| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Copyright The Asahi Linux Contributors | 
 |  * | 
 |  * Based on irq-lpc32xx: | 
 |  *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com> | 
 |  * Based on irq-bcm2836: | 
 |  *   Copyright 2015 Broadcom | 
 |  */ | 
 |  | 
 | /* | 
 |  * AIC is a fairly simple interrupt controller with the following features: | 
 |  * | 
 |  * - 896 level-triggered hardware IRQs | 
 |  *   - Single mask bit per IRQ | 
 |  *   - Per-IRQ affinity setting | 
 |  *   - Automatic masking on event delivery (auto-ack) | 
 |  *   - Software triggering (ORed with hw line) | 
 |  * - 2 per-CPU IPIs (meant as "self" and "other", but they are | 
 |  *   interchangeable if not symmetric) | 
 |  * - Automatic prioritization (single event/ack register per CPU, lower IRQs = | 
 |  *   higher priority) | 
 |  * - Automatic masking on ack | 
 |  * - Default "this CPU" register view and explicit per-CPU views | 
 |  * | 
 |  * In addition, this driver also handles FIQs, as these are routed to the same | 
 |  * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and | 
 |  * performance counters (TODO). | 
 |  * | 
 |  * Implementation notes: | 
 |  * | 
 |  * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs, | 
 |  *   and one for IPIs. | 
 |  * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller | 
 |  *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused). | 
 |  * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu. | 
 |  * - DT bindings use 3-cell form (like GIC): | 
 |  *   - <0 nr flags> - hwirq #nr | 
 |  *   - <1 nr flags> - FIQ #nr | 
 |  *     - nr=0  Physical HV timer | 
 |  *     - nr=1  Virtual HV timer | 
 |  *     - nr=2  Physical guest timer | 
 |  *     - nr=3  Virtual guest timer | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/bits.h> | 
 | #include <linux/bitfield.h> | 
 | #include <linux/cpuhotplug.h> | 
 | #include <linux/io.h> | 
 | #include <linux/irqchip.h> | 
 | #include <linux/irqchip/arm-vgic-info.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/limits.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/exception.h> | 
 | #include <asm/sysreg.h> | 
 | #include <asm/virt.h> | 
 |  | 
 | #include <dt-bindings/interrupt-controller/apple-aic.h> | 
 |  | 
 | /* | 
 |  * AIC registers (MMIO) | 
 |  */ | 
 |  | 
 | #define AIC_INFO		0x0004 | 
 | #define AIC_INFO_NR_HW		GENMASK(15, 0) | 
 |  | 
 | #define AIC_CONFIG		0x0010 | 
 |  | 
 | #define AIC_WHOAMI		0x2000 | 
 | #define AIC_EVENT		0x2004 | 
 | #define AIC_EVENT_TYPE		GENMASK(31, 16) | 
 | #define AIC_EVENT_NUM		GENMASK(15, 0) | 
 |  | 
 | #define AIC_EVENT_TYPE_HW	1 | 
 | #define AIC_EVENT_TYPE_IPI	4 | 
 | #define AIC_EVENT_IPI_OTHER	1 | 
 | #define AIC_EVENT_IPI_SELF	2 | 
 |  | 
 | #define AIC_IPI_SEND		0x2008 | 
 | #define AIC_IPI_ACK		0x200c | 
 | #define AIC_IPI_MASK_SET	0x2024 | 
 | #define AIC_IPI_MASK_CLR	0x2028 | 
 |  | 
 | #define AIC_IPI_SEND_CPU(cpu)	BIT(cpu) | 
 |  | 
 | #define AIC_IPI_OTHER		BIT(0) | 
 | #define AIC_IPI_SELF		BIT(31) | 
 |  | 
 | #define AIC_TARGET_CPU		0x3000 | 
 | #define AIC_SW_SET		0x4000 | 
 | #define AIC_SW_CLR		0x4080 | 
 | #define AIC_MASK_SET		0x4100 | 
 | #define AIC_MASK_CLR		0x4180 | 
 |  | 
 | #define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7)) | 
 | #define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7)) | 
 | #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7)) | 
 | #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7)) | 
 |  | 
 | #define MASK_REG(x)		(4 * ((x) >> 5)) | 
 | #define MASK_BIT(x)		BIT((x) & GENMASK(4, 0)) | 
 |  | 
 | /* | 
 |  * IMP-DEF sysregs that control FIQ sources | 
 |  * Note: sysreg-based IPIs are not supported yet. | 
 |  */ | 
 |  | 
 | /* Core PMC control register */ | 
 | #define SYS_IMP_APL_PMCR0_EL1		sys_reg(3, 1, 15, 0, 0) | 
 | #define PMCR0_IMODE			GENMASK(10, 8) | 
 | #define PMCR0_IMODE_OFF			0 | 
 | #define PMCR0_IMODE_PMI			1 | 
