|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Key setup for v1 encryption policies | 
|  | * | 
|  | * Copyright 2015, 2019 Google LLC | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file implements compatibility functions for the original encryption | 
|  | * policy version ("v1"), including: | 
|  | * | 
|  | * - Deriving per-file encryption keys using the AES-128-ECB based KDF | 
|  | *   (rather than the new method of using HKDF-SHA512) | 
|  | * | 
|  | * - Retrieving fscrypt master keys from process-subscribed keyrings | 
|  | *   (rather than the new method of using a filesystem-level keyring) | 
|  | * | 
|  | * - Handling policies with the DIRECT_KEY flag set using a master key table | 
|  | *   (rather than the new method of implementing DIRECT_KEY with per-mode keys | 
|  | *    managed alongside the master keys in the filesystem-level keyring) | 
|  | */ | 
|  |  | 
|  | #include <crypto/algapi.h> | 
|  | #include <crypto/skcipher.h> | 
|  | #include <keys/user-type.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/scatterlist.h> | 
|  |  | 
|  | #include "fscrypt_private.h" | 
|  |  | 
|  | /* Table of keys referenced by DIRECT_KEY policies */ | 
|  | static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */ | 
|  | static DEFINE_SPINLOCK(fscrypt_direct_keys_lock); | 
|  |  | 
|  | /* | 
|  | * v1 key derivation function.  This generates the derived key by encrypting the | 
|  | * master key with AES-128-ECB using the nonce as the AES key.  This provides a | 
|  | * unique derived key with sufficient entropy for each inode.  However, it's | 
|  | * nonstandard, non-extensible, doesn't evenly distribute the entropy from the | 
|  | * master key, and is trivially reversible: an attacker who compromises a | 
|  | * derived key can "decrypt" it to get back to the master key, then derive any | 
|  | * other key.  For all new code, use HKDF instead. | 
|  | * | 
|  | * The master key must be at least as long as the derived key.  If the master | 
|  | * key is longer, then only the first 'derived_keysize' bytes are used. | 
|  | */ | 
|  | static int derive_key_aes(const u8 *master_key, | 
|  | const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], | 
|  | u8 *derived_key, unsigned int derived_keysize) | 
|  | { | 
|  | int res = 0; | 
|  | struct skcipher_request *req = NULL; | 
|  | DECLARE_CRYPTO_WAIT(wait); | 
|  | struct scatterlist src_sg, dst_sg; | 
|  | struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0); | 
|  |  | 
|  | if (IS_ERR(tfm)) { | 
|  | res = PTR_ERR(tfm); | 
|  | tfm = NULL; | 
|  | goto out; | 
|  | } | 
|  | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); | 
|  | req = skcipher_request_alloc(tfm, GFP_KERNEL); | 
|  | if (!req) { | 
|  | res = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | skcipher_request_set_callback(req, | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | 
|  | crypto_req_done, &wait); | 
|  | res = crypto_skcipher_setkey(tfm, nonce, FSCRYPT_FILE_NONCE_SIZE); | 
|  | if (res < 0) | 
|  | goto out; | 
|  |  | 
|  | sg_init_one(&src_sg, master_key, derived_keysize); | 
|  | sg_init_one(&dst_sg, derived_key, derived_keysize); | 
|  | skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize, | 
|  | NULL); | 
|  | res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
|  | out: | 
|  | skcipher_request_free(req); | 
|  | crypto_free_skcipher(tfm); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the current task's subscribed keyrings for a "logon" key with | 
|  | * description prefix:descriptor, and if found acquire a read lock on it and | 
|  | * return a pointer to its validated payload in *payload_ret. | 
|  | */ | 
|  | static struct key * | 
|  | find_and_lock_process_key(const char *prefix, | 
|  | const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE], | 
|  | unsigned int min_keysize, | 
