILD_BUG_ON(offsetofend(struct clone_args, tls) != | 
|  | CLONE_ARGS_SIZE_VER0); | 
|  | BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != | 
|  | CLONE_ARGS_SIZE_VER1); | 
|  | BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != | 
|  | CLONE_ARGS_SIZE_VER2); | 
|  | BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); | 
|  |  | 
|  | if (unlikely(usize > PAGE_SIZE)) | 
|  | return -E2BIG; | 
|  | if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = copy_struct_from_user(&args, sizeof(args), uargs, usize); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(!args.set_tid && args.set_tid_size > 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(args.set_tid && args.set_tid_size == 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Verify that higher 32bits of exit_signal are unset and that | 
|  | * it is a valid signal | 
|  | */ | 
|  | if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || | 
|  | !valid_signal(args.exit_signal))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((args.flags & CLONE_INTO_CGROUP) && | 
|  | (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *kargs = (struct kernel_clone_args){ | 
|  | .flags		= args.flags, | 
|  | .pidfd		= u64_to_user_ptr(args.pidfd), | 
|  | .child_tid	= u64_to_user_ptr(args.child_tid), | 
|  | .parent_tid	= u64_to_user_ptr(args.parent_tid), | 
|  | .exit_signal	= args.exit_signal, | 
|  | .stack		= args.stack, | 
|  | .stack_size	= args.stack_size, | 
|  | .tls		= args.tls, | 
|  | .set_tid_size	= args.set_tid_size, | 
|  | .cgroup		= args.cgroup, | 
|  | }; | 
|  |  | 
|  | if (args.set_tid && | 
|  | copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), | 
|  | (kargs->set_tid_size * sizeof(pid_t)))) | 
|  | return -EFAULT; | 
|  |  | 
|  | kargs->set_tid = kset_tid; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * clone3_stack_valid - check and prepare stack | 
|  | * @kargs: kernel clone args | 
|  | * | 
|  | * Verify that the stack arguments userspace gave us are sane. | 
|  | * In addition, set the stack direction for userspace since it's easy for us to | 
|  | * determine. | 
|  | */ | 
|  | static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) | 
|  | { | 
|  | if (kargs->stack == 0) { | 
|  | if (kargs->stack_size > 0) | 
|  | return false; | 
|  | } else { | 
|  | if (kargs->stack_size == 0) | 
|  | return false; | 
|  |  | 
|  | if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) | 
|  | return false; | 
|  |  | 
|  | #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) | 
|  | kargs->stack += kargs->stack_size; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool clone3_args_valid(struct kernel_clone_args *kargs) | 
|  | { | 
|  | /* Verify that no unknown flags are passed along. */ | 
|  | if (kargs->flags & | 
|  | ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * - make the CLONE_DETACHED bit reusable for clone3 | 
|  | * - make the CSIGNAL bits reusable for clone3 | 
|  | */ | 
|  | if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) | 
|  | return false; | 
|  |  | 
|  | if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == | 
|  | (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) | 
|  | return false; | 
|  |  | 
|  | if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && | 
|  | kargs->exit_signal) | 
|  | return false; | 
|  |  | 
|  | if (!clone3_stack_valid(kargs)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * clone3 - create a new process with specific properties | 
|  | * @uargs: argument structure | 
|  | * @size:  size of @uargs | 
|  | * | 
|  | * clone3() is the extensible successor to clone()/clone2(). | 
|  | * It takes a struct as argument that is versioned by its size. | 
|  | * | 
|  | * Return: On success, a positive PID for the child process. | 
|  | *         On error, a negative errno number. | 
|  | */ | 
|  | SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | struct kernel_clone_args kargs; | 
|  | pid_t set_tid[MAX_PID_NS_LEVEL]; | 
|  |  | 
|  | kargs.set_tid = set_tid; | 
|  |  | 
|  | err = copy_clone_args_from_user(&kargs, uargs, size); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!clone3_args_valid(&kargs)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kernel_clone(&kargs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) | 
|  | { | 
|  | struct task_struct *leader, *parent, *child; | 
|  | int res; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | leader = top = top->group_leader; | 
|  | down: | 
|  | for_each_thread(leader, parent) { | 
|  | list_for_each_entry(child, &parent->children, sibling) { | 
|  | res = visitor(child, data); | 
|  | if (res) { | 
|  | if (res < 0) | 
|  | goto out; | 
