|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * Macros and functions to access KVM PTEs (also known as SPTEs) | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2020 Red Hat, Inc. and/or its affiliates. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include "mmu.h" | 
|  | #include "mmu_internal.h" | 
|  | #include "x86.h" | 
|  | #include "spte.h" | 
|  |  | 
|  | #include <asm/e820/api.h> | 
|  | #include <asm/memtype.h> | 
|  | #include <asm/vmx.h> | 
|  |  | 
|  | bool __read_mostly enable_mmio_caching = true; | 
|  | static bool __ro_after_init allow_mmio_caching; | 
|  | module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); | 
|  | EXPORT_SYMBOL_GPL(enable_mmio_caching); | 
|  |  | 
|  | u64 __read_mostly shadow_host_writable_mask; | 
|  | u64 __read_mostly shadow_mmu_writable_mask; | 
|  | u64 __read_mostly shadow_nx_mask; | 
|  | u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ | 
|  | u64 __read_mostly shadow_user_mask; | 
|  | u64 __read_mostly shadow_accessed_mask; | 
|  | u64 __read_mostly shadow_dirty_mask; | 
|  | u64 __read_mostly shadow_mmio_value; | 
|  | u64 __read_mostly shadow_mmio_mask; | 
|  | u64 __read_mostly shadow_mmio_access_mask; | 
|  | u64 __read_mostly shadow_present_mask; | 
|  | u64 __read_mostly shadow_memtype_mask; | 
|  | u64 __read_mostly shadow_me_value; | 
|  | u64 __read_mostly shadow_me_mask; | 
|  | u64 __read_mostly shadow_acc_track_mask; | 
|  |  | 
|  | u64 __read_mostly shadow_nonpresent_or_rsvd_mask; | 
|  | u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; | 
|  |  | 
|  | u8 __read_mostly shadow_phys_bits; | 
|  |  | 
|  | void __init kvm_mmu_spte_module_init(void) | 
|  | { | 
|  | /* | 
|  | * Snapshot userspace's desire to allow MMIO caching.  Whether or not | 
|  | * KVM can actually enable MMIO caching depends on vendor-specific | 
|  | * hardware capabilities and other module params that can't be resolved | 
|  | * until the vendor module is loaded, i.e. enable_mmio_caching can and | 
|  | * will change when the vendor module is (re)loaded. | 
|  | */ | 
|  | allow_mmio_caching = enable_mmio_caching; | 
|  | } | 
|  |  | 
|  | static u64 generation_mmio_spte_mask(u64 gen) | 
|  | { | 
|  | u64 mask; | 
|  |  | 
|  | WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); | 
|  |  | 
|  | mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; | 
|  | mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) | 
|  | { | 
|  | u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; | 
|  | u64 spte = generation_mmio_spte_mask(gen); | 
|  | u64 gpa = gfn << PAGE_SHIFT; | 
|  |  | 
|  | WARN_ON_ONCE(!shadow_mmio_value); | 
|  |  | 
|  | access &= shadow_mmio_access_mask; | 
|  | spte |= shadow_mmio_value | access; | 
|  | spte |= gpa | shadow_nonpresent_or_rsvd_mask; | 
|  | spte |= (gpa & shadow_nonpresent_or_rsvd_mask) | 
|  | << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; | 
|  |  | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) | 
|  | { | 
|  | if (pfn_valid(pfn)) | 
|  | return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && | 
|  | /* | 
|  | * Some reserved pages, such as those from NVDIMM | 
|  | * DAX devices, are not for MMIO, and can be mapped | 
|  | * with cached memory type for better performance. | 
|  | * However, the above check misconceives those pages | 
|  | * as MMIO, and results in KVM mapping them with UC | 
|  | * memory type, which would hurt the performance. | 
|  | * Therefore, we check the host memory type in addition | 
|  | * and only treat UC/UC-/WC pages as MMIO. | 
|  | */ | 
|  | (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); | 
|  |  | 
|  | return !e820__mapped_raw_any(pfn_to_hpa(pfn), | 
|  | pfn_to_hpa(pfn + 1) - 1, | 
|  | E820_TYPE_RAM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the SPTE has bits that may be set without holding mmu_lock. | 
|  | * The caller is responsible for checking if the SPTE is shadow-present, and | 
|  | * for determining whether or not the caller cares about non-leaf SPTEs. | 
|  | */ | 
|  | bool spte_has_volatile_bits(u64 spte) | 
|  | { | 
|  | /* | 
|  | * Always atomically update spte if it can be updated | 
|  | * out of mmu-lock, it can ensure dirty bit is not lost, | 
|  | * also, it can help us to get a stable is_writable_pte() | 
|  | * to ensure tlb flush is not missed. | 
|  | */ | 
|  | if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) | 
|  | return true; | 
|  |  | 
|  | if (is_access_track_spte(spte)) | 