 | #define PMCR0_IMODE_AIC			2 | 
 | #define PMCR0_IMODE_HALT		3 | 
 | #define PMCR0_IMODE_FIQ			4 | 
 | #define PMCR0_IACT			BIT(11) | 
 |  | 
 | /* IPI request registers */ | 
 | #define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0) | 
 | #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1) | 
 | #define IPI_RR_CPU			GENMASK(7, 0) | 
 | /* Cluster only used for the GLOBAL register */ | 
 | #define IPI_RR_CLUSTER			GENMASK(23, 16) | 
 | #define IPI_RR_TYPE			GENMASK(29, 28) | 
 | #define IPI_RR_IMMEDIATE		0 | 
 | #define IPI_RR_RETRACT			1 | 
 | #define IPI_RR_DEFERRED			2 | 
 | #define IPI_RR_NOWAKE			3 | 
 |  | 
 | /* IPI status register */ | 
 | #define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1) | 
 | #define IPI_SR_PENDING			BIT(0) | 
 |  | 
 | /* Guest timer FIQ enable register */ | 
 | #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3) | 
 | #define VM_TMR_FIQ_ENABLE_V		BIT(0) | 
 | #define VM_TMR_FIQ_ENABLE_P		BIT(1) | 
 |  | 
 | /* Deferred IPI countdown register */ | 
 | #define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1) | 
 |  | 
 | /* Uncore PMC control register */ | 
 | #define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4) | 
 | #define UPMCR0_IMODE			GENMASK(18, 16) | 
 | #define UPMCR0_IMODE_OFF		0 | 
 | #define UPMCR0_IMODE_AIC		2 | 
 | #define UPMCR0_IMODE_HALT		3 | 
 | #define UPMCR0_IMODE_FIQ		4 | 
 |  | 
 | /* Uncore PMC status register */ | 
 | #define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4) | 
 | #define UPMSR_IACT			BIT(0) | 
 |  | 
 | #define AIC_NR_FIQ		4 | 
 | #define AIC_NR_SWIPI		32 | 
 |  | 
 | /* | 
 |  * FIQ hwirq index definitions: FIQ sources use the DT binding defines | 
 |  * directly, except that timers are special. At the irqchip level, the | 
 |  * two timer types are represented by their access method: _EL0 registers | 
 |  * or _EL02 registers. In the DT binding, the timers are represented | 
 |  * by their purpose (HV or guest). This mapping is for when the kernel is | 
 |  * running at EL2 (with VHE). When the kernel is running at EL1, the | 
 |  * mapping differs and aic_irq_domain_translate() performs the remapping. | 
 |  */ | 
 |  | 
 | #define AIC_TMR_EL0_PHYS	AIC_TMR_HV_PHYS | 
 | #define AIC_TMR_EL0_VIRT	AIC_TMR_HV_VIRT | 
 | #define AIC_TMR_EL02_PHYS	AIC_TMR_GUEST_PHYS | 
 | #define AIC_TMR_EL02_VIRT	AIC_TMR_GUEST_VIRT | 
 |  | 
 | struct aic_irq_chip { | 
 | 	void __iomem *base; | 
 | 	struct irq_domain *hw_domain; | 
 | 	struct irq_domain *ipi_domain; | 
 | 	int nr_hw; | 
 | 	int ipi_hwirq; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked); | 
 |  | 
 | static DEFINE_PER_CPU(atomic_t, aic_vipi_flag); | 
 | static DEFINE_PER_CPU(atomic_t, aic_vipi_enable); | 
 |  | 
 | static struct aic_irq_chip *aic_irqc; | 
 |  | 
 | static void aic_handle_ipi(struct pt_regs *regs); | 
 |  | 
 | static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg) | 
 | { | 
 | 	return readl_relaxed(ic->base + reg); | 
 | } | 
 |  | 
 | static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val) | 
 | { | 
 | 	writel_relaxed(val, ic->base + reg); | 
 | } | 
 |  | 
 | /* | 
 |  * IRQ irqchip | 
 |  */ | 
 |  | 
 | static void aic_irq_mask(struct irq_data *d) | 
 | { | 
 | 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)), | 
 | 		     MASK_BIT(irqd_to_hwirq(d))); | 
 | } | 
 |  | 
 | static void aic_irq_unmask(struct irq_data *d) | 
 | { | 
 | 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq), | 
 | 		     MASK_BIT(irqd_to_hwirq(d))); | 
 | } | 
 |  | 
 | static void aic_irq_eoi(struct irq_data *d) | 
 | { | 
 | 	/* | 
 | 	 * Reading the interrupt reason automatically acknowledges and masks | 
 | 	 * the IRQ, so we just unmask it here if needed. | 
 | 	 */ | 
 | 	if (!irqd_irq_masked(d)) | 
 | 		aic_irq_unmask(d); | 
 | } | 
 |  | 
 | static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs) | 
 | { | 
 | 	struct aic_irq_chip *ic = aic_irqc; | 