|  | leader = child; | 
|  | goto down; | 
|  | } | 
|  | up: | 
|  | ; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (leader != top) { | 
|  | child = leader; | 
|  | parent = child->real_parent; | 
|  | leader = parent->group_leader; | 
|  | goto up; | 
|  | } | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | #ifndef ARCH_MIN_MMSTRUCT_ALIGN | 
|  | #define ARCH_MIN_MMSTRUCT_ALIGN 0 | 
|  | #endif | 
|  |  | 
|  | static void sighand_ctor(void *data) | 
|  | { | 
|  | struct sighand_struct *sighand = data; | 
|  |  | 
|  | spin_lock_init(&sighand->siglock); | 
|  | init_waitqueue_head(&sighand->signalfd_wqh); | 
|  | } | 
|  |  | 
|  | void __init mm_cache_init(void) | 
|  | { | 
|  | unsigned int mm_size; | 
|  |  | 
|  | /* | 
|  | * The mm_cpumask is located at the end of mm_struct, and is | 
|  | * dynamically sized based on the maximum CPU number this system | 
|  | * can have, taking hotplug into account (nr_cpu_ids). | 
|  | */ | 
|  | mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); | 
|  |  | 
|  | mm_cachep = kmem_cache_create_usercopy("mm_struct", | 
|  | mm_size, ARCH_MIN_MMSTRUCT_ALIGN, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | offsetof(struct mm_struct, saved_auxv), | 
|  | sizeof_field(struct mm_struct, saved_auxv), | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | void __init proc_caches_init(void) | 
|  | { | 
|  | sighand_cachep = kmem_cache_create("sighand_cache", | 
|  | sizeof(struct sighand_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| | 
|  | SLAB_ACCOUNT, sighand_ctor); | 
|  | signal_cachep = kmem_cache_create("signal_cache", | 
|  | sizeof(struct signal_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | NULL); | 
|  | files_cachep = kmem_cache_create("files_cache", | 
|  | sizeof(struct files_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | NULL); | 
|  | fs_cachep = kmem_cache_create("fs_cache", | 
|  | sizeof(struct fs_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | NULL); | 
|  |  | 
|  | vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); | 
|  | #ifdef CONFIG_PER_VMA_LOCK | 
|  | vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); | 
|  | #endif | 
|  | mmap_init(); | 
|  | nsproxy_cache_init(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check constraints on flags passed to the unshare system call. | 
|  | */ | 
|  | static int check_unshare_flags(unsigned long unshare_flags) | 
|  | { | 
|  | if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| | 
|  | CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| | 
|  | CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| | 
|  | CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| | 
|  | CLONE_NEWTIME)) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Not implemented, but pretend it works if there is nothing | 
|  | * to unshare.  Note that unsharing the address space or the | 
|  | * signal handlers also need to unshare the signal queues (aka | 
|  | * CLONE_THREAD). | 
|  | */ | 
|  | if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { | 
|  | if (!thread_group_empty(current)) | 
|  | return -EINVAL; | 
|  | } | 
|  | if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { | 
|  | if (refcount_read(¤t->sighand->count) > 1) | 
|  | return -EINVAL; | 
|  | } | 
|  | if (unshare_flags & CLONE_VM) { | 
|  | if (!current_is_single_threaded()) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unshare the filesystem structure if it is being shared | 
|  | */ | 
|  | static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) | 
|  | { | 
|  | struct fs_struct *fs = current->fs; | 
|  |  | 
|  | if (!(unshare_flags & CLONE_FS) || !fs) | 
|  | return 0; | 
|  |  | 
|  | /* don't need lock here; in the worst case we'll do useless copy */ | 
|  | if (fs->users == 1) | 
|  | return 0; | 
|  |  | 
|  | *new_fsp = copy_fs_struct(fs); | 
|  | if (!*new_fsp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unshare file descriptor table if it is being shared | 
|  | */ | 
|  | static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) | 
|  | { | 
|  | struct files_struct *fd = current->files; | 
|  |  | 
|  | if ((unshare_flags & CLONE_FILES) && | 
|  | (fd && atomic_read(&fd->count) > 1)) { | 
|  | fd = dup_fd(fd, NULL); | 
|  | if (IS_ERR(fd)) | 
|  | return PTR_ERR(fd); | 
|  | *new_fdp = fd; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unshare allows a process to 'unshare' part of the process | 
|  | * context which was originally shared using clone.  copy_* | 
|  | * functions used by kernel_clone() cannot be used here directly | 
|  | * because they modify an inactive task_struct that is being | 
|  | * constructed. Here we are modifying the current, active, | 
