| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * Driver for USB Mass Storage compliant devices | 
 |  * | 
 |  * Current development and maintenance by: | 
 |  *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) | 
 |  * | 
 |  * Developed with the assistance of: | 
 |  *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) | 
 |  *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) | 
 |  *   (c) 2002 Alan Stern <stern@rowland.org> | 
 |  * | 
 |  * Initial work by: | 
 |  *   (c) 1999 Michael Gee (michael@linuxspecific.com) | 
 |  * | 
 |  * This driver is based on the 'USB Mass Storage Class' document. This | 
 |  * describes in detail the protocol used to communicate with such | 
 |  * devices.  Clearly, the designers had SCSI and ATAPI commands in | 
 |  * mind when they created this document.  The commands are all very | 
 |  * similar to commands in the SCSI-II and ATAPI specifications. | 
 |  * | 
 |  * It is important to note that in a number of cases this class | 
 |  * exhibits class-specific exemptions from the USB specification. | 
 |  * Notably the usage of NAK, STALL and ACK differs from the norm, in | 
 |  * that they are used to communicate wait, failed and OK on commands. | 
 |  * | 
 |  * Also, for certain devices, the interrupt endpoint is used to convey | 
 |  * status of a command. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/export.h> | 
 |  | 
 | #include <linux/usb/quirks.h> | 
 |  | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/scsi_eh.h> | 
 | #include <scsi/scsi_device.h> | 
 |  | 
 | #include "usb.h" | 
 | #include "transport.h" | 
 | #include "protocol.h" | 
 | #include "scsiglue.h" | 
 | #include "debug.h" | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include "../../scsi/sd.h" | 
 |  | 
 |  | 
 | /*********************************************************************** | 
 |  * Data transfer routines | 
 |  ***********************************************************************/ | 
 |  | 
 | /* | 
 |  * This is subtle, so pay attention: | 
 |  * --------------------------------- | 
 |  * We're very concerned about races with a command abort.  Hanging this code | 
 |  * is a sure fire way to hang the kernel.  (Note that this discussion applies | 
 |  * only to transactions resulting from a scsi queued-command, since only | 
 |  * these transactions are subject to a scsi abort.  Other transactions, such | 
 |  * as those occurring during device-specific initialization, must be handled | 
 |  * by a separate code path.) | 
 |  * | 
 |  * The abort function (usb_storage_command_abort() in scsiglue.c) first | 
 |  * sets the machine state and the ABORTING bit in us->dflags to prevent | 
 |  * new URBs from being submitted.  It then calls usb_stor_stop_transport() | 
 |  * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags | 
 |  * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE | 
 |  * bit is tested to see if the current_sg scatter-gather request needs to be | 
 |  * stopped.  The timeout callback routine does much the same thing. | 
 |  * | 
 |  * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to | 
 |  * prevent new URBs from being submitted, and usb_stor_stop_transport() is | 
 |  * called to stop any ongoing requests. | 
 |  * | 
 |  * The submit function first verifies that the submitting is allowed | 
 |  * (neither ABORTING nor DISCONNECTING bits are set) and that the submit | 
 |  * completes without errors, and only then sets the URB_ACTIVE bit.  This | 
 |  * prevents the stop_transport() function from trying to cancel the URB | 
 |  * while the submit call is underway.  Next, the submit function must test | 
 |  * the flags to see if an abort or disconnect occurred during the submission | 
 |  * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel | 
 |  * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit | 
 |  * is still set).  Either way, the function must then wait for the URB to | 
 |  * finish.  Note that the URB can still be in progress even after a call to | 
 |  * usb_unlink_urb() returns. | 
 |  * | 
 |  * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, | 
 |  * either the stop_transport() function or the submitting function | 
 |  * is guaranteed to call usb_unlink_urb() for an active URB, | 
 |  * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being | 
 |  * called more than once or from being called during usb_submit_urb(). | 
 |  */ | 
 |  | 
 | /* | 
 |  * This is the completion handler which will wake us up when an URB | 
 |  * completes. | 
 |  */ | 
 | static void usb_stor_blocking_completion(struct urb *urb) | 
 | { | 
 | 	struct completion *urb_done_ptr = urb->context; | 
 |  | 
 | 	complete(urb_done_ptr); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the common part of the URB message submission code | 
 |  * | 
 |  * All URBs from the usb-storage driver involved in handling a queued scsi | 
 |  * command _must_ pass through this function (or something like it) for the | 
 |  * abort mechanisms to work properly. | 
 |  */ | 
 | static int usb_stor_msg_common(struct us_data *us, int timeout) | 
 | { | 
 | 	struct completion urb_done; | 
 | 	long timeleft; | 
 | 	int status; | 
 |  | 
 | 	/* don't submit URBs during abort processing */ | 
 | 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* set up data structures for the wakeup system */ | 
 | 	init_completion(&urb_done); | 
 |  | 
 | 	/* fill the common fields in the URB */ | 
 | 	us->current_urb->context = &urb_done; | 
 | 	us->current_urb->transfer_flags = 0; | 
 |  | 
 | 	/* | 
 | 	 * we assume that if transfer_buffer isn't us->iobuf then it | 
 | 	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's | 
 | 	 * easier than always having the caller tell us whether the | 
 | 	 * transfer buffer has already been mapped. | 
 | 	 */ | 
 | 	if (us->current_urb->transfer_buffer == us->iobuf) | 
 | 		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; | 
 | 	us->current_urb->transfer_dma = us->iobuf_dma; | 
 |  | 
 | 	/* submit the URB */ | 
 | 	status = usb_submit_urb(us->current_urb, GFP_NOIO); | 
 | 	if (status) { | 
 | 		/* something went wrong */ | 
 | 		return status; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * since the URB has been submitted successfully, it's now okay | 
 | 	 * to cancel it | 
 | 	 */ | 
 | 	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); | 
 |  | 
 | 	/* did an abort occur during the submission? */ | 
 | 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { | 
 |  | 
 | 		/* cancel the URB, if it hasn't been cancelled already */ | 
 | 		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { | 
