|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. | 
|  | * Author: Marc Zyngier <marc.zyngier@arm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/acpi_iort.h> | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-iommu.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/irqdomain.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/msi.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/of_pci.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/syscore_ops.h> | 
|  |  | 
|  | #include <linux/irqchip.h> | 
|  | #include <linux/irqchip/arm-gic-v3.h> | 
|  | #include <linux/irqchip/arm-gic-v4.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/exception.h> | 
|  |  | 
|  | #include "irq-gic-common.h" | 
|  |  | 
|  | #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0) | 
|  | #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1) | 
|  | #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2) | 
|  |  | 
|  | #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0) | 
|  | #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1) | 
|  |  | 
|  | static u32 lpi_id_bits; | 
|  |  | 
|  | /* | 
|  | * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to | 
|  | * deal with (one configuration byte per interrupt). PENDBASE has to | 
|  | * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). | 
|  | */ | 
|  | #define LPI_NRBITS		lpi_id_bits | 
|  | #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K) | 
|  | #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) | 
|  |  | 
|  | #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI | 
|  |  | 
|  | /* | 
|  | * Collection structure - just an ID, and a redistributor address to | 
|  | * ping. We use one per CPU as a bag of interrupts assigned to this | 
|  | * CPU. | 
|  | */ | 
|  | struct its_collection { | 
|  | u64			target_address; | 
|  | u16			col_id; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The ITS_BASER structure - contains memory information, cached | 
|  | * value of BASER register configuration and ITS page size. | 
|  | */ | 
|  | struct its_baser { | 
|  | void		*base; | 
|  | u64		val; | 
|  | u32		order; | 
|  | u32		psz; | 
|  | }; | 
|  |  | 
|  | struct its_device; | 
|  |  | 
|  | /* | 
|  | * The ITS structure - contains most of the infrastructure, with the | 
|  | * top-level MSI domain, the command queue, the collections, and the | 
|  | * list of devices writing to it. | 
|  | * | 
|  | * dev_alloc_lock has to be taken for device allocations, while the | 
|  | * spinlock must be taken to parse data structures such as the device | 
|  | * list. | 
|  | */ | 
|  | struct its_node { | 
|  | raw_spinlock_t		lock; | 
|  | struct mutex		dev_alloc_lock; | 
|  | struct list_head	entry; | 
|  | void __iomem		*base; | 
|  | void __iomem		*sgir_base; | 
|  | phys_addr_t		phys_base; | 
|  | struct its_cmd_block	*cmd_base; | 
|  | struct its_cmd_block	*cmd_write; | 
|  | struct its_baser	tables[GITS_BASER_NR_REGS]; | 
|  | struct its_collection	*collections; | 
|  | struct fwnode_handle	*fwnode_handle; | 
|  | u64			(*get_msi_base)(struct its_device *its_dev); | 
|  | u64			typer; | 
|  | u64			cbaser_save; | 
|  | u32			ctlr_save; | 
|  | u32			mpidr; | 
|  | struct list_head	its_device_list; | 
|  | u64			flags; | 
|  | unsigned long		list_nr; | 
|  | int			numa_node; | 
|  | unsigned int		msi_domain_flags; | 
|  | u32			pre_its_base; /* for Socionext Synquacer */ | 
|  | int			vlpi_redist_offset; | 
|  | }; | 
|  |  | 
|  | #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS)) | 
|  | #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP)) | 
|  | #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) | 
|  |  | 
|  | #define ITS_ITT_ALIGN		SZ_256 | 
|  |  | 
|  | /* The maximum number of VPEID bits supported by VLPI commands */ | 
|  | #define ITS_MAX_VPEID_BITS						\ | 
|  | ({								\ | 
|  | int nvpeid = 16;					\ | 
|  | if (gic_rdists->has_rvpeid &&				\ | 
|  | gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\ | 
|  | nvpeid = 1 + (gic_rdists->gicd_typer2 &		\ | 
|  | GICD_TYPER2_VID);			\ | 
|  | \ | 
|  | nvpeid;							\ | 
|  | }) | 
|  | #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS)) | 
|  |  | 
|  | /* Convert page order to size in bytes */ | 
|  | #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o)) | 
|  |  | 
|  | struct event_lpi_map { | 
|  | unsigned long		*lpi_map; | 
|  | u16			*col_map; | 
|  | irq_hw_number_t		lpi_base; | 
|  | int			nr_lpis; | 
|  | raw_spinlock_t		vlpi_lock; | 
|  | struct its_vm		*vm; | 
|  | struct its_vlpi_map	*vlpi_maps; | 
|  | int			nr_vlpis; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The ITS view of a device - belongs to an ITS, owns an interrupt | 
|  | * translation table, and a list of interrupts.  If it some of its | 
|  | * LPIs are injected into a guest (GICv4), the event_map.vm field | 
|  | * indicates which one. | 
|  | */ | 
|  | struct its_device { | 
|  | struct list_head	entry; | 
|  | struct its_node		*its; | 
|  | struct event_lpi_map	event_map; | 
|  | void			*itt; | 
|  | u32			nr_ites; | 
|  | u32			device_id; | 
|  | bool			shared; | 
|  | }; | 
|  |  | 
|  | static struct { | 
|  | raw_spinlock_t		lock; | 
|  | struct its_device	*dev; | 
|  | struct its_vpe		**vpes; | 
|  | int			next_victim; | 
|  | } vpe_proxy; | 
|  |  | 
|  | struct cpu_lpi_count { | 
|  | atomic_t	managed; | 
|  | atomic_t	unmanaged; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); | 
|  |  | 
|  | static LIST_HEAD(its_nodes); | 
|  | static DEFINE_RAW_SPINLOCK(its_lock); | 
|  | static struct rdists *gic_rdists; | 
|  | static struct irq_domain *its_parent; | 
|  |  | 
|  | static unsigned long its_list_map; | 
|  | static u16 vmovp_seq_num; | 
|  | static DEFINE_RAW_SPINLOCK(vmovp_lock); | 
|  |  | 
|  | static DEFINE_IDA(its_vpeid_ida); | 
|  |  | 
|  | #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist)) | 
|  | #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu)) | 
|  | #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base) | 
|  | #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K) | 
|  |  | 
|  | /* | 
|  | * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we | 
|  | * always have vSGIs mapped. | 
|  | */ | 
|  | static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) | 
|  | { | 
|  | return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); | 
|  | } | 
|  |  | 
|  | static u16 get_its_list(struct its_vm *vm) | 
|  | { | 
|  | struct its_node *its; | 
|  | unsigned long its_list = 0; | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | if (!is_v4(its)) | 
|  | continue; | 
|  |  | 
|  | if (require_its_list_vmovp(vm, its)) | 
|  | __set_bit(its->list_nr, &its_list); | 
|  | } | 
|  |  | 
|  | return (u16)its_list; | 
|  | } | 
|  |  | 
|  | static inline u32 its_get_event_id(struct irq_data *d) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | return d->hwirq - its_dev->event_map.lpi_base; | 
|  | } | 
|  |  | 
|  | static struct its_collection *dev_event_to_col(struct its_device *its_dev, | 
|  | u32 event) | 
|  | { | 
|  | struct its_node *its = its_dev->its; | 
|  |  | 
|  | return its->collections + its_dev->event_map.col_map[event]; | 
|  | } | 
|  |  | 
|  | static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, | 
|  | u32 event) | 
|  | { | 
|  | if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) | 
|  | return NULL; | 
|  |  | 
|  | return &its_dev->event_map.vlpi_maps[event]; | 
|  | } | 
|  |  | 
|  | static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) | 
|  | { | 
|  | if (irqd_is_forwarded_to_vcpu(d)) { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  |  | 
|  | return dev_event_to_vlpi_map(its_dev, event); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) | 
|  | { | 
|  | raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); | 
|  | return vpe->col_idx; | 
|  | } | 
|  |  | 
|  | static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) | 
|  | { | 
|  | raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); | 
|  | } | 
|  |  | 
|  | static struct irq_chip its_vpe_irq_chip; | 
|  |  | 
|  | static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) | 
|  | { | 
|  | struct its_vpe *vpe = NULL; | 
|  | int cpu; | 
|  |  | 
|  | if (d->chip == &its_vpe_irq_chip) { | 
|  | vpe = irq_data_get_irq_chip_data(d); | 
|  | } else { | 
|  | struct its_vlpi_map *map = get_vlpi_map(d); | 
|  | if (map) | 
|  | vpe = map->vpe; | 
|  | } | 
|  |  | 
|  | if (vpe) { | 
|  | cpu = vpe_to_cpuid_lock(vpe, flags); | 
|  | } else { | 
|  | /* Physical LPIs are already locked via the irq_desc lock */ | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | cpu = its_dev->event_map.col_map[its_get_event_id(d)]; | 
|  | /* Keep GCC quiet... */ | 
|  | *flags = 0; | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) | 
|  | { | 
|  | struct its_vpe *vpe = NULL; | 
|  |  | 
|  | if (d->chip == &its_vpe_irq_chip) { | 
|  | vpe = irq_data_get_irq_chip_data(d); | 
|  | } else { | 
|  | struct its_vlpi_map *map = get_vlpi_map(d); | 
|  | if (map) | 
|  | vpe = map->vpe; | 
|  | } | 
|  |  | 
|  | if (vpe) | 
|  | vpe_to_cpuid_unlock(vpe, flags); | 
|  | } | 
|  |  | 
|  | static struct its_collection *valid_col(struct its_collection *col) | 
|  | { | 
|  | if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) | 
|  | return NULL; | 
|  |  | 
|  | return col; | 
|  | } | 
|  |  | 
|  | static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) | 
|  | { | 
|  | if (valid_col(its->collections + vpe->col_idx)) | 
|  | return vpe; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ITS command descriptors - parameters to be encoded in a command | 
|  | * block. | 
|  | */ | 
|  | struct its_cmd_desc { | 
|  | union { | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | u32 event_id; | 
|  | } its_inv_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | u32 event_id; | 
|  | } its_clear_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | u32 event_id; | 
|  | } its_int_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | int valid; | 
|  | } its_mapd_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_collection *col; | 
|  | int valid; | 
|  | } its_mapc_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | u32 phys_id; | 
|  | u32 event_id; | 
|  | } its_mapti_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | struct its_collection *col; | 
|  | u32 event_id; | 
|  | } its_movi_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_device *dev; | 
|  | u32 event_id; | 
|  | } its_discard_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_collection *col; | 
|  | } its_invall_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | } its_vinvall_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | struct its_collection *col; | 
|  | bool valid; | 
|  | } its_vmapp_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | struct its_device *dev; | 
|  | u32 virt_id; | 
|  | u32 event_id; | 
|  | bool db_enabled; | 
|  | } its_vmapti_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | struct its_device *dev; | 
|  | u32 event_id; | 
|  | bool db_enabled; | 
|  | } its_vmovi_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | struct its_collection *col; | 
|  | u16 seq_num; | 
|  | u16 its_list; | 
|  | } its_vmovp_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | } its_invdb_cmd; | 
|  |  | 
|  | struct { | 
|  | struct its_vpe *vpe; | 
|  | u8 sgi; | 
|  | u8 priority; | 
|  | bool enable; | 
|  | bool group; | 
|  | bool clear; | 
|  | } its_vsgi_cmd; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The ITS command block, which is what the ITS actually parses. | 
|  | */ | 
|  | struct its_cmd_block { | 
|  | union { | 
|  | u64	raw_cmd[4]; | 
|  | __le64	raw_cmd_le[4]; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | #define ITS_CMD_QUEUE_SZ		SZ_64K | 
|  | #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) | 
|  |  | 
|  | typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, | 
|  | struct its_cmd_block *, | 
|  | struct its_cmd_desc *); | 
|  |  | 
|  | typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, | 
|  | struct its_cmd_block *, | 
|  | struct its_cmd_desc *); | 
|  |  | 
|  | static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) | 
|  | { | 
|  | u64 mask = GENMASK_ULL(h, l); | 
|  | *raw_cmd &= ~mask; | 
|  | *raw_cmd |= (val << l) & mask; | 
|  | } | 
|  |  | 
|  | static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); | 
|  | } | 
|  |  | 
|  | static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); | 
|  | } | 
|  |  | 
|  | static void its_encode_size(struct its_cmd_block *cmd, u8 size) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); | 
|  | } | 
|  |  | 
|  | static void its_encode_valid(struct its_cmd_block *cmd, int valid) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); | 
|  | } | 
|  |  | 
|  | static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); | 
|  | } | 
|  |  | 
|  | static void its_encode_collection(struct its_cmd_block *cmd, u16 col) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); | 
|  | } | 
|  |  | 
|  | static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); | 
|  | } | 
|  |  | 
|  | static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); | 
|  | } | 
|  |  | 
|  | static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); | 
|  | } | 
|  |  | 
|  | static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); | 
|  | } | 
|  |  | 
|  | static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); | 
|  | } | 
|  |  | 
|  | static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); | 
|  | } | 
|  |  | 
|  | static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, | 
|  | u32 vpe_db_lpi) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, | 
|  | u32 vpe_db_lpi) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); | 
|  | } | 
|  |  | 
|  | static void its_encode_db(struct its_cmd_block *cmd, bool db) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); | 
|  | } | 
|  |  | 
|  | static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); | 
|  | } | 
|  |  | 
|  | static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); | 
|  | } | 
|  |  | 
|  | static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); | 
|  | } | 
|  |  | 
|  | static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); | 
|  | } | 
|  |  | 
|  | static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) | 
|  | { | 
|  | its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); | 
|  | } | 
|  |  | 
|  | static inline void its_fixup_cmd(struct its_cmd_block *cmd) | 
|  | { | 
|  | /* Let's fixup BE commands */ | 
|  | cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); | 
|  | cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); | 
|  | cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); | 
|  | cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_mapd_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | unsigned long itt_addr; | 
|  | u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); | 
|  |  | 
|  | itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); | 
|  | itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_MAPD); | 
|  | its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); | 
|  | its_encode_size(cmd, size - 1); | 
|  | its_encode_itt(cmd, itt_addr); | 
|  | its_encode_valid(cmd, desc->its_mapd_cmd.valid); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_mapc_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | its_encode_cmd(cmd, GITS_CMD_MAPC); | 
|  | its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); | 
|  | its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); | 
|  | its_encode_valid(cmd, desc->its_mapc_cmd.valid); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return desc->its_mapc_cmd.col; | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_mapti_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_collection *col; | 
|  |  | 
|  | col = dev_event_to_col(desc->its_mapti_cmd.dev, | 
|  | desc->its_mapti_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_MAPTI); | 
|  | its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); | 
|  | its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); | 
|  | its_encode_collection(cmd, col->col_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_col(col); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_movi_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_collection *col; | 
|  |  | 
|  | col = dev_event_to_col(desc->its_movi_cmd.dev, | 
|  | desc->its_movi_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_MOVI); | 
|  | its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_movi_cmd.event_id); | 
|  | its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_col(col); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_discard_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_collection *col; | 
|  |  | 
|  | col = dev_event_to_col(desc->its_discard_cmd.dev, | 
|  | desc->its_discard_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_DISCARD); | 
|  | its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_discard_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_col(col); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_inv_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_collection *col; | 
|  |  | 
|  | col = dev_event_to_col(desc->its_inv_cmd.dev, | 
|  | desc->its_inv_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_INV); | 
|  | its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_inv_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_col(col); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_int_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_collection *col; | 
|  |  | 
|  | col = dev_event_to_col(desc->its_int_cmd.dev, | 
|  | desc->its_int_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_INT); | 
|  | its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_int_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_col(col); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_clear_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_collection *col; | 
|  |  | 
|  | col = dev_event_to_col(desc->its_clear_cmd.dev, | 
|  | desc->its_clear_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_CLEAR); | 
|  | its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_clear_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_col(col); | 
|  | } | 
|  |  | 
|  | static struct its_collection *its_build_invall_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | its_encode_cmd(cmd, GITS_CMD_INVALL); | 
|  | its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return desc->its_invall_cmd.col; | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | its_encode_cmd(cmd, GITS_CMD_VINVALL); | 
|  | its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_vinvall_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | unsigned long vpt_addr, vconf_addr; | 
|  | u64 target; | 
|  | bool alloc; | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_VMAPP); | 
|  | its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); | 
|  | its_encode_valid(cmd, desc->its_vmapp_cmd.valid); | 
|  |  | 
|  | if (!desc->its_vmapp_cmd.valid) { | 
|  | if (is_v4_1(its)) { | 
|  | alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); | 
|  | its_encode_alloc(cmd, alloc); | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); | 
|  | target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; | 
|  |  | 
|  | its_encode_target(cmd, target); | 
|  | its_encode_vpt_addr(cmd, vpt_addr); | 