|  | * task_struct. | 
|  | */ | 
|  | int ksys_unshare(unsigned long unshare_flags) | 
|  | { | 
|  | struct fs_struct *fs, *new_fs = NULL; | 
|  | struct files_struct *new_fd = NULL; | 
|  | struct cred *new_cred = NULL; | 
|  | struct nsproxy *new_nsproxy = NULL; | 
|  | int do_sysvsem = 0; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If unsharing a user namespace must also unshare the thread group | 
|  | * and unshare the filesystem root and working directories. | 
|  | */ | 
|  | if (unshare_flags & CLONE_NEWUSER) | 
|  | unshare_flags |= CLONE_THREAD | CLONE_FS; | 
|  | /* | 
|  | * If unsharing vm, must also unshare signal handlers. | 
|  | */ | 
|  | if (unshare_flags & CLONE_VM) | 
|  | unshare_flags |= CLONE_SIGHAND; | 
|  | /* | 
|  | * If unsharing a signal handlers, must also unshare the signal queues. | 
|  | */ | 
|  | if (unshare_flags & CLONE_SIGHAND) | 
|  | unshare_flags |= CLONE_THREAD; | 
|  | /* | 
|  | * If unsharing namespace, must also unshare filesystem information. | 
|  | */ | 
|  | if (unshare_flags & CLONE_NEWNS) | 
|  | unshare_flags |= CLONE_FS; | 
|  |  | 
|  | err = check_unshare_flags(unshare_flags); | 
|  | if (err) | 
|  | goto bad_unshare_out; | 
|  | /* | 
|  | * CLONE_NEWIPC must also detach from the undolist: after switching | 
|  | * to a new ipc namespace, the semaphore arrays from the old | 
|  | * namespace are unreachable. | 
|  | */ | 
|  | if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) | 
|  | do_sysvsem = 1; | 
|  | err = unshare_fs(unshare_flags, &new_fs); | 
|  | if (err) | 
|  | goto bad_unshare_out; | 
|  | err = unshare_fd(unshare_flags, &new_fd); | 
|  | if (err) | 
|  | goto bad_unshare_cleanup_fs; | 
|  | err = unshare_userns(unshare_flags, &new_cred); | 
|  | if (err) | 
|  | goto bad_unshare_cleanup_fd; | 
|  | err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, | 
|  | new_cred, new_fs); | 
|  | if (err) | 
|  | goto bad_unshare_cleanup_cred; | 
|  |  | 
|  | if (new_cred) { | 
|  | err = set_cred_ucounts(new_cred); | 
|  | if (err) | 
|  | goto bad_unshare_cleanup_cred; | 
|  | } | 
|  |  | 
|  | if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { | 
|  | if (do_sysvsem) { | 
|  | /* | 
|  | * CLONE_SYSVSEM is equivalent to sys_exit(). | 
|  | */ | 
|  | exit_sem(current); | 
|  | } | 
|  | if (unshare_flags & CLONE_NEWIPC) { | 
|  | /* Orphan segments in old ns (see sem above). */ | 
|  | exit_shm(current); | 
|  | shm_init_task(current); | 
|  | } | 
|  |  | 
|  | if (new_nsproxy) | 
|  | switch_task_namespaces(current, new_nsproxy); | 
|  |  | 
|  | task_lock(current); | 
|  |  | 
|  | if (new_fs) { | 
|  | fs = current->fs; | 
|  | spin_lock(&fs->lock); | 
|  | current->fs = new_fs; | 
|  | if (--fs->users) | 
|  | new_fs = NULL; | 
|  | else | 
|  | new_fs = fs; | 
|  | spin_unlock(&fs->lock); | 
|  | } | 
|  |  | 
|  | if (new_fd) | 
|  | swap(current->files, new_fd); | 
|  |  | 
|  | task_unlock(current); | 
|  |  | 
|  | if (new_cred) { | 
|  | /* Install the new user namespace */ | 
|  | commit_creds(new_cred); | 
|  | new_cred = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_event_namespaces(current); | 
|  |  | 
|  | bad_unshare_cleanup_cred: | 
|  | if (new_cred) | 
|  | put_cred(new_cred); | 
|  | bad_unshare_cleanup_fd: | 
|  | if (new_fd) | 
|  | put_files_struct(new_fd); | 
|  |  | 
|  | bad_unshare_cleanup_fs: | 
|  | if (new_fs) | 
|  | free_fs_struct(new_fs); | 
|  |  | 
|  | bad_unshare_out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) | 
|  | { | 
|  | return ksys_unshare(unshare_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Helper to unshare the files of the current task. | 
|  | *	We don't want to expose copy_files internals to | 
|  | *	the exec layer of the kernel. | 
|  | */ | 
|  |  | 
|  | int unshare_files(void) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  | struct files_struct *old, *copy = NULL; | 
|  | int error; | 
|  |  | 
|  | error = unshare_fd(CLONE_FILES, ©); | 
|  | if (error || !copy) | 
|  | return error; | 
|  |  | 
|  | old = task->files; | 
|  | task_lock(task); | 
|  | task->files = copy; | 
|  | task_unlock(task); | 
|  | put_files_struct(old); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sysctl_max_threads(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | int ret; | 
|  | int threads = max_threads; | 
|  | int min = 1; | 
|  | int max = MAX_THREADS; | 
|  |  | 
|  | t = *table; | 
|  | t.data = &threads; | 
|  | t.extra1 = &min; | 
|  | t.extra2 = &max; | 
|  |  | 
|  | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (ret || !write) | 
|  | return ret; | 
|  |  | 
|  | max_threads = threads; | 
|  |  | 
|  | return 0; | 
|  | } |