 | 	u32 event, type, irq; | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * We cannot use a relaxed read here, as reads from DMA buffers | 
 | 		 * need to be ordered after the IRQ fires. | 
 | 		 */ | 
 | 		event = readl(ic->base + AIC_EVENT); | 
 | 		type = FIELD_GET(AIC_EVENT_TYPE, event); | 
 | 		irq = FIELD_GET(AIC_EVENT_NUM, event); | 
 |  | 
 | 		if (type == AIC_EVENT_TYPE_HW) | 
 | 			handle_domain_irq(aic_irqc->hw_domain, irq, regs); | 
 | 		else if (type == AIC_EVENT_TYPE_IPI && irq == 1) | 
 | 			aic_handle_ipi(regs); | 
 | 		else if (event != 0) | 
 | 			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq); | 
 | 	} while (event); | 
 |  | 
 | 	/* | 
 | 	 * vGIC maintenance interrupts end up here too, so we need to check | 
 | 	 * for them separately. This should never trigger if KVM is working | 
 | 	 * properly, because it will have already taken care of clearing it | 
 | 	 * on guest exit before this handler runs. | 
 | 	 */ | 
 | 	if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && | 
 | 		read_sysreg_s(SYS_ICH_MISR_EL2) != 0) { | 
 | 		pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n"); | 
 | 		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static int aic_irq_set_affinity(struct irq_data *d, | 
 | 				const struct cpumask *mask_val, bool force) | 
 | { | 
 | 	irq_hw_number_t hwirq = irqd_to_hwirq(d); | 
 | 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); | 
 | 	int cpu; | 
 |  | 
 | 	if (force) | 
 | 		cpu = cpumask_first(mask_val); | 
 | 	else | 
 | 		cpu = cpumask_any_and(mask_val, cpu_online_mask); | 
 |  | 
 | 	aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu)); | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 |  | 
 | 	return IRQ_SET_MASK_OK; | 
 | } | 
 |  | 
 | static int aic_irq_set_type(struct irq_data *d, unsigned int type) | 
 | { | 
 | 	/* | 
 | 	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't | 
 | 	 * have a way to find out the type of any given IRQ, so just allow both. | 
 | 	 */ | 
 | 	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL; | 
 | } | 
 |  | 
 | static struct irq_chip aic_chip = { | 
 | 	.name = "AIC", | 
 | 	.irq_mask = aic_irq_mask, | 
 | 	.irq_unmask = aic_irq_unmask, | 
 | 	.irq_eoi = aic_irq_eoi, | 
 | 	.irq_set_affinity = aic_irq_set_affinity, | 
 | 	.irq_set_type = aic_irq_set_type, | 
 | }; | 
 |  | 
 | /* | 
 |  * FIQ irqchip | 
 |  */ | 
 |  | 
 | static unsigned long aic_fiq_get_idx(struct irq_data *d) | 
 | { | 
 | 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	return irqd_to_hwirq(d) - ic->nr_hw; | 
 | } | 
 |  | 
 | static void aic_fiq_set_mask(struct irq_data *d) | 
 | { | 
 | 	/* Only the guest timers have real mask bits, unfortunately. */ | 
 | 	switch (aic_fiq_get_idx(d)) { | 
 | 	case AIC_TMR_EL02_PHYS: | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0); | 
 | 		isb(); | 
 | 		break; | 
 | 	case AIC_TMR_EL02_VIRT: | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0); | 
 | 		isb(); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void aic_fiq_clear_mask(struct irq_data *d) | 
 | { | 
 | 	switch (aic_fiq_get_idx(d)) { | 
 | 	case AIC_TMR_EL02_PHYS: | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P); | 
 | 		isb(); | 
 | 		break; | 
 | 	case AIC_TMR_EL02_VIRT: | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V); | 
 | 		isb(); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void aic_fiq_mask(struct irq_data *d) | 
 | { | 
 | 	aic_fiq_set_mask(d); | 
 | 	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d))); | 
 | } | 
 |  | 
 | static void aic_fiq_unmask(struct irq_data *d) | 
 | { | 
 | 	aic_fiq_clear_mask(d); | 
 | 	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d))); | 
 | } | 
 |  | 
 | static void aic_fiq_eoi(struct irq_data *d) | 
 | { | 
 | 	/* We mask to ack (where we can), so we need to unmask at EOI. */ | 
 | 	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d))) | 