|  | return true; | 
|  |  | 
|  | if (spte_ad_enabled(spte)) { | 
|  | if (!(spte & shadow_accessed_mask) || | 
|  | (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | const struct kvm_memory_slot *slot, | 
|  | unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, | 
|  | u64 old_spte, bool prefetch, bool can_unsync, | 
|  | bool host_writable, u64 *new_spte) | 
|  | { | 
|  | int level = sp->role.level; | 
|  | u64 spte = SPTE_MMU_PRESENT_MASK; | 
|  | bool wrprot = false; | 
|  |  | 
|  | WARN_ON_ONCE(!pte_access && !shadow_present_mask); | 
|  |  | 
|  | if (sp->role.ad_disabled) | 
|  | spte |= SPTE_TDP_AD_DISABLED_MASK; | 
|  | else if (kvm_mmu_page_ad_need_write_protect(sp)) | 
|  | spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK; | 
|  |  | 
|  | /* | 
|  | * For the EPT case, shadow_present_mask is 0 if hardware | 
|  | * supports exec-only page table entries.  In that case, | 
|  | * ACC_USER_MASK and shadow_user_mask are used to represent | 
|  | * read access.  See FNAME(gpte_access) in paging_tmpl.h. | 
|  | */ | 
|  | spte |= shadow_present_mask; | 
|  | if (!prefetch) | 
|  | spte |= spte_shadow_accessed_mask(spte); | 
|  |  | 
|  | if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && | 
|  | is_nx_huge_page_enabled(vcpu->kvm)) { | 
|  | pte_access &= ~ACC_EXEC_MASK; | 
|  | } | 
|  |  | 
|  | if (pte_access & ACC_EXEC_MASK) | 
|  | spte |= shadow_x_mask; | 
|  | else | 
|  | spte |= shadow_nx_mask; | 
|  |  | 
|  | if (pte_access & ACC_USER_MASK) | 
|  | spte |= shadow_user_mask; | 
|  |  | 
|  | if (level > PG_LEVEL_4K) | 
|  | spte |= PT_PAGE_SIZE_MASK; | 
|  |  | 
|  | if (shadow_memtype_mask) | 
|  | spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, | 
|  | kvm_is_mmio_pfn(pfn)); | 
|  | if (host_writable) | 
|  | spte |= shadow_host_writable_mask; | 
|  | else | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  |  | 
|  | if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) | 
|  | spte |= shadow_me_value; | 
|  |  | 
|  | spte |= (u64)pfn << PAGE_SHIFT; | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) { | 
|  | spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; | 
|  |  | 
|  | /* | 
|  | * Optimization: for pte sync, if spte was writable the hash | 
|  | * lookup is unnecessary (and expensive). Write protection | 
|  | * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. | 
|  | * Same reasoning can be applied to dirty page accounting. | 
|  | */ | 
|  | if (is_writable_pte(old_spte)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Unsync shadow pages that are reachable by the new, writable | 
|  | * SPTE.  Write-protect the SPTE if the page can't be unsync'd, | 
|  | * e.g. it's write-tracked (upper-level SPs) or has one or more | 
|  | * shadow pages and unsync'ing pages is not allowed. | 
|  | */ | 
|  | if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { | 
|  | pgprintk("%s: found shadow page for %llx, marking ro\n", | 
|  | __func__, gfn); | 
|  | wrprot = true; | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) | 
|  | spte |= spte_shadow_dirty_mask(spte); | 
|  |  | 
|  | out: | 
|  | if (prefetch) | 
|  | spte = mark_spte_for_access_track(spte); | 
|  |  | 
|  | WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), | 
|  | "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, | 
|  | get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); | 
|  |  | 
|  | if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { | 
|  | /* Enforced by kvm_mmu_hugepage_adjust. */ | 
|  | WARN_ON(level > PG_LEVEL_4K); | 
|  | mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); | 
|  | } | 
|  |  | 
|  | *new_spte = spte; | 
|  | return wrprot; | 
|  | } | 
|  |  | 
|  | static u64 make_spte_executable(u64 spte) | 
|  | { | 
|  | bool is_access_track = is_access_track_spte(spte); | 
|  |  | 
|  | if (is_access_track) | 
|  | spte = restore_acc_track_spte(spte); | 
|  |  | 
|  | spte &= ~shadow_nx_mask; | 
|  | spte |= shadow_x_mask; | 
|  |  | 
|  | if (is_access_track) | 
|  | spte = mark_spte_for_access_track(spte); | 
|  |  | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct an SPTE that maps a sub-page of the given huge page SPTE where | 
|  | * `index` identifies which sub-page. | 
|  | * | 
|  | * This is used during huge page splitting to build the SPTEs that make up the | 
|  | * new page table. | 
|  | */ | 
|  | u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, | 
|  | int index) | 