|  | its_encode_vpt_size(cmd, LPI_NRBITS - 1); | 
|  |  | 
|  | if (!is_v4_1(its)) | 
|  | goto out; | 
|  |  | 
|  | vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); | 
|  |  | 
|  | alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); | 
|  |  | 
|  | its_encode_alloc(cmd, alloc); | 
|  |  | 
|  | /* | 
|  | * GICv4.1 provides a way to get the VLPI state, which needs the vPE | 
|  | * to be unmapped first, and in this case, we may remap the vPE | 
|  | * back while the VPT is not empty. So we can't assume that the | 
|  | * VPT is empty on map. This is why we never advertise PTZ. | 
|  | */ | 
|  | its_encode_ptz(cmd, false); | 
|  | its_encode_vconf_addr(cmd, vconf_addr); | 
|  | its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); | 
|  |  | 
|  | out: | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_vmapp_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | u32 db; | 
|  |  | 
|  | if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) | 
|  | db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; | 
|  | else | 
|  | db = 1023; | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_VMAPTI); | 
|  | its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); | 
|  | its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); | 
|  | its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); | 
|  | its_encode_db_phys_id(cmd, db); | 
|  | its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_vmapti_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | u32 db; | 
|  |  | 
|  | if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) | 
|  | db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; | 
|  | else | 
|  | db = 1023; | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_VMOVI); | 
|  | its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); | 
|  | its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); | 
|  | its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); | 
|  | its_encode_db_phys_id(cmd, db); | 
|  | its_encode_db_valid(cmd, true); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_vmovi_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | u64 target; | 
|  |  | 
|  | target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; | 
|  | its_encode_cmd(cmd, GITS_CMD_VMOVP); | 
|  | its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); | 
|  | its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); | 
|  | its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); | 
|  | its_encode_target(cmd, target); | 
|  |  | 
|  | if (is_v4_1(its)) { | 
|  | its_encode_db(cmd, true); | 
|  | its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); | 
|  | } | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_vmovp_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vinv_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_vlpi_map *map; | 
|  |  | 
|  | map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, | 
|  | desc->its_inv_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_INV); | 
|  | its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_inv_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, map->vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vint_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_vlpi_map *map; | 
|  |  | 
|  | map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, | 
|  | desc->its_int_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_INT); | 
|  | its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_int_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, map->vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vclear_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | struct its_vlpi_map *map; | 
|  |  | 
|  | map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, | 
|  | desc->its_clear_cmd.event_id); | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_CLEAR); | 
|  | its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); | 
|  | its_encode_event_id(cmd, desc->its_clear_cmd.event_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, map->vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_invdb_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | if (WARN_ON(!is_v4_1(its))) | 
|  | return NULL; | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_INVDB); | 
|  | its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_invdb_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, | 
|  | struct its_cmd_block *cmd, | 
|  | struct its_cmd_desc *desc) | 
|  | { | 
|  | if (WARN_ON(!is_v4_1(its))) | 
|  | return NULL; | 
|  |  | 
|  | its_encode_cmd(cmd, GITS_CMD_VSGI); | 
|  | its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); | 
|  | its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); | 
|  | its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); | 
|  | its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); | 
|  | its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); | 
|  | its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); | 
|  |  | 
|  | its_fixup_cmd(cmd); | 
|  |  | 
|  | return valid_vpe(its, desc->its_vsgi_cmd.vpe); | 
|  | } | 
|  |  | 
|  | static u64 its_cmd_ptr_to_offset(struct its_node *its, | 
|  | struct its_cmd_block *ptr) | 
|  | { | 
|  | return (ptr - its->cmd_base) * sizeof(*ptr); | 
|  | } | 
|  |  | 
|  | static int its_queue_full(struct its_node *its) | 
|  | { | 
|  | int widx; | 
|  | int ridx; | 
|  |  | 
|  | widx = its->cmd_write - its->cmd_base; | 
|  | ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); | 
|  |  | 
|  | /* This is incredibly unlikely to happen, unless the ITS locks up. */ | 
|  | if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct its_cmd_block *its_allocate_entry(struct its_node *its) | 
|  | { | 
|  | struct its_cmd_block *cmd; | 
|  | u32 count = 1000000;	/* 1s! */ | 
|  |  | 
|  | while (its_queue_full(its)) { | 
|  | count--; | 
|  | if (!count) { | 
|  | pr_err_ratelimited("ITS queue not draining\n"); | 
|  | return NULL; | 
|  | } | 
|  | cpu_relax(); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | cmd = its->cmd_write++; | 
|  |  | 
|  | /* Handle queue wrapping */ | 
|  | if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) | 
|  | its->cmd_write = its->cmd_base; | 
|  |  | 
|  | /* Clear command  */ | 
|  | cmd->raw_cmd[0] = 0; | 
|  | cmd->raw_cmd[1] = 0; | 
|  | cmd->raw_cmd[2] = 0; | 
|  | cmd->raw_cmd[3] = 0; | 
|  |  | 
|  | return cmd; | 
|  | } | 
|  |  | 
|  | static struct its_cmd_block *its_post_commands(struct its_node *its) | 
|  | { | 
|  | u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); | 
|  |  | 
|  | writel_relaxed(wr, its->base + GITS_CWRITER); | 
|  |  | 
|  | return its->cmd_write; | 
|  | } | 
|  |  | 
|  | static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) | 
|  | { | 
|  | /* | 
|  | * Make sure the commands written to memory are observable by | 
|  | * the ITS. | 
|  | */ | 
|  | if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) | 
|  | gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); | 
|  | else | 
|  | dsb(ishst); | 
|  | } | 
|  |  | 
|  | static int its_wait_for_range_completion(struct its_node *its, | 
|  | u64	prev_idx, | 
|  | struct its_cmd_block *to) | 
|  | { | 
|  | u64 rd_idx, to_idx, linear_idx; | 
|  | u32 count = 1000000;	/* 1s! */ | 
|  |  | 
|  | /* Linearize to_idx if the command set has wrapped around */ | 
|  | to_idx = its_cmd_ptr_to_offset(its, to); | 
|  | if (to_idx < prev_idx) | 
|  | to_idx += ITS_CMD_QUEUE_SZ; | 
|  |  | 
|  | linear_idx = prev_idx; | 
|  |  | 
|  | while (1) { | 
|  | s64 delta; | 
|  |  | 
|  | rd_idx = readl_relaxed(its->base + GITS_CREADR); | 
|  |  | 
|  | /* | 
|  | * Compute the read pointer progress, taking the | 
|  | * potential wrap-around into account. | 
|  | */ | 
|  | delta = rd_idx - prev_idx; | 
|  | if (rd_idx < prev_idx) | 
|  | delta += ITS_CMD_QUEUE_SZ; | 
|  |  | 
|  | linear_idx += delta; | 
|  | if (linear_idx >= to_idx) | 
|  | break; | 
|  |  | 
|  | count--; | 
|  | if (!count) { | 
|  | pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", | 
|  | to_idx, linear_idx); | 
|  | return -1; | 
|  | } | 
|  | prev_idx = rd_idx; | 
|  | cpu_relax(); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Warning, macro hell follows */ | 
|  | #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\ | 
|  | void name(struct its_node *its,						\ | 
|  | buildtype builder,						\ | 
|  | struct its_cmd_desc *desc)					\ | 
|  | {									\ | 
|  | struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\ | 
|  | synctype *sync_obj;						\ | 
|  | unsigned long flags;						\ | 
|  | u64 rd_idx;							\ | 
|  | \ | 
|  | raw_spin_lock_irqsave(&its->lock, flags);			\ | 
|  | \ | 
|  | cmd = its_allocate_entry(its);					\ | 
|  | if (!cmd) {		/* We're soooooo screewed... */		\ | 
|  | raw_spin_unlock_irqrestore(&its->lock, flags);		\ | 
|  | return;							\ | 
|  | }								\ | 
|  | sync_obj = builder(its, cmd, desc);				\ | 
|  | its_flush_cmd(its, cmd);					\ | 
|  | \ | 
|  | if (sync_obj) {							\ | 
|  | sync_cmd = its_allocate_entry(its);			\ | 
|  | if (!sync_cmd)						\ | 
|  | goto post;					\ | 
|  | \ | 
|  | buildfn(its, sync_cmd, sync_obj);			\ | 
|  | its_flush_cmd(its, sync_cmd);				\ | 
|  | }								\ | 
|  | \ | 
|  | post:									\ | 
|  | rd_idx = readl_relaxed(its->base + GITS_CREADR);		\ | 
|  | next_cmd = its_post_commands(its);				\ | 
|  | raw_spin_unlock_irqrestore(&its->lock, flags);			\ | 
|  | \ | 
|  | if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\ | 
|  | pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\ | 
|  | } | 
|  |  | 
|  | static void its_build_sync_cmd(struct its_node *its, | 
|  | struct its_cmd_block *sync_cmd, | 
|  | struct its_collection *sync_col) | 
|  | { | 
|  | its_encode_cmd(sync_cmd, GITS_CMD_SYNC); | 
|  | its_encode_target(sync_cmd, sync_col->target_address); | 
|  |  | 
|  | its_fixup_cmd(sync_cmd); | 
|  | } | 
|  |  | 
|  | static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, | 
|  | struct its_collection, its_build_sync_cmd) | 
|  |  | 
|  | static void its_build_vsync_cmd(struct its_node *its, | 
|  | struct its_cmd_block *sync_cmd, | 
|  | struct its_vpe *sync_vpe) | 
|  | { | 
|  | its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); | 
|  | its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); | 
|  |  | 
|  | its_fixup_cmd(sync_cmd); | 
|  | } | 
|  |  | 
|  | static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, | 
|  | struct its_vpe, its_build_vsync_cmd) | 
|  |  | 
|  | static void its_send_int(struct its_device *dev, u32 event_id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_int_cmd.dev = dev; | 
|  | desc.its_int_cmd.event_id = event_id; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_int_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_clear(struct its_device *dev, u32 event_id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_clear_cmd.dev = dev; | 
|  | desc.its_clear_cmd.event_id = event_id; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_clear_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_inv(struct its_device *dev, u32 event_id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_inv_cmd.dev = dev; | 
|  | desc.its_inv_cmd.event_id = event_id; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_inv_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_mapd(struct its_device *dev, int valid) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_mapd_cmd.dev = dev; | 
|  | desc.its_mapd_cmd.valid = !!valid; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_mapd_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_mapc(struct its_node *its, struct its_collection *col, | 
|  | int valid) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_mapc_cmd.col = col; | 
|  | desc.its_mapc_cmd.valid = !!valid; | 
|  |  | 
|  | its_send_single_command(its, its_build_mapc_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_mapti_cmd.dev = dev; | 
|  | desc.its_mapti_cmd.phys_id = irq_id; | 
|  | desc.its_mapti_cmd.event_id = id; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_mapti_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_movi(struct its_device *dev, | 
|  | struct its_collection *col, u32 id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_movi_cmd.dev = dev; | 
|  | desc.its_movi_cmd.col = col; | 
|  | desc.its_movi_cmd.event_id = id; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_movi_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_discard(struct its_device *dev, u32 id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_discard_cmd.dev = dev; | 
|  | desc.its_discard_cmd.event_id = id; | 
|  |  | 
|  | its_send_single_command(dev->its, its_build_discard_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_invall(struct its_node *its, struct its_collection *col) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_invall_cmd.col = col; | 
|  |  | 
|  | its_send_single_command(its, its_build_invall_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vmapti(struct its_device *dev, u32 id) | 
|  | { | 
|  | struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_vmapti_cmd.vpe = map->vpe; | 
|  | desc.its_vmapti_cmd.dev = dev; | 
|  | desc.its_vmapti_cmd.virt_id = map->vintid; | 
|  | desc.its_vmapti_cmd.event_id = id; | 
|  | desc.its_vmapti_cmd.db_enabled = map->db_enabled; | 
|  |  | 
|  | its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vmovi(struct its_device *dev, u32 id) | 
|  | { | 
|  | struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_vmovi_cmd.vpe = map->vpe; | 
|  | desc.its_vmovi_cmd.dev = dev; | 
|  | desc.its_vmovi_cmd.event_id = id; | 
|  | desc.its_vmovi_cmd.db_enabled = map->db_enabled; | 
|  |  | 
|  | its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vmapp(struct its_node *its, | 
|  | struct its_vpe *vpe, bool valid) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_vmapp_cmd.vpe = vpe; | 
|  | desc.its_vmapp_cmd.valid = valid; | 
|  | desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; | 
|  |  | 
|  | its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vmovp(struct its_vpe *vpe) | 
|  | { | 
|  | struct its_cmd_desc desc = {}; | 
|  | struct its_node *its; | 
|  | unsigned long flags; | 
|  | int col_id = vpe->col_idx; | 
|  |  | 
|  | desc.its_vmovp_cmd.vpe = vpe; | 
|  |  | 
|  | if (!its_list_map) { | 
|  | its = list_first_entry(&its_nodes, struct its_node, entry); | 
|  | desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
|  | its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Yet another marvel of the architecture. If using the | 
|  | * its_list "feature", we need to make sure that all ITSs | 
|  | * receive all VMOVP commands in the same order. The only way | 
|  | * to guarantee this is to make vmovp a serialization point. | 
|  | * | 
|  | * Wall <-- Head. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&vmovp_lock, flags); | 
|  |  | 
|  | desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; | 
|  | desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); | 
|  |  | 
|  | /* Emit VMOVPs */ | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | if (!is_v4(its)) | 
|  | continue; | 
|  |  | 
|  | if (!require_its_list_vmovp(vpe->its_vm, its)) | 
|  | continue; | 
|  |  | 
|  | desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
|  | its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
|  | } | 
|  |  | 
|  | static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_vinvall_cmd.vpe = vpe; | 
|  | its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vinv(struct its_device *dev, u32 event_id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | /* | 
|  | * There is no real VINV command. This is just a normal INV, | 
|  | * with a VSYNC instead of a SYNC. | 
|  | */ | 
|  | desc.its_inv_cmd.dev = dev; | 
|  | desc.its_inv_cmd.event_id = event_id; | 
|  |  | 
|  | its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vint(struct its_device *dev, u32 event_id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | /* | 
|  | * There is no real VINT command. This is just a normal INT, | 
|  | * with a VSYNC instead of a SYNC. | 
|  | */ | 
|  | desc.its_int_cmd.dev = dev; | 
|  | desc.its_int_cmd.event_id = event_id; | 
|  |  | 
|  | its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_vclear(struct its_device *dev, u32 event_id) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | /* | 
|  | * There is no real VCLEAR command. This is just a normal CLEAR, | 
|  | * with a VSYNC instead of a SYNC. | 
|  | */ | 
|  | desc.its_clear_cmd.dev = dev; | 
|  | desc.its_clear_cmd.event_id = event_id; | 
|  |  | 
|  | its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) | 
|  | { | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_invdb_cmd.vpe = vpe; | 
|  | its_send_single_vcommand(its, its_build_invdb_cmd, &desc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * irqchip functions - assumes MSI, mostly. | 
|  | */ | 
|  | static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) | 
|  | { | 
|  | struct its_vlpi_map *map = get_vlpi_map(d); | 
|  | irq_hw_number_t hwirq; | 
|  | void *va; | 
|  | u8 *cfg; | 
|  |  | 
|  | if (map) { | 
|  | va = page_address(map->vm->vprop_page); | 
|  | hwirq = map->vintid; | 
|  |  | 
|  | /* Remember the updated property */ | 
|  | map->properties &= ~clr; | 
|  | map->properties |= set | LPI_PROP_GROUP1; | 
|  | } else { | 
|  | va = gic_rdists->prop_table_va; | 
|  | hwirq = d->hwirq; | 
|  | } | 
|  |  | 
|  | cfg = va + hwirq - 8192; | 
|  | *cfg &= ~clr; | 
|  | *cfg |= set | LPI_PROP_GROUP1; | 
|  |  | 
|  | /* | 
|  | * Make the above write visible to the redistributors. | 
|  | * And yes, we're flushing exactly: One. Single. Byte. | 
|  | * Humpf... | 
|  | */ | 
|  | if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) | 
|  | gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); | 
|  | else | 
|  | dsb(ishst); | 
|  | } | 
|  |  | 
|  | static void wait_for_syncr(void __iomem *rdbase) | 
|  | { | 
|  | while (readl_relaxed(rdbase + GICR_SYNCR) & 1) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | static void __direct_lpi_inv(struct irq_data *d, u64 val) | 
|  | { | 
|  | void __iomem *rdbase; | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  |  | 
|  | /* Target the redistributor this LPI is currently routed to */ | 
|  | cpu = irq_to_cpuid_lock(d, &flags); | 
|  | raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
|  |  | 
|  | rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; | 
|  | gic_write_lpir(val, rdbase + GICR_INVLPIR); | 
|  | wait_for_syncr(rdbase); | 
|  |  | 
|  | raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
|  | irq_to_cpuid_unlock(d, flags); | 
|  | } | 
|  |  | 
|  | static void direct_lpi_inv(struct irq_data *d) | 
|  | { | 
|  | struct its_vlpi_map *map = get_vlpi_map(d); | 
|  | u64 val; | 
|  |  | 
|  | if (map) { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | WARN_ON(!is_v4_1(its_dev->its)); | 
|  |  | 
|  | val  = GICR_INVLPIR_V; | 
|  | val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); | 
|  | val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); | 
|  | } else { | 
|  | val = d->hwirq; | 
|  | } | 
|  |  | 
|  | __direct_lpi_inv(d, val); | 
|  | } | 
|  |  | 
|  | static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | lpi_write_config(d, clr, set); | 
|  | if (gic_rdists->has_direct_lpi && | 
|  | (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) | 
|  | direct_lpi_inv(d); | 
|  | else if (!irqd_is_forwarded_to_vcpu(d)) | 
|  | its_send_inv(its_dev, its_get_event_id(d)); | 
|  | else | 