 | 		aic_fiq_clear_mask(d); | 
 | } | 
 |  | 
 | #define TIMER_FIRING(x)                                                        \ | 
 | 	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \ | 
 | 		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \ | 
 | 	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) | 
 |  | 
 | static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * It would be really nice if we had a system register that lets us get | 
 | 	 * the FIQ source state without having to peek down into sources... | 
 | 	 * but such a register does not seem to exist. | 
 | 	 * | 
 | 	 * So, we have these potential sources to test for: | 
 | 	 *  - Fast IPIs (not yet used) | 
 | 	 *  - The 4 timers (CNTP, CNTV for each of HV and guest) | 
 | 	 *  - Per-core PMCs (not yet supported) | 
 | 	 *  - Per-cluster uncore PMCs (not yet supported) | 
 | 	 * | 
 | 	 * Since not dealing with any of these results in a FIQ storm, | 
 | 	 * we check for everything here, even things we don't support yet. | 
 | 	 */ | 
 |  | 
 | 	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) { | 
 | 		pr_err_ratelimited("Fast IPI fired. Acking.\n"); | 
 | 		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); | 
 | 	} | 
 |  | 
 | 	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0))) | 
 | 		handle_domain_irq(aic_irqc->hw_domain, | 
 | 				  aic_irqc->nr_hw + AIC_TMR_EL0_PHYS, regs); | 
 |  | 
 | 	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0))) | 
 | 		handle_domain_irq(aic_irqc->hw_domain, | 
 | 				  aic_irqc->nr_hw + AIC_TMR_EL0_VIRT, regs); | 
 |  | 
 | 	if (is_kernel_in_hyp_mode()) { | 
 | 		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2); | 
 |  | 
 | 		if ((enabled & VM_TMR_FIQ_ENABLE_P) && | 
 | 		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02))) | 
 | 			handle_domain_irq(aic_irqc->hw_domain, | 
 | 					  aic_irqc->nr_hw + AIC_TMR_EL02_PHYS, regs); | 
 |  | 
 | 		if ((enabled & VM_TMR_FIQ_ENABLE_V) && | 
 | 		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02))) | 
 | 			handle_domain_irq(aic_irqc->hw_domain, | 
 | 					  aic_irqc->nr_hw + AIC_TMR_EL02_VIRT, regs); | 
 | 	} | 
 |  | 
 | 	if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) == | 
 | 			(FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) { | 
 | 		/* | 
 | 		 * Not supported yet, let's figure out how to handle this when | 
 | 		 * we implement these proprietary performance counters. For now, | 
 | 		 * just mask it and move on. | 
 | 		 */ | 
 | 		pr_err_ratelimited("PMC FIQ fired. Masking.\n"); | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, | 
 | 				   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); | 
 | 	} | 
 |  | 
 | 	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ && | 
 | 			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) { | 
 | 		/* Same story with uncore PMCs */ | 
 | 		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n"); | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, | 
 | 				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); | 
 | 	} | 
 | } | 
 |  | 
 | static int aic_fiq_set_type(struct irq_data *d, unsigned int type) | 
 | { | 
 | 	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL; | 
 | } | 
 |  | 
 | static struct irq_chip fiq_chip = { | 
 | 	.name = "AIC-FIQ", | 
 | 	.irq_mask = aic_fiq_mask, | 
 | 	.irq_unmask = aic_fiq_unmask, | 
 | 	.irq_ack = aic_fiq_set_mask, | 
 | 	.irq_eoi = aic_fiq_eoi, | 
 | 	.irq_set_type = aic_fiq_set_type, | 
 | }; | 
 |  | 
 | /* | 
 |  * Main IRQ domain | 
 |  */ | 
 |  | 
 | static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq, | 
 | 			      irq_hw_number_t hw) | 
 | { | 
 | 	struct aic_irq_chip *ic = id->host_data; | 
 |  | 
 | 	if (hw < ic->nr_hw) { | 
 | 		irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data, | 
 | 				    handle_fasteoi_irq, NULL, NULL); | 
 | 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq))); | 
 | 	} else { | 