|  | { | 
|  | u64 child_spte; | 
|  |  | 
|  | if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte))) | 
|  | return 0; | 
|  |  | 
|  | if (WARN_ON_ONCE(!is_large_pte(huge_spte))) | 
|  | return 0; | 
|  |  | 
|  | child_spte = huge_spte; | 
|  |  | 
|  | /* | 
|  | * The child_spte already has the base address of the huge page being | 
|  | * split. So we just have to OR in the offset to the page at the next | 
|  | * lower level for the given index. | 
|  | */ | 
|  | child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; | 
|  |  | 
|  | if (role.level == PG_LEVEL_4K) { | 
|  | child_spte &= ~PT_PAGE_SIZE_MASK; | 
|  |  | 
|  | /* | 
|  | * When splitting to a 4K page where execution is allowed, mark | 
|  | * the page executable as the NX hugepage mitigation no longer | 
|  | * applies. | 
|  | */ | 
|  | if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) | 
|  | child_spte = make_spte_executable(child_spte); | 
|  | } | 
|  |  | 
|  | return child_spte; | 
|  | } | 
|  |  | 
|  |  | 
|  | u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) | 
|  | { | 
|  | u64 spte = SPTE_MMU_PRESENT_MASK; | 
|  |  | 
|  | spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | | 
|  | shadow_user_mask | shadow_x_mask | shadow_me_value; | 
|  |  | 
|  | if (ad_disabled) | 
|  | spte |= SPTE_TDP_AD_DISABLED_MASK; | 
|  | else | 
|  | spte |= shadow_accessed_mask; | 
|  |  | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) | 
|  | { | 
|  | u64 new_spte; | 
|  |  | 
|  | new_spte = old_spte & ~SPTE_BASE_ADDR_MASK; | 
|  | new_spte |= (u64)new_pfn << PAGE_SHIFT; | 
|  |  | 
|  | new_spte &= ~PT_WRITABLE_MASK; | 
|  | new_spte &= ~shadow_host_writable_mask; | 
|  | new_spte &= ~shadow_mmu_writable_mask; | 
|  |  | 
|  | new_spte = mark_spte_for_access_track(new_spte); | 
|  |  | 
|  | return new_spte; | 
|  | } | 
|  |  | 
|  | u64 mark_spte_for_access_track(u64 spte) | 
|  | { | 
|  | if (spte_ad_enabled(spte)) | 
|  | return spte & ~shadow_accessed_mask; | 
|  |  | 
|  | if (is_access_track_spte(spte)) | 
|  | return spte; | 
|  |  | 
|  | check_spte_writable_invariants(spte); | 
|  |  | 
|  | WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << | 
|  | SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), | 
|  | "kvm: Access Tracking saved bit locations are not zero\n"); | 
|  |  | 
|  | spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << | 
|  | SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; | 
|  | spte &= ~shadow_acc_track_mask; | 
|  |  | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) | 
|  | { | 
|  | BUG_ON((u64)(unsigned)access_mask != access_mask); | 
|  | WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); | 
|  |  | 
|  | /* | 
|  | * Reset to the original module param value to honor userspace's desire | 
|  | * to (dis)allow MMIO caching.  Update the param itself so that | 
|  | * userspace can see whether or not KVM is actually using MMIO caching. | 
|  | */ | 
|  | enable_mmio_caching = allow_mmio_caching; | 
|  | if (!enable_mmio_caching) | 
|  | mmio_value = 0; | 
|  |  | 
|  | /* | 
|  | * The mask must contain only bits that are carved out specifically for | 
|  | * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO | 
|  | * generation. | 
|  | */ | 
|  | if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) | 
|  | mmio_value = 0; | 
|  |  | 
|  | /* | 
|  | * Disable MMIO caching if the MMIO value collides with the bits that | 
|  | * are used to hold the relocated GFN when the L1TF mitigation is | 
|  | * enabled.  This should never fire as there is no known hardware that | 
|  | * can trigger this condition, e.g. SME/SEV CPUs that require a custom | 
|  | * MMIO value are not susceptible to L1TF. | 
|  | */ | 
|  | if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << | 
|  | SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) | 
|  | mmio_value = 0; | 
|  |  | 
|  | /* | 
|  | * The masked MMIO value must obviously match itself and a removed SPTE | 
|  | * must not get a false positive.  Removed SPTEs and MMIO SPTEs should | 
|  | * never collide as MMIO must set some RWX bits, and removed SPTEs must | 
|  | * not set any RWX bits. | 
|  | */ | 
|  | if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || | 
|  | WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) | 
|  | mmio_value = 0; | 
|  |  | 
|  | if (!mmio_value) | 
|  | enable_mmio_caching = false; | 
|  |  | 
|  | shadow_mmio_value = mmio_value; | 