|  | its_send_vinv(its_dev, its_get_event_id(d)); | 
|  | } | 
|  |  | 
|  | static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  | struct its_vlpi_map *map; | 
|  |  | 
|  | /* | 
|  | * GICv4.1 does away with the per-LPI nonsense, nothing to do | 
|  | * here. | 
|  | */ | 
|  | if (is_v4_1(its_dev->its)) | 
|  | return; | 
|  |  | 
|  | map = dev_event_to_vlpi_map(its_dev, event); | 
|  |  | 
|  | if (map->db_enabled == enable) | 
|  | return; | 
|  |  | 
|  | map->db_enabled = enable; | 
|  |  | 
|  | /* | 
|  | * More fun with the architecture: | 
|  | * | 
|  | * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI | 
|  | * value or to 1023, depending on the enable bit. But that | 
|  | * would be issuing a mapping for an /existing/ DevID+EventID | 
|  | * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI | 
|  | * to the /same/ vPE, using this opportunity to adjust the | 
|  | * doorbell. Mouahahahaha. We loves it, Precious. | 
|  | */ | 
|  | its_send_vmovi(its_dev, event); | 
|  | } | 
|  |  | 
|  | static void its_mask_irq(struct irq_data *d) | 
|  | { | 
|  | if (irqd_is_forwarded_to_vcpu(d)) | 
|  | its_vlpi_set_doorbell(d, false); | 
|  |  | 
|  | lpi_update_config(d, LPI_PROP_ENABLED, 0); | 
|  | } | 
|  |  | 
|  | static void its_unmask_irq(struct irq_data *d) | 
|  | { | 
|  | if (irqd_is_forwarded_to_vcpu(d)) | 
|  | its_vlpi_set_doorbell(d, true); | 
|  |  | 
|  | lpi_update_config(d, 0, LPI_PROP_ENABLED); | 
|  | } | 
|  |  | 
|  | static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) | 
|  | { | 
|  | if (irqd_affinity_is_managed(d)) | 
|  | return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); | 
|  |  | 
|  | return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); | 
|  | } | 
|  |  | 
|  | static void its_inc_lpi_count(struct irq_data *d, int cpu) | 
|  | { | 
|  | if (irqd_affinity_is_managed(d)) | 
|  | atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); | 
|  | else | 
|  | atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); | 
|  | } | 
|  |  | 
|  | static void its_dec_lpi_count(struct irq_data *d, int cpu) | 
|  | { | 
|  | if (irqd_affinity_is_managed(d)) | 
|  | atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); | 
|  | else | 
|  | atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); | 
|  | } | 
|  |  | 
|  | static unsigned int cpumask_pick_least_loaded(struct irq_data *d, | 
|  | const struct cpumask *cpu_mask) | 
|  | { | 
|  | unsigned int cpu = nr_cpu_ids, tmp; | 
|  | int count = S32_MAX; | 
|  |  | 
|  | for_each_cpu(tmp, cpu_mask) { | 
|  | int this_count = its_read_lpi_count(d, tmp); | 
|  | if (this_count < count) { | 
|  | cpu = tmp; | 
|  | count = this_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As suggested by Thomas Gleixner in: | 
|  | * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de | 
|  | */ | 
|  | static int its_select_cpu(struct irq_data *d, | 
|  | const struct cpumask *aff_mask) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | cpumask_var_t tmpmask; | 
|  | int cpu, node; | 
|  |  | 
|  | if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | node = its_dev->its->numa_node; | 
|  |  | 
|  | if (!irqd_affinity_is_managed(d)) { | 
|  | /* First try the NUMA node */ | 
|  | if (node != NUMA_NO_NODE) { | 
|  | /* | 
|  | * Try the intersection of the affinity mask and the | 
|  | * node mask (and the online mask, just to be safe). | 
|  | */ | 
|  | cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); | 
|  | cpumask_and(tmpmask, tmpmask, cpu_online_mask); | 
|  |  | 
|  | /* | 
|  | * Ideally, we would check if the mask is empty, and | 
|  | * try again on the full node here. | 
|  | * | 
|  | * But it turns out that the way ACPI describes the | 
|  | * affinity for ITSs only deals about memory, and | 
|  | * not target CPUs, so it cannot describe a single | 
|  | * ITS placed next to two NUMA nodes. | 
|  | * | 
|  | * Instead, just fallback on the online mask. This | 
|  | * diverges from Thomas' suggestion above. | 
|  | */ | 
|  | cpu = cpumask_pick_least_loaded(d, tmpmask); | 
|  | if (cpu < nr_cpu_ids) | 
|  | goto out; | 
|  |  | 
|  | /* If we can't cross sockets, give up */ | 
|  | if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) | 
|  | goto out; | 
|  |  | 
|  | /* If the above failed, expand the search */ | 
|  | } | 
|  |  | 
|  | /* Try the intersection of the affinity and online masks */ | 
|  | cpumask_and(tmpmask, aff_mask, cpu_online_mask); | 
|  |  | 
|  | /* If that doesn't fly, the online mask is the last resort */ | 
|  | if (cpumask_empty(tmpmask)) | 
|  | cpumask_copy(tmpmask, cpu_online_mask); | 
|  |  | 
|  | cpu = cpumask_pick_least_loaded(d, tmpmask); | 
|  | } else { | 
|  | cpumask_copy(tmpmask, aff_mask); | 
|  |  | 
|  | /* If we cannot cross sockets, limit the search to that node */ | 
|  | if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && | 
|  | node != NUMA_NO_NODE) | 
|  | cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); | 
|  |  | 
|  | cpu = cpumask_pick_least_loaded(d, tmpmask); | 
|  | } | 
|  | out: | 
|  | free_cpumask_var(tmpmask); | 
|  |  | 
|  | pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, | 
|  | bool force) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | struct its_collection *target_col; | 
|  | u32 id = its_get_event_id(d); | 
|  | int cpu, prev_cpu; | 
|  |  | 
|  | /* A forwarded interrupt should use irq_set_vcpu_affinity */ | 
|  | if (irqd_is_forwarded_to_vcpu(d)) | 
|  | return -EINVAL; | 
|  |  | 
|  | prev_cpu = its_dev->event_map.col_map[id]; | 
|  | its_dec_lpi_count(d, prev_cpu); | 
|  |  | 
|  | if (!force) | 
|  | cpu = its_select_cpu(d, mask_val); | 
|  | else | 
|  | cpu = cpumask_pick_least_loaded(d, mask_val); | 
|  |  | 
|  | if (cpu < 0 || cpu >= nr_cpu_ids) | 
|  | goto err; | 
|  |  | 
|  | /* don't set the affinity when the target cpu is same as current one */ | 
|  | if (cpu != prev_cpu) { | 
|  | target_col = &its_dev->its->collections[cpu]; | 
|  | its_send_movi(its_dev, target_col, id); | 
|  | its_dev->event_map.col_map[id] = cpu; | 
|  | irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
|  | } | 
|  |  | 
|  | its_inc_lpi_count(d, cpu); | 
|  |  | 
|  | return IRQ_SET_MASK_OK_DONE; | 
|  |  | 
|  | err: | 
|  | its_inc_lpi_count(d, prev_cpu); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static u64 its_irq_get_msi_base(struct its_device *its_dev) | 
|  | { | 
|  | struct its_node *its = its_dev->its; | 
|  |  | 
|  | return its->phys_base + GITS_TRANSLATER; | 
|  | } | 
|  |  | 
|  | static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | struct its_node *its; | 
|  | u64 addr; | 
|  |  | 
|  | its = its_dev->its; | 
|  | addr = its->get_msi_base(its_dev); | 
|  |  | 
|  | msg->address_lo		= lower_32_bits(addr); | 
|  | msg->address_hi		= upper_32_bits(addr); | 
|  | msg->data		= its_get_event_id(d); | 
|  |  | 
|  | iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); | 
|  | } | 
|  |  | 
|  | static int its_irq_set_irqchip_state(struct irq_data *d, | 
|  | enum irqchip_irq_state which, | 
|  | bool state) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  |  | 
|  | if (which != IRQCHIP_STATE_PENDING) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (irqd_is_forwarded_to_vcpu(d)) { | 
|  | if (state) | 
|  | its_send_vint(its_dev, event); | 
|  | else | 
|  | its_send_vclear(its_dev, event); | 
|  | } else { | 
|  | if (state) | 
|  | its_send_int(its_dev, event); | 
|  | else | 
|  | its_send_clear(its_dev, event); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_irq_retrigger(struct irq_data *d) | 
|  | { | 
|  | return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Two favourable cases: | 
|  | * | 
|  | * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times | 
|  | *     for vSGI delivery | 
|  | * | 
|  | * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough | 
|  | *     and we're better off mapping all VPEs always | 
|  | * | 
|  | * If neither (a) nor (b) is true, then we map vPEs on demand. | 
|  | * | 
|  | */ | 
|  | static bool gic_requires_eager_mapping(void) | 
|  | { | 
|  | if (!its_list_map || gic_rdists->has_rvpeid) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void its_map_vm(struct its_node *its, struct its_vm *vm) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (gic_requires_eager_mapping()) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vmovp_lock, flags); | 
|  |  | 
|  | /* | 
|  | * If the VM wasn't mapped yet, iterate over the vpes and get | 
|  | * them mapped now. | 
|  | */ | 
|  | vm->vlpi_count[its->list_nr]++; | 
|  |  | 
|  | if (vm->vlpi_count[its->list_nr] == 1) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vm->nr_vpes; i++) { | 
|  | struct its_vpe *vpe = vm->vpes[i]; | 
|  | struct irq_data *d = irq_get_irq_data(vpe->irq); | 
|  |  | 
|  | /* Map the VPE to the first possible CPU */ | 
|  | vpe->col_idx = cpumask_first(cpu_online_mask); | 
|  | its_send_vmapp(its, vpe, true); | 
|  | its_send_vinvall(its, vpe); | 
|  | irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
|  | } | 
|  |  | 
|  | static void its_unmap_vm(struct its_node *its, struct its_vm *vm) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Not using the ITS list? Everything is always mapped. */ | 
|  | if (gic_requires_eager_mapping()) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vmovp_lock, flags); | 
|  |  | 
|  | if (!--vm->vlpi_count[its->list_nr]) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vm->nr_vpes; i++) | 
|  | its_send_vmapp(its, vm->vpes[i], false); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
|  | } | 
|  |  | 
|  | static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  | int ret = 0; | 
|  |  | 
|  | if (!info->map) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock(&its_dev->event_map.vlpi_lock); | 
|  |  | 
|  | if (!its_dev->event_map.vm) { | 
|  | struct its_vlpi_map *maps; | 
|  |  | 
|  | maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), | 
|  | GFP_ATOMIC); | 
|  | if (!maps) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | its_dev->event_map.vm = info->map->vm; | 
|  | its_dev->event_map.vlpi_maps = maps; | 
|  | } else if (its_dev->event_map.vm != info->map->vm) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Get our private copy of the mapping information */ | 
|  | its_dev->event_map.vlpi_maps[event] = *info->map; | 
|  |  | 
|  | if (irqd_is_forwarded_to_vcpu(d)) { | 
|  | /* Already mapped, move it around */ | 
|  | its_send_vmovi(its_dev, event); | 
|  | } else { | 
|  | /* Ensure all the VPEs are mapped on this ITS */ | 
|  | its_map_vm(its_dev->its, info->map->vm); | 
|  |  | 
|  | /* | 
|  | * Flag the interrupt as forwarded so that we can | 
|  | * start poking the virtual property table. | 
|  | */ | 
|  | irqd_set_forwarded_to_vcpu(d); | 
|  |  | 
|  | /* Write out the property to the prop table */ | 
|  | lpi_write_config(d, 0xff, info->map->properties); | 
|  |  | 
|  | /* Drop the physical mapping */ | 
|  | its_send_discard(its_dev, event); | 
|  |  | 
|  | /* and install the virtual one */ | 
|  | its_send_vmapti(its_dev, event); | 
|  |  | 
|  | /* Increment the number of VLPIs */ | 
|  | its_dev->event_map.nr_vlpis++; | 
|  | } | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock(&its_dev->event_map.vlpi_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | struct its_vlpi_map *map; | 
|  | int ret = 0; | 
|  |  | 
|  | raw_spin_lock(&its_dev->event_map.vlpi_lock); | 
|  |  | 
|  | map = get_vlpi_map(d); | 
|  |  | 
|  | if (!its_dev->event_map.vm || !map) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Copy our mapping information to the incoming request */ | 
|  | *info->map = *map; | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock(&its_dev->event_map.vlpi_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int its_vlpi_unmap(struct irq_data *d) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  | int ret = 0; | 
|  |  | 
|  | raw_spin_lock(&its_dev->event_map.vlpi_lock); | 
|  |  | 
|  | if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Drop the virtual mapping */ | 
|  | its_send_discard(its_dev, event); | 
|  |  | 
|  | /* and restore the physical one */ | 
|  | irqd_clr_forwarded_to_vcpu(d); | 
|  | its_send_mapti(its_dev, d->hwirq, event); | 
|  | lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | | 
|  | LPI_PROP_ENABLED | | 
|  | LPI_PROP_GROUP1)); | 
|  |  | 
|  | /* Potentially unmap the VM from this ITS */ | 
|  | its_unmap_vm(its_dev->its, its_dev->event_map.vm); | 
|  |  | 
|  | /* | 
|  | * Drop the refcount and make the device available again if | 
|  | * this was the last VLPI. | 
|  | */ | 
|  | if (!--its_dev->event_map.nr_vlpis) { | 
|  | its_dev->event_map.vm = NULL; | 
|  | kfree(its_dev->event_map.vlpi_maps); | 
|  | } | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock(&its_dev->event_map.vlpi_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) | 
|  | lpi_update_config(d, 0xff, info->config); | 
|  | else | 
|  | lpi_write_config(d, 0xff, info->config); | 
|  | its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | struct its_cmd_info *info = vcpu_info; | 
|  |  | 
|  | /* Need a v4 ITS */ | 
|  | if (!is_v4(its_dev->its)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Unmap request? */ | 
|  | if (!info) | 
|  | return its_vlpi_unmap(d); | 
|  |  | 
|  | switch (info->cmd_type) { | 
|  | case MAP_VLPI: | 
|  | return its_vlpi_map(d, info); | 
|  |  | 
|  | case GET_VLPI: | 
|  | return its_vlpi_get(d, info); | 
|  |  | 
|  | case PROP_UPDATE_VLPI: | 
|  | case PROP_UPDATE_AND_INV_VLPI: | 
|  | return its_vlpi_prop_update(d, info); | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct irq_chip its_irq_chip = { | 
|  | .name			= "ITS", | 
|  | .irq_mask		= its_mask_irq, | 
|  | .irq_unmask		= its_unmask_irq, | 
|  | .irq_eoi		= irq_chip_eoi_parent, | 
|  | .irq_set_affinity	= its_set_affinity, | 
|  | .irq_compose_msi_msg	= its_irq_compose_msi_msg, | 
|  | .irq_set_irqchip_state	= its_irq_set_irqchip_state, | 
|  | .irq_retrigger		= its_irq_retrigger, | 
|  | .irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * How we allocate LPIs: | 
|  | * | 
|  | * lpi_range_list contains ranges of LPIs that are to available to | 
|  | * allocate from. To allocate LPIs, just pick the first range that | 
|  | * fits the required allocation, and reduce it by the required | 
|  | * amount. Once empty, remove the range from the list. | 
|  | * | 
|  | * To free a range of LPIs, add a free range to the list, sort it and | 
|  | * merge the result if the new range happens to be adjacent to an | 
|  | * already free block. | 
|  | * | 
|  | * The consequence of the above is that allocation is cost is low, but | 
|  | * freeing is expensive. We assumes that freeing rarely occurs. | 
|  | */ | 
|  | #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */ | 
|  |  | 
|  | static DEFINE_MUTEX(lpi_range_lock); | 
|  | static LIST_HEAD(lpi_range_list); | 
|  |  | 
|  | struct lpi_range { | 
|  | struct list_head	entry; | 
|  | u32			base_id; | 
|  | u32			span; | 
|  | }; | 
|  |  | 
|  | static struct lpi_range *mk_lpi_range(u32 base, u32 span) | 
|  | { | 
|  | struct lpi_range *range; | 
|  |  | 
|  | range = kmalloc(sizeof(*range), GFP_KERNEL); | 
|  | if (range) { | 
|  | range->base_id = base; | 
|  | range->span = span; | 
|  | } | 
|  |  | 
|  | return range; | 
|  | } | 
|  |  | 
|  | static int alloc_lpi_range(u32 nr_lpis, u32 *base) | 
|  | { | 
|  | struct lpi_range *range, *tmp; | 
|  | int err = -ENOSPC; | 
|  |  | 
|  | mutex_lock(&lpi_range_lock); | 
|  |  | 
|  | list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { | 
|  | if (range->span >= nr_lpis) { | 
|  | *base = range->base_id; | 
|  | range->base_id += nr_lpis; | 
|  | range->span -= nr_lpis; | 
|  |  | 
|  | if (range->span == 0) { | 
|  | list_del(&range->entry); | 
|  | kfree(range); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&lpi_range_lock); | 
|  |  | 
|  | pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) | 
|  | { | 
|  | if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) | 
|  | return; | 
|  | if (a->base_id + a->span != b->base_id) | 
|  | return; | 
|  | b->base_id = a->base_id; | 
|  | b->span += a->span; | 
|  | list_del(&a->entry); | 
|  | kfree(a); | 
|  | } | 
|  |  | 
|  | static int free_lpi_range(u32 base, u32 nr_lpis) | 
|  | { | 
|  | struct lpi_range *new, *old; | 
|  |  | 
|  | new = mk_lpi_range(base, nr_lpis); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&lpi_range_lock); | 
|  |  | 
|  | list_for_each_entry_reverse(old, &lpi_range_list, entry) { | 
|  | if (old->base_id < base) | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * old is the last element with ->base_id smaller than base, | 
|  | * so new goes right after it. If there are no elements with | 
|  | * ->base_id smaller than base, &old->entry ends up pointing | 
|  | * at the head of the list, and inserting new it the start of | 
|  | * the list is the right thing to do in that case as well. | 
|  | */ | 
|  | list_add(&new->entry, &old->entry); | 
|  | /* | 
|  | * Now check if we can merge with the preceding and/or | 
|  | * following ranges. | 
|  | */ | 
|  | merge_lpi_ranges(old, new); | 
|  | merge_lpi_ranges(new, list_next_entry(new, entry)); | 
|  |  | 
|  | mutex_unlock(&lpi_range_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init its_lpi_init(u32 id_bits) | 
|  | { | 
|  | u32 lpis = (1UL << id_bits) - 8192; | 
|  | u32 numlpis; | 
|  | int err; | 
|  |  | 
|  | numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); | 
|  |  | 
|  | if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { | 
|  | lpis = numlpis; | 
|  | pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", | 
|  | lpis); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initializing the allocator is just the same as freeing the | 
|  | * full range of LPIs. | 
|  | */ | 
|  | err = free_lpi_range(8192, lpis); | 
|  | pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) | 
|  | { | 
|  | unsigned long *bitmap = NULL; | 
|  | int err = 0; | 
|  |  | 
|  | do { | 
|  | err = alloc_lpi_range(nr_irqs, base); | 
|  | if (!err) | 
|  | break; | 
|  |  | 
|  | nr_irqs /= 2; | 
|  | } while (nr_irqs > 0); | 
|  |  | 
|  | if (!nr_irqs) | 
|  | err = -ENOSPC; | 
|  |  | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); | 
|  | if (!bitmap) | 
|  | goto out; | 
|  |  | 
|  | *nr_ids = nr_irqs; | 
|  |  | 
|  | out: | 
|  | if (!bitmap) | 
|  | *base = *nr_ids = 0; | 
|  |  | 
|  | return bitmap; | 
|  | } | 
|  |  | 
|  | static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) | 
|  | { | 
|  | WARN_ON(free_lpi_range(base, nr_ids)); | 
|  | bitmap_free(bitmap); | 
|  | } | 
|  |  | 
|  | static void gic_reset_prop_table(void *va) | 
|  | { | 
|  | /* Priority 0xa0, Group-1, disabled */ | 
|  | memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); | 
|  |  | 
|  | /* Make sure the GIC will observe the written configuration */ | 
|  | gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); | 
|  | } | 
|  |  | 
|  | static struct page *its_allocate_prop_table(gfp_t gfp_flags) | 
|  | { | 
|  | struct page *prop_page; | 
|  |  | 
|  | prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); | 
|  | if (!prop_page) | 
|  | return NULL; | 
|  |  | 
|  | gic_reset_prop_table(page_address(prop_page)); | 
|  |  | 
|  | return prop_page; | 
|  | } | 
|  |  | 
|  | static void its_free_prop_table(struct page *prop_page) | 
|  | { | 
|  | free_pages((unsigned long)page_address(prop_page), | 
|  | get_order(LPI_PROPBASE_SZ)); | 
|  | } | 
|  |  | 