 | 		irq_set_percpu_devid(irq); | 
 | 		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data, | 
 | 				    handle_percpu_devid_irq, NULL, NULL); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int aic_irq_domain_translate(struct irq_domain *id, | 
 | 				    struct irq_fwspec *fwspec, | 
 | 				    unsigned long *hwirq, | 
 | 				    unsigned int *type) | 
 | { | 
 | 	struct aic_irq_chip *ic = id->host_data; | 
 |  | 
 | 	if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (fwspec->param[0]) { | 
 | 	case AIC_IRQ: | 
 | 		if (fwspec->param[1] >= ic->nr_hw) | 
 | 			return -EINVAL; | 
 | 		*hwirq = fwspec->param[1]; | 
 | 		break; | 
 | 	case AIC_FIQ: | 
 | 		if (fwspec->param[1] >= AIC_NR_FIQ) | 
 | 			return -EINVAL; | 
 | 		*hwirq = ic->nr_hw + fwspec->param[1]; | 
 |  | 
 | 		/* | 
 | 		 * In EL1 the non-redirected registers are the guest's, | 
 | 		 * not EL2's, so remap the hwirqs to match. | 
 | 		 */ | 
 | 		if (!is_kernel_in_hyp_mode()) { | 
 | 			switch (fwspec->param[1]) { | 
 | 			case AIC_TMR_GUEST_PHYS: | 
 | 				*hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS; | 
 | 				break; | 
 | 			case AIC_TMR_GUEST_VIRT: | 
 | 				*hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT; | 
 | 				break; | 
 | 			case AIC_TMR_HV_PHYS: | 
 | 			case AIC_TMR_HV_VIRT: | 
 | 				return -ENOENT; | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs, void *arg) | 
 | { | 
 | 	unsigned int type = IRQ_TYPE_NONE; | 
 | 	struct irq_fwspec *fwspec = arg; | 
 | 	irq_hw_number_t hwirq; | 
 | 	int i, ret; | 
 |  | 
 | 	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		ret = aic_irq_domain_map(domain, virq + i, hwirq + i); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); | 
 |  | 
 | 		irq_set_handler(virq + i, NULL); | 
 | 		irq_domain_reset_irq_data(d); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct irq_domain_ops aic_irq_domain_ops = { | 
 | 	.translate	= aic_irq_domain_translate, | 
 | 	.alloc		= aic_irq_domain_alloc, | 
 | 	.free		= aic_irq_domain_free, | 
 | }; | 
 |  | 
 | /* | 
 |  * IPI irqchip | 
 |  */ | 
 |  | 
 | static void aic_ipi_mask(struct irq_data *d) | 
 | { | 
 | 	u32 irq_bit = BIT(irqd_to_hwirq(d)); | 
 |  | 
 | 	/* No specific ordering requirements needed here. */ | 
 | 	atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable)); | 
 | } | 
 |  | 
 | static void aic_ipi_unmask(struct irq_data *d) | 
 | { | 
 | 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); | 
 | 	u32 irq_bit = BIT(irqd_to_hwirq(d)); | 
 |  | 
 | 	atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable)); | 
 |  | 
 | 	/* | 
 | 	 * The atomic_or() above must complete before the atomic_read() | 
 | 	 * below to avoid racing aic_ipi_send_mask(). | 
 | 	 */ | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	/* | 
 | 	 * If a pending vIPI was unmasked, raise a HW IPI to ourselves. | 
 | 	 * No barriers needed here since this is a self-IPI. | 
 | 	 */ | 
 | 	if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) | 
 | 		aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id())); | 
 | } | 
 |  | 
 | static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) | 
 | { | 
 | 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); | 
 | 	u32 irq_bit = BIT(irqd_to_hwirq(d)); | 
 | 	u32 send = 0; | 
 | 	int cpu; | 
 | 	unsigned long pending; | 
 |  | 
 | 	for_each_cpu(cpu, mask) { | 
 | 		/* | 
 | 		 * This sequence is the mirror of the one in aic_ipi_unmask(); | 
 | 		 * see the comment there. Additionally, release semantics | 
 | 		 * ensure that the vIPI flag set is ordered after any shared | 
 | 		 * memory accesses that precede it. This therefore also pairs | 
 | 		 * with the atomic_fetch_andnot in aic_handle_ipi(). | 
 | 		 */ | 
 | 		pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu)); | 
 |  | 
 | 		/* | 
 | 		 * The atomic_fetch_or_release() above must complete before the | 
 | 		 * atomic_read() below to avoid racing aic_ipi_unmask(). | 