 | 			usb_stor_dbg(us, "-- cancelling URB\n"); | 
 | 			usb_unlink_urb(us->current_urb); | 
 | 		} | 
 | 	} | 
 |   | 
 | 	/* wait for the completion of the URB */ | 
 | 	timeleft = wait_for_completion_interruptible_timeout( | 
 | 			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); | 
 |   | 
 | 	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); | 
 |  | 
 | 	if (timeleft <= 0) { | 
 | 		usb_stor_dbg(us, "%s -- cancelling URB\n", | 
 | 			     timeleft == 0 ? "Timeout" : "Signal"); | 
 | 		usb_kill_urb(us->current_urb); | 
 | 	} | 
 |  | 
 | 	/* return the URB status */ | 
 | 	return us->current_urb->status; | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer one control message, with timeouts, and allowing early | 
 |  * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. | 
 |  */ | 
 | int usb_stor_control_msg(struct us_data *us, unsigned int pipe, | 
 | 		 u8 request, u8 requesttype, u16 value, u16 index,  | 
 | 		 void *data, u16 size, int timeout) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", | 
 | 		     request, requesttype, value, index, size); | 
 |  | 
 | 	/* fill in the devrequest structure */ | 
 | 	us->cr->bRequestType = requesttype; | 
 | 	us->cr->bRequest = request; | 
 | 	us->cr->wValue = cpu_to_le16(value); | 
 | 	us->cr->wIndex = cpu_to_le16(index); | 
 | 	us->cr->wLength = cpu_to_le16(size); | 
 |  | 
 | 	/* fill and submit the URB */ | 
 | 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,  | 
 | 			 (unsigned char*) us->cr, data, size,  | 
 | 			 usb_stor_blocking_completion, NULL); | 
 | 	status = usb_stor_msg_common(us, timeout); | 
 |  | 
 | 	/* return the actual length of the data transferred if no error */ | 
 | 	if (status == 0) | 
 | 		status = us->current_urb->actual_length; | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_control_msg); | 
 |  | 
 | /* | 
 |  * This is a version of usb_clear_halt() that allows early termination and | 
 |  * doesn't read the status from the device -- this is because some devices | 
 |  * crash their internal firmware when the status is requested after a halt. | 
 |  * | 
 |  * A definitive list of these 'bad' devices is too difficult to maintain or | 
 |  * make complete enough to be useful.  This problem was first observed on the | 
 |  * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither | 
 |  * MacOS nor Windows checks the status after clearing a halt. | 
 |  * | 
 |  * Since many vendors in this space limit their testing to interoperability | 
 |  * with these two OSes, specification violations like this one are common. | 
 |  */ | 
 | int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) | 
 | { | 
 | 	int result; | 
 | 	int endp = usb_pipeendpoint(pipe); | 
 |  | 
 | 	if (usb_pipein (pipe)) | 
 | 		endp |= USB_DIR_IN; | 
 |  | 
 | 	result = usb_stor_control_msg(us, us->send_ctrl_pipe, | 
 | 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, | 
 | 		USB_ENDPOINT_HALT, endp, | 
 | 		NULL, 0, 3*HZ); | 
 |  | 
 | 	if (result >= 0) | 
 | 		usb_reset_endpoint(us->pusb_dev, endp); | 
 |  | 
 | 	usb_stor_dbg(us, "result = %d\n", result); | 
 | 	return result; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_clear_halt); | 
 |  | 
 |  | 
 | /* | 
 |  * Interpret the results of a URB transfer | 
 |  * | 
 |  * This function prints appropriate debugging messages, clears halts on | 
 |  * non-control endpoints, and translates the status to the corresponding | 
 |  * USB_STOR_XFER_xxx return code. | 
 |  */ | 
 | static int interpret_urb_result(struct us_data *us, unsigned int pipe, | 
 | 		unsigned int length, int result, unsigned int partial) | 
 | { | 
 | 	usb_stor_dbg(us, "Status code %d; transferred %u/%u\n", | 
 | 		     result, partial, length); | 
 | 	switch (result) { | 
 |  | 
 | 	/* no error code; did we send all the data? */ | 
 | 	case 0: | 
 | 		if (partial != length) { | 
 | 			usb_stor_dbg(us, "-- short transfer\n"); | 
 | 			return USB_STOR_XFER_SHORT; | 
 | 		} | 
 |  | 
 | 		usb_stor_dbg(us, "-- transfer complete\n"); | 
 | 		return USB_STOR_XFER_GOOD; | 
 |  | 
 | 	/* stalled */ | 
 | 	case -EPIPE: | 
 | 		/* | 
 | 		 * for control endpoints, (used by CB[I]) a stall indicates | 
 | 		 * a failed command | 
 | 		 */ | 
 | 		if (usb_pipecontrol(pipe)) { | 
 | 			usb_stor_dbg(us, "-- stall on control pipe\n"); | 
 | 			return USB_STOR_XFER_STALLED; | 
 | 		} | 
 |  | 
 | 		/* for other sorts of endpoint, clear the stall */ | 
 | 		usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n", | 
 | 			     pipe); | 
 | 		if (usb_stor_clear_halt(us, pipe) < 0) | 
 | 			return USB_STOR_XFER_ERROR; | 
 | 		return USB_STOR_XFER_STALLED; | 
 |  | 
 | 	/* babble - the device tried to send more than we wanted to read */ | 
 | 	case -EOVERFLOW: | 
 | 		usb_stor_dbg(us, "-- babble\n"); | 
 | 		return USB_STOR_XFER_LONG; | 
 |  | 
 | 	/* the transfer was cancelled by abort, disconnect, or timeout */ | 
 | 	case -ECONNRESET: | 
 | 		usb_stor_dbg(us, "-- transfer cancelled\n"); | 
 | 		return USB_STOR_XFER_ERROR; | 
 |  | 
 | 	/* short scatter-gather read transfer */ | 
 | 	case -EREMOTEIO: | 
 | 		usb_stor_dbg(us, "-- short read transfer\n"); | 
 | 		return USB_STOR_XFER_SHORT; | 
 |  | 
 | 	/* abort or disconnect in progress */ | 
 | 	case -EIO: | 
 | 		usb_stor_dbg(us, "-- abort or disconnect in progress\n"); | 
 | 		return USB_STOR_XFER_ERROR; | 
 |  | 
 | 	/* the catch-all error case */ | 
 | 	default: | 
 | 		usb_stor_dbg(us, "-- unknown error\n"); | 
 | 		return USB_STOR_XFER_ERROR; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer one control message, without timeouts, but allowing early | 
 |  * termination.  Return codes are USB_STOR_XFER_xxx. | 
 |  */ | 
 | int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, | 
 | 		u8 request, u8 requesttype, u16 value, u16 index, | 
 | 		void *data, u16 size) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", | 
 | 		     request, requesttype, value, index, size); | 
 |  | 
 | 	/* fill in the devrequest structure */ | 
 | 	us->cr->bRequestType = requesttype; | 
 | 	us->cr->bRequest = request; | 
 | 	us->cr->wValue = cpu_to_le16(value); | 
 | 	us->cr->wIndex = cpu_to_le16(index); | 
 | 	us->cr->wLength = cpu_to_le16(size); | 
 |  | 
 | 	/* fill and submit the URB */ | 
 | 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,  | 
 | 			 (unsigned char*) us->cr, data, size,  | 
 | 			 usb_stor_blocking_completion, NULL); | 
 | 	result = usb_stor_msg_common(us, 0); | 
 |  | 
 | 	return interpret_urb_result(us, pipe, size, result, | 
 | 			us->current_urb->actual_length); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); | 
 |  | 