|  | static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) | 
|  | { | 
|  | phys_addr_t start, end, addr_end; | 
|  | u64 i; | 
|  |  | 
|  | /* | 
|  | * We don't bother checking for a kdump kernel as by | 
|  | * construction, the LPI tables are out of this kernel's | 
|  | * memory map. | 
|  | */ | 
|  | if (is_kdump_kernel()) | 
|  | return true; | 
|  |  | 
|  | addr_end = addr + size - 1; | 
|  |  | 
|  | for_each_reserved_mem_range(i, &start, &end) { | 
|  | if (addr >= start && addr_end <= end) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Not found, not a good sign... */ | 
|  | pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", | 
|  | &addr, &addr_end); | 
|  | add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int gic_reserve_range(phys_addr_t addr, unsigned long size) | 
|  | { | 
|  | if (efi_enabled(EFI_CONFIG_TABLES)) | 
|  | return efi_mem_reserve_persistent(addr, size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init its_setup_lpi_prop_table(void) | 
|  | { | 
|  | if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { | 
|  | u64 val; | 
|  |  | 
|  | val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); | 
|  | lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; | 
|  |  | 
|  | gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); | 
|  | gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, | 
|  | LPI_PROPBASE_SZ, | 
|  | MEMREMAP_WB); | 
|  | gic_reset_prop_table(gic_rdists->prop_table_va); | 
|  | } else { | 
|  | struct page *page; | 
|  |  | 
|  | lpi_id_bits = min_t(u32, | 
|  | GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), | 
|  | ITS_MAX_LPI_NRBITS); | 
|  | page = its_allocate_prop_table(GFP_NOWAIT); | 
|  | if (!page) { | 
|  | pr_err("Failed to allocate PROPBASE\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | gic_rdists->prop_table_pa = page_to_phys(page); | 
|  | gic_rdists->prop_table_va = page_address(page); | 
|  | WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, | 
|  | LPI_PROPBASE_SZ)); | 
|  | } | 
|  |  | 
|  | pr_info("GICv3: using LPI property table @%pa\n", | 
|  | &gic_rdists->prop_table_pa); | 
|  |  | 
|  | return its_lpi_init(lpi_id_bits); | 
|  | } | 
|  |  | 
|  | static const char *its_base_type_string[] = { | 
|  | [GITS_BASER_TYPE_DEVICE]	= "Devices", | 
|  | [GITS_BASER_TYPE_VCPU]		= "Virtual CPUs", | 
|  | [GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)", | 
|  | [GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections", | 
|  | [GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)", | 
|  | [GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)", | 
|  | [GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)", | 
|  | }; | 
|  |  | 
|  | static u64 its_read_baser(struct its_node *its, struct its_baser *baser) | 
|  | { | 
|  | u32 idx = baser - its->tables; | 
|  |  | 
|  | return gits_read_baser(its->base + GITS_BASER + (idx << 3)); | 
|  | } | 
|  |  | 
|  | static void its_write_baser(struct its_node *its, struct its_baser *baser, | 
|  | u64 val) | 
|  | { | 
|  | u32 idx = baser - its->tables; | 
|  |  | 
|  | gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); | 
|  | baser->val = its_read_baser(its, baser); | 
|  | } | 
|  |  | 
|  | static int its_setup_baser(struct its_node *its, struct its_baser *baser, | 
|  | u64 cache, u64 shr, u32 order, bool indirect) | 
|  | { | 
|  | u64 val = its_read_baser(its, baser); | 
|  | u64 esz = GITS_BASER_ENTRY_SIZE(val); | 
|  | u64 type = GITS_BASER_TYPE(val); | 
|  | u64 baser_phys, tmp; | 
|  | u32 alloc_pages, psz; | 
|  | struct page *page; | 
|  | void *base; | 
|  |  | 
|  | psz = baser->psz; | 
|  | alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); | 
|  | if (alloc_pages > GITS_BASER_PAGES_MAX) { | 
|  | pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", | 
|  | &its->phys_base, its_base_type_string[type], | 
|  | alloc_pages, GITS_BASER_PAGES_MAX); | 
|  | alloc_pages = GITS_BASER_PAGES_MAX; | 
|  | order = get_order(GITS_BASER_PAGES_MAX * psz); | 
|  | } | 
|  |  | 
|  | page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | base = (void *)page_address(page); | 
|  | baser_phys = virt_to_phys(base); | 
|  |  | 
|  | /* Check if the physical address of the memory is above 48bits */ | 
|  | if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { | 
|  |  | 
|  | /* 52bit PA is supported only when PageSize=64K */ | 
|  | if (psz != SZ_64K) { | 
|  | pr_err("ITS: no 52bit PA support when psz=%d\n", psz); | 
|  | free_pages((unsigned long)base, order); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Convert 52bit PA to 48bit field */ | 
|  | baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); | 
|  | } | 
|  |  | 
|  | retry_baser: | 
|  | val = (baser_phys					 | | 
|  | (type << GITS_BASER_TYPE_SHIFT)			 | | 
|  | ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 | | 
|  | ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 | | 
|  | cache						 | | 
|  | shr						 | | 
|  | GITS_BASER_VALID); | 
|  |  | 
|  | val |=	indirect ? GITS_BASER_INDIRECT : 0x0; | 
|  |  | 
|  | switch (psz) { | 
|  | case SZ_4K: | 
|  | val |= GITS_BASER_PAGE_SIZE_4K; | 
|  | break; | 
|  | case SZ_16K: | 
|  | val |= GITS_BASER_PAGE_SIZE_16K; | 
|  | break; | 
|  | case SZ_64K: | 
|  | val |= GITS_BASER_PAGE_SIZE_64K; | 
|  | break; | 
|  | } | 
|  |  | 
|  | its_write_baser(its, baser, val); | 
|  | tmp = baser->val; | 
|  |  | 
|  | if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { | 
|  | /* | 
|  | * Shareability didn't stick. Just use | 
|  | * whatever the read reported, which is likely | 
|  | * to be the only thing this redistributor | 
|  | * supports. If that's zero, make it | 
|  | * non-cacheable as well. | 
|  | */ | 
|  | shr = tmp & GITS_BASER_SHAREABILITY_MASK; | 
|  | if (!shr) { | 
|  | cache = GITS_BASER_nC; | 
|  | gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); | 
|  | } | 
|  | goto retry_baser; | 
|  | } | 
|  |  | 
|  | if (val != tmp) { | 
|  | pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", | 
|  | &its->phys_base, its_base_type_string[type], | 
|  | val, tmp); | 
|  | free_pages((unsigned long)base, order); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | baser->order = order; | 
|  | baser->base = base; | 
|  | baser->psz = psz; | 
|  | tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; | 
|  |  | 
|  | pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", | 
|  | &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), | 
|  | its_base_type_string[type], | 
|  | (unsigned long)virt_to_phys(base), | 
|  | indirect ? "indirect" : "flat", (int)esz, | 
|  | psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool its_parse_indirect_baser(struct its_node *its, | 
|  | struct its_baser *baser, | 
|  | u32 *order, u32 ids) | 
|  | { | 
|  | u64 tmp = its_read_baser(its, baser); | 
|  | u64 type = GITS_BASER_TYPE(tmp); | 
|  | u64 esz = GITS_BASER_ENTRY_SIZE(tmp); | 
|  | u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; | 
|  | u32 new_order = *order; | 
|  | u32 psz = baser->psz; | 
|  | bool indirect = false; | 
|  |  | 
|  | /* No need to enable Indirection if memory requirement < (psz*2)bytes */ | 
|  | if ((esz << ids) > (psz * 2)) { | 
|  | /* | 
|  | * Find out whether hw supports a single or two-level table by | 
|  | * table by reading bit at offset '62' after writing '1' to it. | 
|  | */ | 
|  | its_write_baser(its, baser, val | GITS_BASER_INDIRECT); | 
|  | indirect = !!(baser->val & GITS_BASER_INDIRECT); | 
|  |  | 
|  | if (indirect) { | 
|  | /* | 
|  | * The size of the lvl2 table is equal to ITS page size | 
|  | * which is 'psz'. For computing lvl1 table size, | 
|  | * subtract ID bits that sparse lvl2 table from 'ids' | 
|  | * which is reported by ITS hardware times lvl1 table | 
|  | * entry size. | 
|  | */ | 
|  | ids -= ilog2(psz / (int)esz); | 
|  | esz = GITS_LVL1_ENTRY_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate as many entries as required to fit the | 
|  | * range of device IDs that the ITS can grok... The ID | 
|  | * space being incredibly sparse, this results in a | 
|  | * massive waste of memory if two-level device table | 
|  | * feature is not supported by hardware. | 
|  | */ | 
|  | new_order = max_t(u32, get_order(esz << ids), new_order); | 
|  | if (new_order >= MAX_ORDER) { | 
|  | new_order = MAX_ORDER - 1; | 
|  | ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); | 
|  | pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", | 
|  | &its->phys_base, its_base_type_string[type], | 
|  | device_ids(its), ids); | 
|  | } | 
|  |  | 
|  | *order = new_order; | 
|  |  | 
|  | return indirect; | 
|  | } | 
|  |  | 
|  | static u32 compute_common_aff(u64 val) | 
|  | { | 
|  | u32 aff, clpiaff; | 
|  |  | 
|  | aff = FIELD_GET(GICR_TYPER_AFFINITY, val); | 
|  | clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); | 
|  |  | 
|  | return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); | 
|  | } | 
|  |  | 
|  | static u32 compute_its_aff(struct its_node *its) | 
|  | { | 
|  | u64 val; | 
|  | u32 svpet; | 
|  |  | 
|  | /* | 
|  | * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute | 
|  | * the resulting affinity. We then use that to see if this match | 
|  | * our own affinity. | 
|  | */ | 
|  | svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); | 
|  | val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); | 
|  | val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); | 
|  | return compute_common_aff(val); | 
|  | } | 
|  |  | 
|  | static struct its_node *find_sibling_its(struct its_node *cur_its) | 
|  | { | 
|  | struct its_node *its; | 
|  | u32 aff; | 
|  |  | 
|  | if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) | 
|  | return NULL; | 
|  |  | 
|  | aff = compute_its_aff(cur_its); | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | u64 baser; | 
|  |  | 
|  | if (!is_v4_1(its) || its == cur_its) | 
|  | continue; | 
|  |  | 
|  | if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) | 
|  | continue; | 
|  |  | 
|  | if (aff != compute_its_aff(its)) | 
|  | continue; | 
|  |  | 
|  | /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ | 
|  | baser = its->tables[2].val; | 
|  | if (!(baser & GITS_BASER_VALID)) | 
|  | continue; | 
|  |  | 
|  | return its; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void its_free_tables(struct its_node *its) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
|  | if (its->tables[i].base) { | 
|  | free_pages((unsigned long)its->tables[i].base, | 
|  | its->tables[i].order); | 
|  | its->tables[i].base = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) | 
|  | { | 
|  | u64 psz = SZ_64K; | 
|  |  | 
|  | while (psz) { | 
|  | u64 val, gpsz; | 
|  |  | 
|  | val = its_read_baser(its, baser); | 
|  | val &= ~GITS_BASER_PAGE_SIZE_MASK; | 
|  |  | 
|  | switch (psz) { | 
|  | case SZ_64K: | 
|  | gpsz = GITS_BASER_PAGE_SIZE_64K; | 
|  | break; | 
|  | case SZ_16K: | 
|  | gpsz = GITS_BASER_PAGE_SIZE_16K; | 
|  | break; | 
|  | case SZ_4K: | 
|  | default: | 
|  | gpsz = GITS_BASER_PAGE_SIZE_4K; | 
|  | break; | 
|  | } | 
|  |  | 
|  | gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; | 
|  |  | 
|  | val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); | 
|  | its_write_baser(its, baser, val); | 
|  |  | 
|  | if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) | 
|  | break; | 
|  |  | 
|  | switch (psz) { | 
|  | case SZ_64K: | 
|  | psz = SZ_16K; | 
|  | break; | 
|  | case SZ_16K: | 
|  | psz = SZ_4K; | 
|  | break; | 
|  | case SZ_4K: | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | baser->psz = psz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_alloc_tables(struct its_node *its) | 
|  | { | 
|  | u64 shr = GITS_BASER_InnerShareable; | 
|  | u64 cache = GITS_BASER_RaWaWb; | 
|  | int err, i; | 
|  |  | 
|  | if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) | 
|  | /* erratum 24313: ignore memory access type */ | 
|  | cache = GITS_BASER_nCnB; | 
|  |  | 
|  | for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
|  | struct its_baser *baser = its->tables + i; | 
|  | u64 val = its_read_baser(its, baser); | 
|  | u64 type = GITS_BASER_TYPE(val); | 
|  | bool indirect = false; | 
|  | u32 order; | 
|  |  | 
|  | if (type == GITS_BASER_TYPE_NONE) | 
|  | continue; | 
|  |  | 
|  | if (its_probe_baser_psz(its, baser)) { | 
|  | its_free_tables(its); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | order = get_order(baser->psz); | 
|  |  | 
|  | switch (type) { | 
|  | case GITS_BASER_TYPE_DEVICE: | 
|  | indirect = its_parse_indirect_baser(its, baser, &order, | 
|  | device_ids(its)); | 
|  | break; | 
|  |  | 
|  | case GITS_BASER_TYPE_VCPU: | 
|  | if (is_v4_1(its)) { | 
|  | struct its_node *sibling; | 
|  |  | 
|  | WARN_ON(i != 2); | 
|  | if ((sibling = find_sibling_its(its))) { | 
|  | *baser = sibling->tables[2]; | 
|  | its_write_baser(its, baser, baser->val); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | indirect = its_parse_indirect_baser(its, baser, &order, | 
|  | ITS_MAX_VPEID_BITS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | err = its_setup_baser(its, baser, cache, shr, order, indirect); | 
|  | if (err < 0) { | 
|  | its_free_tables(its); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Update settings which will be used for next BASERn */ | 
|  | cache = baser->val & GITS_BASER_CACHEABILITY_MASK; | 
|  | shr = baser->val & GITS_BASER_SHAREABILITY_MASK; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 inherit_vpe_l1_table_from_its(void) | 
|  | { | 
|  | struct its_node *its; | 
|  | u64 val; | 
|  | u32 aff; | 
|  |  | 
|  | val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
|  | aff = compute_common_aff(val); | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | u64 baser, addr; | 
|  |  | 
|  | if (!is_v4_1(its)) | 
|  | continue; | 
|  |  | 
|  | if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) | 
|  | continue; | 
|  |  | 
|  | if (aff != compute_its_aff(its)) | 
|  | continue; | 
|  |  | 
|  | /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ | 
|  | baser = its->tables[2].val; | 
|  | if (!(baser & GITS_BASER_VALID)) | 
|  | continue; | 
|  |  | 
|  | /* We have a winner! */ | 
|  | gic_data_rdist()->vpe_l1_base = its->tables[2].base; | 
|  |  | 
|  | val  = GICR_VPROPBASER_4_1_VALID; | 
|  | if (baser & GITS_BASER_INDIRECT) | 
|  | val |= GICR_VPROPBASER_4_1_INDIRECT; | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, | 
|  | FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); | 
|  | switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { | 
|  | case GIC_PAGE_SIZE_64K: | 
|  | addr = GITS_BASER_ADDR_48_to_52(baser); | 
|  | break; | 
|  | default: | 
|  | addr = baser & GENMASK_ULL(47, 12); | 
|  | break; | 
|  | } | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, | 
|  | FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, | 
|  | FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) | 
|  | { | 
|  | u32 aff; | 
|  | u64 val; | 
|  | int cpu; | 
|  |  | 
|  | val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
|  | aff = compute_common_aff(val); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; | 
|  |  | 
|  | if (!base || cpu == smp_processor_id()) | 
|  | continue; | 
|  |  | 
|  | val = gic_read_typer(base + GICR_TYPER); | 
|  | if (aff != compute_common_aff(val)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * At this point, we have a victim. This particular CPU | 
|  | * has already booted, and has an affinity that matches | 
|  | * ours wrt CommonLPIAff. Let's use its own VPROPBASER. | 
|  | * Make sure we don't write the Z bit in that case. | 
|  | */ | 
|  | val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); | 
|  | val &= ~GICR_VPROPBASER_4_1_Z; | 
|  |  | 
|  | gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; | 
|  | *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool allocate_vpe_l2_table(int cpu, u32 id) | 
|  | { | 
|  | void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; | 
|  | unsigned int psz, esz, idx, npg, gpsz; | 
|  | u64 val; | 
|  | struct page *page; | 
|  | __le64 *table; | 
|  |  | 
|  | if (!gic_rdists->has_rvpeid) | 
|  | return true; | 
|  |  | 
|  | /* Skip non-present CPUs */ | 
|  | if (!base) | 
|  | return true; | 
|  |  | 
|  | val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); | 
|  |  | 
|  | esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; | 
|  | gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); | 
|  | npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; | 
|  |  | 
|  | switch (gpsz) { | 
|  | default: | 
|  | WARN_ON(1); | 
|  | fallthrough; | 
|  | case GIC_PAGE_SIZE_4K: | 
|  | psz = SZ_4K; | 
|  | break; | 
|  | case GIC_PAGE_SIZE_16K: | 
|  | psz = SZ_16K; | 
|  | break; | 
|  | case GIC_PAGE_SIZE_64K: | 
|  | psz = SZ_64K; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Don't allow vpe_id that exceeds single, flat table limit */ | 
|  | if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) | 
|  | return (id < (npg * psz / (esz * SZ_8))); | 
|  |  | 
|  | /* Compute 1st level table index & check if that exceeds table limit */ | 
|  | idx = id >> ilog2(psz / (esz * SZ_8)); | 
|  | if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) | 
|  | return false; | 
|  |  | 
|  | table = gic_data_rdist_cpu(cpu)->vpe_l1_base; | 
|  |  | 
|  | /* Allocate memory for 2nd level table */ | 
|  | if (!table[idx]) { | 
|  | page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); | 
|  | if (!page) | 
|  | return false; | 
|  |  | 
|  | /* Flush Lvl2 table to PoC if hw doesn't support coherency */ | 
|  | if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) | 
|  | gic_flush_dcache_to_poc(page_address(page), psz); | 
|  |  | 
|  | table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); | 
|  |  | 
|  | /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ | 
|  | if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) | 
|  | gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); | 
|  |  | 
|  | /* Ensure updated table contents are visible to RD hardware */ | 
|  | dsb(sy); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int allocate_vpe_l1_table(void) | 
|  | { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  | u64 val, gpsz, npg, pa; | 
|  | unsigned int psz = SZ_64K; | 
|  | unsigned int np, epp, esz; | 
|  | struct page *page; | 
|  |  | 
|  | if (!gic_rdists->has_rvpeid) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * if VPENDBASER.Valid is set, disable any previously programmed | 
|  | * VPE by setting PendingLast while clearing Valid. This has the | 
|  | * effect of making sure no doorbell will be generated and we can | 
|  | * then safely clear VPROPBASER.Valid. | 
|  | */ | 
|  | if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) | 
|  | gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, | 
|  | vlpi_base + GICR_VPENDBASER); | 
|  |  | 
|  | /* | 
|  | * If we can inherit the configuration from another RD, let's do | 
|  | * so. Otherwise, we have to go through the allocation process. We | 
|  | * assume that all RDs have the exact same requirements, as | 
|  | * nothing will work otherwise. | 
|  | */ | 
|  | val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); | 
|  | if (val & GICR_VPROPBASER_4_1_VALID) | 
|  | goto out; | 
|  |  | 
|  | gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); | 
|  | if (!gic_data_rdist()->vpe_table_mask) | 
|  | return -ENOMEM; | 
|  |  | 
|  | val = inherit_vpe_l1_table_from_its(); | 
|  | if (val & GICR_VPROPBASER_4_1_VALID) | 