 | 		 */ | 
 | 		smp_mb__after_atomic(); | 
 |  | 
 | 		if (!(pending & irq_bit) && | 
 | 		    (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) | 
 | 			send |= AIC_IPI_SEND_CPU(cpu); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The flag writes must complete before the physical IPI is issued | 
 | 	 * to another CPU. This is implied by the control dependency on | 
 | 	 * the result of atomic_read_acquire() above, which is itself | 
 | 	 * already ordered after the vIPI flag write. | 
 | 	 */ | 
 | 	if (send) | 
 | 		aic_ic_write(ic, AIC_IPI_SEND, send); | 
 | } | 
 |  | 
 | static struct irq_chip ipi_chip = { | 
 | 	.name = "AIC-IPI", | 
 | 	.irq_mask = aic_ipi_mask, | 
 | 	.irq_unmask = aic_ipi_unmask, | 
 | 	.ipi_send_mask = aic_ipi_send_mask, | 
 | }; | 
 |  | 
 | /* | 
 |  * IPI IRQ domain | 
 |  */ | 
 |  | 
 | static void aic_handle_ipi(struct pt_regs *regs) | 
 | { | 
 | 	int i; | 
 | 	unsigned long enabled, firing; | 
 |  | 
 | 	/* | 
 | 	 * Ack the IPI. We need to order this after the AIC event read, but | 
 | 	 * that is enforced by normal MMIO ordering guarantees. | 
 | 	 */ | 
 | 	aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER); | 
 |  | 
 | 	/* | 
 | 	 * The mask read does not need to be ordered. Only we can change | 
 | 	 * our own mask anyway, so no races are possible here, as long as | 
 | 	 * we are properly in the interrupt handler (which is covered by | 
 | 	 * the barrier that is part of the top-level AIC handler's readl()). | 
 | 	 */ | 
 | 	enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable)); | 
 |  | 
 | 	/* | 
 | 	 * Clear the IPIs we are about to handle. This pairs with the | 
 | 	 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be | 
 | 	 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and | 
 | 	 * before IPI handling code (to avoid races handling vIPIs before they | 
 | 	 * are signaled). The former is taken care of by the release semantics | 
 | 	 * of the write portion, while the latter is taken care of by the | 
 | 	 * acquire semantics of the read portion. | 
 | 	 */ | 
 | 	firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled; | 
 |  | 
 | 	for_each_set_bit(i, &firing, AIC_NR_SWIPI) | 
 | 		handle_domain_irq(aic_irqc->ipi_domain, i, regs); | 
 |  | 
 | 	/* | 
 | 	 * No ordering needed here; at worst this just changes the timing of | 
 | 	 * when the next IPI will be delivered. | 
 | 	 */ | 
 | 	aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); | 
 | } | 
 |  | 
 | static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq, | 
 | 			 unsigned int nr_irqs, void *args) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		irq_set_percpu_devid(virq + i); | 
 | 		irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data, | 
 | 				    handle_percpu_devid_irq, NULL, NULL); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) | 
 | { | 
 | 	/* Not freeing IPIs */ | 
 | } | 
 |  | 
 | static const struct irq_domain_ops aic_ipi_domain_ops = { | 
 | 	.alloc = aic_ipi_alloc, | 
 | 	.free = aic_ipi_free, | 
 | }; | 
 |  | 
 | static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node) | 
 | { | 
 | 	struct irq_domain *ipi_domain; | 
 | 	int base_ipi; | 
 |  | 
 | 	ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI, | 
 | 					      &aic_ipi_domain_ops, irqc); | 
 | 	if (WARN_ON(!ipi_domain)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE; | 
 | 	irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI); | 
 |  | 
 | 	base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI, | 
 | 					   NUMA_NO_NODE, NULL, false, NULL); | 
 |  | 
 | 	if (WARN_ON(!base_ipi)) { | 
 | 		irq_domain_remove(ipi_domain); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI); | 
 |  | 
 | 	irqc->ipi_domain = ipi_domain; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int aic_init_cpu(unsigned int cpu) | 
 | { | 
 | 	/* Mask all hard-wired per-CPU IRQ/FIQ sources */ | 