|  | shadow_mmio_mask  = mmio_mask; | 
|  | shadow_mmio_access_mask = access_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); | 
|  |  | 
|  | void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) | 
|  | { | 
|  | /* shadow_me_value must be a subset of shadow_me_mask */ | 
|  | if (WARN_ON(me_value & ~me_mask)) | 
|  | me_value = me_mask = 0; | 
|  |  | 
|  | shadow_me_value = me_value; | 
|  | shadow_me_mask = me_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); | 
|  |  | 
|  | void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) | 
|  | { | 
|  | shadow_user_mask	= VMX_EPT_READABLE_MASK; | 
|  | shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; | 
|  | shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; | 
|  | shadow_nx_mask		= 0ull; | 
|  | shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK; | 
|  | shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; | 
|  | /* | 
|  | * EPT overrides the host MTRRs, and so KVM must program the desired | 
|  | * memtype directly into the SPTEs.  Note, this mask is just the mask | 
|  | * of all bits that factor into the memtype, the actual memtype must be | 
|  | * dynamically calculated, e.g. to ensure host MMIO is mapped UC. | 
|  | */ | 
|  | shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; | 
|  | shadow_acc_track_mask	= VMX_EPT_RWX_MASK; | 
|  | shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; | 
|  | shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE; | 
|  |  | 
|  | /* | 
|  | * EPT Misconfigurations are generated if the value of bits 2:0 | 
|  | * of an EPT paging-structure entry is 110b (write/execute). | 
|  | */ | 
|  | kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, | 
|  | VMX_EPT_RWX_MASK, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); | 
|  |  | 
|  | void kvm_mmu_reset_all_pte_masks(void) | 
|  | { | 
|  | u8 low_phys_bits; | 
|  | u64 mask; | 
|  |  | 
|  | shadow_phys_bits = kvm_get_shadow_phys_bits(); | 
|  |  | 
|  | /* | 
|  | * If the CPU has 46 or less physical address bits, then set an | 
|  | * appropriate mask to guard against L1TF attacks. Otherwise, it is | 
|  | * assumed that the CPU is not vulnerable to L1TF. | 
|  | * | 
|  | * Some Intel CPUs address the L1 cache using more PA bits than are | 
|  | * reported by CPUID. Use the PA width of the L1 cache when possible | 
|  | * to achieve more effective mitigation, e.g. if system RAM overlaps | 
|  | * the most significant bits of legal physical address space. | 
|  | */ | 
|  | shadow_nonpresent_or_rsvd_mask = 0; | 
|  | low_phys_bits = boot_cpu_data.x86_phys_bits; | 
|  | if (boot_cpu_has_bug(X86_BUG_L1TF) && | 
|  | !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= | 
|  | 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { | 
|  | low_phys_bits = boot_cpu_data.x86_cache_bits | 
|  | - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; | 
|  | shadow_nonpresent_or_rsvd_mask = | 
|  | rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); | 
|  | } | 
|  |  | 
|  | shadow_nonpresent_or_rsvd_lower_gfn_mask = | 
|  | GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); | 
|  |  | 
|  | shadow_user_mask	= PT_USER_MASK; | 
|  | shadow_accessed_mask	= PT_ACCESSED_MASK; | 
|  | shadow_dirty_mask	= PT_DIRTY_MASK; | 
|  | shadow_nx_mask		= PT64_NX_MASK; | 
|  | shadow_x_mask		= 0; | 
|  | shadow_present_mask	= PT_PRESENT_MASK; | 
|  |  | 
|  | /* | 
|  | * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB | 
|  | * memtype in the SPTEs, i.e. relies on host MTRRs to provide the | 
|  | * correct memtype (WB is the "weakest" memtype). | 
|  | */ | 
|  | shadow_memtype_mask	= 0; | 
|  | shadow_acc_track_mask	= 0; | 
|  | shadow_me_mask		= 0; | 
|  | shadow_me_value		= 0; | 
|  |  | 
|  | shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; | 
|  | shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE; | 
|  |  | 
|  | /* | 
|  | * Set a reserved PA bit in MMIO SPTEs to generate page faults with | 
|  | * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT | 
|  | * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports | 
|  | * 52-bit physical addresses then there are no reserved PA bits in the | 
|  | * PTEs and so the reserved PA approach must be disabled. | 
|  | */ | 
|  | if (shadow_phys_bits < 52) | 
|  | mask = BIT_ULL(51) | PT_PRESENT_MASK; | 
|  | else | 
|  | mask = 0; | 
|  |  | 
|  | kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); | 
|  | } |