|  | goto out; | 
|  |  | 
|  | /* First probe the page size */ | 
|  | val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); | 
|  | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
|  | val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); | 
|  | gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); | 
|  | esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); | 
|  |  | 
|  | switch (gpsz) { | 
|  | default: | 
|  | gpsz = GIC_PAGE_SIZE_4K; | 
|  | fallthrough; | 
|  | case GIC_PAGE_SIZE_4K: | 
|  | psz = SZ_4K; | 
|  | break; | 
|  | case GIC_PAGE_SIZE_16K: | 
|  | psz = SZ_16K; | 
|  | break; | 
|  | case GIC_PAGE_SIZE_64K: | 
|  | psz = SZ_64K; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start populating the register from scratch, including RO fields | 
|  | * (which we want to print in debug cases...) | 
|  | */ | 
|  | val = 0; | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); | 
|  |  | 
|  | /* How many entries per GIC page? */ | 
|  | esz++; | 
|  | epp = psz / (esz * SZ_8); | 
|  |  | 
|  | /* | 
|  | * If we need more than just a single L1 page, flag the table | 
|  | * as indirect and compute the number of required L1 pages. | 
|  | */ | 
|  | if (epp < ITS_MAX_VPEID) { | 
|  | int nl2; | 
|  |  | 
|  | val |= GICR_VPROPBASER_4_1_INDIRECT; | 
|  |  | 
|  | /* Number of L2 pages required to cover the VPEID space */ | 
|  | nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); | 
|  |  | 
|  | /* Number of L1 pages to point to the L2 pages */ | 
|  | npg = DIV_ROUND_UP(nl2 * SZ_8, psz); | 
|  | } else { | 
|  | npg = 1; | 
|  | } | 
|  |  | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); | 
|  |  | 
|  | /* Right, that's the number of CPU pages we need for L1 */ | 
|  | np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); | 
|  |  | 
|  | pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", | 
|  | np, npg, psz, epp, esz); | 
|  | page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | gic_data_rdist()->vpe_l1_base = page_address(page); | 
|  | pa = virt_to_phys(page_address(page)); | 
|  | WARN_ON(!IS_ALIGNED(pa, psz)); | 
|  |  | 
|  | val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); | 
|  | val |= GICR_VPROPBASER_RaWb; | 
|  | val |= GICR_VPROPBASER_InnerShareable; | 
|  | val |= GICR_VPROPBASER_4_1_Z; | 
|  | val |= GICR_VPROPBASER_4_1_VALID; | 
|  |  | 
|  | out: | 
|  | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
|  | cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); | 
|  |  | 
|  | pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", | 
|  | smp_processor_id(), val, | 
|  | cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_alloc_collections(struct its_node *its) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), | 
|  | GFP_KERNEL); | 
|  | if (!its->collections) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < nr_cpu_ids; i++) | 
|  | its->collections[i].target_address = ~0ULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page *its_allocate_pending_table(gfp_t gfp_flags) | 
|  | { | 
|  | struct page *pend_page; | 
|  |  | 
|  | pend_page = alloc_pages(gfp_flags | __GFP_ZERO, | 
|  | get_order(LPI_PENDBASE_SZ)); | 
|  | if (!pend_page) | 
|  | return NULL; | 
|  |  | 
|  | /* Make sure the GIC will observe the zero-ed page */ | 
|  | gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); | 
|  |  | 
|  | return pend_page; | 
|  | } | 
|  |  | 
|  | static void its_free_pending_table(struct page *pt) | 
|  | { | 
|  | free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Booting with kdump and LPIs enabled is generally fine. Any other | 
|  | * case is wrong in the absence of firmware/EFI support. | 
|  | */ | 
|  | static bool enabled_lpis_allowed(void) | 
|  | { | 
|  | phys_addr_t addr; | 
|  | u64 val; | 
|  |  | 
|  | /* Check whether the property table is in a reserved region */ | 
|  | val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); | 
|  | addr = val & GENMASK_ULL(51, 12); | 
|  |  | 
|  | return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); | 
|  | } | 
|  |  | 
|  | static int __init allocate_lpi_tables(void) | 
|  | { | 
|  | u64 val; | 
|  | int err, cpu; | 
|  |  | 
|  | /* | 
|  | * If LPIs are enabled while we run this from the boot CPU, | 
|  | * flag the RD tables as pre-allocated if the stars do align. | 
|  | */ | 
|  | val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); | 
|  | if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { | 
|  | gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | | 
|  | RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); | 
|  | pr_info("GICv3: Using preallocated redistributor tables\n"); | 
|  | } | 
|  |  | 
|  | err = its_setup_lpi_prop_table(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * We allocate all the pending tables anyway, as we may have a | 
|  | * mix of RDs that have had LPIs enabled, and some that | 
|  | * don't. We'll free the unused ones as each CPU comes online. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct page *pend_page; | 
|  |  | 
|  | pend_page = its_allocate_pending_table(GFP_NOWAIT); | 
|  | if (!pend_page) { | 
|  | pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | gic_data_rdist_cpu(cpu)->pend_page = pend_page; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) | 
|  | { | 
|  | u32 count = 1000000;	/* 1s! */ | 
|  | bool clean; | 
|  | u64 val; | 
|  |  | 
|  | do { | 
|  | val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
|  | clean = !(val & GICR_VPENDBASER_Dirty); | 
|  | if (!clean) { | 
|  | count--; | 
|  | cpu_relax(); | 
|  | udelay(1); | 
|  | } | 
|  | } while (!clean && count); | 
|  |  | 
|  | if (unlikely(!clean)) | 
|  | pr_err_ratelimited("ITS virtual pending table not cleaning\n"); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | /* Make sure we wait until the RD is done with the initial scan */ | 
|  | val = read_vpend_dirty_clear(vlpi_base); | 
|  | val &= ~GICR_VPENDBASER_Valid; | 
|  | val &= ~clr; | 
|  | val |= set; | 
|  | gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
|  |  | 
|  | val = read_vpend_dirty_clear(vlpi_base); | 
|  | if (unlikely(val & GICR_VPENDBASER_Dirty)) | 
|  | val |= GICR_VPENDBASER_PendingLast; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void its_cpu_init_lpis(void) | 
|  | { | 
|  | void __iomem *rbase = gic_data_rdist_rd_base(); | 
|  | struct page *pend_page; | 
|  | phys_addr_t paddr; | 
|  | u64 val, tmp; | 
|  |  | 
|  | if (gic_data_rdist()->lpi_enabled) | 
|  | return; | 
|  |  | 
|  | val = readl_relaxed(rbase + GICR_CTLR); | 
|  | if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && | 
|  | (val & GICR_CTLR_ENABLE_LPIS)) { | 
|  | /* | 
|  | * Check that we get the same property table on all | 
|  | * RDs. If we don't, this is hopeless. | 
|  | */ | 
|  | paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); | 
|  | paddr &= GENMASK_ULL(51, 12); | 
|  | if (WARN_ON(gic_rdists->prop_table_pa != paddr)) | 
|  | add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
|  |  | 
|  | paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); | 
|  | paddr &= GENMASK_ULL(51, 16); | 
|  |  | 
|  | WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); | 
|  | its_free_pending_table(gic_data_rdist()->pend_page); | 
|  | gic_data_rdist()->pend_page = NULL; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pend_page = gic_data_rdist()->pend_page; | 
|  | paddr = page_to_phys(pend_page); | 
|  | WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); | 
|  |  | 
|  | /* set PROPBASE */ | 
|  | val = (gic_rdists->prop_table_pa | | 
|  | GICR_PROPBASER_InnerShareable | | 
|  | GICR_PROPBASER_RaWaWb | | 
|  | ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); | 
|  |  | 
|  | gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
|  | tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); | 
|  |  | 
|  | if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { | 
|  | if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { | 
|  | /* | 
|  | * The HW reports non-shareable, we must | 
|  | * remove the cacheability attributes as | 
|  | * well. | 
|  | */ | 
|  | val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | | 
|  | GICR_PROPBASER_CACHEABILITY_MASK); | 
|  | val |= GICR_PROPBASER_nC; | 
|  | gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
|  | } | 
|  | pr_info_once("GIC: using cache flushing for LPI property table\n"); | 
|  | gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; | 
|  | } | 
|  |  | 
|  | /* set PENDBASE */ | 
|  | val = (page_to_phys(pend_page) | | 
|  | GICR_PENDBASER_InnerShareable | | 
|  | GICR_PENDBASER_RaWaWb); | 
|  |  | 
|  | gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
|  | tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); | 
|  |  | 
|  | if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { | 
|  | /* | 
|  | * The HW reports non-shareable, we must remove the | 
|  | * cacheability attributes as well. | 
|  | */ | 
|  | val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | | 
|  | GICR_PENDBASER_CACHEABILITY_MASK); | 
|  | val |= GICR_PENDBASER_nC; | 
|  | gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
|  | } | 
|  |  | 
|  | /* Enable LPIs */ | 
|  | val = readl_relaxed(rbase + GICR_CTLR); | 
|  | val |= GICR_CTLR_ENABLE_LPIS; | 
|  | writel_relaxed(val, rbase + GICR_CTLR); | 
|  |  | 
|  | if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  |  | 
|  | /* | 
|  | * It's possible for CPU to receive VLPIs before it is | 
|  | * scheduled as a vPE, especially for the first CPU, and the | 
|  | * VLPI with INTID larger than 2^(IDbits+1) will be considered | 
|  | * as out of range and dropped by GIC. | 
|  | * So we initialize IDbits to known value to avoid VLPI drop. | 
|  | */ | 
|  | val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
|  | pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", | 
|  | smp_processor_id(), val); | 
|  | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
|  |  | 
|  | /* | 
|  | * Also clear Valid bit of GICR_VPENDBASER, in case some | 
|  | * ancient programming gets left in and has possibility of | 
|  | * corrupting memory. | 
|  | */ | 
|  | val = its_clear_vpend_valid(vlpi_base, 0, 0); | 
|  | } | 
|  |  | 
|  | if (allocate_vpe_l1_table()) { | 
|  | /* | 
|  | * If the allocation has failed, we're in massive trouble. | 
|  | * Disable direct injection, and pray that no VM was | 
|  | * already running... | 
|  | */ | 
|  | gic_rdists->has_rvpeid = false; | 
|  | gic_rdists->has_vlpis = false; | 
|  | } | 
|  |  | 
|  | /* Make sure the GIC has seen the above */ | 
|  | dsb(sy); | 
|  | out: | 
|  | gic_data_rdist()->lpi_enabled = true; | 
|  | pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", | 
|  | smp_processor_id(), | 
|  | gic_data_rdist()->pend_page ? "allocated" : "reserved", | 
|  | &paddr); | 
|  | } | 
|  |  | 
|  | static void its_cpu_init_collection(struct its_node *its) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | u64 target; | 
|  |  | 
|  | /* avoid cross node collections and its mapping */ | 
|  | if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { | 
|  | struct device_node *cpu_node; | 
|  |  | 
|  | cpu_node = of_get_cpu_node(cpu, NULL); | 
|  | if (its->numa_node != NUMA_NO_NODE && | 
|  | its->numa_node != of_node_to_nid(cpu_node)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We now have to bind each collection to its target | 
|  | * redistributor. | 
|  | */ | 
|  | if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { | 
|  | /* | 
|  | * This ITS wants the physical address of the | 
|  | * redistributor. | 
|  | */ | 
|  | target = gic_data_rdist()->phys_base; | 
|  | } else { | 
|  | /* This ITS wants a linear CPU number. */ | 
|  | target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
|  | target = GICR_TYPER_CPU_NUMBER(target) << 16; | 
|  | } | 
|  |  | 
|  | /* Perform collection mapping */ | 
|  | its->collections[cpu].target_address = target; | 
|  | its->collections[cpu].col_id = cpu; | 
|  |  | 
|  | its_send_mapc(its, &its->collections[cpu], 1); | 
|  | its_send_invall(its, &its->collections[cpu]); | 
|  | } | 
|  |  | 
|  | static void its_cpu_init_collections(void) | 
|  | { | 
|  | struct its_node *its; | 
|  |  | 
|  | raw_spin_lock(&its_lock); | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) | 
|  | its_cpu_init_collection(its); | 
|  |  | 
|  | raw_spin_unlock(&its_lock); | 
|  | } | 
|  |  | 
|  | static struct its_device *its_find_device(struct its_node *its, u32 dev_id) | 
|  | { | 
|  | struct its_device *its_dev = NULL, *tmp; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&its->lock, flags); | 
|  |  | 
|  | list_for_each_entry(tmp, &its->its_device_list, entry) { | 
|  | if (tmp->device_id == dev_id) { | 
|  | its_dev = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&its->lock, flags); | 
|  |  | 
|  | return its_dev; | 
|  | } | 
|  |  | 
|  | static struct its_baser *its_get_baser(struct its_node *its, u32 type) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
|  | if (GITS_BASER_TYPE(its->tables[i].val) == type) | 
|  | return &its->tables[i]; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool its_alloc_table_entry(struct its_node *its, | 
|  | struct its_baser *baser, u32 id) | 
|  | { | 
|  | struct page *page; | 
|  | u32 esz, idx; | 
|  | __le64 *table; | 
|  |  | 
|  | /* Don't allow device id that exceeds single, flat table limit */ | 
|  | esz = GITS_BASER_ENTRY_SIZE(baser->val); | 
|  | if (!(baser->val & GITS_BASER_INDIRECT)) | 
|  | return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); | 
|  |  | 
|  | /* Compute 1st level table index & check if that exceeds table limit */ | 
|  | idx = id >> ilog2(baser->psz / esz); | 
|  | if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) | 
|  | return false; | 
|  |  | 
|  | table = baser->base; | 
|  |  | 
|  | /* Allocate memory for 2nd level table */ | 
|  | if (!table[idx]) { | 
|  | page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, | 
|  | get_order(baser->psz)); | 
|  | if (!page) | 
|  | return false; | 
|  |  | 
|  | /* Flush Lvl2 table to PoC if hw doesn't support coherency */ | 
|  | if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
|  | gic_flush_dcache_to_poc(page_address(page), baser->psz); | 
|  |  | 
|  | table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); | 
|  |  | 
|  | /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ | 
|  | if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
|  | gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); | 
|  |  | 
|  | /* Ensure updated table contents are visible to ITS hardware */ | 
|  | dsb(sy); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool its_alloc_device_table(struct its_node *its, u32 dev_id) | 
|  | { | 
|  | struct its_baser *baser; | 
|  |  | 
|  | baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); | 
|  |  | 
|  | /* Don't allow device id that exceeds ITS hardware limit */ | 
|  | if (!baser) | 
|  | return (ilog2(dev_id) < device_ids(its)); | 
|  |  | 
|  | return its_alloc_table_entry(its, baser, dev_id); | 
|  | } | 
|  |  | 
|  | static bool its_alloc_vpe_table(u32 vpe_id) | 
|  | { | 
|  | struct its_node *its; | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * Make sure the L2 tables are allocated on *all* v4 ITSs. We | 
|  | * could try and only do it on ITSs corresponding to devices | 
|  | * that have interrupts targeted at this VPE, but the | 
|  | * complexity becomes crazy (and you have tons of memory | 
|  | * anyway, right?). | 
|  | */ | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | struct its_baser *baser; | 
|  |  | 
|  | if (!is_v4(its)) | 
|  | continue; | 
|  |  | 
|  | baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); | 
|  | if (!baser) | 
|  | return false; | 
|  |  | 
|  | if (!its_alloc_table_entry(its, baser, vpe_id)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Non v4.1? No need to iterate RDs and go back early. */ | 
|  | if (!gic_rdists->has_rvpeid) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Make sure the L2 tables are allocated for all copies of | 
|  | * the L1 table on *all* v4.1 RDs. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (!allocate_vpe_l2_table(cpu, vpe_id)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct its_device *its_create_device(struct its_node *its, u32 dev_id, | 
|  | int nvecs, bool alloc_lpis) | 
|  | { | 
|  | struct its_device *dev; | 
|  | unsigned long *lpi_map = NULL; | 
|  | unsigned long flags; | 
|  | u16 *col_map = NULL; | 
|  | void *itt; | 
|  | int lpi_base; | 
|  | int nr_lpis; | 
|  | int nr_ites; | 
|  | int sz; | 
|  |  | 
|  | if (!its_alloc_device_table(its, dev_id)) | 
|  | return NULL; | 
|  |  | 
|  | if (WARN_ON(!is_power_of_2(nvecs))) | 
|  | nvecs = roundup_pow_of_two(nvecs); | 
|  |  | 
|  | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
|  | /* | 
|  | * Even if the device wants a single LPI, the ITT must be | 
|  | * sized as a power of two (and you need at least one bit...). | 
|  | */ | 
|  | nr_ites = max(2, nvecs); | 
|  | sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); | 
|  | sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; | 
|  | itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); | 
|  | if (alloc_lpis) { | 
|  | lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); | 
|  | if (lpi_map) | 
|  | col_map = kcalloc(nr_lpis, sizeof(*col_map), | 
|  | GFP_KERNEL); | 
|  | } else { | 
|  | col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); | 
|  | nr_lpis = 0; | 
|  | lpi_base = 0; | 
|  | } | 
|  |  | 
|  | if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) { | 
|  | kfree(dev); | 
|  | kfree(itt); | 
|  | bitmap_free(lpi_map); | 
|  | kfree(col_map); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | gic_flush_dcache_to_poc(itt, sz); | 
|  |  | 
|  | dev->its = its; | 
|  | dev->itt = itt; | 
|  | dev->nr_ites = nr_ites; | 
|  | dev->event_map.lpi_map = lpi_map; | 
|  | dev->event_map.col_map = col_map; | 
|  | dev->event_map.lpi_base = lpi_base; | 
|  | dev->event_map.nr_lpis = nr_lpis; | 
|  | raw_spin_lock_init(&dev->event_map.vlpi_lock); | 
|  | dev->device_id = dev_id; | 
|  | INIT_LIST_HEAD(&dev->entry); | 
|  |  | 
|  | raw_spin_lock_irqsave(&its->lock, flags); | 
|  | list_add(&dev->entry, &its->its_device_list); | 
|  | raw_spin_unlock_irqrestore(&its->lock, flags); | 
|  |  | 
|  | /* Map device to its ITT */ | 
|  | its_send_mapd(dev, 1); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static void its_free_device(struct its_device *its_dev) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&its_dev->its->lock, flags); | 
|  | list_del(&its_dev->entry); | 
|  | raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); | 
|  | kfree(its_dev->event_map.col_map); | 
|  | kfree(its_dev->itt); | 
|  | kfree(its_dev); | 
|  | } | 
|  |  | 
|  | static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | /* Find a free LPI region in lpi_map and allocate them. */ | 
|  | idx = bitmap_find_free_region(dev->event_map.lpi_map, | 
|  | dev->event_map.nr_lpis, | 
|  | get_count_order(nvecs)); | 
|  | if (idx < 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | *hwirq = dev->event_map.lpi_base + idx; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_msi_prepare(struct irq_domain *domain, struct device *dev, | 
|  | int nvec, msi_alloc_info_t *info) | 
|  | { | 
|  | struct its_node *its; | 
|  | struct its_device *its_dev; | 
|  | struct msi_domain_info *msi_info; | 
|  | u32 dev_id; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * We ignore "dev" entirely, and rely on the dev_id that has | 