 | /* | 
 |  * Receive one interrupt buffer, without timeouts, but allowing early | 
 |  * termination.  Return codes are USB_STOR_XFER_xxx. | 
 |  * | 
 |  * This routine always uses us->recv_intr_pipe as the pipe and | 
 |  * us->ep_bInterval as the interrupt interval. | 
 |  */ | 
 | static int usb_stor_intr_transfer(struct us_data *us, void *buf, | 
 | 				  unsigned int length) | 
 | { | 
 | 	int result; | 
 | 	unsigned int pipe = us->recv_intr_pipe; | 
 | 	unsigned int maxp; | 
 |  | 
 | 	usb_stor_dbg(us, "xfer %u bytes\n", length); | 
 |  | 
 | 	/* calculate the max packet size */ | 
 | 	maxp = usb_maxpacket(us->pusb_dev, pipe); | 
 | 	if (maxp > length) | 
 | 		maxp = length; | 
 |  | 
 | 	/* fill and submit the URB */ | 
 | 	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, | 
 | 			maxp, usb_stor_blocking_completion, NULL, | 
 | 			us->ep_bInterval); | 
 | 	result = usb_stor_msg_common(us, 0); | 
 |  | 
 | 	return interpret_urb_result(us, pipe, length, result, | 
 | 			us->current_urb->actual_length); | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer one buffer via bulk pipe, without timeouts, but allowing early | 
 |  * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe | 
 |  * stalls during the transfer, the halt is automatically cleared. | 
 |  */ | 
 | int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, | 
 | 	void *buf, unsigned int length, unsigned int *act_len) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	usb_stor_dbg(us, "xfer %u bytes\n", length); | 
 |  | 
 | 	/* fill and submit the URB */ | 
 | 	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, | 
 | 		      usb_stor_blocking_completion, NULL); | 
 | 	result = usb_stor_msg_common(us, 0); | 
 |  | 
 | 	/* store the actual length of the data transferred */ | 
 | 	if (act_len) | 
 | 		*act_len = us->current_urb->actual_length; | 
 | 	return interpret_urb_result(us, pipe, length, result,  | 
 | 			us->current_urb->actual_length); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); | 
 |  | 
 | /* | 
 |  * Transfer a scatter-gather list via bulk transfer | 
 |  * | 
 |  * This function does basically the same thing as usb_stor_bulk_transfer_buf() | 
 |  * above, but it uses the usbcore scatter-gather library. | 
 |  */ | 
 | static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, | 
 | 		struct scatterlist *sg, int num_sg, unsigned int length, | 
 | 		unsigned int *act_len) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	/* don't submit s-g requests during abort processing */ | 
 | 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) | 
 | 		goto usb_stor_xfer_error; | 
 |  | 
 | 	/* initialize the scatter-gather request block */ | 
 | 	usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg); | 
 | 	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, | 
 | 			sg, num_sg, length, GFP_NOIO); | 
 | 	if (result) { | 
 | 		usb_stor_dbg(us, "usb_sg_init returned %d\n", result); | 
 | 		goto usb_stor_xfer_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * since the block has been initialized successfully, it's now | 
 | 	 * okay to cancel it | 
 | 	 */ | 
 | 	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); | 
 |  | 
 | 	/* did an abort occur during the submission? */ | 
 | 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { | 
 |  | 
 | 		/* cancel the request, if it hasn't been cancelled already */ | 
 | 		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { | 
 | 			usb_stor_dbg(us, "-- cancelling sg request\n"); | 
 | 			usb_sg_cancel(&us->current_sg); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* wait for the completion of the transfer */ | 
 | 	usb_sg_wait(&us->current_sg); | 
 | 	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); | 
 |  | 
 | 	result = us->current_sg.status; | 
 | 	if (act_len) | 
 | 		*act_len = us->current_sg.bytes; | 
 | 	return interpret_urb_result(us, pipe, length, result, | 
 | 			us->current_sg.bytes); | 
 |  | 
 | usb_stor_xfer_error: | 
 | 	if (act_len) | 
 | 		*act_len = 0; | 
 | 	return USB_STOR_XFER_ERROR; | 
 | } | 
 |  | 
 | /* | 
 |  * Common used function. Transfer a complete command | 
 |  * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid | 
 |  */ | 
 | int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, | 
 | 		      struct scsi_cmnd* srb) | 
 | { | 
 | 	unsigned int partial; | 
 | 	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), | 
 | 				      scsi_sg_count(srb), scsi_bufflen(srb), | 
 | 				      &partial); | 
 |  | 
 | 	scsi_set_resid(srb, scsi_bufflen(srb) - partial); | 
 | 	return result; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); | 
 |  | 
 | /* | 
 |  * Transfer an entire SCSI command's worth of data payload over the bulk | 
 |  * pipe. | 
 |  * | 
 |  * Note that this uses usb_stor_bulk_transfer_buf() and | 
 |  * usb_stor_bulk_transfer_sglist() to achieve its goals -- | 
 |  * this function simply determines whether we're going to use | 
 |  * scatter-gather or not, and acts appropriately. | 
 |  */ | 
 | int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, | 
 | 		void *buf, unsigned int length_left, int use_sg, int *residual) | 
 | { | 
 | 	int result; | 
 | 	unsigned int partial; | 
 |  | 
 | 	/* are we scatter-gathering? */ | 
 | 	if (use_sg) { | 
 | 		/* use the usb core scatter-gather primitives */ | 
 | 		result = usb_stor_bulk_transfer_sglist(us, pipe, | 
 | 				(struct scatterlist *) buf, use_sg, | 
 | 				length_left, &partial); | 
 | 		length_left -= partial; | 
 | 	} else { | 
 | 		/* no scatter-gather, just make the request */ | 
 | 		result = usb_stor_bulk_transfer_buf(us, pipe, buf,  | 
 | 				length_left, &partial); | 
 | 		length_left -= partial; | 
 | 	} | 
 |  | 
 | 	/* store the residual and return the error code */ | 
 | 	if (residual) | 
 | 		*residual = length_left; | 
 | 	return result; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); | 
 |  | 
 | /*********************************************************************** | 
 |  * Transport routines | 
 |  ***********************************************************************/ | 
 |  | 
 | /* | 
 |  * There are so many devices that report the capacity incorrectly, | 
 |  * this routine was written to counteract some of the resulting | 
 |  * problems. | 
 |  */ | 
 | static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) | 
 | { | 
 | 	struct gendisk *disk; | 
 | 	struct scsi_disk *sdkp; | 
 | 	u32 sector; | 
 |  | 
 | 	/* To Report "Medium Error: Record Not Found */ | 
 | 	static unsigned char record_not_found[18] = { | 
 | 		[0]	= 0x70,			/* current error */ | 
 | 		[2]	= MEDIUM_ERROR,		/* = 0x03 */ | 