|  | const struct fscrypt_key **payload_ret) | 
|  | { | 
|  | char *description; | 
|  | struct key *key; | 
|  | const struct user_key_payload *ukp; | 
|  | const struct fscrypt_key *payload; | 
|  |  | 
|  | description = kasprintf(GFP_KERNEL, "%s%*phN", prefix, | 
|  | FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor); | 
|  | if (!description) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | key = request_key(&key_type_logon, description, NULL); | 
|  | kfree(description); | 
|  | if (IS_ERR(key)) | 
|  | return key; | 
|  |  | 
|  | down_read(&key->sem); | 
|  | ukp = user_key_payload_locked(key); | 
|  |  | 
|  | if (!ukp) /* was the key revoked before we acquired its semaphore? */ | 
|  | goto invalid; | 
|  |  | 
|  | payload = (const struct fscrypt_key *)ukp->data; | 
|  |  | 
|  | if (ukp->datalen != sizeof(struct fscrypt_key) || | 
|  | payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) { | 
|  | fscrypt_warn(NULL, | 
|  | "key with description '%s' has invalid payload", | 
|  | key->description); | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (payload->size < min_keysize) { | 
|  | fscrypt_warn(NULL, | 
|  | "key with description '%s' is too short (got %u bytes, need %u+ bytes)", | 
|  | key->description, payload->size, min_keysize); | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | *payload_ret = payload; | 
|  | return key; | 
|  |  | 
|  | invalid: | 
|  | up_read(&key->sem); | 
|  | key_put(key); | 
|  | return ERR_PTR(-ENOKEY); | 
|  | } | 
|  |  | 
|  | /* Master key referenced by DIRECT_KEY policy */ | 
|  | struct fscrypt_direct_key { | 
|  | struct super_block		*dk_sb; | 
|  | struct hlist_node		dk_node; | 
|  | refcount_t			dk_refcount; | 
|  | const struct fscrypt_mode	*dk_mode; | 
|  | struct fscrypt_prepared_key	dk_key; | 
|  | u8				dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; | 
|  | u8				dk_raw[FSCRYPT_MAX_KEY_SIZE]; | 
|  | }; | 
|  |  | 
|  | static void free_direct_key(struct fscrypt_direct_key *dk) | 
|  | { | 
|  | if (dk) { | 
|  | fscrypt_destroy_prepared_key(dk->dk_sb, &dk->dk_key); | 
|  | kfree_sensitive(dk); | 
|  | } | 
|  | } | 
|  |  | 
|  | void fscrypt_put_direct_key(struct fscrypt_direct_key *dk) | 
|  | { | 
|  | if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock)) | 
|  | return; | 
|  | hash_del(&dk->dk_node); | 
|  | spin_unlock(&fscrypt_direct_keys_lock); | 
|  |  | 
|  | free_direct_key(dk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find/insert the given key into the fscrypt_direct_keys table.  If found, it | 
|  | * is returned with elevated refcount, and 'to_insert' is freed if non-NULL.  If | 
|  | * not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise | 
|  | * NULL is returned. | 
|  | */ | 
|  | static struct fscrypt_direct_key * | 
|  | find_or_insert_direct_key(struct fscrypt_direct_key *to_insert, | 
|  | const u8 *raw_key, const struct fscrypt_info *ci) | 
|  | { | 
|  | unsigned long hash_key; | 
|  | struct fscrypt_direct_key *dk; | 
|  |  | 
|  | /* | 
|  | * Careful: to avoid potentially leaking secret key bytes via timing | 
|  | * information, we must key the hash table by descriptor rather than by | 
|  | * raw key, and use crypto_memneq() when comparing raw keys. | 
|  | */ | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE); | 
|  | memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor, | 
|  | sizeof(hash_key)); | 
|  |  | 
|  | spin_lock(&fscrypt_direct_keys_lock); | 
|  | hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) { | 
|  | if (memcmp(ci->ci_policy.v1.master_key_descriptor, | 
|  | dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0) | 
|  | continue; | 
|  | if (ci->ci_mode != dk->dk_mode) | 
|  | continue; | 
|  | if (!fscrypt_is_key_prepared(&dk->dk_key, ci)) | 
|  | continue; | 
|  | if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize)) | 