|  | * been passed via the scratchpad. This limits this domain's | 
|  | * usefulness to upper layers that definitely know that they | 
|  | * are built on top of the ITS. | 
|  | */ | 
|  | dev_id = info->scratchpad[0].ul; | 
|  |  | 
|  | msi_info = msi_get_domain_info(domain); | 
|  | its = msi_info->data; | 
|  |  | 
|  | if (!gic_rdists->has_direct_lpi && | 
|  | vpe_proxy.dev && | 
|  | vpe_proxy.dev->its == its && | 
|  | dev_id == vpe_proxy.dev->device_id) { | 
|  | /* Bad luck. Get yourself a better implementation */ | 
|  | WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", | 
|  | dev_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mutex_lock(&its->dev_alloc_lock); | 
|  | its_dev = its_find_device(its, dev_id); | 
|  | if (its_dev) { | 
|  | /* | 
|  | * We already have seen this ID, probably through | 
|  | * another alias (PCI bridge of some sort). No need to | 
|  | * create the device. | 
|  | */ | 
|  | its_dev->shared = true; | 
|  | pr_debug("Reusing ITT for devID %x\n", dev_id); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | its_dev = its_create_device(its, dev_id, nvec, true); | 
|  | if (!its_dev) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) | 
|  | its_dev->shared = true; | 
|  |  | 
|  | pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); | 
|  | out: | 
|  | mutex_unlock(&its->dev_alloc_lock); | 
|  | info->scratchpad[0].ptr = its_dev; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct msi_domain_ops its_msi_domain_ops = { | 
|  | .msi_prepare	= its_msi_prepare, | 
|  | }; | 
|  |  | 
|  | static int its_irq_gic_domain_alloc(struct irq_domain *domain, | 
|  | unsigned int virq, | 
|  | irq_hw_number_t hwirq) | 
|  | { | 
|  | struct irq_fwspec fwspec; | 
|  |  | 
|  | if (irq_domain_get_of_node(domain->parent)) { | 
|  | fwspec.fwnode = domain->parent->fwnode; | 
|  | fwspec.param_count = 3; | 
|  | fwspec.param[0] = GIC_IRQ_TYPE_LPI; | 
|  | fwspec.param[1] = hwirq; | 
|  | fwspec.param[2] = IRQ_TYPE_EDGE_RISING; | 
|  | } else if (is_fwnode_irqchip(domain->parent->fwnode)) { | 
|  | fwspec.fwnode = domain->parent->fwnode; | 
|  | fwspec.param_count = 2; | 
|  | fwspec.param[0] = hwirq; | 
|  | fwspec.param[1] = IRQ_TYPE_EDGE_RISING; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); | 
|  | } | 
|  |  | 
|  | static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
|  | unsigned int nr_irqs, void *args) | 
|  | { | 
|  | msi_alloc_info_t *info = args; | 
|  | struct its_device *its_dev = info->scratchpad[0].ptr; | 
|  | struct its_node *its = its_dev->its; | 
|  | struct irq_data *irqd; | 
|  | irq_hw_number_t hwirq; | 
|  | int err; | 
|  | int i; | 
|  |  | 
|  | err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | irq_domain_set_hwirq_and_chip(domain, virq + i, | 
|  | hwirq + i, &its_irq_chip, its_dev); | 
|  | irqd = irq_get_irq_data(virq + i); | 
|  | irqd_set_single_target(irqd); | 
|  | irqd_set_affinity_on_activate(irqd); | 
|  | pr_debug("ID:%d pID:%d vID:%d\n", | 
|  | (int)(hwirq + i - its_dev->event_map.lpi_base), | 
|  | (int)(hwirq + i), virq + i); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_irq_domain_activate(struct irq_domain *domain, | 
|  | struct irq_data *d, bool reserve) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  | int cpu; | 
|  |  | 
|  | cpu = its_select_cpu(d, cpu_online_mask); | 
|  | if (cpu < 0 || cpu >= nr_cpu_ids) | 
|  | return -EINVAL; | 
|  |  | 
|  | its_inc_lpi_count(d, cpu); | 
|  | its_dev->event_map.col_map[event] = cpu; | 
|  | irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
|  |  | 
|  | /* Map the GIC IRQ and event to the device */ | 
|  | its_send_mapti(its_dev, d->hwirq, event); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void its_irq_domain_deactivate(struct irq_domain *domain, | 
|  | struct irq_data *d) | 
|  | { | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | u32 event = its_get_event_id(d); | 
|  |  | 
|  | its_dec_lpi_count(d, its_dev->event_map.col_map[event]); | 
|  | /* Stop the delivery of interrupts */ | 
|  | its_send_discard(its_dev, event); | 
|  | } | 
|  |  | 
|  | static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, | 
|  | unsigned int nr_irqs) | 
|  | { | 
|  | struct irq_data *d = irq_domain_get_irq_data(domain, virq); | 
|  | struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
|  | struct its_node *its = its_dev->its; | 
|  | int i; | 
|  |  | 
|  | bitmap_release_region(its_dev->event_map.lpi_map, | 
|  | its_get_event_id(irq_domain_get_irq_data(domain, virq)), | 
|  | get_count_order(nr_irqs)); | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | struct irq_data *data = irq_domain_get_irq_data(domain, | 
|  | virq + i); | 
|  | /* Nuke the entry in the domain */ | 
|  | irq_domain_reset_irq_data(data); | 
|  | } | 
|  |  | 
|  | mutex_lock(&its->dev_alloc_lock); | 
|  |  | 
|  | /* | 
|  | * If all interrupts have been freed, start mopping the | 
|  | * floor. This is conditioned on the device not being shared. | 
|  | */ | 
|  | if (!its_dev->shared && | 
|  | bitmap_empty(its_dev->event_map.lpi_map, | 
|  | its_dev->event_map.nr_lpis)) { | 
|  | its_lpi_free(its_dev->event_map.lpi_map, | 
|  | its_dev->event_map.lpi_base, | 
|  | its_dev->event_map.nr_lpis); | 
|  |  | 
|  | /* Unmap device/itt */ | 
|  | its_send_mapd(its_dev, 0); | 
|  | its_free_device(its_dev); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&its->dev_alloc_lock); | 
|  |  | 
|  | irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
|  | } | 
|  |  | 
|  | static const struct irq_domain_ops its_domain_ops = { | 
|  | .alloc			= its_irq_domain_alloc, | 
|  | .free			= its_irq_domain_free, | 
|  | .activate		= its_irq_domain_activate, | 
|  | .deactivate		= its_irq_domain_deactivate, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is insane. | 
|  | * | 
|  | * If a GICv4.0 doesn't implement Direct LPIs (which is extremely | 
|  | * likely), the only way to perform an invalidate is to use a fake | 
|  | * device to issue an INV command, implying that the LPI has first | 
|  | * been mapped to some event on that device. Since this is not exactly | 
|  | * cheap, we try to keep that mapping around as long as possible, and | 
|  | * only issue an UNMAP if we're short on available slots. | 
|  | * | 
|  | * Broken by design(tm). | 
|  | * | 
|  | * GICv4.1, on the other hand, mandates that we're able to invalidate | 
|  | * by writing to a MMIO register. It doesn't implement the whole of | 
|  | * DirectLPI, but that's good enough. And most of the time, we don't | 
|  | * even have to invalidate anything, as the redistributor can be told | 
|  | * whether to generate a doorbell or not (we thus leave it enabled, | 
|  | * always). | 
|  | */ | 
|  | static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) | 
|  | { | 
|  | /* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
|  | if (gic_rdists->has_rvpeid) | 
|  | return; | 
|  |  | 
|  | /* Already unmapped? */ | 
|  | if (vpe->vpe_proxy_event == -1) | 
|  | return; | 
|  |  | 
|  | its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); | 
|  | vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't track empty slots at all, so let's move the | 
|  | * next_victim pointer if we can quickly reuse that slot | 
|  | * instead of nuking an existing entry. Not clear that this is | 
|  | * always a win though, and this might just generate a ripple | 
|  | * effect... Let's just hope VPEs don't migrate too often. | 
|  | */ | 
|  | if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
|  | vpe_proxy.next_victim = vpe->vpe_proxy_event; | 
|  |  | 
|  | vpe->vpe_proxy_event = -1; | 
|  | } | 
|  |  | 
|  | static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) | 
|  | { | 
|  | /* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
|  | if (gic_rdists->has_rvpeid) | 
|  | return; | 
|  |  | 
|  | if (!gic_rdists->has_direct_lpi) { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
|  | its_vpe_db_proxy_unmap_locked(vpe); | 
|  | raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) | 
|  | { | 
|  | /* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
|  | if (gic_rdists->has_rvpeid) | 
|  | return; | 
|  |  | 
|  | /* Already mapped? */ | 
|  | if (vpe->vpe_proxy_event != -1) | 
|  | return; | 
|  |  | 
|  | /* This slot was already allocated. Kick the other VPE out. */ | 
|  | if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
|  | its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); | 
|  |  | 
|  | /* Map the new VPE instead */ | 
|  | vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; | 
|  | vpe->vpe_proxy_event = vpe_proxy.next_victim; | 
|  | vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; | 
|  |  | 
|  | vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; | 
|  | its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); | 
|  | } | 
|  |  | 
|  | static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct its_collection *target_col; | 
|  |  | 
|  | /* GICv4.1 doesn't use a proxy, so nothing to do here */ | 
|  | if (gic_rdists->has_rvpeid) | 
|  | return; | 
|  |  | 
|  | if (gic_rdists->has_direct_lpi) { | 
|  | void __iomem *rdbase; | 
|  |  | 
|  | rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; | 
|  | gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
|  | wait_for_syncr(rdbase); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
|  |  | 
|  | its_vpe_db_proxy_map_locked(vpe); | 
|  |  | 
|  | target_col = &vpe_proxy.dev->its->collections[to]; | 
|  | its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); | 
|  | vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
|  | } | 
|  |  | 
|  | static int its_vpe_set_affinity(struct irq_data *d, | 
|  | const struct cpumask *mask_val, | 
|  | bool force) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | int from, cpu = cpumask_first(mask_val); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Changing affinity is mega expensive, so let's be as lazy as | 
|  | * we can and only do it if we really have to. Also, if mapped | 
|  | * into the proxy device, we need to move the doorbell | 
|  | * interrupt to its new location. | 
|  | * | 
|  | * Another thing is that changing the affinity of a vPE affects | 
|  | * *other interrupts* such as all the vLPIs that are routed to | 
|  | * this vPE. This means that the irq_desc lock is not enough to | 
|  | * protect us, and that we must ensure nobody samples vpe->col_idx | 
|  | * during the update, hence the lock below which must also be | 
|  | * taken on any vLPI handling path that evaluates vpe->col_idx. | 
|  | */ | 
|  | from = vpe_to_cpuid_lock(vpe, &flags); | 
|  | if (from == cpu) | 
|  | goto out; | 
|  |  | 
|  | vpe->col_idx = cpu; | 
|  |  | 
|  | /* | 
|  | * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD | 
|  | * is sharing its VPE table with the current one. | 
|  | */ | 
|  | if (gic_data_rdist_cpu(cpu)->vpe_table_mask && | 
|  | cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) | 
|  | goto out; | 
|  |  | 
|  | its_send_vmovp(vpe); | 
|  | its_vpe_db_proxy_move(vpe, from, cpu); | 
|  |  | 
|  | out: | 
|  | irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
|  | vpe_to_cpuid_unlock(vpe, flags); | 
|  |  | 
|  | return IRQ_SET_MASK_OK_DONE; | 
|  | } | 
|  |  | 
|  | static void its_wait_vpt_parse_complete(void) | 
|  | { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  | u64 val; | 
|  |  | 
|  | if (!gic_rdists->has_vpend_valid_dirty) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, | 
|  | val, | 
|  | !(val & GICR_VPENDBASER_Dirty), | 
|  | 1, 500)); | 
|  | } | 
|  |  | 
|  | static void its_vpe_schedule(struct its_vpe *vpe) | 
|  | { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  | u64 val; | 
|  |  | 
|  | /* Schedule the VPE */ | 
|  | val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & | 
|  | GENMASK_ULL(51, 12); | 
|  | val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
|  | val |= GICR_VPROPBASER_RaWb; | 
|  | val |= GICR_VPROPBASER_InnerShareable; | 
|  | gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
|  |  | 
|  | val  = virt_to_phys(page_address(vpe->vpt_page)) & | 
|  | GENMASK_ULL(51, 16); | 
|  | val |= GICR_VPENDBASER_RaWaWb; | 
|  | val |= GICR_VPENDBASER_InnerShareable; | 
|  | /* | 
|  | * There is no good way of finding out if the pending table is | 
|  | * empty as we can race against the doorbell interrupt very | 
|  | * easily. So in the end, vpe->pending_last is only an | 
|  | * indication that the vcpu has something pending, not one | 
|  | * that the pending table is empty. A good implementation | 
|  | * would be able to read its coarse map pretty quickly anyway, | 
|  | * making this a tolerable issue. | 
|  | */ | 
|  | val |= GICR_VPENDBASER_PendingLast; | 
|  | val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; | 
|  | val |= GICR_VPENDBASER_Valid; | 
|  | gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
|  | } | 
|  |  | 
|  | static void its_vpe_deschedule(struct its_vpe *vpe) | 
|  | { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  | u64 val; | 
|  |  | 
|  | val = its_clear_vpend_valid(vlpi_base, 0, 0); | 
|  |  | 
|  | vpe->idai = !!(val & GICR_VPENDBASER_IDAI); | 
|  | vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); | 
|  | } | 
|  |  | 
|  | static void its_vpe_invall(struct its_vpe *vpe) | 
|  | { | 
|  | struct its_node *its; | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | if (!is_v4(its)) | 
|  | continue; | 
|  |  | 
|  | if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Sending a VINVALL to a single ITS is enough, as all | 
|  | * we need is to reach the redistributors. | 
|  | */ | 
|  | its_send_vinvall(its, vpe); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_cmd_info *info = vcpu_info; | 
|  |  | 
|  | switch (info->cmd_type) { | 
|  | case SCHEDULE_VPE: | 
|  | its_vpe_schedule(vpe); | 
|  | return 0; | 
|  |  | 
|  | case DESCHEDULE_VPE: | 
|  | its_vpe_deschedule(vpe); | 
|  | return 0; | 
|  |  | 
|  | case COMMIT_VPE: | 
|  | its_wait_vpt_parse_complete(); | 
|  | return 0; | 
|  |  | 
|  | case INVALL_VPE: | 
|  | its_vpe_invall(vpe); | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void its_vpe_send_cmd(struct its_vpe *vpe, | 
|  | void (*cmd)(struct its_device *, u32)) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
|  |  | 
|  | its_vpe_db_proxy_map_locked(vpe); | 
|  | cmd(vpe_proxy.dev, vpe->vpe_proxy_event); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
|  | } | 
|  |  | 
|  | static void its_vpe_send_inv(struct irq_data *d) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | if (gic_rdists->has_direct_lpi) | 
|  | __direct_lpi_inv(d, d->parent_data->hwirq); | 
|  | else | 
|  | its_vpe_send_cmd(vpe, its_send_inv); | 
|  | } | 
|  |  | 
|  | static void its_vpe_mask_irq(struct irq_data *d) | 
|  | { | 
|  | /* | 
|  | * We need to unmask the LPI, which is described by the parent | 
|  | * irq_data. Instead of calling into the parent (which won't | 
|  | * exactly do the right thing, let's simply use the | 
|  | * parent_data pointer. Yes, I'm naughty. | 
|  | */ | 
|  | lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); | 
|  | its_vpe_send_inv(d); | 
|  | } | 
|  |  | 
|  | static void its_vpe_unmask_irq(struct irq_data *d) | 
|  | { | 
|  | /* Same hack as above... */ | 
|  | lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); | 
|  | its_vpe_send_inv(d); | 
|  | } | 
|  |  | 
|  | static int its_vpe_set_irqchip_state(struct irq_data *d, | 
|  | enum irqchip_irq_state which, | 
|  | bool state) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | if (which != IRQCHIP_STATE_PENDING) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (gic_rdists->has_direct_lpi) { | 
|  | void __iomem *rdbase; | 
|  |  | 
|  | rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
|  | if (state) { | 
|  | gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); | 
|  | } else { | 
|  | gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
|  | wait_for_syncr(rdbase); | 
|  | } | 
|  | } else { | 
|  | if (state) | 
|  | its_vpe_send_cmd(vpe, its_send_int); | 
|  | else | 
|  | its_vpe_send_cmd(vpe, its_send_clear); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_vpe_retrigger(struct irq_data *d) | 
|  | { | 
|  | return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); | 
|  | } | 
|  |  | 
|  | static struct irq_chip its_vpe_irq_chip = { | 
|  | .name			= "GICv4-vpe", | 
|  | .irq_mask		= its_vpe_mask_irq, | 
|  | .irq_unmask		= its_vpe_unmask_irq, | 
|  | .irq_eoi		= irq_chip_eoi_parent, | 
|  | .irq_set_affinity	= its_vpe_set_affinity, | 
|  | .irq_retrigger		= its_vpe_retrigger, | 
|  | .irq_set_irqchip_state	= its_vpe_set_irqchip_state, | 
|  | .irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity, | 
|  | }; | 
|  |  | 
|  | static struct its_node *find_4_1_its(void) | 
|  | { | 
|  | static struct its_node *its = NULL; | 
|  |  | 
|  | if (!its) { | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | if (is_v4_1(its)) | 
|  | return its; | 
|  | } | 
|  |  | 
|  | /* Oops? */ | 
|  | its = NULL; | 
|  | } | 
|  |  | 
|  | return its; | 
|  | } | 
|  |  | 
|  | static void its_vpe_4_1_send_inv(struct irq_data *d) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_node *its; | 
|  |  | 
|  | /* | 
|  | * GICv4.1 wants doorbells to be invalidated using the | 
|  | * INVDB command in order to be broadcast to all RDs. Send | 
|  | * it to the first valid ITS, and let the HW do its magic. | 
|  | */ | 
|  | its = find_4_1_its(); | 
|  | if (its) | 
|  | its_send_invdb(its, vpe); | 
|  | } | 
|  |  | 
|  | static void its_vpe_4_1_mask_irq(struct irq_data *d) | 
|  | { | 
|  | lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); | 
|  | its_vpe_4_1_send_inv(d); | 
|  | } | 
|  |  | 
|  | static void its_vpe_4_1_unmask_irq(struct irq_data *d) | 
|  | { | 
|  | lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); | 
|  | its_vpe_4_1_send_inv(d); | 
|  | } | 
|  |  | 
|  | static void its_vpe_4_1_schedule(struct its_vpe *vpe, | 
|  | struct its_cmd_info *info) | 
|  | { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  | u64 val = 0; | 
|  |  | 
|  | /* Schedule the VPE */ | 
|  | val |= GICR_VPENDBASER_Valid; | 
|  | val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; | 
|  | val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; | 
|  | val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); | 
|  |  | 
|  | gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
|  | } | 
|  |  | 
|  | static void its_vpe_4_1_deschedule(struct its_vpe *vpe, | 
|  | struct its_cmd_info *info) | 
|  | { | 
|  | void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
|  | u64 val; | 
|  |  | 
|  | if (info->req_db) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * vPE is going to block: make the vPE non-resident with | 
|  | * PendingLast clear and DB set. The GIC guarantees that if | 
|  | * we read-back PendingLast clear, then a doorbell will be | 
|  | * delivered when an interrupt comes. | 
|  | * | 
|  | * Note the locking to deal with the concurrent update of | 
|  | * pending_last from the doorbell interrupt handler that can | 
|  | * run concurrently. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&vpe->vpe_lock, flags); | 
|  | val = its_clear_vpend_valid(vlpi_base, | 
|  | GICR_VPENDBASER_PendingLast, | 
|  | GICR_VPENDBASER_4_1_DB); | 
|  | vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); | 
|  | raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); | 
|  | } else { | 
|  | /* | 