 | 		[7]	= 0x0a,			/* additional length */ | 
 | 		[12]	= 0x14			/* Record Not Found */ | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * If last-sector problems can't occur, whether because the | 
 | 	 * capacity was already decremented or because the device is | 
 | 	 * known to report the correct capacity, then we don't need | 
 | 	 * to do anything. | 
 | 	 */ | 
 | 	if (!us->use_last_sector_hacks) | 
 | 		return; | 
 |  | 
 | 	/* Was this command a READ(10) or a WRITE(10)? */ | 
 | 	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) | 
 | 		goto done; | 
 |  | 
 | 	/* Did this command access the last sector? */ | 
 | 	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | | 
 | 			(srb->cmnd[4] << 8) | (srb->cmnd[5]); | 
 | 	disk = scsi_cmd_to_rq(srb)->q->disk; | 
 | 	if (!disk) | 
 | 		goto done; | 
 | 	sdkp = scsi_disk(disk); | 
 | 	if (!sdkp) | 
 | 		goto done; | 
 | 	if (sector + 1 != sdkp->capacity) | 
 | 		goto done; | 
 |  | 
 | 	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { | 
 |  | 
 | 		/* | 
 | 		 * The command succeeded.  We know this device doesn't | 
 | 		 * have the last-sector bug, so stop checking it. | 
 | 		 */ | 
 | 		us->use_last_sector_hacks = 0; | 
 |  | 
 | 	} else { | 
 | 		/* | 
 | 		 * The command failed.  Allow up to 3 retries in case this | 
 | 		 * is some normal sort of failure.  After that, assume the | 
 | 		 * capacity is wrong and we're trying to access the sector | 
 | 		 * beyond the end.  Replace the result code and sense data | 
 | 		 * with values that will cause the SCSI core to fail the | 
 | 		 * command immediately, instead of going into an infinite | 
 | 		 * (or even just a very long) retry loop. | 
 | 		 */ | 
 | 		if (++us->last_sector_retries < 3) | 
 | 			return; | 
 | 		srb->result = SAM_STAT_CHECK_CONDITION; | 
 | 		memcpy(srb->sense_buffer, record_not_found, | 
 | 				sizeof(record_not_found)); | 
 | 	} | 
 |  | 
 |  done: | 
 | 	/* | 
 | 	 * Don't reset the retry counter for TEST UNIT READY commands, | 
 | 	 * because they get issued after device resets which might be | 
 | 	 * caused by a failed last-sector access. | 
 | 	 */ | 
 | 	if (srb->cmnd[0] != TEST_UNIT_READY) | 
 | 		us->last_sector_retries = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Invoke the transport and basic error-handling/recovery methods | 
 |  * | 
 |  * This is used by the protocol layers to actually send the message to | 
 |  * the device and receive the response. | 
 |  */ | 
 | void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) | 
 | { | 
 | 	int need_auto_sense; | 
 | 	int result; | 
 |  | 
 | 	/* send the command to the transport layer */ | 
 | 	scsi_set_resid(srb, 0); | 
 | 	result = us->transport(srb, us); | 
 |  | 
 | 	/* | 
 | 	 * if the command gets aborted by the higher layers, we need to | 
 | 	 * short-circuit all other processing | 
 | 	 */ | 
 | 	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { | 
 | 		usb_stor_dbg(us, "-- command was aborted\n"); | 
 | 		srb->result = DID_ABORT << 16; | 
 | 		goto Handle_Errors; | 
 | 	} | 
 |  | 
 | 	/* if there is a transport error, reset and don't auto-sense */ | 
 | 	if (result == USB_STOR_TRANSPORT_ERROR) { | 
 | 		usb_stor_dbg(us, "-- transport indicates error, resetting\n"); | 
 | 		srb->result = DID_ERROR << 16; | 
 | 		goto Handle_Errors; | 
 | 	} | 
 |  | 
 | 	/* if the transport provided its own sense data, don't auto-sense */ | 
 | 	if (result == USB_STOR_TRANSPORT_NO_SENSE) { | 
 | 		srb->result = SAM_STAT_CHECK_CONDITION; | 
 | 		last_sector_hacks(us, srb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	srb->result = SAM_STAT_GOOD; | 
 |  | 
 | 	/* | 
 | 	 * Determine if we need to auto-sense | 
 | 	 * | 
 | 	 * I normally don't use a flag like this, but it's almost impossible | 
 | 	 * to understand what's going on here if I don't. | 
 | 	 */ | 
 | 	need_auto_sense = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we're running the CB transport, which is incapable | 
 | 	 * of determining status on its own, we will auto-sense | 
 | 	 * unless the operation involved a data-in transfer.  Devices | 
 | 	 * can signal most data-in errors by stalling the bulk-in pipe. | 
 | 	 */ | 
 | 	if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) && | 
 | 			srb->sc_data_direction != DMA_FROM_DEVICE) { | 
 | 		usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n"); | 
 | 		need_auto_sense = 1; | 
 | 	} | 
 |  | 
 | 	/* Some devices (Kindle) require another command after SYNC CACHE */ | 
 | 	if ((us->fflags & US_FL_SENSE_AFTER_SYNC) && | 
 | 			srb->cmnd[0] == SYNCHRONIZE_CACHE) { | 
 | 		usb_stor_dbg(us, "-- sense after SYNC CACHE\n"); | 
 | 		need_auto_sense = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have a failure, we're going to do a REQUEST_SENSE  | 
 | 	 * automatically.  Note that we differentiate between a command | 
 | 	 * "failure" and an "error" in the transport mechanism. | 
 | 	 */ | 
 | 	if (result == USB_STOR_TRANSPORT_FAILED) { | 
 | 		usb_stor_dbg(us, "-- transport indicates command failure\n"); | 
 | 		need_auto_sense = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Determine if this device is SAT by seeing if the | 
 | 	 * command executed successfully.  Otherwise we'll have | 
 | 	 * to wait for at least one CHECK_CONDITION to determine | 
 | 	 * SANE_SENSE support | 
 | 	 */ | 
 | 	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && | 
 | 	    result == USB_STOR_TRANSPORT_GOOD && | 
 | 	    !(us->fflags & US_FL_SANE_SENSE) && | 
 | 	    !(us->fflags & US_FL_BAD_SENSE) && | 
 | 	    !(srb->cmnd[2] & 0x20))) { | 
 | 		usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n"); | 
 | 		us->fflags |= US_FL_SANE_SENSE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A short transfer on a command where we don't expect it | 
 | 	 * is unusual, but it doesn't mean we need to auto-sense. | 
 | 	 */ | 
 | 	if ((scsi_get_resid(srb) > 0) && | 
 | 	    !((srb->cmnd[0] == REQUEST_SENSE) || | 
 | 	      (srb->cmnd[0] == INQUIRY) || | 
 | 	      (srb->cmnd[0] == MODE_SENSE) || | 
 | 	      (srb->cmnd[0] == LOG_SENSE) || | 
 | 	      (srb->cmnd[0] == MODE_SENSE_10))) { | 
 | 		usb_stor_dbg(us, "-- unexpectedly short transfer\n"); | 
 | 	} | 
 |  | 
 | 	/* Now, if we need to do the auto-sense, let's do it */ | 
 | 	if (need_auto_sense) { | 
 | 		int temp_result; | 
 | 		struct scsi_eh_save ses; | 
 | 		int sense_size = US_SENSE_SIZE; | 
 | 		struct scsi_sense_hdr sshdr; | 
 | 		const u8 *scdd; | 
 | 		u8 fm_ili; | 
 |  | 
 | 		/* device supports and needs bigger sense buffer */ | 
 | 		if (us->fflags & US_FL_SANE_SENSE) | 
 | 			sense_size = ~0; | 