|  | continue; | 
|  | /* using existing tfm with same (descriptor, mode, raw_key) */ | 
|  | refcount_inc(&dk->dk_refcount); | 
|  | spin_unlock(&fscrypt_direct_keys_lock); | 
|  | free_direct_key(to_insert); | 
|  | return dk; | 
|  | } | 
|  | if (to_insert) | 
|  | hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key); | 
|  | spin_unlock(&fscrypt_direct_keys_lock); | 
|  | return to_insert; | 
|  | } | 
|  |  | 
|  | /* Prepare to encrypt directly using the master key in the given mode */ | 
|  | static struct fscrypt_direct_key * | 
|  | fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key) | 
|  | { | 
|  | struct fscrypt_direct_key *dk; | 
|  | int err; | 
|  |  | 
|  | /* Is there already a tfm for this key? */ | 
|  | dk = find_or_insert_direct_key(NULL, raw_key, ci); | 
|  | if (dk) | 
|  | return dk; | 
|  |  | 
|  | /* Nope, allocate one. */ | 
|  | dk = kzalloc(sizeof(*dk), GFP_KERNEL); | 
|  | if (!dk) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | dk->dk_sb = ci->ci_inode->i_sb; | 
|  | refcount_set(&dk->dk_refcount, 1); | 
|  | dk->dk_mode = ci->ci_mode; | 
|  | err = fscrypt_prepare_key(&dk->dk_key, raw_key, ci); | 
|  | if (err) | 
|  | goto err_free_dk; | 
|  | memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor, | 
|  | FSCRYPT_KEY_DESCRIPTOR_SIZE); | 
|  | memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize); | 
|  |  | 
|  | return find_or_insert_direct_key(dk, raw_key, ci); | 
|  |  | 
|  | err_free_dk: | 
|  | free_direct_key(dk); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* v1 policy, DIRECT_KEY: use the master key directly */ | 
|  | static int setup_v1_file_key_direct(struct fscrypt_info *ci, | 
|  | const u8 *raw_master_key) | 
|  | { | 
|  | struct fscrypt_direct_key *dk; | 
|  |  | 
|  | dk = fscrypt_get_direct_key(ci, raw_master_key); | 
|  | if (IS_ERR(dk)) | 
|  | return PTR_ERR(dk); | 
|  | ci->ci_direct_key = dk; | 
|  | ci->ci_enc_key = dk->dk_key; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* v1 policy, !DIRECT_KEY: derive the file's encryption key */ | 
|  | static int setup_v1_file_key_derived(struct fscrypt_info *ci, | 
|  | const u8 *raw_master_key) | 
|  | { | 
|  | u8 *derived_key; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * This cannot be a stack buffer because it will be passed to the | 
|  | * scatterlist crypto API during derive_key_aes(). | 
|  | */ | 
|  | derived_key = kmalloc(ci->ci_mode->keysize, GFP_KERNEL); | 
|  | if (!derived_key) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = derive_key_aes(raw_master_key, ci->ci_nonce, | 
|  | derived_key, ci->ci_mode->keysize); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = fscrypt_set_per_file_enc_key(ci, derived_key); | 
|  | out: | 
|  | kfree_sensitive(derived_key); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key) | 
|  | { | 
|  | if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) | 
|  | return setup_v1_file_key_direct(ci, raw_master_key); | 
|  | else | 
|  | return setup_v1_file_key_derived(ci, raw_master_key); | 
|  | } | 
|  |  | 
|  | int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci) | 
|  | { | 
|  | struct key *key; | 
|  | const struct fscrypt_key *payload; | 
|  | int err; | 
|  |  | 
|  | key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX, | 
|  | ci->ci_policy.v1.master_key_descriptor, | 
|  | ci->ci_mode->keysize, &payload); | 
|  | if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) { | 
|  | key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix, | 
|  | ci->ci_policy.v1.master_key_descriptor, | 
|  | ci->ci_mode->keysize, &payload); | 
|  | } | 
|  | if (IS_ERR(key)) | 
|  | return PTR_ERR(key); | 
|  |  | 
|  | err = fscrypt_setup_v1_file_key(ci, payload->raw); | 
|  | up_read(&key->sem); | 
|  | key_put(key); | 
|  | return err; | 
|  | } |