|  | * We're not blocking, so just make the vPE non-resident | 
|  | * with PendingLast set, indicating that we'll be back. | 
|  | */ | 
|  | val = its_clear_vpend_valid(vlpi_base, | 
|  | 0, | 
|  | GICR_VPENDBASER_PendingLast); | 
|  | vpe->pending_last = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void its_vpe_4_1_invall(struct its_vpe *vpe) | 
|  | { | 
|  | void __iomem *rdbase; | 
|  | unsigned long flags; | 
|  | u64 val; | 
|  | int cpu; | 
|  |  | 
|  | val  = GICR_INVALLR_V; | 
|  | val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); | 
|  |  | 
|  | /* Target the redistributor this vPE is currently known on */ | 
|  | cpu = vpe_to_cpuid_lock(vpe, &flags); | 
|  | raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
|  | rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; | 
|  | gic_write_lpir(val, rdbase + GICR_INVALLR); | 
|  |  | 
|  | wait_for_syncr(rdbase); | 
|  | raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
|  | vpe_to_cpuid_unlock(vpe, flags); | 
|  | } | 
|  |  | 
|  | static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_cmd_info *info = vcpu_info; | 
|  |  | 
|  | switch (info->cmd_type) { | 
|  | case SCHEDULE_VPE: | 
|  | its_vpe_4_1_schedule(vpe, info); | 
|  | return 0; | 
|  |  | 
|  | case DESCHEDULE_VPE: | 
|  | its_vpe_4_1_deschedule(vpe, info); | 
|  | return 0; | 
|  |  | 
|  | case COMMIT_VPE: | 
|  | its_wait_vpt_parse_complete(); | 
|  | return 0; | 
|  |  | 
|  | case INVALL_VPE: | 
|  | its_vpe_4_1_invall(vpe); | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct irq_chip its_vpe_4_1_irq_chip = { | 
|  | .name			= "GICv4.1-vpe", | 
|  | .irq_mask		= its_vpe_4_1_mask_irq, | 
|  | .irq_unmask		= its_vpe_4_1_unmask_irq, | 
|  | .irq_eoi		= irq_chip_eoi_parent, | 
|  | .irq_set_affinity	= its_vpe_set_affinity, | 
|  | .irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity, | 
|  | }; | 
|  |  | 
|  | static void its_configure_sgi(struct irq_data *d, bool clear) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_cmd_desc desc; | 
|  |  | 
|  | desc.its_vsgi_cmd.vpe = vpe; | 
|  | desc.its_vsgi_cmd.sgi = d->hwirq; | 
|  | desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; | 
|  | desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; | 
|  | desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; | 
|  | desc.its_vsgi_cmd.clear = clear; | 
|  |  | 
|  | /* | 
|  | * GICv4.1 allows us to send VSGI commands to any ITS as long as the | 
|  | * destination VPE is mapped there. Since we map them eagerly at | 
|  | * activation time, we're pretty sure the first GICv4.1 ITS will do. | 
|  | */ | 
|  | its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); | 
|  | } | 
|  |  | 
|  | static void its_sgi_mask_irq(struct irq_data *d) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | vpe->sgi_config[d->hwirq].enabled = false; | 
|  | its_configure_sgi(d, false); | 
|  | } | 
|  |  | 
|  | static void its_sgi_unmask_irq(struct irq_data *d) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | vpe->sgi_config[d->hwirq].enabled = true; | 
|  | its_configure_sgi(d, false); | 
|  | } | 
|  |  | 
|  | static int its_sgi_set_affinity(struct irq_data *d, | 
|  | const struct cpumask *mask_val, | 
|  | bool force) | 
|  | { | 
|  | /* | 
|  | * There is no notion of affinity for virtual SGIs, at least | 
|  | * not on the host (since they can only be targeting a vPE). | 
|  | * Tell the kernel we've done whatever it asked for. | 
|  | */ | 
|  | irq_data_update_effective_affinity(d, mask_val); | 
|  | return IRQ_SET_MASK_OK; | 
|  | } | 
|  |  | 
|  | static int its_sgi_set_irqchip_state(struct irq_data *d, | 
|  | enum irqchip_irq_state which, | 
|  | bool state) | 
|  | { | 
|  | if (which != IRQCHIP_STATE_PENDING) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (state) { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_node *its = find_4_1_its(); | 
|  | u64 val; | 
|  |  | 
|  | val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); | 
|  | val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); | 
|  | writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); | 
|  | } else { | 
|  | its_configure_sgi(d, true); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_sgi_get_irqchip_state(struct irq_data *d, | 
|  | enum irqchip_irq_state which, bool *val) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | void __iomem *base; | 
|  | unsigned long flags; | 
|  | u32 count = 1000000;	/* 1s! */ | 
|  | u32 status; | 
|  | int cpu; | 
|  |  | 
|  | if (which != IRQCHIP_STATE_PENDING) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Locking galore! We can race against two different events: | 
|  | * | 
|  | * - Concurrent vPE affinity change: we must make sure it cannot | 
|  | *   happen, or we'll talk to the wrong redistributor. This is | 
|  | *   identical to what happens with vLPIs. | 
|  | * | 
|  | * - Concurrent VSGIPENDR access: As it involves accessing two | 
|  | *   MMIO registers, this must be made atomic one way or another. | 
|  | */ | 
|  | cpu = vpe_to_cpuid_lock(vpe, &flags); | 
|  | raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
|  | base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; | 
|  | writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); | 
|  | do { | 
|  | status = readl_relaxed(base + GICR_VSGIPENDR); | 
|  | if (!(status & GICR_VSGIPENDR_BUSY)) | 
|  | goto out; | 
|  |  | 
|  | count--; | 
|  | if (!count) { | 
|  | pr_err_ratelimited("Unable to get SGI status\n"); | 
|  | goto out; | 
|  | } | 
|  | cpu_relax(); | 
|  | udelay(1); | 
|  | } while (count); | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); | 
|  | vpe_to_cpuid_unlock(vpe, flags); | 
|  |  | 
|  | if (!count) | 
|  | return -ENXIO; | 
|  |  | 
|  | *val = !!(status & (1 << d->hwirq)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_cmd_info *info = vcpu_info; | 
|  |  | 
|  | switch (info->cmd_type) { | 
|  | case PROP_UPDATE_VSGI: | 
|  | vpe->sgi_config[d->hwirq].priority = info->priority; | 
|  | vpe->sgi_config[d->hwirq].group = info->group; | 
|  | its_configure_sgi(d, false); | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct irq_chip its_sgi_irq_chip = { | 
|  | .name			= "GICv4.1-sgi", | 
|  | .irq_mask		= its_sgi_mask_irq, | 
|  | .irq_unmask		= its_sgi_unmask_irq, | 
|  | .irq_set_affinity	= its_sgi_set_affinity, | 
|  | .irq_set_irqchip_state	= its_sgi_set_irqchip_state, | 
|  | .irq_get_irqchip_state	= its_sgi_get_irqchip_state, | 
|  | .irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity, | 
|  | }; | 
|  |  | 
|  | static int its_sgi_irq_domain_alloc(struct irq_domain *domain, | 
|  | unsigned int virq, unsigned int nr_irqs, | 
|  | void *args) | 
|  | { | 
|  | struct its_vpe *vpe = args; | 
|  | int i; | 
|  |  | 
|  | /* Yes, we do want 16 SGIs */ | 
|  | WARN_ON(nr_irqs != 16); | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | vpe->sgi_config[i].priority = 0; | 
|  | vpe->sgi_config[i].enabled = false; | 
|  | vpe->sgi_config[i].group = false; | 
|  |  | 
|  | irq_domain_set_hwirq_and_chip(domain, virq + i, i, | 
|  | &its_sgi_irq_chip, vpe); | 
|  | irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void its_sgi_irq_domain_free(struct irq_domain *domain, | 
|  | unsigned int virq, | 
|  | unsigned int nr_irqs) | 
|  | { | 
|  | /* Nothing to do */ | 
|  | } | 
|  |  | 
|  | static int its_sgi_irq_domain_activate(struct irq_domain *domain, | 
|  | struct irq_data *d, bool reserve) | 
|  | { | 
|  | /* Write out the initial SGI configuration */ | 
|  | its_configure_sgi(d, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, | 
|  | struct irq_data *d) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  |  | 
|  | /* | 
|  | * The VSGI command is awkward: | 
|  | * | 
|  | * - To change the configuration, CLEAR must be set to false, | 
|  | *   leaving the pending bit unchanged. | 
|  | * - To clear the pending bit, CLEAR must be set to true, leaving | 
|  | *   the configuration unchanged. | 
|  | * | 
|  | * You just can't do both at once, hence the two commands below. | 
|  | */ | 
|  | vpe->sgi_config[d->hwirq].enabled = false; | 
|  | its_configure_sgi(d, false); | 
|  | its_configure_sgi(d, true); | 
|  | } | 
|  |  | 
|  | static const struct irq_domain_ops its_sgi_domain_ops = { | 
|  | .alloc		= its_sgi_irq_domain_alloc, | 
|  | .free		= its_sgi_irq_domain_free, | 
|  | .activate	= its_sgi_irq_domain_activate, | 
|  | .deactivate	= its_sgi_irq_domain_deactivate, | 
|  | }; | 
|  |  | 
|  | static int its_vpe_id_alloc(void) | 
|  | { | 
|  | return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static void its_vpe_id_free(u16 id) | 
|  | { | 
|  | ida_simple_remove(&its_vpeid_ida, id); | 
|  | } | 
|  |  | 
|  | static int its_vpe_init(struct its_vpe *vpe) | 
|  | { | 
|  | struct page *vpt_page; | 
|  | int vpe_id; | 
|  |  | 
|  | /* Allocate vpe_id */ | 
|  | vpe_id = its_vpe_id_alloc(); | 
|  | if (vpe_id < 0) | 
|  | return vpe_id; | 
|  |  | 
|  | /* Allocate VPT */ | 
|  | vpt_page = its_allocate_pending_table(GFP_KERNEL); | 
|  | if (!vpt_page) { | 
|  | its_vpe_id_free(vpe_id); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!its_alloc_vpe_table(vpe_id)) { | 
|  | its_vpe_id_free(vpe_id); | 
|  | its_free_pending_table(vpt_page); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_init(&vpe->vpe_lock); | 
|  | vpe->vpe_id = vpe_id; | 
|  | vpe->vpt_page = vpt_page; | 
|  | if (gic_rdists->has_rvpeid) | 
|  | atomic_set(&vpe->vmapp_count, 0); | 
|  | else | 
|  | vpe->vpe_proxy_event = -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void its_vpe_teardown(struct its_vpe *vpe) | 
|  | { | 
|  | its_vpe_db_proxy_unmap(vpe); | 
|  | its_vpe_id_free(vpe->vpe_id); | 
|  | its_free_pending_table(vpe->vpt_page); | 
|  | } | 
|  |  | 
|  | static void its_vpe_irq_domain_free(struct irq_domain *domain, | 
|  | unsigned int virq, | 
|  | unsigned int nr_irqs) | 
|  | { | 
|  | struct its_vm *vm = domain->host_data; | 
|  | int i; | 
|  |  | 
|  | irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | struct irq_data *data = irq_domain_get_irq_data(domain, | 
|  | virq + i); | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(data); | 
|  |  | 
|  | BUG_ON(vm != vpe->its_vm); | 
|  |  | 
|  | clear_bit(data->hwirq, vm->db_bitmap); | 
|  | its_vpe_teardown(vpe); | 
|  | irq_domain_reset_irq_data(data); | 
|  | } | 
|  |  | 
|  | if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { | 
|  | its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); | 
|  | its_free_prop_table(vm->vprop_page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
|  | unsigned int nr_irqs, void *args) | 
|  | { | 
|  | struct irq_chip *irqchip = &its_vpe_irq_chip; | 
|  | struct its_vm *vm = args; | 
|  | unsigned long *bitmap; | 
|  | struct page *vprop_page; | 
|  | int base, nr_ids, i, err = 0; | 
|  |  | 
|  | BUG_ON(!vm); | 
|  |  | 
|  | bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); | 
|  | if (!bitmap) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (nr_ids < nr_irqs) { | 
|  | its_lpi_free(bitmap, base, nr_ids); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | vprop_page = its_allocate_prop_table(GFP_KERNEL); | 
|  | if (!vprop_page) { | 
|  | its_lpi_free(bitmap, base, nr_ids); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | vm->db_bitmap = bitmap; | 
|  | vm->db_lpi_base = base; | 
|  | vm->nr_db_lpis = nr_ids; | 
|  | vm->vprop_page = vprop_page; | 
|  |  | 
|  | if (gic_rdists->has_rvpeid) | 
|  | irqchip = &its_vpe_4_1_irq_chip; | 
|  |  | 
|  | for (i = 0; i < nr_irqs; i++) { | 
|  | vm->vpes[i]->vpe_db_lpi = base + i; | 
|  | err = its_vpe_init(vm->vpes[i]); | 
|  | if (err) | 
|  | break; | 
|  | err = its_irq_gic_domain_alloc(domain, virq + i, | 
|  | vm->vpes[i]->vpe_db_lpi); | 
|  | if (err) | 
|  | break; | 
|  | irq_domain_set_hwirq_and_chip(domain, virq + i, i, | 
|  | irqchip, vm->vpes[i]); | 
|  | set_bit(i, bitmap); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | if (i > 0) | 
|  | its_vpe_irq_domain_free(domain, virq, i); | 
|  |  | 
|  | its_lpi_free(bitmap, base, nr_ids); | 
|  | its_free_prop_table(vprop_page); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int its_vpe_irq_domain_activate(struct irq_domain *domain, | 
|  | struct irq_data *d, bool reserve) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_node *its; | 
|  |  | 
|  | /* | 
|  | * If we use the list map, we issue VMAPP on demand... Unless | 
|  | * we're on a GICv4.1 and we eagerly map the VPE on all ITSs | 
|  | * so that VSGIs can work. | 
|  | */ | 
|  | if (!gic_requires_eager_mapping()) | 
|  | return 0; | 
|  |  | 
|  | /* Map the VPE to the first possible CPU */ | 
|  | vpe->col_idx = cpumask_first(cpu_online_mask); | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | if (!is_v4(its)) | 
|  | continue; | 
|  |  | 
|  | its_send_vmapp(its, vpe, true); | 
|  | its_send_vinvall(its, vpe); | 
|  | } | 
|  |  | 
|  | irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, | 
|  | struct irq_data *d) | 
|  | { | 
|  | struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
|  | struct its_node *its; | 
|  |  | 
|  | /* | 
|  | * If we use the list map on GICv4.0, we unmap the VPE once no | 
|  | * VLPIs are associated with the VM. | 
|  | */ | 
|  | if (!gic_requires_eager_mapping()) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | if (!is_v4(its)) | 
|  | continue; | 
|  |  | 
|  | its_send_vmapp(its, vpe, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There may be a direct read to the VPT after unmapping the | 
|  | * vPE, to guarantee the validity of this, we make the VPT | 
|  | * memory coherent with the CPU caches here. | 
|  | */ | 
|  | if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) | 
|  | gic_flush_dcache_to_poc(page_address(vpe->vpt_page), | 
|  | LPI_PENDBASE_SZ); | 
|  | } | 
|  |  | 
|  | static const struct irq_domain_ops its_vpe_domain_ops = { | 
|  | .alloc			= its_vpe_irq_domain_alloc, | 
|  | .free			= its_vpe_irq_domain_free, | 
|  | .activate		= its_vpe_irq_domain_activate, | 
|  | .deactivate		= its_vpe_irq_domain_deactivate, | 
|  | }; | 
|  |  | 
|  | static int its_force_quiescent(void __iomem *base) | 
|  | { | 
|  | u32 count = 1000000;	/* 1s */ | 
|  | u32 val; | 
|  |  | 
|  | val = readl_relaxed(base + GITS_CTLR); | 
|  | /* | 
|  | * GIC architecture specification requires the ITS to be both | 
|  | * disabled and quiescent for writes to GITS_BASER<n> or | 
|  | * GITS_CBASER to not have UNPREDICTABLE results. | 
|  | */ | 
|  | if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) | 
|  | return 0; | 
|  |  | 
|  | /* Disable the generation of all interrupts to this ITS */ | 
|  | val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); | 
|  | writel_relaxed(val, base + GITS_CTLR); | 
|  |  | 
|  | /* Poll GITS_CTLR and wait until ITS becomes quiescent */ | 
|  | while (1) { | 
|  | val = readl_relaxed(base + GITS_CTLR); | 
|  | if (val & GITS_CTLR_QUIESCENT) | 
|  | return 0; | 
|  |  | 
|  | count--; | 
|  | if (!count) | 
|  | return -EBUSY; | 
|  |  | 
|  | cpu_relax(); | 
|  | udelay(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) | 
|  | { | 
|  | struct its_node *its = data; | 
|  |  | 
|  | /* erratum 22375: only alloc 8MB table size (20 bits) */ | 
|  | its->typer &= ~GITS_TYPER_DEVBITS; | 
|  | its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); | 
|  | its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) | 
|  | { | 
|  | struct its_node *its = data; | 
|  |  | 
|  | its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) | 
|  | { | 
|  | struct its_node *its = data; | 
|  |  | 
|  | /* On QDF2400, the size of the ITE is 16Bytes */ | 
|  | its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; | 
|  | its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) | 
|  | { | 
|  | struct its_node *its = its_dev->its; | 
|  |  | 
|  | /* | 
|  | * The Socionext Synquacer SoC has a so-called 'pre-ITS', | 
|  | * which maps 32-bit writes targeted at a separate window of | 
|  | * size '4 << device_id_bits' onto writes to GITS_TRANSLATER | 
|  | * with device ID taken from bits [device_id_bits + 1:2] of | 
|  | * the window offset. | 
|  | */ | 
|  | return its->pre_its_base + (its_dev->device_id << 2); | 
|  | } | 
|  |  | 
|  | static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) | 
|  | { | 
|  | struct its_node *its = data; | 
|  | u32 pre_its_window[2]; | 
|  | u32 ids; | 
|  |  | 
|  | if (!fwnode_property_read_u32_array(its->fwnode_handle, | 
|  | "socionext,synquacer-pre-its", | 
|  | pre_its_window, | 
|  | ARRAY_SIZE(pre_its_window))) { | 
|  |  | 
|  | its->pre_its_base = pre_its_window[0]; | 
|  | its->get_msi_base = its_irq_get_msi_base_pre_its; | 
|  |  | 
|  | ids = ilog2(pre_its_window[1]) - 2; | 
|  | if (device_ids(its) > ids) { | 
|  | its->typer &= ~GITS_TYPER_DEVBITS; | 
|  | its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); | 
|  | } | 
|  |  | 
|  | /* the pre-ITS breaks isolation, so disable MSI remapping */ | 
|  | its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) | 
|  | { | 
|  | struct its_node *its = data; | 
|  |  | 
|  | /* | 
|  | * Hip07 insists on using the wrong address for the VLPI | 
|  | * page. Trick it into doing the right thing... | 
|  | */ | 
|  | its->vlpi_redist_offset = SZ_128K; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const struct gic_quirk its_quirks[] = { | 
|  | #ifdef CONFIG_CAVIUM_ERRATUM_22375 | 
|  | { | 
|  | .desc	= "ITS: Cavium errata 22375, 24313", | 
|  | .iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
|  | .mask	= 0xffff0fff, | 
|  | .init	= its_enable_quirk_cavium_22375, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_CAVIUM_ERRATUM_23144 | 
|  | { | 
|  | .desc	= "ITS: Cavium erratum 23144", | 
|  | .iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
|  | .mask	= 0xffff0fff, | 
|  | .init	= its_enable_quirk_cavium_23144, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 | 
|  | { | 
|  | .desc	= "ITS: QDF2400 erratum 0065", | 
|  | .iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */ | 
|  | .mask	= 0xffffffff, | 
|  | .init	= its_enable_quirk_qdf2400_e0065, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS | 
|  | { | 
|  | /* | 
|  | * The Socionext Synquacer SoC incorporates ARM's own GIC-500 | 
|  | * implementation, but with a 'pre-ITS' added that requires | 
|  | * special handling in software. | 
|  | */ | 
|  | .desc	= "ITS: Socionext Synquacer pre-ITS", | 
|  | .iidr	= 0x0001143b, | 
|  | .mask	= 0xffffffff, | 
|  | .init	= its_enable_quirk_socionext_synquacer, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_HISILICON_ERRATUM_161600802 | 
|  | { | 
|  | .desc	= "ITS: Hip07 erratum 161600802", | 
|  | .iidr	= 0x00000004, | 
|  | .mask	= 0xffffffff, | 
|  | .init	= its_enable_quirk_hip07_161600802, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void its_enable_quirks(struct its_node *its) | 
|  | { | 
|  | u32 iidr = readl_relaxed(its->base + GITS_IIDR); | 
|  |  | 
|  | gic_enable_quirks(iidr, its_quirks, its); | 
|  | } | 
|  |  | 
|  | static int its_save_disable(void) | 
|  | { | 
|  | struct its_node *its; | 
|  | int err = 0; | 
|  |  | 
|  | raw_spin_lock(&its_lock); | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | void __iomem *base; | 
|  |  | 
|  | base = its->base; | 
|  | its->ctlr_save = readl_relaxed(base + GITS_CTLR); | 
|  | err = its_force_quiescent(base); | 
|  | if (err) { | 
|  | pr_err("ITS@%pa: failed to quiesce: %d\n", | 
|  | &its->phys_base, err); | 
|  | writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); | 
|  | } | 
|  |  | 