 | Retry_Sense: | 
 | 		usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n"); | 
 |  | 
 | 		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); | 
 |  | 
 | 		/* FIXME: we must do the protocol translation here */ | 
 | 		if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI || | 
 | 				us->subclass == USB_SC_CYP_ATACB) | 
 | 			srb->cmd_len = 6; | 
 | 		else | 
 | 			srb->cmd_len = 12; | 
 |  | 
 | 		/* issue the auto-sense command */ | 
 | 		scsi_set_resid(srb, 0); | 
 | 		temp_result = us->transport(us->srb, us); | 
 |  | 
 | 		/* let's clean up right away */ | 
 | 		scsi_eh_restore_cmnd(srb, &ses); | 
 |  | 
 | 		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { | 
 | 			usb_stor_dbg(us, "-- auto-sense aborted\n"); | 
 | 			srb->result = DID_ABORT << 16; | 
 |  | 
 | 			/* If SANE_SENSE caused this problem, disable it */ | 
 | 			if (sense_size != US_SENSE_SIZE) { | 
 | 				us->fflags &= ~US_FL_SANE_SENSE; | 
 | 				us->fflags |= US_FL_BAD_SENSE; | 
 | 			} | 
 | 			goto Handle_Errors; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Some devices claim to support larger sense but fail when | 
 | 		 * trying to request it. When a transport failure happens | 
 | 		 * using US_FS_SANE_SENSE, we always retry with a standard | 
 | 		 * (small) sense request. This fixes some USB GSM modems | 
 | 		 */ | 
 | 		if (temp_result == USB_STOR_TRANSPORT_FAILED && | 
 | 				sense_size != US_SENSE_SIZE) { | 
 | 			usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n"); | 
 | 			sense_size = US_SENSE_SIZE; | 
 | 			us->fflags &= ~US_FL_SANE_SENSE; | 
 | 			us->fflags |= US_FL_BAD_SENSE; | 
 | 			goto Retry_Sense; | 
 | 		} | 
 |  | 
 | 		/* Other failures */ | 
 | 		if (temp_result != USB_STOR_TRANSPORT_GOOD) { | 
 | 			usb_stor_dbg(us, "-- auto-sense failure\n"); | 
 |  | 
 | 			/* | 
 | 			 * we skip the reset if this happens to be a | 
 | 			 * multi-target device, since failure of an | 
 | 			 * auto-sense is perfectly valid | 
 | 			 */ | 
 | 			srb->result = DID_ERROR << 16; | 
 | 			if (!(us->fflags & US_FL_SCM_MULT_TARG)) | 
 | 				goto Handle_Errors; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the sense data returned is larger than 18-bytes then we | 
 | 		 * assume this device supports requesting more in the future. | 
 | 		 * The response code must be 70h through 73h inclusive. | 
 | 		 */ | 
 | 		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && | 
 | 		    !(us->fflags & US_FL_SANE_SENSE) && | 
 | 		    !(us->fflags & US_FL_BAD_SENSE) && | 
 | 		    (srb->sense_buffer[0] & 0x7C) == 0x70) { | 
 | 			usb_stor_dbg(us, "-- SANE_SENSE support enabled\n"); | 
 | 			us->fflags |= US_FL_SANE_SENSE; | 
 |  | 
 | 			/* | 
 | 			 * Indicate to the user that we truncated their sense | 
 | 			 * because we didn't know it supported larger sense. | 
 | 			 */ | 
 | 			usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n", | 
 | 				     US_SENSE_SIZE, | 
 | 				     srb->sense_buffer[7] + 8); | 
 | 			srb->sense_buffer[7] = (US_SENSE_SIZE - 8); | 
 | 		} | 
 |  | 
 | 		scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, | 
 | 				     &sshdr); | 
 |  | 
 | 		usb_stor_dbg(us, "-- Result from auto-sense is %d\n", | 
 | 			     temp_result); | 
 | 		usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", | 
 | 			     sshdr.response_code, sshdr.sense_key, | 
 | 			     sshdr.asc, sshdr.ascq); | 
 | #ifdef CONFIG_USB_STORAGE_DEBUG | 
 | 		usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq); | 
 | #endif | 
 |  | 
 | 		/* set the result so the higher layers expect this data */ | 
 | 		srb->result = SAM_STAT_CHECK_CONDITION; | 
 |  | 
 | 		scdd = scsi_sense_desc_find(srb->sense_buffer, | 
 | 					    SCSI_SENSE_BUFFERSIZE, 4); | 
 | 		fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0; | 
 |  | 
 | 		/* | 
 | 		 * We often get empty sense data.  This could indicate that | 
 | 		 * everything worked or that there was an unspecified | 
 | 		 * problem.  We have to decide which. | 
 | 		 */ | 
 | 		if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 && | 
 | 		    fm_ili == 0) { | 
 | 			/* | 
 | 			 * If things are really okay, then let's show that. | 
 | 			 * Zero out the sense buffer so the higher layers | 
 | 			 * won't realize we did an unsolicited auto-sense. | 
 | 			 */ | 
 | 			if (result == USB_STOR_TRANSPORT_GOOD) { | 
 | 				srb->result = SAM_STAT_GOOD; | 
 | 				srb->sense_buffer[0] = 0x0; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * ATA-passthru commands use sense data to report | 
 | 			 * the command completion status, and often devices | 
 | 			 * return Check Condition status when nothing is | 
 | 			 * wrong. | 
 | 			 */ | 
 | 			else if (srb->cmnd[0] == ATA_16 || | 
 | 					srb->cmnd[0] == ATA_12) { | 
 | 				/* leave the data alone */ | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If there was a problem, report an unspecified | 
 | 			 * hardware error to prevent the higher layers from | 
 | 			 * entering an infinite retry loop. | 
 | 			 */ | 
 | 			else { | 
 | 				srb->result = DID_ERROR << 16; | 
 | 				if ((sshdr.response_code & 0x72) == 0x72) | 
 | 					srb->sense_buffer[1] = HARDWARE_ERROR; | 
 | 				else | 
 | 					srb->sense_buffer[2] = HARDWARE_ERROR; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some devices don't work or return incorrect data the first | 
 | 	 * time they get a READ(10) command, or for the first READ(10) | 
 | 	 * after a media change.  If the INITIAL_READ10 flag is set, | 
 | 	 * keep track of whether READ(10) commands succeed.  If the | 
 | 	 * previous one succeeded and this one failed, set the REDO_READ10 | 
 | 	 * flag to force a retry. | 
 | 	 */ | 
 | 	if (unlikely((us->fflags & US_FL_INITIAL_READ10) && | 
 | 			srb->cmnd[0] == READ_10)) { | 
 | 		if (srb->result == SAM_STAT_GOOD) { | 
 | 			set_bit(US_FLIDX_READ10_WORKED, &us->dflags); | 
 | 		} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) { | 
 | 			clear_bit(US_FLIDX_READ10_WORKED, &us->dflags); | 
 | 			set_bit(US_FLIDX_REDO_READ10, &us->dflags); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Next, if the REDO_READ10 flag is set, return a result | 
 | 		 * code that will cause the SCSI core to retry the READ(10) | 
 | 		 * command immediately. | 
 | 		 */ | 
 | 		if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) { | 
 | 			clear_bit(US_FLIDX_REDO_READ10, &us->dflags); | 
 | 			srb->result = DID_IMM_RETRY << 16; | 
 | 			srb->sense_buffer[0] = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Did we transfer less than the minimum amount required? */ | 
 | 	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && | 
