|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | /* | 
|  | * This is <linux/capability.h> | 
|  | * | 
|  | * Andrew G. Morgan <morgan@kernel.org> | 
|  | * Alexander Kjeldaas <astor@guardian.no> | 
|  | * with help from Aleph1, Roland Buresund and Andrew Main. | 
|  | * | 
|  | * See here for the libcap library ("POSIX draft" compliance): | 
|  | * | 
|  | * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/ | 
|  | */ | 
|  | #ifndef _LINUX_CAPABILITY_H | 
|  | #define _LINUX_CAPABILITY_H | 
|  |  | 
|  | #include <uapi/linux/capability.h> | 
|  | #include <linux/uidgid.h> | 
|  | #include <linux/bits.h> | 
|  |  | 
|  | #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3 | 
|  |  | 
|  | extern int file_caps_enabled; | 
|  |  | 
|  | typedef struct { u64 val; } kernel_cap_t; | 
|  |  | 
|  | /* same as vfs_ns_cap_data but in cpu endian and always filled completely */ | 
|  | struct cpu_vfs_cap_data { | 
|  | __u32 magic_etc; | 
|  | kuid_t rootid; | 
|  | kernel_cap_t permitted; | 
|  | kernel_cap_t inheritable; | 
|  | }; | 
|  |  | 
|  | #define _USER_CAP_HEADER_SIZE  (sizeof(struct __user_cap_header_struct)) | 
|  | #define _KERNEL_CAP_T_SIZE     (sizeof(kernel_cap_t)) | 
|  |  | 
|  | struct file; | 
|  | struct inode; | 
|  | struct dentry; | 
|  | struct task_struct; | 
|  | struct user_namespace; | 
|  | struct mnt_idmap; | 
|  |  | 
|  | /* | 
|  | * CAP_FS_MASK and CAP_NFSD_MASKS: | 
|  | * | 
|  | * The fs mask is all the privileges that fsuid==0 historically meant. | 
|  | * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE. | 
|  | * | 
|  | * It has never meant setting security.* and trusted.* xattrs. | 
|  | * | 
|  | * We could also define fsmask as follows: | 
|  | *   1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions | 
|  | *   2. The security.* and trusted.* xattrs are fs-related MAC permissions | 
|  | */ | 
|  |  | 
|  | # define CAP_FS_MASK     (BIT_ULL(CAP_CHOWN)		\ | 
|  | | BIT_ULL(CAP_MKNOD)		\ | 
|  | | BIT_ULL(CAP_DAC_OVERRIDE)	\ | 
|  | | BIT_ULL(CAP_DAC_READ_SEARCH)	\ | 
|  | | BIT_ULL(CAP_FOWNER)		\ | 
|  | | BIT_ULL(CAP_FSETID)		\ | 
|  | | BIT_ULL(CAP_MAC_OVERRIDE)) | 
|  | #define CAP_VALID_MASK	 (BIT_ULL(CAP_LAST_CAP+1)-1) | 
|  |  | 
|  | # define CAP_EMPTY_SET    ((kernel_cap_t) { 0 }) | 
|  | # define CAP_FULL_SET     ((kernel_cap_t) { CAP_VALID_MASK }) | 
|  | # define CAP_FS_SET       ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_LINUX_IMMUTABLE) }) | 
|  | # define CAP_NFSD_SET     ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_SYS_RESOURCE) }) | 
|  |  | 
|  | # define cap_clear(c)         do { (c).val = 0; } while (0) | 
|  |  | 
|  | #define cap_raise(c, flag)  ((c).val |= BIT_ULL(flag)) | 
|  | #define cap_lower(c, flag)  ((c).val &= ~BIT_ULL(flag)) | 
|  | #define cap_raised(c, flag) (((c).val & BIT_ULL(flag)) != 0) | 
|  |  | 
|  | static inline kernel_cap_t cap_combine(const kernel_cap_t a, | 
|  | const kernel_cap_t b) | 
|  | { | 
|  | return (kernel_cap_t) { a.val | b.val }; | 
|  | } | 
|  |  | 
|  | static inline kernel_cap_t cap_intersect(const kernel_cap_t a, | 
|  | const kernel_cap_t b) | 
|  | { | 
|  | return (kernel_cap_t) { a.val & b.val }; | 
|  | } | 
|  |  | 
|  | static inline kernel_cap_t cap_drop(const kernel_cap_t a, | 
|  | const kernel_cap_t drop) | 
|  | { | 
|  | return (kernel_cap_t) { a.val &~ drop.val }; | 
|  | } | 
|  |  | 
|  | static inline bool cap_isclear(const kernel_cap_t a) | 
|  | { | 
|  | return !a.val; | 
|  | } | 
|  |  | 
|  | static inline bool cap_isidentical(const kernel_cap_t a, const kernel_cap_t b) | 
|  | { | 
|  | return a.val == b.val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if "a" is a subset of "set". | 
|  | * return true if ALL of the capabilities in "a" are also in "set" | 