 |  | 
 | 	/* Pending Fast IPI FIQs */ | 
 | 	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); | 
 |  | 
 | 	/* Timer FIQs */ | 
 | 	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); | 
 | 	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); | 
 |  | 
 | 	/* EL2-only (VHE mode) IRQ sources */ | 
 | 	if (is_kernel_in_hyp_mode()) { | 
 | 		/* Guest timers */ | 
 | 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, | 
 | 				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0); | 
 |  | 
 | 		/* vGIC maintenance IRQ */ | 
 | 		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); | 
 | 	} | 
 |  | 
 | 	/* PMC FIQ */ | 
 | 	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, | 
 | 			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); | 
 |  | 
 | 	/* Uncore PMC FIQ */ | 
 | 	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, | 
 | 			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); | 
 |  | 
 | 	/* Commit all of the above */ | 
 | 	isb(); | 
 |  | 
 | 	/* | 
 | 	 * Make sure the kernel's idea of logical CPU order is the same as AIC's | 
 | 	 * If we ever end up with a mismatch here, we will have to introduce | 
 | 	 * a mapping table similar to what other irqchip drivers do. | 
 | 	 */ | 
 | 	WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id()); | 
 |  | 
 | 	/* | 
 | 	 * Always keep IPIs unmasked at the hardware level (except auto-masking | 
 | 	 * by AIC during processing). We manage masks at the vIPI level. | 
 | 	 */ | 
 | 	aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER); | 
 | 	aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF); | 
 | 	aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); | 
 |  | 
 | 	/* Initialize the local mask state */ | 
 | 	__this_cpu_write(aic_fiq_unmasked, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct gic_kvm_info vgic_info __initdata = { | 
 | 	.type			= GIC_V3, | 
 | 	.no_maint_irq_mask	= true, | 
 | 	.no_hw_deactivation	= true, | 
 | }; | 
 |  | 
 | static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent) | 
 | { | 
 | 	int i; | 
 | 	void __iomem *regs; | 
 | 	u32 info; | 
 | 	struct aic_irq_chip *irqc; | 
 |  | 
 | 	regs = of_iomap(node, 0); | 
 | 	if (WARN_ON(!regs)) | 
 | 		return -EIO; | 
 |  | 
 | 	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL); | 
 | 	if (!irqc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	aic_irqc = irqc; | 
 | 	irqc->base = regs; | 
 |  | 
 | 	info = aic_ic_read(irqc, AIC_INFO); | 
 | 	irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info); | 
 |  | 
 | 	irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node), | 
 | 						   irqc->nr_hw + AIC_NR_FIQ, | 
 | 						   &aic_irq_domain_ops, irqc); | 
 | 	if (WARN_ON(!irqc->hw_domain)) { | 
 | 		iounmap(irqc->base); | 
 | 		kfree(irqc); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED); | 
 |  | 
 | 	if (aic_init_smp(irqc, node)) { | 
 | 		irq_domain_remove(irqc->hw_domain); | 
 | 		iounmap(irqc->base); | 
 | 		kfree(irqc); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	set_handle_irq(aic_handle_irq); | 
 | 	set_handle_fiq(aic_handle_fiq); | 
 |  | 
 | 	for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) | 
 | 		aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX); | 
 | 	for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) | 
 | 		aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX); | 
 | 	for (i = 0; i < irqc->nr_hw; i++) | 
 | 		aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1); | 
 |  | 
 | 	if (!is_kernel_in_hyp_mode()) | 
 | 		pr_info("Kernel running in EL1, mapping interrupts"); | 
 |  | 
 | 	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING, | 
 | 			  "irqchip/apple-aic/ipi:starting", | 
 | 			  aic_init_cpu, NULL); | 
 |  | 
 | 	vgic_set_kvm_info(&vgic_info); | 
 |  | 
 | 	pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n", | 
 | 		irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init); |