 | 			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) | 
 | 		srb->result = DID_ERROR << 16; | 
 |  | 
 | 	last_sector_hacks(us, srb); | 
 | 	return; | 
 |  | 
 | 	/* | 
 | 	 * Error and abort processing: try to resynchronize with the device | 
 | 	 * by issuing a port reset.  If that fails, try a class-specific | 
 | 	 * device reset. | 
 | 	 */ | 
 |   Handle_Errors: | 
 |  | 
 | 	/* | 
 | 	 * Set the RESETTING bit, and clear the ABORTING bit so that | 
 | 	 * the reset may proceed. | 
 | 	 */ | 
 | 	scsi_lock(us_to_host(us)); | 
 | 	set_bit(US_FLIDX_RESETTING, &us->dflags); | 
 | 	clear_bit(US_FLIDX_ABORTING, &us->dflags); | 
 | 	scsi_unlock(us_to_host(us)); | 
 |  | 
 | 	/* | 
 | 	 * We must release the device lock because the pre_reset routine | 
 | 	 * will want to acquire it. | 
 | 	 */ | 
 | 	mutex_unlock(&us->dev_mutex); | 
 | 	result = usb_stor_port_reset(us); | 
 | 	mutex_lock(&us->dev_mutex); | 
 |  | 
 | 	if (result < 0) { | 
 | 		scsi_lock(us_to_host(us)); | 
 | 		usb_stor_report_device_reset(us); | 
 | 		scsi_unlock(us_to_host(us)); | 
 | 		us->transport_reset(us); | 
 | 	} | 
 | 	clear_bit(US_FLIDX_RESETTING, &us->dflags); | 
 | 	last_sector_hacks(us, srb); | 
 | } | 
 |  | 
 | /* Stop the current URB transfer */ | 
 | void usb_stor_stop_transport(struct us_data *us) | 
 | { | 
 | 	/* | 
 | 	 * If the state machine is blocked waiting for an URB, | 
 | 	 * let's wake it up.  The test_and_clear_bit() call | 
 | 	 * guarantees that if a URB has just been submitted, | 
 | 	 * it won't be cancelled more than once. | 
 | 	 */ | 
 | 	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { | 
 | 		usb_stor_dbg(us, "-- cancelling URB\n"); | 
 | 		usb_unlink_urb(us->current_urb); | 
 | 	} | 
 |  | 
 | 	/* If we are waiting for a scatter-gather operation, cancel it. */ | 
 | 	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { | 
 | 		usb_stor_dbg(us, "-- cancelling sg request\n"); | 
 | 		usb_sg_cancel(&us->current_sg); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Control/Bulk and Control/Bulk/Interrupt transport | 
 |  */ | 
 |  | 
 | int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) | 
 | { | 
 | 	unsigned int transfer_length = scsi_bufflen(srb); | 
 | 	unsigned int pipe = 0; | 
 | 	int result; | 
 |  | 
 | 	/* COMMAND STAGE */ | 
 | 	/* let's send the command via the control pipe */ | 
 | 	/* | 
 | 	 * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack. | 
 | 	 * Stack may be vmallocated.  So no DMA for us.  Make a copy. | 
 | 	 */ | 
 | 	memcpy(us->iobuf, srb->cmnd, srb->cmd_len); | 
 | 	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, | 
 | 				      US_CBI_ADSC,  | 
 | 				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,  | 
 | 				      us->ifnum, us->iobuf, srb->cmd_len); | 
 |  | 
 | 	/* check the return code for the command */ | 
 | 	usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n", | 
 | 		     result); | 
 |  | 
 | 	/* if we stalled the command, it means command failed */ | 
 | 	if (result == USB_STOR_XFER_STALLED) { | 
 | 		return USB_STOR_TRANSPORT_FAILED; | 
 | 	} | 
 |  | 
 | 	/* Uh oh... serious problem here */ | 
 | 	if (result != USB_STOR_XFER_GOOD) { | 
 | 		return USB_STOR_TRANSPORT_ERROR; | 
 | 	} | 
 |  | 
 | 	/* DATA STAGE */ | 
 | 	/* transfer the data payload for this command, if one exists*/ | 
 | 	if (transfer_length) { | 
 | 		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?  | 
 | 				us->recv_bulk_pipe : us->send_bulk_pipe; | 
 | 		result = usb_stor_bulk_srb(us, pipe, srb); | 
 | 		usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result); | 
 |  | 
 | 		/* if we stalled the data transfer it means command failed */ | 
 | 		if (result == USB_STOR_XFER_STALLED) | 
 | 			return USB_STOR_TRANSPORT_FAILED; | 
 | 		if (result > USB_STOR_XFER_STALLED) | 
 | 			return USB_STOR_TRANSPORT_ERROR; | 
 | 	} | 
 |  | 
 | 	/* STATUS STAGE */ | 
 |  | 
 | 	/* | 
 | 	 * NOTE: CB does not have a status stage.  Silly, I know.  So | 
 | 	 * we have to catch this at a higher level. | 
 | 	 */ | 
 | 	if (us->protocol != USB_PR_CBI) | 
 | 		return USB_STOR_TRANSPORT_GOOD; | 
 |  | 
 | 	result = usb_stor_intr_transfer(us, us->iobuf, 2); | 
 | 	usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n", | 
 | 		     us->iobuf[0], us->iobuf[1]); | 
 | 	if (result != USB_STOR_XFER_GOOD) | 
 | 		return USB_STOR_TRANSPORT_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * UFI gives us ASC and ASCQ, like a request sense | 
 | 	 * | 
 | 	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI | 
 | 	 * devices, so we ignore the information for those commands.  Note | 
 | 	 * that this means we could be ignoring a real error on these | 
 | 	 * commands, but that can't be helped. | 
 | 	 */ | 
 | 	if (us->subclass == USB_SC_UFI) { | 
 | 		if (srb->cmnd[0] == REQUEST_SENSE || | 
 | 		    srb->cmnd[0] == INQUIRY) | 
 | 			return USB_STOR_TRANSPORT_GOOD; | 
 | 		if (us->iobuf[0]) | 
 | 			goto Failed; | 
 | 		return USB_STOR_TRANSPORT_GOOD; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If not UFI, we interpret the data as a result code  | 
 | 	 * The first byte should always be a 0x0. | 
 | 	 * | 
 | 	 * Some bogus devices don't follow that rule.  They stuff the ASC | 
 | 	 * into the first byte -- so if it's non-zero, call it a failure. | 
 | 	 */ | 
 | 	if (us->iobuf[0]) { | 
 | 		usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n", | 
 | 			     us->iobuf[0]); | 
 | 		goto Failed; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* The second byte & 0x0F should be 0x0 for good, otherwise error */ | 
 | 	switch (us->iobuf[1] & 0x0F) { | 
 | 		case 0x00:  | 
 | 			return USB_STOR_TRANSPORT_GOOD; | 
 | 		case 0x01:  | 
 | 			goto Failed; | 
 | 	} | 
 | 	return USB_STOR_TRANSPORT_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * the CBI spec requires that the bulk pipe must be cleared | 
 | 	 * following any data-in/out command failure (section 2.4.3.1.3) | 
 | 	 */ | 
 |   Failed: | 
 | 	if (pipe) | 
 | 		usb_stor_clear_halt(us, pipe); | 
 | 	return USB_STOR_TRANSPORT_FAILED; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_CB_transport); | 
 |  | 
 | /* | 
 |  * Bulk only transport | 
 |  */ | 
 |  | 
 | /* Determine what the maximum LUN supported is */ | 
 | int usb_stor_Bulk_max_lun(struct us_data *us) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	/* issue the command */ | 
 | 	us->iobuf[0] = 0; | 
 | 	result = usb_stor_control_msg(us, us->recv_ctrl_pipe, | 
 | 				 US_BULK_GET_MAX_LUN,  | 
 | 				 USB_DIR_IN | USB_TYPE_CLASS |  | 
 | 				 USB_RECIP_INTERFACE, | 
 | 				 0, us->ifnum, us->iobuf, 1, 10*HZ); | 
 |  | 