|  | *	cap_issubset(0101, 1111) will return true | 
|  | * return false if ANY of the capabilities in "a" are not in "set" | 
|  | *	cap_issubset(1111, 0101) will return false | 
|  | */ | 
|  | static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set) | 
|  | { | 
|  | return !(a.val & ~set.val); | 
|  | } | 
|  |  | 
|  | /* Used to decide between falling back on the old suser() or fsuser(). */ | 
|  |  | 
|  | static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a) | 
|  | { | 
|  | return cap_drop(a, CAP_FS_SET); | 
|  | } | 
|  |  | 
|  | static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a, | 
|  | const kernel_cap_t permitted) | 
|  | { | 
|  | return cap_combine(a, cap_intersect(permitted, CAP_FS_SET)); | 
|  | } | 
|  |  | 
|  | static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a) | 
|  | { | 
|  | return cap_drop(a, CAP_NFSD_SET); | 
|  | } | 
|  |  | 
|  | static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a, | 
|  | const kernel_cap_t permitted) | 
|  | { | 
|  | return cap_combine(a, cap_intersect(permitted, CAP_NFSD_SET)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MULTIUSER | 
|  | extern bool has_capability(struct task_struct *t, int cap); | 
|  | extern bool has_ns_capability(struct task_struct *t, | 
|  | struct user_namespace *ns, int cap); | 
|  | extern bool has_capability_noaudit(struct task_struct *t, int cap); | 
|  | extern bool has_ns_capability_noaudit(struct task_struct *t, | 
|  | struct user_namespace *ns, int cap); | 
|  | extern bool capable(int cap); | 
|  | extern bool ns_capable(struct user_namespace *ns, int cap); | 
|  | extern bool ns_capable_noaudit(struct user_namespace *ns, int cap); | 
|  | extern bool ns_capable_setid(struct user_namespace *ns, int cap); | 
|  | #else | 
|  | static inline bool has_capability(struct task_struct *t, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool has_ns_capability(struct task_struct *t, | 
|  | struct user_namespace *ns, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool has_capability_noaudit(struct task_struct *t, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool has_ns_capability_noaudit(struct task_struct *t, | 
|  | struct user_namespace *ns, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool capable(int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool ns_capable(struct user_namespace *ns, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static inline bool ns_capable_setid(struct user_namespace *ns, int cap) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_MULTIUSER */ | 
|  | bool privileged_wrt_inode_uidgid(struct user_namespace *ns, | 
|  | struct mnt_idmap *idmap, | 
|  | const struct inode *inode); | 
|  | bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap, | 
|  | const struct inode *inode, int cap); | 
|  | extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap); | 
|  | extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns); | 
|  | static inline bool perfmon_capable(void) | 
|  | { | 
|  | return capable(CAP_PERFMON) || capable(CAP_SYS_ADMIN); | 
|  | } | 
|  |  | 
|  | static inline bool bpf_capable(void) | 
|  | { | 
|  | return capable(CAP_BPF) || capable(CAP_SYS_ADMIN); | 
|  | } | 
|  |  | 
|  | static inline bool checkpoint_restore_ns_capable(struct user_namespace *ns) | 
|  | { | 
|  | return ns_capable(ns, CAP_CHECKPOINT_RESTORE) || | 
|  | ns_capable(ns, CAP_SYS_ADMIN); | 
|  | } | 
|  |  | 
|  | /* audit system wants to get cap info from files as well */ | 
|  | int get_vfs_caps_from_disk(struct mnt_idmap *idmap, | 
|  | const struct dentry *dentry, | 
|  | struct cpu_vfs_cap_data *cpu_caps); | 
|  |  | 
|  | int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry, | 
|  | const void **ivalue, size_t size); | 
|  |  | 
|  | #endif /* !_LINUX_CAPABILITY_H */ |