|  | err: | 
|  | if (err) { | 
|  | list_for_each_entry_continue_reverse(its, &its_nodes, entry) { | 
|  | void __iomem *base; | 
|  |  | 
|  | base = its->base; | 
|  | writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
|  | } | 
|  | } | 
|  | raw_spin_unlock(&its_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void its_restore_enable(void) | 
|  | { | 
|  | struct its_node *its; | 
|  | int ret; | 
|  |  | 
|  | raw_spin_lock(&its_lock); | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | void __iomem *base; | 
|  | int i; | 
|  |  | 
|  | base = its->base; | 
|  |  | 
|  | /* | 
|  | * Make sure that the ITS is disabled. If it fails to quiesce, | 
|  | * don't restore it since writing to CBASER or BASER<n> | 
|  | * registers is undefined according to the GIC v3 ITS | 
|  | * Specification. | 
|  | * | 
|  | * Firmware resuming with the ITS enabled is terminally broken. | 
|  | */ | 
|  | WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); | 
|  | ret = its_force_quiescent(base); | 
|  | if (ret) { | 
|  | pr_err("ITS@%pa: failed to quiesce on resume: %d\n", | 
|  | &its->phys_base, ret); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); | 
|  |  | 
|  | /* | 
|  | * Writing CBASER resets CREADR to 0, so make CWRITER and | 
|  | * cmd_write line up with it. | 
|  | */ | 
|  | its->cmd_write = its->cmd_base; | 
|  | gits_write_cwriter(0, base + GITS_CWRITER); | 
|  |  | 
|  | /* Restore GITS_BASER from the value cache. */ | 
|  | for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
|  | struct its_baser *baser = &its->tables[i]; | 
|  |  | 
|  | if (!(baser->val & GITS_BASER_VALID)) | 
|  | continue; | 
|  |  | 
|  | its_write_baser(its, baser, baser->val); | 
|  | } | 
|  | writel_relaxed(its->ctlr_save, base + GITS_CTLR); | 
|  |  | 
|  | /* | 
|  | * Reinit the collection if it's stored in the ITS. This is | 
|  | * indicated by the col_id being less than the HCC field. | 
|  | * CID < HCC as specified in the GIC v3 Documentation. | 
|  | */ | 
|  | if (its->collections[smp_processor_id()].col_id < | 
|  | GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) | 
|  | its_cpu_init_collection(its); | 
|  | } | 
|  | raw_spin_unlock(&its_lock); | 
|  | } | 
|  |  | 
|  | static struct syscore_ops its_syscore_ops = { | 
|  | .suspend = its_save_disable, | 
|  | .resume = its_restore_enable, | 
|  | }; | 
|  |  | 
|  | static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) | 
|  | { | 
|  | struct irq_domain *inner_domain; | 
|  | struct msi_domain_info *info; | 
|  |  | 
|  | info = kzalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); | 
|  | if (!inner_domain) { | 
|  | kfree(info); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | inner_domain->parent = its_parent; | 
|  | irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); | 
|  | inner_domain->flags |= its->msi_domain_flags; | 
|  | info->ops = &its_msi_domain_ops; | 
|  | info->data = its; | 
|  | inner_domain->host_data = info; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int its_init_vpe_domain(void) | 
|  | { | 
|  | struct its_node *its; | 
|  | u32 devid; | 
|  | int entries; | 
|  |  | 
|  | if (gic_rdists->has_direct_lpi) { | 
|  | pr_info("ITS: Using DirectLPI for VPE invalidation\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Any ITS will do, even if not v4 */ | 
|  | its = list_first_entry(&its_nodes, struct its_node, entry); | 
|  |  | 
|  | entries = roundup_pow_of_two(nr_cpu_ids); | 
|  | vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), | 
|  | GFP_KERNEL); | 
|  | if (!vpe_proxy.vpes) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Use the last possible DevID */ | 
|  | devid = GENMASK(device_ids(its) - 1, 0); | 
|  | vpe_proxy.dev = its_create_device(its, devid, entries, false); | 
|  | if (!vpe_proxy.dev) { | 
|  | kfree(vpe_proxy.vpes); | 
|  | pr_err("ITS: Can't allocate GICv4 proxy device\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | BUG_ON(entries > vpe_proxy.dev->nr_ites); | 
|  |  | 
|  | raw_spin_lock_init(&vpe_proxy.lock); | 
|  | vpe_proxy.next_victim = 0; | 
|  | pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", | 
|  | devid, vpe_proxy.dev->nr_ites); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init its_compute_its_list_map(struct resource *res, | 
|  | void __iomem *its_base) | 
|  | { | 
|  | int its_number; | 
|  | u32 ctlr; | 
|  |  | 
|  | /* | 
|  | * This is assumed to be done early enough that we're | 
|  | * guaranteed to be single-threaded, hence no | 
|  | * locking. Should this change, we should address | 
|  | * this. | 
|  | */ | 
|  | its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); | 
|  | if (its_number >= GICv4_ITS_LIST_MAX) { | 
|  | pr_err("ITS@%pa: No ITSList entry available!\n", | 
|  | &res->start); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctlr = readl_relaxed(its_base + GITS_CTLR); | 
|  | ctlr &= ~GITS_CTLR_ITS_NUMBER; | 
|  | ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; | 
|  | writel_relaxed(ctlr, its_base + GITS_CTLR); | 
|  | ctlr = readl_relaxed(its_base + GITS_CTLR); | 
|  | if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { | 
|  | its_number = ctlr & GITS_CTLR_ITS_NUMBER; | 
|  | its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; | 
|  | } | 
|  |  | 
|  | if (test_and_set_bit(its_number, &its_list_map)) { | 
|  | pr_err("ITS@%pa: Duplicate ITSList entry %d\n", | 
|  | &res->start, its_number); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return its_number; | 
|  | } | 
|  |  | 
|  | static int __init its_probe_one(struct resource *res, | 
|  | struct fwnode_handle *handle, int numa_node) | 
|  | { | 
|  | struct its_node *its; | 
|  | void __iomem *its_base; | 
|  | u32 val, ctlr; | 
|  | u64 baser, tmp, typer; | 
|  | struct page *page; | 
|  | int err; | 
|  |  | 
|  | its_base = ioremap(res->start, SZ_64K); | 
|  | if (!its_base) { | 
|  | pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
|  | if (val != 0x30 && val != 0x40) { | 
|  | pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); | 
|  | err = -ENODEV; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | err = its_force_quiescent(its_base); | 
|  | if (err) { | 
|  | pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | pr_info("ITS %pR\n", res); | 
|  |  | 
|  | its = kzalloc(sizeof(*its), GFP_KERNEL); | 
|  | if (!its) { | 
|  | err = -ENOMEM; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_init(&its->lock); | 
|  | mutex_init(&its->dev_alloc_lock); | 
|  | INIT_LIST_HEAD(&its->entry); | 
|  | INIT_LIST_HEAD(&its->its_device_list); | 
|  | typer = gic_read_typer(its_base + GITS_TYPER); | 
|  | its->typer = typer; | 
|  | its->base = its_base; | 
|  | its->phys_base = res->start; | 
|  | if (is_v4(its)) { | 
|  | if (!(typer & GITS_TYPER_VMOVP)) { | 
|  | err = its_compute_its_list_map(res, its_base); | 
|  | if (err < 0) | 
|  | goto out_free_its; | 
|  |  | 
|  | its->list_nr = err; | 
|  |  | 
|  | pr_info("ITS@%pa: Using ITS number %d\n", | 
|  | &res->start, err); | 
|  | } else { | 
|  | pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); | 
|  | } | 
|  |  | 
|  | if (is_v4_1(its)) { | 
|  | u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); | 
|  |  | 
|  | its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); | 
|  | if (!its->sgir_base) { | 
|  | err = -ENOMEM; | 
|  | goto out_free_its; | 
|  | } | 
|  |  | 
|  | its->mpidr = readl_relaxed(its_base + GITS_MPIDR); | 
|  |  | 
|  | pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", | 
|  | &res->start, its->mpidr, svpet); | 
|  | } | 
|  | } | 
|  |  | 
|  | its->numa_node = numa_node; | 
|  |  | 
|  | page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, | 
|  | get_order(ITS_CMD_QUEUE_SZ)); | 
|  | if (!page) { | 
|  | err = -ENOMEM; | 
|  | goto out_unmap_sgir; | 
|  | } | 
|  | its->cmd_base = (void *)page_address(page); | 
|  | its->cmd_write = its->cmd_base; | 
|  | its->fwnode_handle = handle; | 
|  | its->get_msi_base = its_irq_get_msi_base; | 
|  | its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; | 
|  |  | 
|  | its_enable_quirks(its); | 
|  |  | 
|  | err = its_alloc_tables(its); | 
|  | if (err) | 
|  | goto out_free_cmd; | 
|  |  | 
|  | err = its_alloc_collections(its); | 
|  | if (err) | 
|  | goto out_free_tables; | 
|  |  | 
|  | baser = (virt_to_phys(its->cmd_base)	| | 
|  | GITS_CBASER_RaWaWb		| | 
|  | GITS_CBASER_InnerShareable	| | 
|  | (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	| | 
|  | GITS_CBASER_VALID); | 
|  |  | 
|  | gits_write_cbaser(baser, its->base + GITS_CBASER); | 
|  | tmp = gits_read_cbaser(its->base + GITS_CBASER); | 
|  |  | 
|  | if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { | 
|  | if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { | 
|  | /* | 
|  | * The HW reports non-shareable, we must | 
|  | * remove the cacheability attributes as | 
|  | * well. | 
|  | */ | 
|  | baser &= ~(GITS_CBASER_SHAREABILITY_MASK | | 
|  | GITS_CBASER_CACHEABILITY_MASK); | 
|  | baser |= GITS_CBASER_nC; | 
|  | gits_write_cbaser(baser, its->base + GITS_CBASER); | 
|  | } | 
|  | pr_info("ITS: using cache flushing for cmd queue\n"); | 
|  | its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; | 
|  | } | 
|  |  | 
|  | gits_write_cwriter(0, its->base + GITS_CWRITER); | 
|  | ctlr = readl_relaxed(its->base + GITS_CTLR); | 
|  | ctlr |= GITS_CTLR_ENABLE; | 
|  | if (is_v4(its)) | 
|  | ctlr |= GITS_CTLR_ImDe; | 
|  | writel_relaxed(ctlr, its->base + GITS_CTLR); | 
|  |  | 
|  | err = its_init_domain(handle, its); | 
|  | if (err) | 
|  | goto out_free_tables; | 
|  |  | 
|  | raw_spin_lock(&its_lock); | 
|  | list_add(&its->entry, &its_nodes); | 
|  | raw_spin_unlock(&its_lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_tables: | 
|  | its_free_tables(its); | 
|  | out_free_cmd: | 
|  | free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); | 
|  | out_unmap_sgir: | 
|  | if (its->sgir_base) | 
|  | iounmap(its->sgir_base); | 
|  | out_free_its: | 
|  | kfree(its); | 
|  | out_unmap: | 
|  | iounmap(its_base); | 
|  | pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool gic_rdists_supports_plpis(void) | 
|  | { | 
|  | return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); | 
|  | } | 
|  |  | 
|  | static int redist_disable_lpis(void) | 
|  | { | 
|  | void __iomem *rbase = gic_data_rdist_rd_base(); | 
|  | u64 timeout = USEC_PER_SEC; | 
|  | u64 val; | 
|  |  | 
|  | if (!gic_rdists_supports_plpis()) { | 
|  | pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | val = readl_relaxed(rbase + GICR_CTLR); | 
|  | if (!(val & GICR_CTLR_ENABLE_LPIS)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If coming via a CPU hotplug event, we don't need to disable | 
|  | * LPIs before trying to re-enable them. They are already | 
|  | * configured and all is well in the world. | 
|  | * | 
|  | * If running with preallocated tables, there is nothing to do. | 
|  | */ | 
|  | if (gic_data_rdist()->lpi_enabled || | 
|  | (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * From that point on, we only try to do some damage control. | 
|  | */ | 
|  | pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", | 
|  | smp_processor_id()); | 
|  | add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); | 
|  |  | 
|  | /* Disable LPIs */ | 
|  | val &= ~GICR_CTLR_ENABLE_LPIS; | 
|  | writel_relaxed(val, rbase + GICR_CTLR); | 
|  |  | 
|  | /* Make sure any change to GICR_CTLR is observable by the GIC */ | 
|  | dsb(sy); | 
|  |  | 
|  | /* | 
|  | * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs | 
|  | * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. | 
|  | * Error out if we time out waiting for RWP to clear. | 
|  | */ | 
|  | while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { | 
|  | if (!timeout) { | 
|  | pr_err("CPU%d: Timeout while disabling LPIs\n", | 
|  | smp_processor_id()); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | udelay(1); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After it has been written to 1, it is IMPLEMENTATION | 
|  | * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be | 
|  | * cleared to 0. Error out if clearing the bit failed. | 
|  | */ | 
|  | if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { | 
|  | pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int its_cpu_init(void) | 
|  | { | 
|  | if (!list_empty(&its_nodes)) { | 
|  | int ret; | 
|  |  | 
|  | ret = redist_disable_lpis(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | its_cpu_init_lpis(); | 
|  | its_cpu_init_collections(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id its_device_id[] = { | 
|  | {	.compatible	= "arm,gic-v3-its",	}, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static int __init its_of_probe(struct device_node *node) | 
|  | { | 
|  | struct device_node *np; | 
|  | struct resource res; | 
|  |  | 
|  | for (np = of_find_matching_node(node, its_device_id); np; | 
|  | np = of_find_matching_node(np, its_device_id)) { | 
|  | if (!of_device_is_available(np)) | 
|  | continue; | 
|  | if (!of_property_read_bool(np, "msi-controller")) { | 
|  | pr_warn("%pOF: no msi-controller property, ITS ignored\n", | 
|  | np); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (of_address_to_resource(np, 0, &res)) { | 
|  | pr_warn("%pOF: no regs?\n", np); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  |  | 
|  | #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) | 
|  |  | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | struct its_srat_map { | 
|  | /* numa node id */ | 
|  | u32	numa_node; | 
|  | /* GIC ITS ID */ | 
|  | u32	its_id; | 
|  | }; | 
|  |  | 
|  | static struct its_srat_map *its_srat_maps __initdata; | 
|  | static int its_in_srat __initdata; | 
|  |  | 
|  | static int __init acpi_get_its_numa_node(u32 its_id) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < its_in_srat; i++) { | 
|  | if (its_id == its_srat_maps[i].its_id) | 
|  | return its_srat_maps[i].numa_node; | 
|  | } | 
|  | return NUMA_NO_NODE; | 
|  | } | 
|  |  | 
|  | static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, | 
|  | const unsigned long end) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, | 
|  | const unsigned long end) | 
|  | { | 
|  | int node; | 
|  | struct acpi_srat_gic_its_affinity *its_affinity; | 
|  |  | 
|  | its_affinity = (struct acpi_srat_gic_its_affinity *)header; | 
|  | if (!its_affinity) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (its_affinity->header.length < sizeof(*its_affinity)) { | 
|  | pr_err("SRAT: Invalid header length %d in ITS affinity\n", | 
|  | its_affinity->header.length); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that in theory a new proximity node could be created by this | 
|  | * entry as it is an SRAT resource allocation structure. | 
|  | * We do not currently support doing so. | 
|  | */ | 
|  | node = pxm_to_node(its_affinity->proximity_domain); | 
|  |  | 
|  | if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { | 
|  | pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | its_srat_maps[its_in_srat].numa_node = node; | 
|  | its_srat_maps[its_in_srat].its_id = its_affinity->its_id; | 
|  | its_in_srat++; | 
|  | pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", | 
|  | its_affinity->proximity_domain, its_affinity->its_id, node); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init acpi_table_parse_srat_its(void) | 
|  | { | 
|  | int count; | 
|  |  | 
|  | count = acpi_table_parse_entries(ACPI_SIG_SRAT, | 
|  | sizeof(struct acpi_table_srat), | 
|  | ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
|  | gic_acpi_match_srat_its, 0); | 
|  | if (count <= 0) | 
|  | return; | 
|  |  | 
|  | its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), | 
|  | GFP_KERNEL); | 
|  | if (!its_srat_maps) | 
|  | return; | 
|  |  | 
|  | acpi_table_parse_entries(ACPI_SIG_SRAT, | 
|  | sizeof(struct acpi_table_srat), | 
|  | ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
|  | gic_acpi_parse_srat_its, 0); | 
|  | } | 
|  |  | 
|  | /* free the its_srat_maps after ITS probing */ | 
|  | static void __init acpi_its_srat_maps_free(void) | 
|  | { | 
|  | kfree(its_srat_maps); | 
|  | } | 
|  | #else | 
|  | static void __init acpi_table_parse_srat_its(void)	{ } | 
|  | static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } | 
|  | static void __init acpi_its_srat_maps_free(void) { } | 
|  | #endif | 
|  |  | 
|  | static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, | 
|  | const unsigned long end) | 
|  | { | 
|  | struct acpi_madt_generic_translator *its_entry; | 
|  | struct fwnode_handle *dom_handle; | 
|  | struct resource res; | 
|  | int err; | 
|  |  | 
|  | its_entry = (struct acpi_madt_generic_translator *)header; | 
|  | memset(&res, 0, sizeof(res)); | 
|  | res.start = its_entry->base_address; | 
|  | res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; | 
|  | res.flags = IORESOURCE_MEM; | 
|  |  | 
|  | dom_handle = irq_domain_alloc_fwnode(&res.start); | 
|  | if (!dom_handle) { | 
|  | pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", | 
|  | &res.start); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | err = iort_register_domain_token(its_entry->translation_id, res.start, | 
|  | dom_handle); | 
|  | if (err) { | 
|  | pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", | 
|  | &res.start, its_entry->translation_id); | 
|  | goto dom_err; | 
|  | } | 
|  |  | 
|  | err = its_probe_one(&res, dom_handle, | 
|  | acpi_get_its_numa_node(its_entry->translation_id)); | 
|  | if (!err) | 
|  | return 0; | 
|  |  | 
|  | iort_deregister_domain_token(its_entry->translation_id); | 
|  | dom_err: | 
|  | irq_domain_free_fwnode(dom_handle); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __init its_acpi_probe(void) | 
|  | { | 
|  | acpi_table_parse_srat_its(); | 
|  | acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, | 
|  | gic_acpi_parse_madt_its, 0); | 
|  | acpi_its_srat_maps_free(); | 
|  | } | 
|  | #else | 
|  | static void __init its_acpi_probe(void) { } | 
|  | #endif | 
|  |  | 
|  | int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, | 
|  | struct irq_domain *parent_domain) | 
|  | { | 
|  | struct device_node *of_node; | 
|  | struct its_node *its; | 
|  | bool has_v4 = false; | 
|  | bool has_v4_1 = false; | 
|  | int err; | 
|  |  | 
|  | gic_rdists = rdists; | 
|  |  | 
|  | its_parent = parent_domain; | 
|  | of_node = to_of_node(handle); | 
|  | if (of_node) | 
|  | its_of_probe(of_node); | 
|  | else | 
|  | its_acpi_probe(); | 
|  |  | 
|  | if (list_empty(&its_nodes)) { | 
|  | pr_warn("ITS: No ITS available, not enabling LPIs\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | err = allocate_lpi_tables(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | list_for_each_entry(its, &its_nodes, entry) { | 
|  | has_v4 |= is_v4(its); | 
|  | has_v4_1 |= is_v4_1(its); | 
|  | } | 
|  |  | 
|  | /* Don't bother with inconsistent systems */ | 
|  | if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) | 
|  | rdists->has_rvpeid = false; | 
|  |  | 
|  | if (has_v4 & rdists->has_vlpis) { | 
|  | const struct irq_domain_ops *sgi_ops; | 
|  |  | 
|  | if (has_v4_1) | 
|  | sgi_ops = &its_sgi_domain_ops; | 
|  | else | 
|  | sgi_ops = NULL; | 
|  |  | 
|  | if (its_init_vpe_domain() || | 
|  | its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { | 
|  | rdists->has_vlpis = false; | 
|  | pr_err("ITS: Disabling GICv4 support\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | register_syscore_ops(&its_syscore_ops); | 
|  |  | 
|  | return 0; | 
|  | } |