 | 	usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n", | 
 | 		     result, us->iobuf[0]); | 
 |  | 
 | 	/* | 
 | 	 * If we have a successful request, return the result if valid. The | 
 | 	 * CBW LUN field is 4 bits wide, so the value reported by the device | 
 | 	 * should fit into that. | 
 | 	 */ | 
 | 	if (result > 0) { | 
 | 		if (us->iobuf[0] < 16) { | 
 | 			return us->iobuf[0]; | 
 | 		} else { | 
 | 			dev_info(&us->pusb_intf->dev, | 
 | 				 "Max LUN %d is not valid, using 0 instead", | 
 | 				 us->iobuf[0]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some devices don't like GetMaxLUN.  They may STALL the control | 
 | 	 * pipe, they may return a zero-length result, they may do nothing at | 
 | 	 * all and timeout, or they may fail in even more bizarrely creative | 
 | 	 * ways.  In these cases the best approach is to use the default | 
 | 	 * value: only one LUN. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) | 
 | { | 
 | 	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; | 
 | 	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; | 
 | 	unsigned int transfer_length = scsi_bufflen(srb); | 
 | 	unsigned int residue; | 
 | 	int result; | 
 | 	int fake_sense = 0; | 
 | 	unsigned int cswlen; | 
 | 	unsigned int cbwlen = US_BULK_CB_WRAP_LEN; | 
 |  | 
 | 	/* Take care of BULK32 devices; set extra byte to 0 */ | 
 | 	if (unlikely(us->fflags & US_FL_BULK32)) { | 
 | 		cbwlen = 32; | 
 | 		us->iobuf[31] = 0; | 
 | 	} | 
 |  | 
 | 	/* set up the command wrapper */ | 
 | 	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); | 
 | 	bcb->DataTransferLength = cpu_to_le32(transfer_length); | 
 | 	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? | 
 | 		US_BULK_FLAG_IN : 0; | 
 | 	bcb->Tag = ++us->tag; | 
 | 	bcb->Lun = srb->device->lun; | 
 | 	if (us->fflags & US_FL_SCM_MULT_TARG) | 
 | 		bcb->Lun |= srb->device->id << 4; | 
 | 	bcb->Length = srb->cmd_len; | 
 |  | 
 | 	/* copy the command payload */ | 
 | 	memset(bcb->CDB, 0, sizeof(bcb->CDB)); | 
 | 	memcpy(bcb->CDB, srb->cmnd, bcb->Length); | 
 |  | 
 | 	/* send it to out endpoint */ | 
 | 	usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", | 
 | 		     le32_to_cpu(bcb->Signature), bcb->Tag, | 
 | 		     le32_to_cpu(bcb->DataTransferLength), bcb->Flags, | 
 | 		     (bcb->Lun >> 4), (bcb->Lun & 0x0F), | 
 | 		     bcb->Length); | 
 | 	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
 | 				bcb, cbwlen, NULL); | 
 | 	usb_stor_dbg(us, "Bulk command transfer result=%d\n", result); | 
 | 	if (result != USB_STOR_XFER_GOOD) | 
 | 		return USB_STOR_TRANSPORT_ERROR; | 
 |  | 
 | 	/* DATA STAGE */ | 
 | 	/* send/receive data payload, if there is any */ | 
 |  | 
 | 	/* | 
 | 	 * Some USB-IDE converter chips need a 100us delay between the | 
 | 	 * command phase and the data phase.  Some devices need a little | 
 | 	 * more than that, probably because of clock rate inaccuracies. | 
 | 	 */ | 
 | 	if (unlikely(us->fflags & US_FL_GO_SLOW)) | 
 | 		usleep_range(125, 150); | 
 |  | 
 | 	if (transfer_length) { | 
 | 		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?  | 
 | 				us->recv_bulk_pipe : us->send_bulk_pipe; | 
 | 		result = usb_stor_bulk_srb(us, pipe, srb); | 
 | 		usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result); | 
 | 		if (result == USB_STOR_XFER_ERROR) | 
 | 			return USB_STOR_TRANSPORT_ERROR; | 
 |  | 
 | 		/* | 
 | 		 * If the device tried to send back more data than the | 
 | 		 * amount requested, the spec requires us to transfer | 
 | 		 * the CSW anyway.  Since there's no point retrying | 
 | 		 * the command, we'll return fake sense data indicating | 
 | 		 * Illegal Request, Invalid Field in CDB. | 
 | 		 */ | 
 | 		if (result == USB_STOR_XFER_LONG) | 
 | 			fake_sense = 1; | 
 |  | 
 | 		/* | 
 | 		 * Sometimes a device will mistakenly skip the data phase | 
 | 		 * and go directly to the status phase without sending a | 
 | 		 * zero-length packet.  If we get a 13-byte response here, | 
 | 		 * check whether it really is a CSW. | 
 | 		 */ | 
 | 		if (result == USB_STOR_XFER_SHORT && | 
 | 				srb->sc_data_direction == DMA_FROM_DEVICE && | 
 | 				transfer_length - scsi_get_resid(srb) == | 
 | 					US_BULK_CS_WRAP_LEN) { | 
 | 			struct scatterlist *sg = NULL; | 
 | 			unsigned int offset = 0; | 
 |  | 
 | 			if (usb_stor_access_xfer_buf((unsigned char *) bcs, | 
 | 					US_BULK_CS_WRAP_LEN, srb, &sg, | 
 | 					&offset, FROM_XFER_BUF) == | 
 | 						US_BULK_CS_WRAP_LEN && | 
 | 					bcs->Signature == | 
 | 						cpu_to_le32(US_BULK_CS_SIGN)) { | 
 | 				usb_stor_dbg(us, "Device skipped data phase\n"); | 
 | 				scsi_set_resid(srb, transfer_length); | 
 | 				goto skipped_data_phase; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * See flow chart on pg 15 of the Bulk Only Transport spec for | 
 | 	 * an explanation of how this code works. | 
 | 	 */ | 
 |  | 
 | 	/* get CSW for device status */ | 
 | 	usb_stor_dbg(us, "Attempting to get CSW...\n"); | 
 | 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
 | 				bcs, US_BULK_CS_WRAP_LEN, &cswlen); | 
 |  | 
 | 	/* | 
 | 	 * Some broken devices add unnecessary zero-length packets to the | 
 | 	 * end of their data transfers.  Such packets show up as 0-length | 
 | 	 * CSWs.  If we encounter such a thing, try to read the CSW again. | 
 | 	 */ | 
 | 	if (result == USB_STOR_XFER_SHORT && cswlen == 0) { | 
 | 		usb_stor_dbg(us, "Received 0-length CSW; retrying...\n"); | 
 | 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
 | 				bcs, US_BULK_CS_WRAP_LEN, &cswlen); | 
 | 	} | 
 |  | 
 | 	/* did the attempt to read the CSW fail? */ | 
 | 	if (result == USB_STOR_XFER_STALLED) { | 
 |  | 
 | 		/* get the status again */ | 
 | 		usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n"); | 
 | 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
 | 				bcs, US_BULK_CS_WRAP_LEN, NULL); | 
 | 	} | 
 |  | 
 | 	/* if we still have a failure at this point, we're in trouble */ | 
 | 	usb_stor_dbg(us, "Bulk status result = %d\n", result); | 
 | 	if (result != USB_STOR_XFER_GOOD) | 
 | 		return USB_STOR_TRANSPORT_ERROR; | 
 |  | 
 |  skipped_data_phase: | 
 | 	/* check bulk status */ | 
 | 	residue = le32_to_cpu(bcs->Residue); | 
 | 	usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", | 
 | 		     le32_to_cpu(bcs->Signature), bcs->Tag, | 
 | 		     residue, bcs->Status); | 
 | 	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || | 
 | 		bcs->Status > US_BULK_STAT_PHASE) { | 
 | 		usb_stor_dbg(us, "Bulk logical error\n"); | 
 | 		return USB_STOR_TRANSPORT_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some broken devices report odd signatures, so we do not check them | 
 | 	 * for validity against the spec. We store the first one we see, | 
 | 	 * and check subsequent transfers for validity against this signature. | 
 | 	 */ | 
 | 	if (!us->bcs_signature) { | 
 | 		us->bcs_signature = bcs->Signature; | 
 | 		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) | 
 | 			usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n", | 
 | 				     le32_to_cpu(us->bcs_signature)); | 
 | 	} else if (bcs->Signature != us->bcs_signature) { | 
 | 		usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n", | 
 | 			     le32_to_cpu(bcs->Signature), | 
 | 			     le32_to_cpu(us->bcs_signature)); | 
 | 		return USB_STOR_TRANSPORT_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * try to compute the actual residue, based on how much data | 
 | 	 * was really transferred and what the device tells us | 
 | 	 */ | 
 | 	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { | 
 |  | 
 | 		/* | 
 | 		 * Heuristically detect devices that generate bogus residues | 
 | 		 * by seeing what happens with INQUIRY and READ CAPACITY | 
 | 		 * commands. | 
 | 		 */ | 
 | 		if (bcs->Status == US_BULK_STAT_OK && | 
 | 				scsi_get_resid(srb) == 0 && | 
 | 					((srb->cmnd[0] == INQUIRY && | 
 | 						transfer_length == 36) || | 
 | 					(srb->cmnd[0] == READ_CAPACITY && | 
 | 						transfer_length == 8))) { | 
 | 			us->fflags |= US_FL_IGNORE_RESIDUE; | 
 |  | 
 | 		} else { | 
 | 			residue = min(residue, transfer_length); | 
 | 			scsi_set_resid(srb, max(scsi_get_resid(srb), residue)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* based on the status code, we report good or bad */ | 
 | 	switch (bcs->Status) { | 
 | 		case US_BULK_STAT_OK: | 
 | 			/* device babbled -- return fake sense data */ | 
 | 			if (fake_sense) { | 
 | 				memcpy(srb->sense_buffer,  | 
 | 				       usb_stor_sense_invalidCDB,  | 
 | 				       sizeof(usb_stor_sense_invalidCDB)); | 
 | 				return USB_STOR_TRANSPORT_NO_SENSE; | 
 | 			} | 
 |  | 
 | 			/* command good -- note that data could be short */ | 
 | 			return USB_STOR_TRANSPORT_GOOD; | 
 |  | 
 | 		case US_BULK_STAT_FAIL: | 
 | 			/* command failed */ | 
 | 			return USB_STOR_TRANSPORT_FAILED; | 
 |  | 
 | 		case US_BULK_STAT_PHASE: | 
 | 			/* | 
 | 			 * phase error -- note that a transport reset will be | 
 | 			 * invoked by the invoke_transport() function | 
 | 			 */ | 
 | 			return USB_STOR_TRANSPORT_ERROR; | 
 | 	} | 
 |  | 
 | 	/* we should never get here, but if we do, we're in trouble */ | 
 | 	return USB_STOR_TRANSPORT_ERROR; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); | 
 |  | 
 | /*********************************************************************** | 
 |  * Reset routines | 
 |  ***********************************************************************/ | 
 |  | 
 | /* | 
 |  * This is the common part of the device reset code. | 
 |  * | 
 |  * It's handy that every transport mechanism uses the control endpoint for | 
 |  * resets. | 
 |  * | 
 |  * Basically, we send a reset with a 5-second timeout, so we don't get | 
 |  * jammed attempting to do the reset. | 
 |  */ | 
 | static int usb_stor_reset_common(struct us_data *us, | 
 | 		u8 request, u8 requesttype, | 
 | 		u16 value, u16 index, void *data, u16 size) | 
 | { | 
 | 	int result; | 
 | 	int result2; | 
 |  | 
 | 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { | 
 | 		usb_stor_dbg(us, "No reset during disconnect\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	result = usb_stor_control_msg(us, us->send_ctrl_pipe, | 
 | 			request, requesttype, value, index, data, size, | 
 | 			5*HZ); | 
 | 	if (result < 0) { | 
 | 		usb_stor_dbg(us, "Soft reset failed: %d\n", result); | 
 | 		return result; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Give the device some time to recover from the reset, | 
 | 	 * but don't delay disconnect processing. | 
 | 	 */ | 
 | 	wait_event_interruptible_timeout(us->delay_wait, | 
 | 			test_bit(US_FLIDX_DISCONNECTING, &us->dflags), | 
 | 			HZ*6); | 
 | 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { | 
 | 		usb_stor_dbg(us, "Reset interrupted by disconnect\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n"); | 
 | 	result = usb_stor_clear_halt(us, us->recv_bulk_pipe); | 
 |  | 
 | 	usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n"); | 
 | 	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); | 
 |  | 
 | 	/* return a result code based on the result of the clear-halts */ | 
 | 	if (result >= 0) | 
 | 		result = result2; | 
 | 	if (result < 0) | 
 | 		usb_stor_dbg(us, "Soft reset failed\n"); | 
 | 	else | 
 | 		usb_stor_dbg(us, "Soft reset done\n"); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* This issues a CB[I] Reset to the device in question */ | 
 | #define CB_RESET_CMD_SIZE	12 | 
 |  | 
 | int usb_stor_CB_reset(struct us_data *us) | 
 | { | 
 | 	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); | 
 | 	us->iobuf[0] = SEND_DIAGNOSTIC; | 
 | 	us->iobuf[1] = 4; | 
 | 	return usb_stor_reset_common(us, US_CBI_ADSC,  | 
 | 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE, | 
 | 				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_CB_reset); | 
 |  | 
 | /* | 
 |  * This issues a Bulk-only Reset to the device in question, including | 
 |  * clearing the subsequent endpoint halts that may occur. | 
 |  */ | 
 | int usb_stor_Bulk_reset(struct us_data *us) | 
 | { | 
 | 	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,  | 
 | 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE, | 
 | 				 0, us->ifnum, NULL, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); | 
 |  | 
 | /* | 
 |  * Issue a USB port reset to the device.  The caller must not hold | 
 |  * us->dev_mutex. | 
 |  */ | 
 | int usb_stor_port_reset(struct us_data *us) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	/*for these devices we must use the class specific method */ | 
 | 	if (us->pusb_dev->quirks & USB_QUIRK_RESET) | 
 | 		return -EPERM; | 
 |  | 
 | 	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); | 
 | 	if (result < 0) | 
 | 		usb_stor_dbg(us, "unable to lock device for reset: %d\n", | 
 | 			     result); | 
 | 	else { | 
 | 		/* Were we disconnected while waiting for the lock? */ | 
 | 		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { | 
 | 			result = -EIO; | 
 | 			usb_stor_dbg(us, "No reset during disconnect\n"); | 
 | 		} else { | 
 | 			result = usb_reset_device(us->pusb_dev); | 
 | 			usb_stor_dbg(us, "usb_reset_device returns %d\n", | 
 | 				     result); | 
 | 		} | 
 | 		usb_unlock_device(us->pusb_dev); | 
 | 	} | 
 | 	return result; | 
 | } |